Quantifying tumour heterogeneity with CT
Heterogeneity is a key feature of malignancy associated with adverse tumour biology. Quantifying heterogeneity could provide a useful non-invasive imaging biomarker. Heterogeneity on computed tomography (CT) can be quantified using texture analysis which extracts spatial information from CT images (...
Saved in:
Published in | Cancer imaging Vol. 13; no. 1; pp. 140 - 149 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
e-Med
26.03.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heterogeneity is a key feature of malignancy associated with adverse tumour biology. Quantifying heterogeneity could provide a useful non-invasive imaging biomarker. Heterogeneity on computed tomography (CT) can be quantified using texture analysis which extracts spatial information from CT images (unenhanced, contrast-enhanced and derived images such as CT perfusion) that may not be perceptible to the naked eye. The main components of texture analysis can be categorized into image transformation and quantification. Image transformation filters the conventional image into its basic components (spatial, frequency, etc.) to produce derived subimages. Texture quantification techniques include structural-, model- (fractal dimensions), statistical- and frequency-based methods. The underlying tumour biology that CT texture analysis may reflect includes (but is not limited to) tumour hypoxia and angiogenesis. Emerging studies show that CT texture analysis has the potential to be a useful adjunct in clinical oncologic imaging, providing important information about tumour characterization, prognosis and treatment prediction and response. |
---|---|
AbstractList | Heterogeneity is a key feature of malignancy associated with adverse tumour biology. Quantifying heterogeneity could provide a useful non-invasive imaging biomarker. Heterogeneity on computed tomography (CT) can be quantified using texture analysis which extracts spatial information from CT images (unenhanced, contrast-enhanced and derived images such as CT perfusion) that may not be perceptible to the naked eye. The main components of texture analysis can be categorized into image transformation and quantification. Image transformation filters the conventional image into its basic components (spatial, frequency, etc.) to produce derived subimages. Texture quantification techniques include structural-, model- (fractal dimensions), statistical- and frequency-based methods. The underlying tumour biology that CT texture analysis may reflect includes (but is not limited to) tumour hypoxia and angiogenesis. Emerging studies show that CT texture analysis has the potential to be a useful adjunct in clinical oncologic imaging, providing important information about tumour characterization, prognosis and treatment prediction and response. Heterogeneity is a key feature of malignancy associated with adverse tumour biology. Quantifying heterogeneity could provide a useful non-invasive imaging biomarker. Heterogeneity on computed tomography (CT) can be quantified using texture analysis which extracts spatial information from CT images (unenhanced, contrast-enhanced and derived images such as CT perfusion) that may not be perceptible to the naked eye. The main components of texture analysis can be categorized into image transformation and quantification. Image transformation filters the conventional image into its basic components (spatial, frequency, etc.) to produce derived subimages. Texture quantification techniques include structural-, model- (fractal dimensions), statistical- and frequency-based methods. The underlying tumour biology that CT texture analysis may reflect includes (but is not limited to) tumour hypoxia and angiogenesis. Emerging studies show that CT texture analysis has the potential to be a useful adjunct in clinical oncologic imaging, providing important information about tumour characterization, prognosis and treatment prediction and response.Heterogeneity is a key feature of malignancy associated with adverse tumour biology. Quantifying heterogeneity could provide a useful non-invasive imaging biomarker. Heterogeneity on computed tomography (CT) can be quantified using texture analysis which extracts spatial information from CT images (unenhanced, contrast-enhanced and derived images such as CT perfusion) that may not be perceptible to the naked eye. The main components of texture analysis can be categorized into image transformation and quantification. Image transformation filters the conventional image into its basic components (spatial, frequency, etc.) to produce derived subimages. Texture quantification techniques include structural-, model- (fractal dimensions), statistical- and frequency-based methods. The underlying tumour biology that CT texture analysis may reflect includes (but is not limited to) tumour hypoxia and angiogenesis. Emerging studies show that CT texture analysis has the potential to be a useful adjunct in clinical oncologic imaging, providing important information about tumour characterization, prognosis and treatment prediction and response. |
Author | Ganeshan, Balaji Miles, Kenneth A. |
AuthorAffiliation | Institute of Nuclear Medicine, University College London, Eustace Road, London, UK |
AuthorAffiliation_xml | – name: Institute of Nuclear Medicine, University College London, Eustace Road, London, UK |
Author_xml | – sequence: 1 givenname: Balaji surname: Ganeshan fullname: Ganeshan, Balaji – sequence: 2 givenname: Kenneth A. surname: Miles fullname: Miles, Kenneth A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23545171$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UV1LwzAUDTJxH_oLBOnjXjrz0TTNiyDDLxiIMJ9DlqZbpE1mkir797ZsDvVBuHAvueecG84Zg4F1VgNwieAMIYivUcZgygiBMwwRmUGI6AkYHV8HP-YhGIfwBiHmBWdnYIgJzShiaASmL6200VQ7Y9dJbBvX-mSjo_Zura02cZd8mrhJ5stzcFrJOuiLQ5-A1_u75fwxXTw_PM1vF6nKII0pkWVBWZmrrnjBJEdKYyIxKxWmlDCVZZxXucxyheBKUpxlkhYkp3kOK1IqMgE3e91tu2p0qbSNXtZi600j_U44acTvjTUbsXYfguSIsIJ3AtODgHfvrQ5RNCYoXdfSatcGgQgmuICog0_A1c9bxyPf9nQAsgco70LwujpCEBR9CKK3WPQWiz4E0YfQsfgfljJRRuP6D5v6X-4XlEWKNg |
CitedBy_id | crossref_primary_10_1016_j_acra_2023_05_026 crossref_primary_10_1038_s41598_022_06884_3 crossref_primary_10_1259_bjr_20160665 crossref_primary_10_1259_bjr_20180153 crossref_primary_10_1002_cam4_6901 crossref_primary_10_1007_s11060_018_2984_4 crossref_primary_10_1016_j_ejrad_2020_109264 crossref_primary_10_1245_s10434_020_08270_7 crossref_primary_10_1007_s00330_018_5933_x crossref_primary_10_1088_2057_1976_aa6720 crossref_primary_10_1007_s11912_019_0815_1 crossref_primary_10_1038_s41598_021_86497_4 crossref_primary_10_1007_s11547_019_01046_4 crossref_primary_10_1080_21681163_2022_2103449 crossref_primary_10_1177_0284185119830292 crossref_primary_10_1088_1361_6560_ac287d crossref_primary_10_1148_radiol_2018171320 crossref_primary_10_1007_s11912_016_0506_0 crossref_primary_10_1016_j_acra_2017_07_002 crossref_primary_10_1016_j_cmpb_2020_105478 crossref_primary_10_1111_codi_13496 crossref_primary_10_1155_2019_5963607 crossref_primary_10_1007_s11307_019_01419_1 crossref_primary_10_1177_0284185117725367 crossref_primary_10_1016_j_crad_2022_08_149 crossref_primary_10_3390_cancers15133319 crossref_primary_10_3390_cancers14030569 crossref_primary_10_1148_rycan_2020190047 crossref_primary_10_1155_2020_7359375 crossref_primary_10_3390_app11083570 crossref_primary_10_1007_s40618_024_02476_2 crossref_primary_10_1088_1361_6560_ad45a4 crossref_primary_10_3348_kjr_2018_0368 crossref_primary_10_1186_s12880_020_0416_3 crossref_primary_10_3390_cancers14246036 crossref_primary_10_1007_s00330_017_4954_1 crossref_primary_10_1016_j_ejrad_2018_01_021 crossref_primary_10_1016_j_ejrad_2020_109043 crossref_primary_10_2214_AJR_18_20443 crossref_primary_10_1007_s00261_020_02624_1 crossref_primary_10_1155_2018_3574310 crossref_primary_10_1038_s41598_018_25627_x crossref_primary_10_1038_s41598_018_31509_z crossref_primary_10_35339_ekm_2020_89_04_02 crossref_primary_10_1007_s00261_024_04331_7 crossref_primary_10_1007_s11604_020_01018_z crossref_primary_10_1007_s00330_019_06291_9 crossref_primary_10_1088_1361_6560_aaafab crossref_primary_10_1002_jmri_26556 crossref_primary_10_1097_RCT_0000000000001286 crossref_primary_10_1007_s42058_019_00020_3 crossref_primary_10_1016_j_ejrad_2021_109874 crossref_primary_10_3390_jimaging8020045 crossref_primary_10_1016_j_compbiomed_2017_10_029 crossref_primary_10_1259_bjr_20170267 crossref_primary_10_3390_diagnostics15070801 crossref_primary_10_1002_mp_12123 crossref_primary_10_3390_tomography8030118 crossref_primary_10_1016_j_ijrobp_2018_01_057 crossref_primary_10_1515_dx_2018_0064 crossref_primary_10_3390_diagnostics10090696 crossref_primary_10_1007_s11604_023_01502_2 crossref_primary_10_1097_COC_0000000000000972 crossref_primary_10_14218_JCTH_2018_00032 crossref_primary_10_3389_fonc_2021_805545 crossref_primary_10_1186_s40644_021_00423_5 crossref_primary_10_3389_fvets_2023_1126165 crossref_primary_10_1007_s00261_018_1649_2 crossref_primary_10_1097_RCT_0000000000001197 crossref_primary_10_1615_CritRevOncog_2023051084 crossref_primary_10_1007_s00330_019_06260_2 crossref_primary_10_24835_1607_0763_1372 crossref_primary_10_1053_j_ro_2023_02_002 crossref_primary_10_1186_s12880_023_01129_9 crossref_primary_10_1371_journal_pone_0195270 crossref_primary_10_1038_s41598_020_57427_7 crossref_primary_10_12688_f1000research_146336_1 crossref_primary_10_1016_j_crad_2019_09_131 crossref_primary_10_1016_j_ejrad_2017_02_043 crossref_primary_10_1111_1751_2980_13308 crossref_primary_10_3174_ajnr_A5139 crossref_primary_10_1111_ijcp_14823 crossref_primary_10_1007_s11042_023_17922_1 crossref_primary_10_1016_j_diii_2018_11_007 crossref_primary_10_1093_noajnl_vdac141 crossref_primary_10_1007_s00330_016_4540_y crossref_primary_10_1111_vru_13012 crossref_primary_10_1016_j_ijrobp_2021_02_030 crossref_primary_10_1177_02841851211029083 crossref_primary_10_2214_AJR_15_15528 crossref_primary_10_1007_s00330_021_07910_0 crossref_primary_10_1097_RLI_0000000000000174 crossref_primary_10_3389_fonc_2021_758062 crossref_primary_10_1038_labinvest_2014_155 crossref_primary_10_1007_s00261_017_1096_5 crossref_primary_10_1007_s00330_018_5679_5 crossref_primary_10_1093_oncolo_oyac034 crossref_primary_10_1038_srep34921 crossref_primary_10_3389_fonc_2021_659969 crossref_primary_10_1007_s00261_019_02110_3 crossref_primary_10_1530_EJE_18_0291 crossref_primary_10_3390_diagnostics11122252 crossref_primary_10_1007_s11912_019_0824_0 crossref_primary_10_1016_j_cdtm_2018_01_002 crossref_primary_10_1016_j_ejrad_2017_02_033 crossref_primary_10_1007_s11547_019_01055_3 crossref_primary_10_1080_14737140_2018_1403319 crossref_primary_10_2214_AJR_17_18249 crossref_primary_10_1016_j_bonr_2024_101821 crossref_primary_10_62347_GUWV5636 crossref_primary_10_1186_s41747_019_0121_6 crossref_primary_10_1007_s12032_020_01359_9 crossref_primary_10_18632_oncotarget_22316 crossref_primary_10_1053_j_ro_2018_02_006 crossref_primary_10_1053_j_ro_2018_02_005 crossref_primary_10_3748_wjg_v25_i35_5233 crossref_primary_10_1007_s00261_020_02891_y crossref_primary_10_1148_rg_2021210037 crossref_primary_10_1007_s00234_019_02211_2 crossref_primary_10_2147_JIR_S314912 crossref_primary_10_1007_s00261_019_02271_1 crossref_primary_10_1371_journal_pone_0256139 crossref_primary_10_3348_kjr_2021_0055 crossref_primary_10_1007_s00234_017_1865_4 crossref_primary_10_3390_cancers13112715 crossref_primary_10_1016_j_csbj_2019_07_001 crossref_primary_10_1186_s12916_016_0729_9 crossref_primary_10_1016_j_ejrad_2018_08_018 crossref_primary_10_3389_or_2024_1435922 crossref_primary_10_2214_AJR_18_20097 crossref_primary_10_1007_s00261_018_01892_2 crossref_primary_10_1016_j_acra_2014_08_009 crossref_primary_10_1097_MD_0000000000006993 crossref_primary_10_1007_s00259_016_3325_5 crossref_primary_10_1002_nbm_4587 crossref_primary_10_3390_diagnostics13132237 crossref_primary_10_1016_j_carj_2019_07_001 crossref_primary_10_1007_s00261_021_03288_1 crossref_primary_10_1016_j_ejrad_2024_111563 crossref_primary_10_3390_life11030264 crossref_primary_10_1007_s11604_020_00936_2 crossref_primary_10_1007_s00261_015_0438_4 crossref_primary_10_1016_j_ejrad_2018_10_016 crossref_primary_10_3389_fonc_2020_01463 crossref_primary_10_1016_j_diii_2018_05_008 crossref_primary_10_1007_s00261_024_04511_5 crossref_primary_10_3390_diagnostics11040588 crossref_primary_10_1016_j_ejrad_2017_04_019 crossref_primary_10_1016_j_wneu_2019_09_142 crossref_primary_10_1016_j_acra_2017_05_006 crossref_primary_10_1016_j_diii_2021_09_009 crossref_primary_10_1007_s00330_016_4579_9 crossref_primary_10_1148_rg_220133 crossref_primary_10_1007_s00330_021_08303_z crossref_primary_10_1021_acsomega_2c06659 crossref_primary_10_1007_s00330_018_5732_4 crossref_primary_10_2214_AJR_18_20742 crossref_primary_10_1038_s41598_017_02425_5 crossref_primary_10_1016_j_ejrad_2018_02_004 crossref_primary_10_1007_s00330_020_07100_4 crossref_primary_10_3389_fonc_2022_841678 crossref_primary_10_1136_gutjnl_2018_316407 crossref_primary_10_3390_radiation4010005 crossref_primary_10_1016_j_ejrad_2017_04_017 crossref_primary_10_1097_MPG_0000000000002454 crossref_primary_10_3390_cancers14153573 crossref_primary_10_1002_cam4_1746 crossref_primary_10_1016_j_clgc_2022_11_010 crossref_primary_10_1007_s11307_017_1066_x crossref_primary_10_1177_02841851231225418 crossref_primary_10_3390_cancers14235881 crossref_primary_10_1186_s12885_021_08672_0 crossref_primary_10_1053_j_semnuclmed_2021_06_008 crossref_primary_10_1002_acm2_13154 crossref_primary_10_1186_s40644_021_00418_2 crossref_primary_10_1371_journal_pone_0132953 crossref_primary_10_3390_diagnostics11061000 crossref_primary_10_2217_fon_2020_0987 crossref_primary_10_1177_1179299X19851513 crossref_primary_10_3348_jksr_2021_0037 crossref_primary_10_1007_s00330_022_09116_4 crossref_primary_10_1007_s00256_023_04333_4 crossref_primary_10_23922_jarc_2024_077 crossref_primary_10_1177_0284185119826536 crossref_primary_10_1186_s12880_019_0338_0 crossref_primary_10_1371_journal_pone_0161278 crossref_primary_10_1371_journal_pone_0240184 crossref_primary_10_3390_jpm13050717 crossref_primary_10_1016_j_crad_2020_07_037 crossref_primary_10_2217_fon_2022_0631 crossref_primary_10_3389_fonc_2020_00909 crossref_primary_10_3389_fonc_2024_1464104 crossref_primary_10_1259_bjr_20170644 crossref_primary_10_2214_AJR_18_20718 crossref_primary_10_1007_s00261_019_02042_y crossref_primary_10_2214_AJR_15_15451 crossref_primary_10_3389_fonc_2023_1205163 crossref_primary_10_2147_JHC_S480554 crossref_primary_10_1016_j_rcl_2020_06_001 crossref_primary_10_3389_fonc_2023_1167745 crossref_primary_10_1002_jso_25901 crossref_primary_10_3390_cancers14020393 crossref_primary_10_3390_tomography8050184 crossref_primary_10_2214_AJR_18_19507 crossref_primary_10_1007_s00270_018_2004_2 crossref_primary_10_1148_rycan_2020190084 crossref_primary_10_3389_fmed_2024_1464632 crossref_primary_10_1007_s00330_016_4324_4 crossref_primary_10_1016_j_metrad_2024_100081 crossref_primary_10_1038_s41598_019_53831_w crossref_primary_10_1038_s41598_019_51026_x crossref_primary_10_3389_fonc_2021_688679 crossref_primary_10_3892_etm_2020_8511 crossref_primary_10_1007_s00261_019_02148_3 crossref_primary_10_1259_bjr_20170789 crossref_primary_10_1016_j_euo_2019_02_002 crossref_primary_10_2478_raon_2023_0042 crossref_primary_10_1007_s00256_020_03454_4 crossref_primary_10_2214_AJR_17_18417 crossref_primary_10_3390_cancers14071631 crossref_primary_10_1007_s00330_018_5829_9 crossref_primary_10_1016_j_ejrad_2020_108929 crossref_primary_10_1007_s00259_016_3427_0 crossref_primary_10_1007_s00261_016_0657_3 crossref_primary_10_3389_fradi_2023_1240544 crossref_primary_10_1002_jmri_26977 crossref_primary_10_3389_fgene_2022_968027 crossref_primary_10_1016_j_ejrad_2019_03_021 crossref_primary_10_1177_0284185118780889 crossref_primary_10_3389_fonc_2021_805137 crossref_primary_10_1097_RCT_0000000000001467 crossref_primary_10_1155_2019_3616852 crossref_primary_10_1007_s11547_021_01399_9 crossref_primary_10_1016_j_acra_2018_10_004 crossref_primary_10_1038_s41598_017_12688_7 crossref_primary_10_1007_s00261_020_02676_3 crossref_primary_10_1016_j_acra_2016_04_009 crossref_primary_10_3390_diagnostics6010008 crossref_primary_10_3389_fonc_2020_521831 crossref_primary_10_3390_radiation4020015 crossref_primary_10_18632_oncotarget_15399 crossref_primary_10_3389_fonc_2021_628534 crossref_primary_10_1148_rg_2017170056 crossref_primary_10_1016_j_acra_2019_09_001 crossref_primary_10_1186_s40644_020_00364_5 crossref_primary_10_3350_cmh_2018_1007 crossref_primary_10_1007_s00261_020_02833_8 crossref_primary_10_1245_s10434_020_08298_9 crossref_primary_10_1016_j_tranon_2021_101113 crossref_primary_10_1016_j_pdpdt_2023_103889 crossref_primary_10_1007_s00234_020_02485_x crossref_primary_10_1038_s41574_021_00543_9 crossref_primary_10_1007_s00330_016_4470_8 crossref_primary_10_1007_s11282_022_00641_y crossref_primary_10_1007_s10278_020_00386_2 crossref_primary_10_1007_s00261_018_1788_5 crossref_primary_10_1007_s00330_017_5270_5 crossref_primary_10_3390_cancers16183119 crossref_primary_10_1007_s00330_024_11081_z crossref_primary_10_2310_7290_2014_00032 crossref_primary_10_1016_j_compmedimag_2018_04_003 crossref_primary_10_1007_s00330_021_07768_2 crossref_primary_10_1007_s00405_022_07651_w crossref_primary_10_1016_j_clon_2023_08_003 crossref_primary_10_1080_14737140_2020_1712198 crossref_primary_10_1016_j_diii_2020_01_003 crossref_primary_10_1097_MNM_0000000000001547 crossref_primary_10_3389_fonc_2019_01371 crossref_primary_10_1002_mp_14224 crossref_primary_10_1007_s00261_019_01931_6 crossref_primary_10_1002_cam4_5086 crossref_primary_10_1007_s00261_019_02032_0 crossref_primary_10_1007_s00595_021_02252_2 crossref_primary_10_1007_s00330_018_5662_1 crossref_primary_10_3748_wjg_v25_i24_3021 crossref_primary_10_1016_j_crad_2023_03_004 crossref_primary_10_1259_bjr_20201114 crossref_primary_10_1016_j_diii_2017_12_013 crossref_primary_10_1016_j_ejrad_2018_02_031 crossref_primary_10_1186_s40644_020_00341_y crossref_primary_10_1186_s13244_021_01153_9 crossref_primary_10_1002_jmri_26192 |
ContentType | Journal Article |
Copyright | 2013 International Cancer Imaging Society 2013 |
Copyright_xml | – notice: 2013 International Cancer Imaging Society 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1102/1470-7330.2013.0015 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1470-7330 |
EndPage | 149 |
ExternalDocumentID | PMC3613789 23545171 10_1102_1470_7330_2013_0015 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 1.S 29B 2WC 4.4 53G 5GY 5VS 6J9 6PF 7X7 88E 8FE 8FG 8FI 8FJ AAFWJ AAJSJ AASML AAWTL AAYXX ABUWG ACGFO ACGFS ACIHN ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AQUVI ARAPS ASPBG AVWKF BAPOH BAWUL BCNDV BENPR BFQNJ BGLVJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS EJD EMB EMOBN F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IEA IHR IHW INH INR ITC KQ8 M0T M1P M48 OK1 P2P P62 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ ROL RPM RSV SOJ SV3 TR2 UKHRP WOQ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c405t-3ad857d6cd6c987a91ce23a27dc25537c4499f6a46c10ba5244a58365660f3dc3 |
IEDL.DBID | M48 |
ISSN | 1470-7330 1740-5025 |
IngestDate | Thu Aug 21 18:30:05 EDT 2025 Fri Jul 11 10:19:24 EDT 2025 Thu Apr 03 07:05:44 EDT 2025 Tue Jul 01 04:33:54 EDT 2025 Thu Apr 24 23:02:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-3ad857d6cd6c987a91ce23a27dc25537c4499f6a46c10ba5244a58365660f3dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1102/1470-7330.2013.0015 |
PMID | 23545171 |
PQID | 1323280161 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3613789 proquest_miscellaneous_1323280161 pubmed_primary_23545171 crossref_primary_10_1102_1470_7330_2013_0015 crossref_citationtrail_10_1102_1470_7330_2013_0015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-03-26 |
PublicationDateYYYYMMDD | 2013-03-26 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Cancer imaging |
PublicationTitleAlternate | Cancer Imaging |
PublicationYear | 2013 |
Publisher | e-Med |
Publisher_xml | – name: e-Med |
SSID | ssj0029897 |
Score | 2.4643044 |
SecondaryResourceType | review_article |
Snippet | Heterogeneity is a key feature of malignancy associated with adverse tumour biology. Quantifying heterogeneity could provide a useful non-invasive imaging... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 140 |
SubjectTerms | Diagnosis, Computer-Assisted Humans Neoplasms - diagnostic imaging Prognosis Radiotherapy Planning, Computer-Assisted Review Tomography, X-Ray Computed - methods |
Title | Quantifying tumour heterogeneity with CT |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23545171 https://www.proquest.com/docview/1323280161 https://pubmed.ncbi.nlm.nih.gov/PMC3613789 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5jgvgi3p03Kvjgg9E2SZvkQUTEMYQJwgZ7K2naMmF0urWg_95zehnOGwh9SxPK6Snn-5qT7yPkTKc2jjzfIslhVFimqeJWUMOtZ7U0gFHx7HD_MegNxcPIH7VI44paB3D-I7VDP6nhbHL59vp-Ax_8ddXEzq48IV0qgZhjpxYKluKh8xUoTRItDfpisa2AauOl20ozoZYh-mWR5VL1DX9-baP8VJe6G2S9BpTObZUBm6SVZFtktV9vmW-T86fCYEMQHmdy8gKY_swZYw_MFFInAQzu4K9Y526wQ4bd-8Fdj9b2CNQCysopN7HyZRxYuLSSRns2YdwwGVvgCVxaAWwmDYwIrOdGxodCbnzFEcC5KY8t3yXtbJol-8RJU6tQ6IwBeRGRy3Vgk8gIN1WJr3mqO4Q1kQhtrR2OFhaTsOQQLgsxfCGGL8TwYaec3yEXi0kvlXTG37efNiEOIcVx38JkybSYh0CYOVOITTtkrwr5YkHGAQJ6Ekbk0stY3IDy2csj2fO4lNHmgGSk0gf_e8xDssZKRwxOWXBE2vmsSI4Bl-TRSZlrH1Rt2E4 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+tumour+heterogeneity+with+CT&rft.jtitle=Cancer+imaging&rft.au=Ganeshan%2C+Balaji&rft.au=Miles%2C+Kenneth+A.&rft.date=2013-03-26&rft.issn=1470-7330&rft.eissn=1470-7330&rft.volume=13&rft.issue=1&rft.spage=140&rft.epage=149&rft_id=info:doi/10.1102%2F1470-7330.2013.0015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1102_1470_7330_2013_0015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-7330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-7330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-7330&client=summon |