Evaluating probabilistic software development effort estimates: Maximizing informativeness subject to calibration
Probabilistic effort estimates inform about the uncertainty and may give useful input to plans, budgets and investment analyses. This paper introduces, motivates and illustrates two principles on how to evaluate the accuracy and other performance criteria of probabilistic effort estimates in softwar...
Saved in:
Published in | Information and software technology Vol. 115; pp. 93 - 96 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Probabilistic effort estimates inform about the uncertainty and may give useful input to plans, budgets and investment analyses.
This paper introduces, motivates and illustrates two principles on how to evaluate the accuracy and other performance criteria of probabilistic effort estimates in software development contexts.
The first principle emphasizes a consistency between the estimation error measure and the loss function of the chosen type of probabilistic single point effort estimates. The second principle points at the importance of not just measuring calibration, but also informativeness of estimated prediction intervals and distributions. The relevance of the evaluation principles is illustrated by a performance evaluation of estimates from twenty-eight software professionals using two different uncertainty assessment methods to estimate the effort of the same thirty software maintenance tasks. |
---|---|
AbstractList | Probabilistic effort estimates inform about the uncertainty and may give useful input to plans, budgets and investment analyses.
This paper introduces, motivates and illustrates two principles on how to evaluate the accuracy and other performance criteria of probabilistic effort estimates in software development contexts.
The first principle emphasizes a consistency between the estimation error measure and the loss function of the chosen type of probabilistic single point effort estimates. The second principle points at the importance of not just measuring calibration, but also informativeness of estimated prediction intervals and distributions. The relevance of the evaluation principles is illustrated by a performance evaluation of estimates from twenty-eight software professionals using two different uncertainty assessment methods to estimate the effort of the same thirty software maintenance tasks. |
Author | Jørgensen, Magne |
Author_xml | – sequence: 1 givenname: Magne orcidid: 0000-0001-6250-9783 surname: Jørgensen fullname: Jørgensen, Magne email: magnej@simula.no organization: Simula Metropolitan Center for Digital Engineering, Norway & Oslo Metropolitan University, Norway |
BookMark | eNqFkMtKAzEUhoNUsK2-gYu8wIwnc026EKTUC1Tc6DpkcpGU6aQmcbw8val15UJXB5Lz_fznm6HJ4AaN0DmBnABpLja5HUxwJi-AsBxoDtAcoSmhbZk1UNQTNAVWQ1bTip2gWQgbANJCCVP0shpF_yqiHZ7xzrtOdLa3IVqJU158E15jpUfdu91WDxFrY5xPI21sRdRhge_Fu93azz2fSjifnu2oBx0CDq_dRsuIo8NS9Lbz6csNp-jYiD7os585R0_Xq8flbbZ-uLlbXq0zWUEds0rSCogyqT5TrRSMCMYUIw2IihlQRd2aVrG0S1lZmLqWbVOakhVGlQVQWs7R4pArvQvBa8Oljd8Nohe25wT4Xh7f8IM8vpfHgfIkL8HVL3jn08X-4z_s8oDpdNhotedBWj1IraxPJrhy9u-ALztzkOg |
CitedBy_id | crossref_primary_10_1109_TEM_2021_3067050 crossref_primary_10_1016_j_infsof_2023_107157 crossref_primary_10_1016_j_scico_2021_102744 |
Cites_doi | 10.1002/2017SW001669 10.1111/j.1467-9868.2007.00587.x 10.1146/annurev-statistics-062713-085831 10.1198/jasa.2011.r10138 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.infsof.2019.08.006 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Business |
EISSN | 1873-6025 |
EndPage | 96 |
ExternalDocumentID | 10_1016_j_infsof_2019_08_006 S0950584919301703 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABBOA ABFNM ABFRF ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACGOD ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TWZ UHS UNMZH WH7 WUQ XFK ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c405t-4c8401df0259d7ca91a99d9160a49f0d257f7d94058932f55c763f392fd320883 |
IEDL.DBID | .~1 |
ISSN | 0950-5849 |
IngestDate | Thu Apr 24 23:02:33 EDT 2025 Tue Jul 01 02:22:03 EDT 2025 Fri Feb 23 02:23:54 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Effort prediction intervals Probabilistic effort estimates Estimation error measurement Estimated effort distributions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-4c8401df0259d7ca91a99d9160a49f0d257f7d94058932f55c763f392fd320883 |
ORCID | 0000-0001-6250-9783 |
OpenAccessLink | https://hdl.handle.net/10642/8325 |
PageCount | 4 |
ParticipantIDs | crossref_citationtrail_10_1016_j_infsof_2019_08_006 crossref_primary_10_1016_j_infsof_2019_08_006 elsevier_sciencedirect_doi_10_1016_j_infsof_2019_08_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Information and software technology |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Jørgensen (bib0001) 2014 Gneiting, Balabdaoui, Raftery (bib0004) 2007; 69 Volden, Samset (bib0005) 2017 Jørgensen, Teigen (bib0007) 2002 Gneiting, Katzfuss (bib0006) 2014; 1 Morley, Brito, Welling (bib0003) 2018; 16 Gneiting (bib0002) 2011; 106 Morley (10.1016/j.infsof.2019.08.006_bib0003) 2018; 16 Volden (10.1016/j.infsof.2019.08.006_bib0005) 2017 Jørgensen (10.1016/j.infsof.2019.08.006_bib0007) 2002 Gneiting (10.1016/j.infsof.2019.08.006_bib0004) 2007; 69 Gneiting (10.1016/j.infsof.2019.08.006_bib0006) 2014; 1 Jørgensen (10.1016/j.infsof.2019.08.006_bib0001) 2014 Gneiting (10.1016/j.infsof.2019.08.006_bib0002) 2011; 106 |
References_xml | – volume: 106 start-page: 746 year: 2011 end-page: 762 ident: bib0002 article-title: Making and evaluating point forecasts publication-title: J. Am. Stat. Assoc. – year: 2014 ident: bib0001 article-title: Communication of software cost estimates publication-title: 18th International Conference on Evaluation and Assessment in Software Engineering (EASE) – volume: 69 start-page: 243 year: 2007 end-page: 268 ident: bib0004 article-title: Probabilistic forecasts, calibration and sharpness publication-title: J. R. Stat. Soc. – volume: 16 start-page: 69 year: 2018 end-page: 88 ident: bib0003 article-title: Measures of model performance based on the log accuracy ratio publication-title: Space Weather – start-page: 406 year: 2017 ident: bib0005 article-title: Quality Assurance in Megaproject Management – volume: 1 start-page: 125 year: 2014 end-page: 151 ident: bib0006 article-title: Probabilistic forecasting publication-title: Annu. Rev. Stat. Appl. – start-page: 343 year: 2002 end-page: 352 ident: bib0007 article-title: versus publication-title: International Conference on Project Management (ProMAC) – volume: 16 start-page: 69 issue: 1 year: 2018 ident: 10.1016/j.infsof.2019.08.006_bib0003 article-title: Measures of model performance based on the log accuracy ratio publication-title: Space Weather doi: 10.1002/2017SW001669 – volume: 69 start-page: 243 issue: 2 year: 2007 ident: 10.1016/j.infsof.2019.08.006_bib0004 article-title: Probabilistic forecasts, calibration and sharpness publication-title: J. R. Stat. Soc. doi: 10.1111/j.1467-9868.2007.00587.x – volume: 1 start-page: 125 year: 2014 ident: 10.1016/j.infsof.2019.08.006_bib0006 article-title: Probabilistic forecasting publication-title: Annu. Rev. Stat. Appl. doi: 10.1146/annurev-statistics-062713-085831 – volume: 106 start-page: 746 issue: 494 year: 2011 ident: 10.1016/j.infsof.2019.08.006_bib0002 article-title: Making and evaluating point forecasts publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2011.r10138 – start-page: 343 year: 2002 ident: 10.1016/j.infsof.2019.08.006_bib0007 article-title: Uncertainty intervals versus interval uncertainty: an alternative method for eliciting effort prediction intervals in software development projects – year: 2014 ident: 10.1016/j.infsof.2019.08.006_bib0001 article-title: Communication of software cost estimates – start-page: 406 year: 2017 ident: 10.1016/j.infsof.2019.08.006_bib0005 |
SSID | ssj0017030 |
Score | 2.2873015 |
Snippet | Probabilistic effort estimates inform about the uncertainty and may give useful input to plans, budgets and investment analyses.
This paper introduces,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 93 |
SubjectTerms | Effort prediction intervals Estimated effort distributions Estimation error measurement Probabilistic effort estimates |
Title | Evaluating probabilistic software development effort estimates: Maximizing informativeness subject to calibration |
URI | https://dx.doi.org/10.1016/j.infsof.2019.08.006 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jgvgifuL8GHnwtS5r03bxbYyNqWwvOthbSZtEKtrNrUPxwb_duzadCqLgU2mbo-Euvfsl3P2OkHNtpGC-aTuewdMqicXKEHYc19WBZLFUcYLnkKNxMJzw66k_rZFeVQuDaZXW95c-vfDW9knLarM1T9PWLYADBuFTAARBEhhk_OQ8xFV-8b5O88AXrOTbYw6OrsrnihwvMOJyVhB5ioLIE_se_RSevoScwQ7ZtliRdsvp7JKazvbIZpWqvk-e-5aqO7un2BimIMtF3mUKn8tf5EJT9ZkTRLUBgAoXGPGECPOSjuRr-pS-obwlUK2cH12uYjyhofmMghVxT40WPCCTQf-uN3RsCwUnASSWOzyBDVxbGUA2QoWJFG0phAJIyCQXhin4YU2oBMfmgp5rfD8Bf2MAMxnlueCAvENSz2aZPiLU56ZjAB8ChJQ87vgxR-p6GWgAkRLM3SBepbkosfzi2ObiMaoSyR6iUt8R6jvC7pcsaBBnLTUv-TX-GB9WRom-rZMIQsCvksf_ljwhW3hXViCeknq-WOkzgCJ53CzWWpNsdK9uhuMPNTDgdA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qBfUiPrE-96DH2DSPtit4EG1p7eNiC73FTbIrEfuwTal68E_5B53JoyqIguApkOwmm9nZmW-XmW8AjqUSXLdVQTMVnVYJSlZGt6MZhiwK3RW-69E5ZKtdrHWt657dy8BbmgtDYZWJ7Y9temStkzv5RJr5URDkbxAc6Og-OUIQIoFJK1g35PMM922T8_oVTvKJYVQrncualpQW0DxEKKFmebixKfgKPT73S57gBcG5j1BJFxZXuo-KrEo-t6jonmko2_ZwHSrEEso3DVyYJr53ARYtNBdUNuH0dR5XQiPRY4I_XaPhpfl6UVAZas1kGDGH8og5lAotfecPP_m46hqsJuCUXcT_vw4ZOdiApTQ2fhMeKwk3-OCOUSWaiJ2XiJ4Zfi6cibFk_kcQEpMKETFesEWfIO0Za4mnoB-8UP-EsTW1tmwydelIiIVDhmpDm3hSmS3o_otgtyE7GA7kDjDbUmWFgBQxq7Dcsu1axJUvihJRq0D9yoGZSs7xEkJzqqvx4KSRa_dOLG-H5O1QuU29mANt3msUE3r80r6UTorzRTEd9Dk_9tz9c88jWK51Wk2nWW839mCFnsTpj_uQDcdTeYA4KHQPI71jcPvfiv4O8skZ3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+probabilistic+software+development+effort+estimates%3A+Maximizing+informativeness+subject+to+calibration&rft.jtitle=Information+and+software+technology&rft.au=J%C3%B8rgensen%2C+Magne&rft.date=2019-11-01&rft.issn=0950-5849&rft.volume=115&rft.spage=93&rft.epage=96&rft_id=info:doi/10.1016%2Fj.infsof.2019.08.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_infsof_2019_08_006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-5849&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-5849&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-5849&client=summon |