Comparison of prognostic algorithms for estimating remaining useful life of batteries
The estimation of remaining useful life (RUL) of a faulty component is at the centre of system prognostics and health management. It gives operators a potent tool in decision making by quantifying how much time is left until functionality is lost. RUL prediction needs to contend with multiple source...
Saved in:
Published in | Transactions of the Institute of Measurement and Control Vol. 31; no. 3-4; pp. 293 - 308 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.06.2009
Sage Publications Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0142-3312 1477-0369 |
DOI | 10.1177/0142331208092030 |
Cover
Loading…
Abstract | The estimation of remaining useful life (RUL) of a faulty component is at the centre of system prognostics and health management. It gives operators a potent tool in decision making by quantifying how much time is left until functionality is lost. RUL prediction needs to contend with multiple sources of errors, like modelling inconsistencies, system noise and degraded sensor fidelity, which leads to unsatisfactory performance from classical techniques like autoregressive integrated moving average (ARIMA) and extended Kalman filtering (EKF). The Bayesian theory of uncertainty management provides a way to contain these problems. The relevance vector machine (RVM), the Bayesian treatment of the well known support vector machine (SVM), a kernel-based regression/classification technique, is used for model development. This model is incorporated into a particle filter (PF) framework, where statistical estimates of noise and anticipated operational conditions are used to provide estimates of RUL in the form of a probability density function (pdf). We present here a comparative study of the above-mentioned approaches on experimental data collected from Li-ion batteries. Batteries were chosen as an example of a complex system whose internal state variables are either inaccessible to sensors or hard to measure under operational conditions. In addition, battery performance is strongly influenced by ambient environmental and load conditions. |
---|---|
AbstractList | The estimation of remaining useful life (RUL) of a faulty component is at the centre of system prognostics and health management. It gives operators a potent tool in decision making by quantifying how much time is left until functionality is lost. RUL prediction needs to contend with multiple sources of errors, like modelling inconsistencies, system noise and degraded sensor fidelity, which leads to unsatisfactory performance from classical techniques like autoregressive integrated moving average (ARIMA) and extended Kalman filtering (EKF). The Bayesian theory of uncertainty management provides a way to contain these problems. The relevance vector machine (RVM), the Bayesian treatment of the well known support vector machine (SVM), a kernel-based regression/classification technique, is used for model development. This model is incorporated into a particle filter (PF) framework, where statistical estimates of noise and anticipated operational conditions are used to provide estimates of RUL in the form of a probability density function (pdf). We present here a comparative study of the above-mentioned approaches on experimental data collected from Li-ion batteries. Batteries were chosen as an example of a complex system whose internal state variables are either inaccessible to sensors or hard to measure under operational conditions. In addition, battery performance is strongly influenced by ambient environmental and load conditions. The estimation of remaining useful life (RUL) of a faulty component is at the centre of system prognostics and health management. It gives operators a potent tool in decision making by quantifying how much time is left until functionality is lost. RUL prediction needs to contend with multiple sources of errors, like modelling inconsistencies, system noise and degraded sensor fidelity, which leads to unsatisfactory performance from classical techniques like autoregressive integrated moving average (ARIMA) and extended Kalman filtering (EKF). The Bayesian theory of uncertainty management provides a way to contain these problems. The relevance vector machine (RVM), the Bayesian treatment of the well known support vector machine (SVM), a kernel-based regression/classification technique, is used for model development. This model is incorporated into a particle filter (PF) framework, where statistical estimates of noise and anticipated operational conditions are used to provide estimates of RUL in the form of a probability density function (pdf). We present here a comparative study of the above-mentioned approaches on experimental data collected from Li-ion batteries. Batteries were chosen as an example of a complex system whose internal state variables are either inaccessible to sensors or hard to measure under operational conditions. In addition, battery performance is strongly influenced by ambient environmental and load conditions. [PUBLICATION ABSTRACT] |
Author | Christophersen, Jon Saha, Bhaskar Goebel, Kai |
Author_xml | – sequence: 1 givenname: Bhaskar surname: Saha fullname: Saha, Bhaskar email: bhaskar.saha_1@nasa.gov organization: Mission Critical Technologies, Inc. (NASA ARC), 2041 Rosecrans Ave., Ste. 354, El Segundo, CA 90245, USA – sequence: 2 givenname: Kai surname: Goebel fullname: Goebel, Kai organization: NASA Ames Research Center, Moffett Field, CA 94035, USA – sequence: 3 givenname: Jon surname: Christophersen fullname: Christophersen, Jon organization: Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA |
BookMark | eNp9kM9LwzAYhoNMcJvePRYP3qrfl6RLe5ThLxh4ceeSZmnNaJOZpAf_e1MmCAM9JeR7nvB-74LMrLOakGuEO0Qh7gE5ZQwplFBRYHBG5siFyIGtqhmZT-N8ml-QRQh7AOB8xedku3bDQXoTnM1cmx2866wL0ahM9p3zJn4MIWudz3R6HGQ0tsu8HqSx020Muh37rDetnuxGxqi90eGSnLeyD_rq51yS7dPj-_ol37w9v64fNrniUMScCZSFELhDwLJRHCmTjJaVqhrRKgo7SfmOYoNCYimKhlaFbBpRFaiULqhgS3J7_Dfl_hxTxHowQem-l1a7MdSMC1pRNoE3J-Dejd6mbDUVBdCSljxBcISUdyF43dYHn3b2XzVCPZVcn5aclNWJokxMLTkbvTT9f2J-FIPs9G-YP_lvu_iNvw |
CitedBy_id | crossref_primary_10_1214_24_AOAS1931 crossref_primary_10_1016_j_cirpj_2021_02_004 crossref_primary_10_1007_s00202_023_01910_7 crossref_primary_10_1109_TII_2022_3155597 crossref_primary_10_1016_j_microrel_2017_09_009 crossref_primary_10_3390_en13164183 crossref_primary_10_4028_www_scientific_net_AMR_717_390 crossref_primary_10_1016_j_jechem_2021_12_004 crossref_primary_10_3390_electronics10182294 crossref_primary_10_3390_s18010009 crossref_primary_10_1109_TCST_2018_2819965 crossref_primary_10_1109_TASE_2014_2349733 crossref_primary_10_1063_5_0152038 crossref_primary_10_1016_j_jpowsour_2018_08_064 crossref_primary_10_1016_j_jpowsour_2021_230572 crossref_primary_10_1016_j_jpowsour_2022_231026 crossref_primary_10_1016_j_probengmech_2013_01_003 crossref_primary_10_1016_j_engfailanal_2016_04_014 crossref_primary_10_1007_s00521_022_07291_5 crossref_primary_10_1109_ACCESS_2021_3111927 crossref_primary_10_1016_j_ijepes_2017_01_013 crossref_primary_10_1016_j_microrel_2017_02_003 crossref_primary_10_1109_ACCESS_2020_2987426 crossref_primary_10_1016_j_egypro_2019_01_320 crossref_primary_10_1016_j_ejor_2010_11_018 crossref_primary_10_1016_j_ress_2017_11_020 crossref_primary_10_1002_asmb_2063 crossref_primary_10_1109_TIM_2020_3029382 crossref_primary_10_1109_TIE_2020_2978688 crossref_primary_10_1016_j_ress_2022_108944 crossref_primary_10_1109_TMECH_2015_2440331 crossref_primary_10_1016_j_rser_2021_111903 crossref_primary_10_1109_ACCESS_2021_3110049 crossref_primary_10_1016_j_microrel_2012_12_004 crossref_primary_10_1109_TASE_2023_3242355 crossref_primary_10_1016_j_est_2022_104701 crossref_primary_10_1016_j_microrel_2017_02_012 crossref_primary_10_1115_1_4038002 crossref_primary_10_1080_24725854_2018_1440673 crossref_primary_10_17531_ein_2021_1_18 crossref_primary_10_1016_j_joule_2019_11_018 crossref_primary_10_1109_TASE_2012_2227960 crossref_primary_10_1016_j_mtener_2024_101562 crossref_primary_10_1016_j_jpowsour_2014_01_085 crossref_primary_10_1016_j_neucom_2017_11_062 crossref_primary_10_1088_1755_1315_93_1_012040 crossref_primary_10_1109_TVT_2020_3024019 crossref_primary_10_1093_jigpal_jzz075 crossref_primary_10_1016_j_rser_2019_109405 crossref_primary_10_1016_j_energy_2015_04_021 crossref_primary_10_1016_j_microrel_2015_02_025 crossref_primary_10_20964_2018_05_84 crossref_primary_10_1016_j_egypro_2016_06_086 crossref_primary_10_1007_s00158_022_03410_x crossref_primary_10_1109_TR_2015_2427156 crossref_primary_10_3390_su15065014 crossref_primary_10_3390_wevj15020068 crossref_primary_10_1287_inte_2020_1058 crossref_primary_10_3390_en6083654 crossref_primary_10_1109_TTE_2017_2776558 crossref_primary_10_1016_j_egypro_2018_09_207 crossref_primary_10_1115_1_4054392 crossref_primary_10_1177_0142331220961576 crossref_primary_10_1016_j_microrel_2013_03_010 crossref_primary_10_3390_en13030752 crossref_primary_10_1109_TIM_2016_2622838 crossref_primary_10_3390_en17071679 crossref_primary_10_1109_TR_2017_2715180 crossref_primary_10_20964_2019_10_15 crossref_primary_10_1109_TEC_2016_2589933 crossref_primary_10_1080_08839514_2015_1038432 crossref_primary_10_1109_TIM_2017_2708204 crossref_primary_10_1016_j_est_2023_107443 crossref_primary_10_1109_TR_2020_3032157 crossref_primary_10_1002_er_6746 crossref_primary_10_1016_j_energy_2016_12_004 crossref_primary_10_1016_j_ress_2014_09_014 crossref_primary_10_1016_j_est_2021_103644 crossref_primary_10_1109_TIM_2014_2348613 crossref_primary_10_1109_TIE_2014_2336616 crossref_primary_10_1007_s40684_023_00509_4 crossref_primary_10_1016_j_apenergy_2015_08_119 crossref_primary_10_1080_24725854_2018_1555384 crossref_primary_10_1109_ACCESS_2021_3083395 crossref_primary_10_20964_2022_08_30 crossref_primary_10_1109_ACCESS_2019_2929111 crossref_primary_10_1108_JQME_03_2016_0012 crossref_primary_10_1088_1742_6596_2301_1_012015 crossref_primary_10_1109_TSMC_2015_2389757 crossref_primary_10_1007_s42401_024_00287_0 crossref_primary_10_1016_j_measurement_2014_11_031 crossref_primary_10_1155_2018_6972481 crossref_primary_10_1109_TIM_2013_2276473 crossref_primary_10_1016_j_rser_2023_114224 crossref_primary_10_3390_machines10070512 crossref_primary_10_1142_S0218213016500238 crossref_primary_10_1016_j_ress_2021_107446 crossref_primary_10_1016_j_microrel_2017_06_002 crossref_primary_10_3390_en8042889 crossref_primary_10_3390_s18093171 crossref_primary_10_1002_est2_218 crossref_primary_10_3390_s20082425 crossref_primary_10_1109_TPEL_2022_3182135 crossref_primary_10_1088_1757_899X_895_1_012006 crossref_primary_10_1109_TIE_2018_2879284 crossref_primary_10_1002_rob_21453 crossref_primary_10_1016_j_ress_2012_12_004 crossref_primary_10_3390_batteries7020035 crossref_primary_10_1016_j_ifacol_2017_08_1815 crossref_primary_10_1109_ACCESS_2021_3089032 crossref_primary_10_3390_app8101803 crossref_primary_10_1007_s00521_020_05105_0 crossref_primary_10_1155_2013_154831 crossref_primary_10_1109_TIM_2016_2534258 crossref_primary_10_1109_ACCESS_2019_2905740 crossref_primary_10_1080_24725854_2016_1264646 crossref_primary_10_1109_TIM_2015_2444237 crossref_primary_10_1109_TTE_2024_3376515 crossref_primary_10_1177_1748006XJRR342 crossref_primary_10_1177_09576509231153907 crossref_primary_10_1109_TNNLS_2016_2582798 crossref_primary_10_1088_1402_4896_ad1704 crossref_primary_10_1149_2_0301711jes crossref_primary_10_1109_ACCESS_2018_2854224 crossref_primary_10_1109_JSEN_2023_3308092 crossref_primary_10_1115_1_4054340 crossref_primary_10_3390_app11030995 crossref_primary_10_1016_j_jpowsour_2018_11_072 crossref_primary_10_1016_j_est_2022_104544 crossref_primary_10_1007_s00158_022_03437_0 crossref_primary_10_1007_s00521_013_1520_x crossref_primary_10_1016_j_jpowsour_2019_227281 crossref_primary_10_1142_S0218213018500367 crossref_primary_10_3390_en13184858 crossref_primary_10_1109_TIE_2017_2677301 crossref_primary_10_1016_j_measurement_2019_107182 crossref_primary_10_1016_j_measurement_2019_07_064 crossref_primary_10_1039_C7TA07332A crossref_primary_10_1109_ACCESS_2020_3006157 crossref_primary_10_1038_s41598_022_16942_5 crossref_primary_10_1002_sam_11241 crossref_primary_10_1109_TEC_2021_3111525 crossref_primary_10_1016_j_microrel_2017_12_028 crossref_primary_10_1109_JSYST_2020_2983376 crossref_primary_10_1016_j_cja_2017_11_010 crossref_primary_10_1002_ese3_877 crossref_primary_10_1080_00224065_2018_1436829 crossref_primary_10_1016_j_apenergy_2022_119011 crossref_primary_10_1115_1_4052274 crossref_primary_10_1016_j_ymssp_2016_01_010 crossref_primary_10_21595_vp_2021_22273 crossref_primary_10_3390_batteries6030035 crossref_primary_10_1002_qre_2229 crossref_primary_10_1007_s10836_013_5383_y crossref_primary_10_1007_s13198_025_02706_7 crossref_primary_10_1016_j_est_2021_103825 crossref_primary_10_1155_2014_564894 crossref_primary_10_1177_1748006X15573046 crossref_primary_10_1016_j_est_2020_102019 crossref_primary_10_1109_TPEL_2019_2962503 crossref_primary_10_1115_1_4036350 crossref_primary_10_1177_01423312211040901 crossref_primary_10_3390_en17225753 crossref_primary_10_3390_en12040660 crossref_primary_10_3390_app13053028 crossref_primary_10_1038_s41560_019_0356_8 crossref_primary_10_1108_IJQRM_06_2017_0115 crossref_primary_10_1177_0142331216642836 crossref_primary_10_3390_su141911865 crossref_primary_10_1109_TR_2015_2451074 crossref_primary_10_1109_ACCESS_2020_2981947 crossref_primary_10_1016_j_apenergy_2025_125646 crossref_primary_10_1109_TIE_2019_2893867 crossref_primary_10_1016_j_compchemeng_2016_08_018 crossref_primary_10_1002_tcr_202200131 crossref_primary_10_1016_j_ress_2017_05_042 crossref_primary_10_1109_MIE_2013_2250351 crossref_primary_10_1016_j_microrel_2016_07_151 crossref_primary_10_3390_batteries3030021 crossref_primary_10_1016_j_conengprac_2018_02_011 crossref_primary_10_3390_s21227655 crossref_primary_10_1109_TTE_2022_3209629 crossref_primary_10_1016_j_jpowsour_2014_06_133 crossref_primary_10_1109_TVT_2019_2932605 crossref_primary_10_1016_j_jpowsour_2020_228861 crossref_primary_10_36548_jeea_2020_1_003 crossref_primary_10_3390_s22197220 crossref_primary_10_1016_j_est_2024_112929 crossref_primary_10_1007_s00170_018_1636_3 crossref_primary_10_1016_j_est_2022_104061 crossref_primary_10_1016_j_jmsy_2021_04_008 crossref_primary_10_1109_ACCESS_2023_3271287 crossref_primary_10_3390_aerospace8060168 crossref_primary_10_1177_1687814016685004 crossref_primary_10_1080_00207543_2018_1470340 crossref_primary_10_1109_ACCESS_2018_2858856 crossref_primary_10_1016_j_jpowsour_2016_04_119 crossref_primary_10_1016_j_ress_2016_05_006 crossref_primary_10_1109_ACCESS_2017_2759119 crossref_primary_10_3390_en6063082 crossref_primary_10_1016_j_promfg_2019_06_156 crossref_primary_10_1007_s12206_014_1222_z crossref_primary_10_1109_ACCESS_2020_2978245 crossref_primary_10_1109_OJPEL_2024_3379294 crossref_primary_10_1021_acsomega_2c03043 crossref_primary_10_1016_j_est_2021_102370 crossref_primary_10_1541_ieejjia_22004793 crossref_primary_10_1109_TASE_2015_2446752 crossref_primary_10_1109_ACCESS_2019_2947294 crossref_primary_10_1109_TIA_2017_2680406 crossref_primary_10_1080_0951192X_2021_1885062 crossref_primary_10_4028_www_scientific_net_AMR_986_987_1004 crossref_primary_10_1088_1742_6596_2560_1_012039 crossref_primary_10_1016_j_apm_2023_05_038 crossref_primary_10_1016_j_ymssp_2017_02_027 crossref_primary_10_1016_j_rser_2023_114077 crossref_primary_10_1016_j_jpowsour_2013_03_129 crossref_primary_10_1109_TII_2016_2643693 crossref_primary_10_1109_TIM_2020_2996004 crossref_primary_10_1109_TIE_2017_2767550 crossref_primary_10_1109_ACCESS_2025_3535918 crossref_primary_10_1109_TR_2019_2896230 crossref_primary_10_1177_1475921720972926 crossref_primary_10_1016_j_jpowsour_2024_234668 crossref_primary_10_1016_j_measurement_2019_06_004 crossref_primary_10_17531_ein_2019_4_10 crossref_primary_10_1016_j_ijhydene_2013_10_054 crossref_primary_10_1177_1687814018781170 crossref_primary_10_3389_fenrg_2023_1059701 crossref_primary_10_1016_j_jsse_2022_12_002 crossref_primary_10_1155_2021_9916339 crossref_primary_10_1177_1687814016664660 crossref_primary_10_1016_j_jpowsour_2014_02_064 crossref_primary_10_1587_transinf_2019EDP7010 |
Cites_doi | 10.1109/78.978374 10.1007/978-1-4757-2440-0 10.1145/130385.130401 10.1016/S0378-7753(02)00713-9 10.1016/j.jpowsour.2004.10.028 10.1109/TCAPT.2002.803653 10.1109/TVT.2004.842461 10.1049/ip-f-2.1993.0015 10.1109/INTLEC.2000.884272 |
ContentType | Journal Article |
Copyright | SAGE Publications © Jun 2009 |
Copyright_xml | – notice: SAGE Publications © Jun 2009 |
DBID | AAYXX CITATION 3V. 7SP 7U5 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO F28 FR3 GNUQQ HCIFZ L6V L7M M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1177/0142331208092030 |
DatabaseName | CrossRef ProQuest Central (Corporate) Electronics & Communications Abstracts Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Science Database Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Engineering Research Database ProQuest Central Student CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1477-0369 |
EndPage | 308 |
ExternalDocumentID | 1798196761 10_1177_0142331208092030 10.1177_0142331208092030 |
Genre | Feature |
GroupedDBID | -TM -TN -~X .2G .2N .4S .DC 01A 0R~ 123 1~K 29Q 31S 31X 31Y 31Z 4.4 54M 5VS 6TJ 88I 8FE 8FG 8R4 8R5 AACKU AACTG AADUE AAGGD AAGLT AAJOX AANSI AAPEO AAQDB AAQXI AARIX AATAA AATBZ AAYTG ABAWP ABCCA ABCJG ABDBF ABDWY ABEIX ABFWQ ABHKI ABHQH ABIDT ABJCF ABJNI ABKRH ABLUO ABPNF ABQKF ABQXT ABRHV ABUJY ABUWG ABYTW ACDXX ACGBL ACGFS ACGOD ACIWK ACJER ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUAV ACUHS ACUIR ACXKE ADDLC ADEBD ADEIA ADNMO ADNON ADRRZ ADSTG ADTBJ ADUKL ADVBO ADYCS AEDFJ AENEX AEPTA AEQLS AESZF AEUHG AEWDL AEWHI AEXNY AFEET AFKBI AFKRA AFKRG AFMOU AFQAA AFUIA AFWMB AGKLV AGNHF AGQPQ AGWFA AGWNL AHDMH AHHFK AIZZC AJEFB AJUZI ALFTD ALMA_UNASSIGNED_HOLDINGS ANDLU ARAPS ARCSS ARTOV ASPBG AUTPY AUVAJ AVWKF AYAKG AZFZN AZQEC B8O B8Z B93 B94 BBRGL BDDNI BENPR BGLVJ BPACV BPHCQ CAG CBRKF CCPQU CFDXU COF CORYS CS3 DD0 DE- DH. DO- DOPDO DU5 DV7 DWQXO D~Y EAD EAP EBS ECS EDO EJD EMK EPL EST ESX FEDTE FHBDP GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HCIFZ HF~ HVGLF HZ~ I-F J8X K.F L6V M2P M7S MK~ N9A O9- P.B P62 PHGZM PHGZT PQQKQ PROAC PTHSS Q1R Q2X Q7X Q82 Q83 ROL S01 S0W SASJQ SAUOL SCNPE SFC SFK SFT SGP SGQ SGV SGX SGZ SPJ SPV SQCSI STM TUS ZPPRI ZRKOI ZY4 AAYXX AJGYC CITATION 3V. 7SP 7U5 7XB 8FD 8FK AAPII AJHME AJVBE F28 FR3 L7M PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c405t-371a5771d1018bc4123a3289c9b7fc20da24d21b17a1875b295abb7951cce5273 |
IEDL.DBID | BENPR |
ISSN | 0142-3312 |
IngestDate | Sun Aug 24 04:10:12 EDT 2025 Wed Aug 13 06:35:57 EDT 2025 Tue Jul 01 05:27:34 EDT 2025 Thu Apr 24 23:09:48 EDT 2025 Tue Jun 17 22:46:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 |
Keywords | relevance vector machine remaining useful life battery prognostics autoregressive integrated moving average particle filter uncertainty management extended Kalman filtering |
Language | English |
License | https://journals.sagepub.com/page/policies/text-and-data-mining-license |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-371a5771d1018bc4123a3289c9b7fc20da24d21b17a1875b295abb7951cce5273 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 275028284 |
PQPubID | 32550 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_34729237 proquest_journals_275028284 crossref_primary_10_1177_0142331208092030 crossref_citationtrail_10_1177_0142331208092030 sage_journals_10_1177_0142331208092030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20090600 2009-06-00 20090601 |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 6 year: 2009 text: 20090600 |
PublicationDecade | 2000 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: London |
PublicationTitle | Transactions of the Institute of Measurement and Control |
PublicationYear | 2009 |
Publisher | SAGE Publications Sage Publications Ltd |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd |
References | Meissner, E., Richter, G. 2003; 116 Gordon, N.J., Salmond, D.J., Smith, A.F.M. 1993; 140 Tipping, M.E. 2000; 12 Gao, L., Liu, S., Dougal, R.A. 2002; 25 Arulampalam, S., Maskell, S., Gordon, N.J., Clapp, T. 2002; 50 Blanke, H., Bohlen, O., Buller, S., De Doncker, R.W., Fricke, B., Hammouche, A., Linzen, D., Thele, M., Sauer, D.U. 2005; 144 Box, G.E.P., Jenkins, G.M. 1976 Bhangu, B.S., Bentley, P., Stone, D.A., Bingham, C.M. 2005; 54 atypb9 Vutetakis, D.G. (atypb17) atypb8 Jazwinski, A.H. (atypb12) 1970 Jaworski, R.K. (atypb11) 1999 Kozlowski, J.D. (atypb13) atypb16 atypb14 atypb1 Tipping, M.E. (atypb15) 2000; 12 atypb3 Christophersen, J. (atypb6) 2006 atypb2 atypb10 atypb4 Box, G.E.P. (atypb5) 1976 atypb7 |
References_xml | – volume: 116 start-page: 79 year: 2003 end-page: 98 article-title: Battery monitoring and electrical energy management - precondition for future vehicle electric power systems publication-title: Journal of Power Sources – volume: 12 start-page: 652 year: 2000 end-page: 58 article-title: The relevance vector machine. Advances in Neural Information Processing Systems publication-title: MIT Press – year: 1976 article-title: Time series analysis: forecasting and control publication-title: Holden Day – volume: 144 start-page: 418 year: 2005 end-page: 25 article-title: Impedance measurements on lead-acid batteries for state-of-charge, state-of-health and cranking capability prognosis in electric and hybrid electric vehicles publication-title: Journal of Power Sources – volume: 50 start-page: 174 year: 2002 end-page: 88 article-title: A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking publication-title: IEEE Transactions on Signal Processing – volume: 54 start-page: 783 year: 2005 end-page: 94 article-title: Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles publication-title: IEEE Transactions on Vehicular Technology – volume: 25 start-page: 495 year: 2002 end-page: 505 article-title: Dynamic lithium-ion battery model for system simulation publication-title: IEEE Transactions on Components and Packaging Technologies – volume: 140 start-page: 107 year: 1993 end-page: 13 article-title: Novel approach to nonlinear/ non-Gaussian Bayesian state estimation publication-title: Radar and Signal Processing, IEE Proceedings F – ident: atypb1 doi: 10.1109/78.978374 – volume: 12 start-page: 652 year: 2000 ident: atypb15 publication-title: MIT Press – ident: atypb16 doi: 10.1007/978-1-4757-2440-0 – volume-title: Aerospace Conference 2003, IEEE Proceedings ident: atypb13 – ident: atypb4 doi: 10.1145/130385.130401 – volume-title: Stochastic processes and filtering theory year: 1970 ident: atypb12 – ident: atypb14 doi: 10.1016/S0378-7753(02)00713-9 – year: 1976 ident: atypb5 publication-title: Holden Day – ident: atypb3 doi: 10.1016/j.jpowsour.2004.10.028 – ident: atypb9 doi: 10.1109/TCAPT.2002.803653 – ident: atypb8 – volume-title: Statistical parameters model for predicting time to failure of telecommunications batteries. 21st International Telecommunications Energy Conference year: 1999 ident: atypb11 – ident: atypb2 doi: 10.1109/TVT.2004.842461 – ident: atypb10 doi: 10.1049/ip-f-2.1993.0015 – volume-title: Advanced technology development program for lithium-ion batteries: gen 2 performance evaluation final report. INL Technical Report INL/EXT-05-00913 year: 2006 ident: atypb6 – ident: atypb7 doi: 10.1109/INTLEC.2000.884272 – volume-title: Tenth Annual Battery Conference on Applications and Advances, Proceedings ident: atypb17 |
SSID | ssj0004464 |
Score | 2.333233 |
Snippet | The estimation of remaining useful life (RUL) of a faulty component is at the centre of system prognostics and health management. It gives operators a potent... |
SourceID | proquest crossref sage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 293 |
SubjectTerms | Algorithms Batteries Bayesian analysis Estimating techniques Failure analysis |
Title | Comparison of prognostic algorithms for estimating remaining useful life of batteries |
URI | https://journals.sagepub.com/doi/full/10.1177/0142331208092030 https://www.proquest.com/docview/275028284 https://www.proquest.com/docview/34729237 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90Q9AH8RPnx8yDCD6UmTRd2idx6hRBEXHgW0nSdAqzVbv9_9613QeCviYNobnk7ne5y-8ATnQQRSoJA0876XsyNNyLrEy80Jcm0BIBuKLXyA-P3buBvH8NXuvcnKJOq5zqxFJRJ7mlO_IO8ZCTeyAvPr88KhpFwdW6gsYyNFEDh0EDmr2bx6fn-cNIWfFHcSk83-diHqfsUBs1IWKKRJkEvWiX5mBzIb-rNDn9DVivsSK7rIS7CUsu24K1BQbBLVgpMzhtsQ2Dq1lFQZanjPKuspxImJkeDfFPxm8fBUOEyohWg2BqNmTf7qMqEMEmhUsnIzZ6Tx2NNiXrJjrROzDo37xc3Xl1zQTPIvQao77gOlCKJ8TEZaxEw6R9dKpsZFRqxXmihUwEN1xpjq6KEVGgjVGIs6x1RMa2C40sz9weMBUlIkm76DtbJ9ER1NaiPTddlJ6v8bC2oDNdsdjWhOJU12IU8ymH-K81bsHZbMRnRabxz7cHUyHE9bEq4tkmaMHxrBfPAwU5dObySRH7Et0F4asWnJLk5mP_mmj_34kOYLWKH9G9yyE0xt8Td4QwZGzasBz2b9vQvOxd9_rteuv9AKZA154 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB7xEAIOK5aHKCzgA6zEISp2nLo5oNUuD5UFKrSiErdgOw4glQRIq9X-KP7jzuTRVkhw45rEsTSeGX_jGX8DsKuDMFRxO_C0k74n24Z7oZWx1_alCbREAK7oNvJlt9Xpyd83wc0UvNZ3YaissvaJhaOOM0tn5E3iIafwQP54evaoaRQlV-sOGqVWnLt_fzFiyw_PjnF594Q4Pbk-6nhVUwHPIjYZoEFxHSjFY6KqMlai59Y-Rh02NCqx4iDWQsaCG640RyxvRBhoYxQCEWsdsZXhf6dhFlFGiEY0--uke_VnfBFTlnxVXArP97kY50Wb9IweIUILRVF0PbkPjsHtRD1ZscWdLsGXCpuyn6UyfYUply7D4gRj4TLMFRWjNl-B3tGogyHLEkZ1XmlGpM9M9-9QcoP7x5whImZE40GwOL1jL-6xbEjBhrlLhn3Wf0gcjTYFyycG7avQ-xRxrsFMmqVuHZgKYxEnLYzVrZMYeGprET-YFmqLr9E5NKBZSyyyFYE59dHoR7zmLH8j4wbsj0Y8leQdH3y7WS9CVJlxHo2UrgE7o7dof5RU0anLhnnkSwxPhK8a8J1Wbjz2vYk2PpxoB-Y715cX0cVZ93wTFsrcFZ35fIOZwcvQbSEEGpjtSvEY3H62rv8HftUQsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+prognostic+algorithms+for+estimating+remaining+useful+life+of+batteries&rft.jtitle=Transactions+of+the+Institute+of+Measurement+and+Control&rft.au=Saha%2C+Bhaskar&rft.au=Goebel%2C+Kai&rft.au=Christophersen%2C+Jon&rft.date=2009-06-01&rft.issn=0142-3312&rft.eissn=1477-0369&rft.volume=31&rft.issue=3-4&rft.spage=293&rft.epage=308&rft_id=info:doi/10.1177%2F0142331208092030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_0142331208092030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-3312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-3312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-3312&client=summon |