Quantifying tumour heterogeneity with CT

Heterogeneity is a key feature of malignancy associated with adverse tumour biology. Quantifying heterogeneity could provide a useful non-invasive imaging biomarker. Heterogeneity on computed tomography (CT) can be quantified using texture analysis which extracts spatial information from CT images (...

Full description

Saved in:
Bibliographic Details
Published inCancer imaging Vol. 13; no. 1; pp. 140 - 149
Main Authors Ganeshan, Balaji, Miles, Kenneth A.
Format Journal Article
LanguageEnglish
Published England e-Med 26.03.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heterogeneity is a key feature of malignancy associated with adverse tumour biology. Quantifying heterogeneity could provide a useful non-invasive imaging biomarker. Heterogeneity on computed tomography (CT) can be quantified using texture analysis which extracts spatial information from CT images (unenhanced, contrast-enhanced and derived images such as CT perfusion) that may not be perceptible to the naked eye. The main components of texture analysis can be categorized into image transformation and quantification. Image transformation filters the conventional image into its basic components (spatial, frequency, etc.) to produce derived subimages. Texture quantification techniques include structural-, model- (fractal dimensions), statistical- and frequency-based methods. The underlying tumour biology that CT texture analysis may reflect includes (but is not limited to) tumour hypoxia and angiogenesis. Emerging studies show that CT texture analysis has the potential to be a useful adjunct in clinical oncologic imaging, providing important information about tumour characterization, prognosis and treatment prediction and response.
AbstractList Heterogeneity is a key feature of malignancy associated with adverse tumour biology. Quantifying heterogeneity could provide a useful non-invasive imaging biomarker. Heterogeneity on computed tomography (CT) can be quantified using texture analysis which extracts spatial information from CT images (unenhanced, contrast-enhanced and derived images such as CT perfusion) that may not be perceptible to the naked eye. The main components of texture analysis can be categorized into image transformation and quantification. Image transformation filters the conventional image into its basic components (spatial, frequency, etc.) to produce derived subimages. Texture quantification techniques include structural-, model- (fractal dimensions), statistical- and frequency-based methods. The underlying tumour biology that CT texture analysis may reflect includes (but is not limited to) tumour hypoxia and angiogenesis. Emerging studies show that CT texture analysis has the potential to be a useful adjunct in clinical oncologic imaging, providing important information about tumour characterization, prognosis and treatment prediction and response.
Heterogeneity is a key feature of malignancy associated with adverse tumour biology. Quantifying heterogeneity could provide a useful non-invasive imaging biomarker. Heterogeneity on computed tomography (CT) can be quantified using texture analysis which extracts spatial information from CT images (unenhanced, contrast-enhanced and derived images such as CT perfusion) that may not be perceptible to the naked eye. The main components of texture analysis can be categorized into image transformation and quantification. Image transformation filters the conventional image into its basic components (spatial, frequency, etc.) to produce derived subimages. Texture quantification techniques include structural-, model- (fractal dimensions), statistical- and frequency-based methods. The underlying tumour biology that CT texture analysis may reflect includes (but is not limited to) tumour hypoxia and angiogenesis. Emerging studies show that CT texture analysis has the potential to be a useful adjunct in clinical oncologic imaging, providing important information about tumour characterization, prognosis and treatment prediction and response.Heterogeneity is a key feature of malignancy associated with adverse tumour biology. Quantifying heterogeneity could provide a useful non-invasive imaging biomarker. Heterogeneity on computed tomography (CT) can be quantified using texture analysis which extracts spatial information from CT images (unenhanced, contrast-enhanced and derived images such as CT perfusion) that may not be perceptible to the naked eye. The main components of texture analysis can be categorized into image transformation and quantification. Image transformation filters the conventional image into its basic components (spatial, frequency, etc.) to produce derived subimages. Texture quantification techniques include structural-, model- (fractal dimensions), statistical- and frequency-based methods. The underlying tumour biology that CT texture analysis may reflect includes (but is not limited to) tumour hypoxia and angiogenesis. Emerging studies show that CT texture analysis has the potential to be a useful adjunct in clinical oncologic imaging, providing important information about tumour characterization, prognosis and treatment prediction and response.
Author Ganeshan, Balaji
Miles, Kenneth A.
AuthorAffiliation Institute of Nuclear Medicine, University College London, Eustace Road, London, UK
AuthorAffiliation_xml – name: Institute of Nuclear Medicine, University College London, Eustace Road, London, UK
Author_xml – sequence: 1
  givenname: Balaji
  surname: Ganeshan
  fullname: Ganeshan, Balaji
– sequence: 2
  givenname: Kenneth A.
  surname: Miles
  fullname: Miles, Kenneth A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23545171$$D View this record in MEDLINE/PubMed
BookMark eNp9UV1LwzAUDTJxH_oLBOnjXjrz0TTNiyDDLxiIMJ9DlqZbpE1mkir797ZsDvVBuHAvueecG84Zg4F1VgNwieAMIYivUcZgygiBMwwRmUGI6AkYHV8HP-YhGIfwBiHmBWdnYIgJzShiaASmL6200VQ7Y9dJbBvX-mSjo_Zura02cZd8mrhJ5stzcFrJOuiLQ5-A1_u75fwxXTw_PM1vF6nKII0pkWVBWZmrrnjBJEdKYyIxKxWmlDCVZZxXucxyheBKUpxlkhYkp3kOK1IqMgE3e91tu2p0qbSNXtZi600j_U44acTvjTUbsXYfguSIsIJ3AtODgHfvrQ5RNCYoXdfSatcGgQgmuICog0_A1c9bxyPf9nQAsgco70LwujpCEBR9CKK3WPQWiz4E0YfQsfgfljJRRuP6D5v6X-4XlEWKNg
CitedBy_id crossref_primary_10_1016_j_acra_2023_05_026
crossref_primary_10_1038_s41598_022_06884_3
crossref_primary_10_1259_bjr_20160665
crossref_primary_10_1259_bjr_20180153
crossref_primary_10_1002_cam4_6901
crossref_primary_10_1007_s11060_018_2984_4
crossref_primary_10_1016_j_ejrad_2020_109264
crossref_primary_10_1245_s10434_020_08270_7
crossref_primary_10_1007_s00330_018_5933_x
crossref_primary_10_1088_2057_1976_aa6720
crossref_primary_10_1007_s11912_019_0815_1
crossref_primary_10_1038_s41598_021_86497_4
crossref_primary_10_1007_s11547_019_01046_4
crossref_primary_10_1080_21681163_2022_2103449
crossref_primary_10_1177_0284185119830292
crossref_primary_10_1088_1361_6560_ac287d
crossref_primary_10_1148_radiol_2018171320
crossref_primary_10_1007_s11912_016_0506_0
crossref_primary_10_1016_j_acra_2017_07_002
crossref_primary_10_1016_j_cmpb_2020_105478
crossref_primary_10_1111_codi_13496
crossref_primary_10_1155_2019_5963607
crossref_primary_10_1007_s11307_019_01419_1
crossref_primary_10_1177_0284185117725367
crossref_primary_10_1016_j_crad_2022_08_149
crossref_primary_10_3390_cancers15133319
crossref_primary_10_3390_cancers14030569
crossref_primary_10_1148_rycan_2020190047
crossref_primary_10_1155_2020_7359375
crossref_primary_10_3390_app11083570
crossref_primary_10_1007_s40618_024_02476_2
crossref_primary_10_1088_1361_6560_ad45a4
crossref_primary_10_3348_kjr_2018_0368
crossref_primary_10_1186_s12880_020_0416_3
crossref_primary_10_3390_cancers14246036
crossref_primary_10_1007_s00330_017_4954_1
crossref_primary_10_1016_j_ejrad_2018_01_021
crossref_primary_10_1016_j_ejrad_2020_109043
crossref_primary_10_2214_AJR_18_20443
crossref_primary_10_1007_s00261_020_02624_1
crossref_primary_10_1155_2018_3574310
crossref_primary_10_1038_s41598_018_25627_x
crossref_primary_10_1038_s41598_018_31509_z
crossref_primary_10_35339_ekm_2020_89_04_02
crossref_primary_10_1007_s00261_024_04331_7
crossref_primary_10_1007_s11604_020_01018_z
crossref_primary_10_1007_s00330_019_06291_9
crossref_primary_10_1088_1361_6560_aaafab
crossref_primary_10_1002_jmri_26556
crossref_primary_10_1097_RCT_0000000000001286
crossref_primary_10_1007_s42058_019_00020_3
crossref_primary_10_1016_j_ejrad_2021_109874
crossref_primary_10_3390_jimaging8020045
crossref_primary_10_1016_j_compbiomed_2017_10_029
crossref_primary_10_1259_bjr_20170267
crossref_primary_10_3390_diagnostics15070801
crossref_primary_10_1002_mp_12123
crossref_primary_10_3390_tomography8030118
crossref_primary_10_1016_j_ijrobp_2018_01_057
crossref_primary_10_1515_dx_2018_0064
crossref_primary_10_3390_diagnostics10090696
crossref_primary_10_1007_s11604_023_01502_2
crossref_primary_10_1097_COC_0000000000000972
crossref_primary_10_14218_JCTH_2018_00032
crossref_primary_10_3389_fonc_2021_805545
crossref_primary_10_1186_s40644_021_00423_5
crossref_primary_10_3389_fvets_2023_1126165
crossref_primary_10_1007_s00261_018_1649_2
crossref_primary_10_1097_RCT_0000000000001197
crossref_primary_10_1615_CritRevOncog_2023051084
crossref_primary_10_1007_s00330_019_06260_2
crossref_primary_10_24835_1607_0763_1372
crossref_primary_10_1053_j_ro_2023_02_002
crossref_primary_10_1186_s12880_023_01129_9
crossref_primary_10_1371_journal_pone_0195270
crossref_primary_10_1038_s41598_020_57427_7
crossref_primary_10_12688_f1000research_146336_1
crossref_primary_10_1016_j_crad_2019_09_131
crossref_primary_10_1016_j_ejrad_2017_02_043
crossref_primary_10_1111_1751_2980_13308
crossref_primary_10_3174_ajnr_A5139
crossref_primary_10_1111_ijcp_14823
crossref_primary_10_1007_s11042_023_17922_1
crossref_primary_10_1016_j_diii_2018_11_007
crossref_primary_10_1093_noajnl_vdac141
crossref_primary_10_1007_s00330_016_4540_y
crossref_primary_10_1111_vru_13012
crossref_primary_10_1016_j_ijrobp_2021_02_030
crossref_primary_10_1177_02841851211029083
crossref_primary_10_2214_AJR_15_15528
crossref_primary_10_1007_s00330_021_07910_0
crossref_primary_10_1097_RLI_0000000000000174
crossref_primary_10_3389_fonc_2021_758062
crossref_primary_10_1038_labinvest_2014_155
crossref_primary_10_1007_s00261_017_1096_5
crossref_primary_10_1007_s00330_018_5679_5
crossref_primary_10_1093_oncolo_oyac034
crossref_primary_10_1038_srep34921
crossref_primary_10_3389_fonc_2021_659969
crossref_primary_10_1007_s00261_019_02110_3
crossref_primary_10_1530_EJE_18_0291
crossref_primary_10_3390_diagnostics11122252
crossref_primary_10_1007_s11912_019_0824_0
crossref_primary_10_1016_j_cdtm_2018_01_002
crossref_primary_10_1016_j_ejrad_2017_02_033
crossref_primary_10_1007_s11547_019_01055_3
crossref_primary_10_1080_14737140_2018_1403319
crossref_primary_10_2214_AJR_17_18249
crossref_primary_10_1016_j_bonr_2024_101821
crossref_primary_10_62347_GUWV5636
crossref_primary_10_1186_s41747_019_0121_6
crossref_primary_10_1007_s12032_020_01359_9
crossref_primary_10_18632_oncotarget_22316
crossref_primary_10_1053_j_ro_2018_02_006
crossref_primary_10_1053_j_ro_2018_02_005
crossref_primary_10_3748_wjg_v25_i35_5233
crossref_primary_10_1007_s00261_020_02891_y
crossref_primary_10_1148_rg_2021210037
crossref_primary_10_1007_s00234_019_02211_2
crossref_primary_10_2147_JIR_S314912
crossref_primary_10_1007_s00261_019_02271_1
crossref_primary_10_1371_journal_pone_0256139
crossref_primary_10_3348_kjr_2021_0055
crossref_primary_10_1007_s00234_017_1865_4
crossref_primary_10_3390_cancers13112715
crossref_primary_10_1016_j_csbj_2019_07_001
crossref_primary_10_1186_s12916_016_0729_9
crossref_primary_10_1016_j_ejrad_2018_08_018
crossref_primary_10_3389_or_2024_1435922
crossref_primary_10_2214_AJR_18_20097
crossref_primary_10_1007_s00261_018_01892_2
crossref_primary_10_1016_j_acra_2014_08_009
crossref_primary_10_1097_MD_0000000000006993
crossref_primary_10_1007_s00259_016_3325_5
crossref_primary_10_1002_nbm_4587
crossref_primary_10_3390_diagnostics13132237
crossref_primary_10_1016_j_carj_2019_07_001
crossref_primary_10_1007_s00261_021_03288_1
crossref_primary_10_1016_j_ejrad_2024_111563
crossref_primary_10_3390_life11030264
crossref_primary_10_1007_s11604_020_00936_2
crossref_primary_10_1007_s00261_015_0438_4
crossref_primary_10_1016_j_ejrad_2018_10_016
crossref_primary_10_3389_fonc_2020_01463
crossref_primary_10_1016_j_diii_2018_05_008
crossref_primary_10_1007_s00261_024_04511_5
crossref_primary_10_3390_diagnostics11040588
crossref_primary_10_1016_j_ejrad_2017_04_019
crossref_primary_10_1016_j_wneu_2019_09_142
crossref_primary_10_1016_j_acra_2017_05_006
crossref_primary_10_1016_j_diii_2021_09_009
crossref_primary_10_1007_s00330_016_4579_9
crossref_primary_10_1148_rg_220133
crossref_primary_10_1007_s00330_021_08303_z
crossref_primary_10_1021_acsomega_2c06659
crossref_primary_10_1007_s00330_018_5732_4
crossref_primary_10_2214_AJR_18_20742
crossref_primary_10_1038_s41598_017_02425_5
crossref_primary_10_1016_j_ejrad_2018_02_004
crossref_primary_10_1007_s00330_020_07100_4
crossref_primary_10_3389_fonc_2022_841678
crossref_primary_10_1136_gutjnl_2018_316407
crossref_primary_10_3390_radiation4010005
crossref_primary_10_1016_j_ejrad_2017_04_017
crossref_primary_10_1097_MPG_0000000000002454
crossref_primary_10_3390_cancers14153573
crossref_primary_10_1002_cam4_1746
crossref_primary_10_1016_j_clgc_2022_11_010
crossref_primary_10_1007_s11307_017_1066_x
crossref_primary_10_1177_02841851231225418
crossref_primary_10_3390_cancers14235881
crossref_primary_10_1186_s12885_021_08672_0
crossref_primary_10_1053_j_semnuclmed_2021_06_008
crossref_primary_10_1002_acm2_13154
crossref_primary_10_1186_s40644_021_00418_2
crossref_primary_10_1371_journal_pone_0132953
crossref_primary_10_3390_diagnostics11061000
crossref_primary_10_2217_fon_2020_0987
crossref_primary_10_1177_1179299X19851513
crossref_primary_10_3348_jksr_2021_0037
crossref_primary_10_1007_s00330_022_09116_4
crossref_primary_10_1007_s00256_023_04333_4
crossref_primary_10_23922_jarc_2024_077
crossref_primary_10_1177_0284185119826536
crossref_primary_10_1186_s12880_019_0338_0
crossref_primary_10_1371_journal_pone_0161278
crossref_primary_10_1371_journal_pone_0240184
crossref_primary_10_3390_jpm13050717
crossref_primary_10_1016_j_crad_2020_07_037
crossref_primary_10_2217_fon_2022_0631
crossref_primary_10_3389_fonc_2020_00909
crossref_primary_10_3389_fonc_2024_1464104
crossref_primary_10_1259_bjr_20170644
crossref_primary_10_2214_AJR_18_20718
crossref_primary_10_1007_s00261_019_02042_y
crossref_primary_10_2214_AJR_15_15451
crossref_primary_10_3389_fonc_2023_1205163
crossref_primary_10_2147_JHC_S480554
crossref_primary_10_1016_j_rcl_2020_06_001
crossref_primary_10_3389_fonc_2023_1167745
crossref_primary_10_1002_jso_25901
crossref_primary_10_3390_cancers14020393
crossref_primary_10_3390_tomography8050184
crossref_primary_10_2214_AJR_18_19507
crossref_primary_10_1007_s00270_018_2004_2
crossref_primary_10_1148_rycan_2020190084
crossref_primary_10_3389_fmed_2024_1464632
crossref_primary_10_1007_s00330_016_4324_4
crossref_primary_10_1016_j_metrad_2024_100081
crossref_primary_10_1038_s41598_019_53831_w
crossref_primary_10_1038_s41598_019_51026_x
crossref_primary_10_3389_fonc_2021_688679
crossref_primary_10_3892_etm_2020_8511
crossref_primary_10_1007_s00261_019_02148_3
crossref_primary_10_1259_bjr_20170789
crossref_primary_10_1016_j_euo_2019_02_002
crossref_primary_10_2478_raon_2023_0042
crossref_primary_10_1007_s00256_020_03454_4
crossref_primary_10_2214_AJR_17_18417
crossref_primary_10_3390_cancers14071631
crossref_primary_10_1007_s00330_018_5829_9
crossref_primary_10_1016_j_ejrad_2020_108929
crossref_primary_10_1007_s00259_016_3427_0
crossref_primary_10_1007_s00261_016_0657_3
crossref_primary_10_3389_fradi_2023_1240544
crossref_primary_10_1002_jmri_26977
crossref_primary_10_3389_fgene_2022_968027
crossref_primary_10_1016_j_ejrad_2019_03_021
crossref_primary_10_1177_0284185118780889
crossref_primary_10_3389_fonc_2021_805137
crossref_primary_10_1097_RCT_0000000000001467
crossref_primary_10_1155_2019_3616852
crossref_primary_10_1007_s11547_021_01399_9
crossref_primary_10_1016_j_acra_2018_10_004
crossref_primary_10_1038_s41598_017_12688_7
crossref_primary_10_1007_s00261_020_02676_3
crossref_primary_10_1016_j_acra_2016_04_009
crossref_primary_10_3390_diagnostics6010008
crossref_primary_10_3389_fonc_2020_521831
crossref_primary_10_3390_radiation4020015
crossref_primary_10_18632_oncotarget_15399
crossref_primary_10_3389_fonc_2021_628534
crossref_primary_10_1148_rg_2017170056
crossref_primary_10_1016_j_acra_2019_09_001
crossref_primary_10_1186_s40644_020_00364_5
crossref_primary_10_3350_cmh_2018_1007
crossref_primary_10_1007_s00261_020_02833_8
crossref_primary_10_1245_s10434_020_08298_9
crossref_primary_10_1016_j_tranon_2021_101113
crossref_primary_10_1016_j_pdpdt_2023_103889
crossref_primary_10_1007_s00234_020_02485_x
crossref_primary_10_1038_s41574_021_00543_9
crossref_primary_10_1007_s00330_016_4470_8
crossref_primary_10_1007_s11282_022_00641_y
crossref_primary_10_1007_s10278_020_00386_2
crossref_primary_10_1007_s00261_018_1788_5
crossref_primary_10_1007_s00330_017_5270_5
crossref_primary_10_3390_cancers16183119
crossref_primary_10_1007_s00330_024_11081_z
crossref_primary_10_2310_7290_2014_00032
crossref_primary_10_1016_j_compmedimag_2018_04_003
crossref_primary_10_1007_s00330_021_07768_2
crossref_primary_10_1007_s00405_022_07651_w
crossref_primary_10_1016_j_clon_2023_08_003
crossref_primary_10_1080_14737140_2020_1712198
crossref_primary_10_1016_j_diii_2020_01_003
crossref_primary_10_1097_MNM_0000000000001547
crossref_primary_10_3389_fonc_2019_01371
crossref_primary_10_1002_mp_14224
crossref_primary_10_1007_s00261_019_01931_6
crossref_primary_10_1002_cam4_5086
crossref_primary_10_1007_s00261_019_02032_0
crossref_primary_10_1007_s00595_021_02252_2
crossref_primary_10_1007_s00330_018_5662_1
crossref_primary_10_3748_wjg_v25_i24_3021
crossref_primary_10_1016_j_crad_2023_03_004
crossref_primary_10_1259_bjr_20201114
crossref_primary_10_1016_j_diii_2017_12_013
crossref_primary_10_1016_j_ejrad_2018_02_031
crossref_primary_10_1186_s40644_020_00341_y
crossref_primary_10_1186_s13244_021_01153_9
crossref_primary_10_1002_jmri_26192
ContentType Journal Article
Copyright 2013 International Cancer Imaging Society 2013
Copyright_xml – notice: 2013 International Cancer Imaging Society 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1102/1470-7330.2013.0015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1470-7330
EndPage 149
ExternalDocumentID PMC3613789
23545171
10_1102_1470_7330_2013_0015
Genre Journal Article
GroupedDBID ---
0R~
1.S
29B
2WC
4.4
53G
5GY
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABUWG
ACGFO
ACGFS
ACIHN
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
ARAPS
ASPBG
AVWKF
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BGLVJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
IHW
INH
INR
ITC
KQ8
M0T
M1P
M48
OK1
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
ROL
RPM
RSV
SOJ
SV3
TR2
UKHRP
WOQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c405t-3ad857d6cd6c987a91ce23a27dc25537c4499f6a46c10ba5244a58365660f3dc3
IEDL.DBID M48
ISSN 1470-7330
1740-5025
IngestDate Thu Aug 21 18:30:05 EDT 2025
Fri Jul 11 10:19:24 EDT 2025
Thu Apr 03 07:05:44 EDT 2025
Tue Jul 01 04:33:54 EDT 2025
Thu Apr 24 23:02:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-3ad857d6cd6c987a91ce23a27dc25537c4499f6a46c10ba5244a58365660f3dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1102/1470-7330.2013.0015
PMID 23545171
PQID 1323280161
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3613789
proquest_miscellaneous_1323280161
pubmed_primary_23545171
crossref_primary_10_1102_1470_7330_2013_0015
crossref_citationtrail_10_1102_1470_7330_2013_0015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-26
PublicationDateYYYYMMDD 2013-03-26
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-26
  day: 26
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Cancer imaging
PublicationTitleAlternate Cancer Imaging
PublicationYear 2013
Publisher e-Med
Publisher_xml – name: e-Med
SSID ssj0029897
Score 2.4643044
SecondaryResourceType review_article
Snippet Heterogeneity is a key feature of malignancy associated with adverse tumour biology. Quantifying heterogeneity could provide a useful non-invasive imaging...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 140
SubjectTerms Diagnosis, Computer-Assisted
Humans
Neoplasms - diagnostic imaging
Prognosis
Radiotherapy Planning, Computer-Assisted
Review
Tomography, X-Ray Computed - methods
Title Quantifying tumour heterogeneity with CT
URI https://www.ncbi.nlm.nih.gov/pubmed/23545171
https://www.proquest.com/docview/1323280161
https://pubmed.ncbi.nlm.nih.gov/PMC3613789
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5jgvgi3p03Kvjgg9E2SZvkQUTEMYQJwgZ7K2naMmF0urWg_95zehnOGwh9SxPK6Snn-5qT7yPkTKc2jjzfIslhVFimqeJWUMOtZ7U0gFHx7HD_MegNxcPIH7VI44paB3D-I7VDP6nhbHL59vp-Ax_8ddXEzq48IV0qgZhjpxYKluKh8xUoTRItDfpisa2AauOl20ozoZYh-mWR5VL1DX9-baP8VJe6G2S9BpTObZUBm6SVZFtktV9vmW-T86fCYEMQHmdy8gKY_swZYw_MFFInAQzu4K9Y526wQ4bd-8Fdj9b2CNQCysopN7HyZRxYuLSSRns2YdwwGVvgCVxaAWwmDYwIrOdGxodCbnzFEcC5KY8t3yXtbJol-8RJU6tQ6IwBeRGRy3Vgk8gIN1WJr3mqO4Q1kQhtrR2OFhaTsOQQLgsxfCGGL8TwYaec3yEXi0kvlXTG37efNiEOIcVx38JkybSYh0CYOVOITTtkrwr5YkHGAQJ6Ekbk0stY3IDy2csj2fO4lNHmgGSk0gf_e8xDssZKRwxOWXBE2vmsSI4Bl-TRSZlrH1Rt2E4
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+tumour+heterogeneity+with+CT&rft.jtitle=Cancer+imaging&rft.au=Ganeshan%2C+Balaji&rft.au=Miles%2C+Kenneth+A.&rft.date=2013-03-26&rft.issn=1470-7330&rft.eissn=1470-7330&rft.volume=13&rft.issue=1&rft.spage=140&rft.epage=149&rft_id=info:doi/10.1102%2F1470-7330.2013.0015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1102_1470_7330_2013_0015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-7330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-7330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-7330&client=summon