Evaluating probabilistic software development effort estimates: Maximizing informativeness subject to calibration

Probabilistic effort estimates inform about the uncertainty and may give useful input to plans, budgets and investment analyses. This paper introduces, motivates and illustrates two principles on how to evaluate the accuracy and other performance criteria of probabilistic effort estimates in softwar...

Full description

Saved in:
Bibliographic Details
Published inInformation and software technology Vol. 115; pp. 93 - 96
Main Author Jørgensen, Magne
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Probabilistic effort estimates inform about the uncertainty and may give useful input to plans, budgets and investment analyses. This paper introduces, motivates and illustrates two principles on how to evaluate the accuracy and other performance criteria of probabilistic effort estimates in software development contexts. The first principle emphasizes a consistency between the estimation error measure and the loss function of the chosen type of probabilistic single point effort estimates. The second principle points at the importance of not just measuring calibration, but also informativeness of estimated prediction intervals and distributions. The relevance of the evaluation principles is illustrated by a performance evaluation of estimates from twenty-eight software professionals using two different uncertainty assessment methods to estimate the effort of the same thirty software maintenance tasks.
AbstractList Probabilistic effort estimates inform about the uncertainty and may give useful input to plans, budgets and investment analyses. This paper introduces, motivates and illustrates two principles on how to evaluate the accuracy and other performance criteria of probabilistic effort estimates in software development contexts. The first principle emphasizes a consistency between the estimation error measure and the loss function of the chosen type of probabilistic single point effort estimates. The second principle points at the importance of not just measuring calibration, but also informativeness of estimated prediction intervals and distributions. The relevance of the evaluation principles is illustrated by a performance evaluation of estimates from twenty-eight software professionals using two different uncertainty assessment methods to estimate the effort of the same thirty software maintenance tasks.
Author Jørgensen, Magne
Author_xml – sequence: 1
  givenname: Magne
  orcidid: 0000-0001-6250-9783
  surname: Jørgensen
  fullname: Jørgensen, Magne
  email: magnej@simula.no
  organization: Simula Metropolitan Center for Digital Engineering, Norway & Oslo Metropolitan University, Norway
BookMark eNqFkMtKAzEUhoNUsK2-gYu8wIwnc026EKTUC1Tc6DpkcpGU6aQmcbw8val15UJXB5Lz_fznm6HJ4AaN0DmBnABpLja5HUxwJi-AsBxoDtAcoSmhbZk1UNQTNAVWQ1bTip2gWQgbANJCCVP0shpF_yqiHZ7xzrtOdLa3IVqJU158E15jpUfdu91WDxFrY5xPI21sRdRhge_Fu93azz2fSjifnu2oBx0CDq_dRsuIo8NS9Lbz6csNp-jYiD7os585R0_Xq8flbbZ-uLlbXq0zWUEds0rSCogyqT5TrRSMCMYUIw2IihlQRd2aVrG0S1lZmLqWbVOakhVGlQVQWs7R4pArvQvBa8Oljd8Nohe25wT4Xh7f8IM8vpfHgfIkL8HVL3jn08X-4z_s8oDpdNhotedBWj1IraxPJrhy9u-ALztzkOg
CitedBy_id crossref_primary_10_1109_TEM_2021_3067050
crossref_primary_10_1016_j_infsof_2023_107157
crossref_primary_10_1016_j_scico_2021_102744
Cites_doi 10.1002/2017SW001669
10.1111/j.1467-9868.2007.00587.x
10.1146/annurev-statistics-062713-085831
10.1198/jasa.2011.r10138
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.infsof.2019.08.006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1873-6025
EndPage 96
ExternalDocumentID 10_1016_j_infsof_2019_08_006
S0950584919301703
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACGOD
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TWZ
UHS
UNMZH
WH7
WUQ
XFK
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c405t-4c8401df0259d7ca91a99d9160a49f0d257f7d94058932f55c763f392fd320883
IEDL.DBID .~1
ISSN 0950-5849
IngestDate Thu Apr 24 23:02:33 EDT 2025
Tue Jul 01 02:22:03 EDT 2025
Fri Feb 23 02:23:54 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Effort prediction intervals
Probabilistic effort estimates
Estimation error measurement
Estimated effort distributions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-4c8401df0259d7ca91a99d9160a49f0d257f7d94058932f55c763f392fd320883
ORCID 0000-0001-6250-9783
OpenAccessLink https://hdl.handle.net/10642/8325
PageCount 4
ParticipantIDs crossref_citationtrail_10_1016_j_infsof_2019_08_006
crossref_primary_10_1016_j_infsof_2019_08_006
elsevier_sciencedirect_doi_10_1016_j_infsof_2019_08_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Information and software technology
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jørgensen (bib0001) 2014
Gneiting, Balabdaoui, Raftery (bib0004) 2007; 69
Volden, Samset (bib0005) 2017
Jørgensen, Teigen (bib0007) 2002
Gneiting, Katzfuss (bib0006) 2014; 1
Morley, Brito, Welling (bib0003) 2018; 16
Gneiting (bib0002) 2011; 106
Morley (10.1016/j.infsof.2019.08.006_bib0003) 2018; 16
Volden (10.1016/j.infsof.2019.08.006_bib0005) 2017
Jørgensen (10.1016/j.infsof.2019.08.006_bib0007) 2002
Gneiting (10.1016/j.infsof.2019.08.006_bib0004) 2007; 69
Gneiting (10.1016/j.infsof.2019.08.006_bib0006) 2014; 1
Jørgensen (10.1016/j.infsof.2019.08.006_bib0001) 2014
Gneiting (10.1016/j.infsof.2019.08.006_bib0002) 2011; 106
References_xml – volume: 106
  start-page: 746
  year: 2011
  end-page: 762
  ident: bib0002
  article-title: Making and evaluating point forecasts
  publication-title: J. Am. Stat. Assoc.
– year: 2014
  ident: bib0001
  article-title: Communication of software cost estimates
  publication-title: 18th International Conference on Evaluation and Assessment in Software Engineering (EASE)
– volume: 69
  start-page: 243
  year: 2007
  end-page: 268
  ident: bib0004
  article-title: Probabilistic forecasts, calibration and sharpness
  publication-title: J. R. Stat. Soc.
– volume: 16
  start-page: 69
  year: 2018
  end-page: 88
  ident: bib0003
  article-title: Measures of model performance based on the log accuracy ratio
  publication-title: Space Weather
– start-page: 406
  year: 2017
  ident: bib0005
  article-title: Quality Assurance in Megaproject Management
– volume: 1
  start-page: 125
  year: 2014
  end-page: 151
  ident: bib0006
  article-title: Probabilistic forecasting
  publication-title: Annu. Rev. Stat. Appl.
– start-page: 343
  year: 2002
  end-page: 352
  ident: bib0007
  article-title: versus
  publication-title: International Conference on Project Management (ProMAC)
– volume: 16
  start-page: 69
  issue: 1
  year: 2018
  ident: 10.1016/j.infsof.2019.08.006_bib0003
  article-title: Measures of model performance based on the log accuracy ratio
  publication-title: Space Weather
  doi: 10.1002/2017SW001669
– volume: 69
  start-page: 243
  issue: 2
  year: 2007
  ident: 10.1016/j.infsof.2019.08.006_bib0004
  article-title: Probabilistic forecasts, calibration and sharpness
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.1467-9868.2007.00587.x
– volume: 1
  start-page: 125
  year: 2014
  ident: 10.1016/j.infsof.2019.08.006_bib0006
  article-title: Probabilistic forecasting
  publication-title: Annu. Rev. Stat. Appl.
  doi: 10.1146/annurev-statistics-062713-085831
– volume: 106
  start-page: 746
  issue: 494
  year: 2011
  ident: 10.1016/j.infsof.2019.08.006_bib0002
  article-title: Making and evaluating point forecasts
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2011.r10138
– start-page: 343
  year: 2002
  ident: 10.1016/j.infsof.2019.08.006_bib0007
  article-title: Uncertainty intervals versus interval uncertainty: an alternative method for eliciting effort prediction intervals in software development projects
– year: 2014
  ident: 10.1016/j.infsof.2019.08.006_bib0001
  article-title: Communication of software cost estimates
– start-page: 406
  year: 2017
  ident: 10.1016/j.infsof.2019.08.006_bib0005
SSID ssj0017030
Score 2.2873015
Snippet Probabilistic effort estimates inform about the uncertainty and may give useful input to plans, budgets and investment analyses. This paper introduces,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 93
SubjectTerms Effort prediction intervals
Estimated effort distributions
Estimation error measurement
Probabilistic effort estimates
Title Evaluating probabilistic software development effort estimates: Maximizing informativeness subject to calibration
URI https://dx.doi.org/10.1016/j.infsof.2019.08.006
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jgvgifuL8GHnwtS5r03bxbYyNqWwvOthbSZtEKtrNrUPxwb_duzadCqLgU2mbo-Euvfsl3P2OkHNtpGC-aTuewdMqicXKEHYc19WBZLFUcYLnkKNxMJzw66k_rZFeVQuDaZXW95c-vfDW9knLarM1T9PWLYADBuFTAARBEhhk_OQ8xFV-8b5O88AXrOTbYw6OrsrnihwvMOJyVhB5ioLIE_se_RSevoScwQ7ZtliRdsvp7JKazvbIZpWqvk-e-5aqO7un2BimIMtF3mUKn8tf5EJT9ZkTRLUBgAoXGPGECPOSjuRr-pS-obwlUK2cH12uYjyhofmMghVxT40WPCCTQf-uN3RsCwUnASSWOzyBDVxbGUA2QoWJFG0phAJIyCQXhin4YU2oBMfmgp5rfD8Bf2MAMxnlueCAvENSz2aZPiLU56ZjAB8ChJQ87vgxR-p6GWgAkRLM3SBepbkosfzi2ObiMaoSyR6iUt8R6jvC7pcsaBBnLTUv-TX-GB9WRom-rZMIQsCvksf_ljwhW3hXViCeknq-WOkzgCJ53CzWWpNsdK9uhuMPNTDgdA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qBfUiPrE-96DH2DSPtit4EG1p7eNiC73FTbIrEfuwTal68E_5B53JoyqIguApkOwmm9nZmW-XmW8AjqUSXLdVQTMVnVYJSlZGt6MZhiwK3RW-69E5ZKtdrHWt657dy8BbmgtDYZWJ7Y9temStkzv5RJr5URDkbxAc6Og-OUIQIoFJK1g35PMM922T8_oVTvKJYVQrncualpQW0DxEKKFmebixKfgKPT73S57gBcG5j1BJFxZXuo-KrEo-t6jonmko2_ZwHSrEEso3DVyYJr53ARYtNBdUNuH0dR5XQiPRY4I_XaPhpfl6UVAZas1kGDGH8og5lAotfecPP_m46hqsJuCUXcT_vw4ZOdiApTQ2fhMeKwk3-OCOUSWaiJ2XiJ4Zfi6cibFk_kcQEpMKETFesEWfIO0Za4mnoB-8UP-EsTW1tmwydelIiIVDhmpDm3hSmS3o_otgtyE7GA7kDjDbUmWFgBQxq7Dcsu1axJUvihJRq0D9yoGZSs7xEkJzqqvx4KSRa_dOLG-H5O1QuU29mANt3msUE3r80r6UTorzRTEd9Dk_9tz9c88jWK51Wk2nWW839mCFnsTpj_uQDcdTeYA4KHQPI71jcPvfiv4O8skZ3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+probabilistic+software+development+effort+estimates%3A+Maximizing+informativeness+subject+to+calibration&rft.jtitle=Information+and+software+technology&rft.au=J%C3%B8rgensen%2C+Magne&rft.date=2019-11-01&rft.issn=0950-5849&rft.volume=115&rft.spage=93&rft.epage=96&rft_id=info:doi/10.1016%2Fj.infsof.2019.08.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_infsof_2019_08_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-5849&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-5849&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-5849&client=summon