Comparison of prognostic algorithms for estimating remaining useful life of batteries

The estimation of remaining useful life (RUL) of a faulty component is at the centre of system prognostics and health management. It gives operators a potent tool in decision making by quantifying how much time is left until functionality is lost. RUL prediction needs to contend with multiple source...

Full description

Saved in:
Bibliographic Details
Published inTransactions of the Institute of Measurement and Control Vol. 31; no. 3-4; pp. 293 - 308
Main Authors Saha, Bhaskar, Goebel, Kai, Christophersen, Jon
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.06.2009
Sage Publications Ltd
Subjects
Online AccessGet full text
ISSN0142-3312
1477-0369
DOI10.1177/0142331208092030

Cover

Loading…
Abstract The estimation of remaining useful life (RUL) of a faulty component is at the centre of system prognostics and health management. It gives operators a potent tool in decision making by quantifying how much time is left until functionality is lost. RUL prediction needs to contend with multiple sources of errors, like modelling inconsistencies, system noise and degraded sensor fidelity, which leads to unsatisfactory performance from classical techniques like autoregressive integrated moving average (ARIMA) and extended Kalman filtering (EKF). The Bayesian theory of uncertainty management provides a way to contain these problems. The relevance vector machine (RVM), the Bayesian treatment of the well known support vector machine (SVM), a kernel-based regression/classification technique, is used for model development. This model is incorporated into a particle filter (PF) framework, where statistical estimates of noise and anticipated operational conditions are used to provide estimates of RUL in the form of a probability density function (pdf). We present here a comparative study of the above-mentioned approaches on experimental data collected from Li-ion batteries. Batteries were chosen as an example of a complex system whose internal state variables are either inaccessible to sensors or hard to measure under operational conditions. In addition, battery performance is strongly influenced by ambient environmental and load conditions.
AbstractList The estimation of remaining useful life (RUL) of a faulty component is at the centre of system prognostics and health management. It gives operators a potent tool in decision making by quantifying how much time is left until functionality is lost. RUL prediction needs to contend with multiple sources of errors, like modelling inconsistencies, system noise and degraded sensor fidelity, which leads to unsatisfactory performance from classical techniques like autoregressive integrated moving average (ARIMA) and extended Kalman filtering (EKF). The Bayesian theory of uncertainty management provides a way to contain these problems. The relevance vector machine (RVM), the Bayesian treatment of the well known support vector machine (SVM), a kernel-based regression/classification technique, is used for model development. This model is incorporated into a particle filter (PF) framework, where statistical estimates of noise and anticipated operational conditions are used to provide estimates of RUL in the form of a probability density function (pdf). We present here a comparative study of the above-mentioned approaches on experimental data collected from Li-ion batteries. Batteries were chosen as an example of a complex system whose internal state variables are either inaccessible to sensors or hard to measure under operational conditions. In addition, battery performance is strongly influenced by ambient environmental and load conditions.
The estimation of remaining useful life (RUL) of a faulty component is at the centre of system prognostics and health management. It gives operators a potent tool in decision making by quantifying how much time is left until functionality is lost. RUL prediction needs to contend with multiple sources of errors, like modelling inconsistencies, system noise and degraded sensor fidelity, which leads to unsatisfactory performance from classical techniques like autoregressive integrated moving average (ARIMA) and extended Kalman filtering (EKF). The Bayesian theory of uncertainty management provides a way to contain these problems. The relevance vector machine (RVM), the Bayesian treatment of the well known support vector machine (SVM), a kernel-based regression/classification technique, is used for model development. This model is incorporated into a particle filter (PF) framework, where statistical estimates of noise and anticipated operational conditions are used to provide estimates of RUL in the form of a probability density function (pdf). We present here a comparative study of the above-mentioned approaches on experimental data collected from Li-ion batteries. Batteries were chosen as an example of a complex system whose internal state variables are either inaccessible to sensors or hard to measure under operational conditions. In addition, battery performance is strongly influenced by ambient environmental and load conditions. [PUBLICATION ABSTRACT]
Author Christophersen, Jon
Saha, Bhaskar
Goebel, Kai
Author_xml – sequence: 1
  givenname: Bhaskar
  surname: Saha
  fullname: Saha, Bhaskar
  email: bhaskar.saha_1@nasa.gov
  organization: Mission Critical Technologies, Inc. (NASA ARC), 2041 Rosecrans Ave., Ste. 354, El Segundo, CA 90245, USA
– sequence: 2
  givenname: Kai
  surname: Goebel
  fullname: Goebel, Kai
  organization: NASA Ames Research Center, Moffett Field, CA 94035, USA
– sequence: 3
  givenname: Jon
  surname: Christophersen
  fullname: Christophersen, Jon
  organization: Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA
BookMark eNp9kM9LwzAYhoNMcJvePRYP3qrfl6RLe5ThLxh4ceeSZmnNaJOZpAf_e1MmCAM9JeR7nvB-74LMrLOakGuEO0Qh7gE5ZQwplFBRYHBG5siFyIGtqhmZT-N8ml-QRQh7AOB8xedku3bDQXoTnM1cmx2866wL0ahM9p3zJn4MIWudz3R6HGQ0tsu8HqSx020Muh37rDetnuxGxqi90eGSnLeyD_rq51yS7dPj-_ol37w9v64fNrniUMScCZSFELhDwLJRHCmTjJaVqhrRKgo7SfmOYoNCYimKhlaFbBpRFaiULqhgS3J7_Dfl_hxTxHowQem-l1a7MdSMC1pRNoE3J-Dejd6mbDUVBdCSljxBcISUdyF43dYHn3b2XzVCPZVcn5aclNWJokxMLTkbvTT9f2J-FIPs9G-YP_lvu_iNvw
CitedBy_id crossref_primary_10_1214_24_AOAS1931
crossref_primary_10_1016_j_cirpj_2021_02_004
crossref_primary_10_1007_s00202_023_01910_7
crossref_primary_10_1109_TII_2022_3155597
crossref_primary_10_1016_j_microrel_2017_09_009
crossref_primary_10_3390_en13164183
crossref_primary_10_4028_www_scientific_net_AMR_717_390
crossref_primary_10_1016_j_jechem_2021_12_004
crossref_primary_10_3390_electronics10182294
crossref_primary_10_3390_s18010009
crossref_primary_10_1109_TCST_2018_2819965
crossref_primary_10_1109_TASE_2014_2349733
crossref_primary_10_1063_5_0152038
crossref_primary_10_1016_j_jpowsour_2018_08_064
crossref_primary_10_1016_j_jpowsour_2021_230572
crossref_primary_10_1016_j_jpowsour_2022_231026
crossref_primary_10_1016_j_probengmech_2013_01_003
crossref_primary_10_1016_j_engfailanal_2016_04_014
crossref_primary_10_1007_s00521_022_07291_5
crossref_primary_10_1109_ACCESS_2021_3111927
crossref_primary_10_1016_j_ijepes_2017_01_013
crossref_primary_10_1016_j_microrel_2017_02_003
crossref_primary_10_1109_ACCESS_2020_2987426
crossref_primary_10_1016_j_egypro_2019_01_320
crossref_primary_10_1016_j_ejor_2010_11_018
crossref_primary_10_1016_j_ress_2017_11_020
crossref_primary_10_1002_asmb_2063
crossref_primary_10_1109_TIM_2020_3029382
crossref_primary_10_1109_TIE_2020_2978688
crossref_primary_10_1016_j_ress_2022_108944
crossref_primary_10_1109_TMECH_2015_2440331
crossref_primary_10_1016_j_rser_2021_111903
crossref_primary_10_1109_ACCESS_2021_3110049
crossref_primary_10_1016_j_microrel_2012_12_004
crossref_primary_10_1109_TASE_2023_3242355
crossref_primary_10_1016_j_est_2022_104701
crossref_primary_10_1016_j_microrel_2017_02_012
crossref_primary_10_1115_1_4038002
crossref_primary_10_1080_24725854_2018_1440673
crossref_primary_10_17531_ein_2021_1_18
crossref_primary_10_1016_j_joule_2019_11_018
crossref_primary_10_1109_TASE_2012_2227960
crossref_primary_10_1016_j_mtener_2024_101562
crossref_primary_10_1016_j_jpowsour_2014_01_085
crossref_primary_10_1016_j_neucom_2017_11_062
crossref_primary_10_1088_1755_1315_93_1_012040
crossref_primary_10_1109_TVT_2020_3024019
crossref_primary_10_1093_jigpal_jzz075
crossref_primary_10_1016_j_rser_2019_109405
crossref_primary_10_1016_j_energy_2015_04_021
crossref_primary_10_1016_j_microrel_2015_02_025
crossref_primary_10_20964_2018_05_84
crossref_primary_10_1016_j_egypro_2016_06_086
crossref_primary_10_1007_s00158_022_03410_x
crossref_primary_10_1109_TR_2015_2427156
crossref_primary_10_3390_su15065014
crossref_primary_10_3390_wevj15020068
crossref_primary_10_1287_inte_2020_1058
crossref_primary_10_3390_en6083654
crossref_primary_10_1109_TTE_2017_2776558
crossref_primary_10_1016_j_egypro_2018_09_207
crossref_primary_10_1115_1_4054392
crossref_primary_10_1177_0142331220961576
crossref_primary_10_1016_j_microrel_2013_03_010
crossref_primary_10_3390_en13030752
crossref_primary_10_1109_TIM_2016_2622838
crossref_primary_10_3390_en17071679
crossref_primary_10_1109_TR_2017_2715180
crossref_primary_10_20964_2019_10_15
crossref_primary_10_1109_TEC_2016_2589933
crossref_primary_10_1080_08839514_2015_1038432
crossref_primary_10_1109_TIM_2017_2708204
crossref_primary_10_1016_j_est_2023_107443
crossref_primary_10_1109_TR_2020_3032157
crossref_primary_10_1002_er_6746
crossref_primary_10_1016_j_energy_2016_12_004
crossref_primary_10_1016_j_ress_2014_09_014
crossref_primary_10_1016_j_est_2021_103644
crossref_primary_10_1109_TIM_2014_2348613
crossref_primary_10_1109_TIE_2014_2336616
crossref_primary_10_1007_s40684_023_00509_4
crossref_primary_10_1016_j_apenergy_2015_08_119
crossref_primary_10_1080_24725854_2018_1555384
crossref_primary_10_1109_ACCESS_2021_3083395
crossref_primary_10_20964_2022_08_30
crossref_primary_10_1109_ACCESS_2019_2929111
crossref_primary_10_1108_JQME_03_2016_0012
crossref_primary_10_1088_1742_6596_2301_1_012015
crossref_primary_10_1109_TSMC_2015_2389757
crossref_primary_10_1007_s42401_024_00287_0
crossref_primary_10_1016_j_measurement_2014_11_031
crossref_primary_10_1155_2018_6972481
crossref_primary_10_1109_TIM_2013_2276473
crossref_primary_10_1016_j_rser_2023_114224
crossref_primary_10_3390_machines10070512
crossref_primary_10_1142_S0218213016500238
crossref_primary_10_1016_j_ress_2021_107446
crossref_primary_10_1016_j_microrel_2017_06_002
crossref_primary_10_3390_en8042889
crossref_primary_10_3390_s18093171
crossref_primary_10_1002_est2_218
crossref_primary_10_3390_s20082425
crossref_primary_10_1109_TPEL_2022_3182135
crossref_primary_10_1088_1757_899X_895_1_012006
crossref_primary_10_1109_TIE_2018_2879284
crossref_primary_10_1002_rob_21453
crossref_primary_10_1016_j_ress_2012_12_004
crossref_primary_10_3390_batteries7020035
crossref_primary_10_1016_j_ifacol_2017_08_1815
crossref_primary_10_1109_ACCESS_2021_3089032
crossref_primary_10_3390_app8101803
crossref_primary_10_1007_s00521_020_05105_0
crossref_primary_10_1155_2013_154831
crossref_primary_10_1109_TIM_2016_2534258
crossref_primary_10_1109_ACCESS_2019_2905740
crossref_primary_10_1080_24725854_2016_1264646
crossref_primary_10_1109_TIM_2015_2444237
crossref_primary_10_1109_TTE_2024_3376515
crossref_primary_10_1177_1748006XJRR342
crossref_primary_10_1177_09576509231153907
crossref_primary_10_1109_TNNLS_2016_2582798
crossref_primary_10_1088_1402_4896_ad1704
crossref_primary_10_1149_2_0301711jes
crossref_primary_10_1109_ACCESS_2018_2854224
crossref_primary_10_1109_JSEN_2023_3308092
crossref_primary_10_1115_1_4054340
crossref_primary_10_3390_app11030995
crossref_primary_10_1016_j_jpowsour_2018_11_072
crossref_primary_10_1016_j_est_2022_104544
crossref_primary_10_1007_s00158_022_03437_0
crossref_primary_10_1007_s00521_013_1520_x
crossref_primary_10_1016_j_jpowsour_2019_227281
crossref_primary_10_1142_S0218213018500367
crossref_primary_10_3390_en13184858
crossref_primary_10_1109_TIE_2017_2677301
crossref_primary_10_1016_j_measurement_2019_107182
crossref_primary_10_1016_j_measurement_2019_07_064
crossref_primary_10_1039_C7TA07332A
crossref_primary_10_1109_ACCESS_2020_3006157
crossref_primary_10_1038_s41598_022_16942_5
crossref_primary_10_1002_sam_11241
crossref_primary_10_1109_TEC_2021_3111525
crossref_primary_10_1016_j_microrel_2017_12_028
crossref_primary_10_1109_JSYST_2020_2983376
crossref_primary_10_1016_j_cja_2017_11_010
crossref_primary_10_1002_ese3_877
crossref_primary_10_1080_00224065_2018_1436829
crossref_primary_10_1016_j_apenergy_2022_119011
crossref_primary_10_1115_1_4052274
crossref_primary_10_1016_j_ymssp_2016_01_010
crossref_primary_10_21595_vp_2021_22273
crossref_primary_10_3390_batteries6030035
crossref_primary_10_1002_qre_2229
crossref_primary_10_1007_s10836_013_5383_y
crossref_primary_10_1007_s13198_025_02706_7
crossref_primary_10_1016_j_est_2021_103825
crossref_primary_10_1155_2014_564894
crossref_primary_10_1177_1748006X15573046
crossref_primary_10_1016_j_est_2020_102019
crossref_primary_10_1109_TPEL_2019_2962503
crossref_primary_10_1115_1_4036350
crossref_primary_10_1177_01423312211040901
crossref_primary_10_3390_en17225753
crossref_primary_10_3390_en12040660
crossref_primary_10_3390_app13053028
crossref_primary_10_1038_s41560_019_0356_8
crossref_primary_10_1108_IJQRM_06_2017_0115
crossref_primary_10_1177_0142331216642836
crossref_primary_10_3390_su141911865
crossref_primary_10_1109_TR_2015_2451074
crossref_primary_10_1109_ACCESS_2020_2981947
crossref_primary_10_1016_j_apenergy_2025_125646
crossref_primary_10_1109_TIE_2019_2893867
crossref_primary_10_1016_j_compchemeng_2016_08_018
crossref_primary_10_1002_tcr_202200131
crossref_primary_10_1016_j_ress_2017_05_042
crossref_primary_10_1109_MIE_2013_2250351
crossref_primary_10_1016_j_microrel_2016_07_151
crossref_primary_10_3390_batteries3030021
crossref_primary_10_1016_j_conengprac_2018_02_011
crossref_primary_10_3390_s21227655
crossref_primary_10_1109_TTE_2022_3209629
crossref_primary_10_1016_j_jpowsour_2014_06_133
crossref_primary_10_1109_TVT_2019_2932605
crossref_primary_10_1016_j_jpowsour_2020_228861
crossref_primary_10_36548_jeea_2020_1_003
crossref_primary_10_3390_s22197220
crossref_primary_10_1016_j_est_2024_112929
crossref_primary_10_1007_s00170_018_1636_3
crossref_primary_10_1016_j_est_2022_104061
crossref_primary_10_1016_j_jmsy_2021_04_008
crossref_primary_10_1109_ACCESS_2023_3271287
crossref_primary_10_3390_aerospace8060168
crossref_primary_10_1177_1687814016685004
crossref_primary_10_1080_00207543_2018_1470340
crossref_primary_10_1109_ACCESS_2018_2858856
crossref_primary_10_1016_j_jpowsour_2016_04_119
crossref_primary_10_1016_j_ress_2016_05_006
crossref_primary_10_1109_ACCESS_2017_2759119
crossref_primary_10_3390_en6063082
crossref_primary_10_1016_j_promfg_2019_06_156
crossref_primary_10_1007_s12206_014_1222_z
crossref_primary_10_1109_ACCESS_2020_2978245
crossref_primary_10_1109_OJPEL_2024_3379294
crossref_primary_10_1021_acsomega_2c03043
crossref_primary_10_1016_j_est_2021_102370
crossref_primary_10_1541_ieejjia_22004793
crossref_primary_10_1109_TASE_2015_2446752
crossref_primary_10_1109_ACCESS_2019_2947294
crossref_primary_10_1109_TIA_2017_2680406
crossref_primary_10_1080_0951192X_2021_1885062
crossref_primary_10_4028_www_scientific_net_AMR_986_987_1004
crossref_primary_10_1088_1742_6596_2560_1_012039
crossref_primary_10_1016_j_apm_2023_05_038
crossref_primary_10_1016_j_ymssp_2017_02_027
crossref_primary_10_1016_j_rser_2023_114077
crossref_primary_10_1016_j_jpowsour_2013_03_129
crossref_primary_10_1109_TII_2016_2643693
crossref_primary_10_1109_TIM_2020_2996004
crossref_primary_10_1109_TIE_2017_2767550
crossref_primary_10_1109_ACCESS_2025_3535918
crossref_primary_10_1109_TR_2019_2896230
crossref_primary_10_1177_1475921720972926
crossref_primary_10_1016_j_jpowsour_2024_234668
crossref_primary_10_1016_j_measurement_2019_06_004
crossref_primary_10_17531_ein_2019_4_10
crossref_primary_10_1016_j_ijhydene_2013_10_054
crossref_primary_10_1177_1687814018781170
crossref_primary_10_3389_fenrg_2023_1059701
crossref_primary_10_1016_j_jsse_2022_12_002
crossref_primary_10_1155_2021_9916339
crossref_primary_10_1177_1687814016664660
crossref_primary_10_1016_j_jpowsour_2014_02_064
crossref_primary_10_1587_transinf_2019EDP7010
Cites_doi 10.1109/78.978374
10.1007/978-1-4757-2440-0
10.1145/130385.130401
10.1016/S0378-7753(02)00713-9
10.1016/j.jpowsour.2004.10.028
10.1109/TCAPT.2002.803653
10.1109/TVT.2004.842461
10.1049/ip-f-2.1993.0015
10.1109/INTLEC.2000.884272
ContentType Journal Article
Copyright SAGE Publications © Jun 2009
Copyright_xml – notice: SAGE Publications © Jun 2009
DBID AAYXX
CITATION
3V.
7SP
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
F28
FR3
GNUQQ
HCIFZ
L6V
L7M
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1177/0142331208092030
DatabaseName CrossRef
ProQuest Central (Corporate)
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Science Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Engineering Research Database
ProQuest Central Student
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1477-0369
EndPage 308
ExternalDocumentID 1798196761
10_1177_0142331208092030
10.1177_0142331208092030
Genre Feature
GroupedDBID -TM
-TN
-~X
.2G
.2N
.4S
.DC
01A
0R~
123
1~K
29Q
31S
31X
31Y
31Z
4.4
54M
5VS
6TJ
88I
8FE
8FG
8R4
8R5
AACKU
AACTG
AADUE
AAGGD
AAGLT
AAJOX
AANSI
AAPEO
AAQDB
AAQXI
AARIX
AATAA
AATBZ
AAYTG
ABAWP
ABCCA
ABCJG
ABDBF
ABDWY
ABEIX
ABFWQ
ABHKI
ABHQH
ABIDT
ABJCF
ABJNI
ABKRH
ABLUO
ABPNF
ABQKF
ABQXT
ABRHV
ABUJY
ABUWG
ABYTW
ACDXX
ACGBL
ACGFS
ACGOD
ACIWK
ACJER
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUAV
ACUHS
ACUIR
ACXKE
ADDLC
ADEBD
ADEIA
ADNMO
ADNON
ADRRZ
ADSTG
ADTBJ
ADUKL
ADVBO
ADYCS
AEDFJ
AENEX
AEPTA
AEQLS
AESZF
AEUHG
AEWDL
AEWHI
AEXNY
AFEET
AFKBI
AFKRA
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGKLV
AGNHF
AGQPQ
AGWFA
AGWNL
AHDMH
AHHFK
AIZZC
AJEFB
AJUZI
ALFTD
ALMA_UNASSIGNED_HOLDINGS
ANDLU
ARAPS
ARCSS
ARTOV
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AZFZN
AZQEC
B8O
B8Z
B93
B94
BBRGL
BDDNI
BENPR
BGLVJ
BPACV
BPHCQ
CAG
CBRKF
CCPQU
CFDXU
COF
CORYS
CS3
DD0
DE-
DH.
DO-
DOPDO
DU5
DV7
DWQXO
D~Y
EAD
EAP
EBS
ECS
EDO
EJD
EMK
EPL
EST
ESX
FEDTE
FHBDP
GNUQQ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HCIFZ
HF~
HVGLF
HZ~
I-F
J8X
K.F
L6V
M2P
M7S
MK~
N9A
O9-
P.B
P62
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
Q1R
Q2X
Q7X
Q82
Q83
ROL
S01
S0W
SASJQ
SAUOL
SCNPE
SFC
SFK
SFT
SGP
SGQ
SGV
SGX
SGZ
SPJ
SPV
SQCSI
STM
TUS
ZPPRI
ZRKOI
ZY4
AAYXX
AJGYC
CITATION
3V.
7SP
7U5
7XB
8FD
8FK
AAPII
AJHME
AJVBE
F28
FR3
L7M
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c405t-371a5771d1018bc4123a3289c9b7fc20da24d21b17a1875b295abb7951cce5273
IEDL.DBID BENPR
ISSN 0142-3312
IngestDate Sun Aug 24 04:10:12 EDT 2025
Wed Aug 13 06:35:57 EDT 2025
Tue Jul 01 05:27:34 EDT 2025
Thu Apr 24 23:09:48 EDT 2025
Tue Jun 17 22:46:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords relevance vector machine
remaining useful life
battery prognostics
autoregressive integrated moving average
particle filter
uncertainty management
extended Kalman filtering
Language English
License https://journals.sagepub.com/page/policies/text-and-data-mining-license
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-371a5771d1018bc4123a3289c9b7fc20da24d21b17a1875b295abb7951cce5273
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 275028284
PQPubID 32550
PageCount 16
ParticipantIDs proquest_miscellaneous_34729237
proquest_journals_275028284
crossref_primary_10_1177_0142331208092030
crossref_citationtrail_10_1177_0142331208092030
sage_journals_10_1177_0142331208092030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20090600
2009-06-00
20090601
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 6
  year: 2009
  text: 20090600
PublicationDecade 2000
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: London
PublicationTitle Transactions of the Institute of Measurement and Control
PublicationYear 2009
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
References Meissner, E., Richter, G. 2003; 116
Gordon, N.J., Salmond, D.J., Smith, A.F.M. 1993; 140
Tipping, M.E. 2000; 12
Gao, L., Liu, S., Dougal, R.A. 2002; 25
Arulampalam, S., Maskell, S., Gordon, N.J., Clapp, T. 2002; 50
Blanke, H., Bohlen, O., Buller, S., De Doncker, R.W., Fricke, B., Hammouche, A., Linzen, D., Thele, M., Sauer, D.U. 2005; 144
Box, G.E.P., Jenkins, G.M. 1976
Bhangu, B.S., Bentley, P., Stone, D.A., Bingham, C.M. 2005; 54
atypb9
Vutetakis, D.G. (atypb17)
atypb8
Jazwinski, A.H. (atypb12) 1970
Jaworski, R.K. (atypb11) 1999
Kozlowski, J.D. (atypb13)
atypb16
atypb14
atypb1
Tipping, M.E. (atypb15) 2000; 12
atypb3
Christophersen, J. (atypb6) 2006
atypb2
atypb10
atypb4
Box, G.E.P. (atypb5) 1976
atypb7
References_xml – volume: 116
  start-page: 79
  year: 2003
  end-page: 98
  article-title: Battery monitoring and electrical energy management - precondition for future vehicle electric power systems
  publication-title: Journal of Power Sources
– volume: 12
  start-page: 652
  year: 2000
  end-page: 58
  article-title: The relevance vector machine. Advances in Neural Information Processing Systems
  publication-title: MIT Press
– year: 1976
  article-title: Time series analysis: forecasting and control
  publication-title: Holden Day
– volume: 144
  start-page: 418
  year: 2005
  end-page: 25
  article-title: Impedance measurements on lead-acid batteries for state-of-charge, state-of-health and cranking capability prognosis in electric and hybrid electric vehicles
  publication-title: Journal of Power Sources
– volume: 50
  start-page: 174
  year: 2002
  end-page: 88
  article-title: A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking
  publication-title: IEEE Transactions on Signal Processing
– volume: 54
  start-page: 783
  year: 2005
  end-page: 94
  article-title: Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles
  publication-title: IEEE Transactions on Vehicular Technology
– volume: 25
  start-page: 495
  year: 2002
  end-page: 505
  article-title: Dynamic lithium-ion battery model for system simulation
  publication-title: IEEE Transactions on Components and Packaging Technologies
– volume: 140
  start-page: 107
  year: 1993
  end-page: 13
  article-title: Novel approach to nonlinear/ non-Gaussian Bayesian state estimation
  publication-title: Radar and Signal Processing, IEE Proceedings F
– ident: atypb1
  doi: 10.1109/78.978374
– volume: 12
  start-page: 652
  year: 2000
  ident: atypb15
  publication-title: MIT Press
– ident: atypb16
  doi: 10.1007/978-1-4757-2440-0
– volume-title: Aerospace Conference 2003, IEEE Proceedings
  ident: atypb13
– ident: atypb4
  doi: 10.1145/130385.130401
– volume-title: Stochastic processes and filtering theory
  year: 1970
  ident: atypb12
– ident: atypb14
  doi: 10.1016/S0378-7753(02)00713-9
– year: 1976
  ident: atypb5
  publication-title: Holden Day
– ident: atypb3
  doi: 10.1016/j.jpowsour.2004.10.028
– ident: atypb9
  doi: 10.1109/TCAPT.2002.803653
– ident: atypb8
– volume-title: Statistical parameters model for predicting time to failure of telecommunications batteries. 21st International Telecommunications Energy Conference
  year: 1999
  ident: atypb11
– ident: atypb2
  doi: 10.1109/TVT.2004.842461
– ident: atypb10
  doi: 10.1049/ip-f-2.1993.0015
– volume-title: Advanced technology development program for lithium-ion batteries: gen 2 performance evaluation final report. INL Technical Report INL/EXT-05-00913
  year: 2006
  ident: atypb6
– ident: atypb7
  doi: 10.1109/INTLEC.2000.884272
– volume-title: Tenth Annual Battery Conference on Applications and Advances, Proceedings
  ident: atypb17
SSID ssj0004464
Score 2.333233
Snippet The estimation of remaining useful life (RUL) of a faulty component is at the centre of system prognostics and health management. It gives operators a potent...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 293
SubjectTerms Algorithms
Batteries
Bayesian analysis
Estimating techniques
Failure analysis
Title Comparison of prognostic algorithms for estimating remaining useful life of batteries
URI https://journals.sagepub.com/doi/full/10.1177/0142331208092030
https://www.proquest.com/docview/275028284
https://www.proquest.com/docview/34729237
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90Q9AH8RPnx8yDCD6UmTRd2idx6hRBEXHgW0nSdAqzVbv9_9613QeCviYNobnk7ne5y-8ATnQQRSoJA0876XsyNNyLrEy80Jcm0BIBuKLXyA-P3buBvH8NXuvcnKJOq5zqxFJRJ7mlO_IO8ZCTeyAvPr88KhpFwdW6gsYyNFEDh0EDmr2bx6fn-cNIWfFHcSk83-diHqfsUBs1IWKKRJkEvWiX5mBzIb-rNDn9DVivsSK7rIS7CUsu24K1BQbBLVgpMzhtsQ2Dq1lFQZanjPKuspxImJkeDfFPxm8fBUOEyohWg2BqNmTf7qMqEMEmhUsnIzZ6Tx2NNiXrJjrROzDo37xc3Xl1zQTPIvQao77gOlCKJ8TEZaxEw6R9dKpsZFRqxXmihUwEN1xpjq6KEVGgjVGIs6x1RMa2C40sz9weMBUlIkm76DtbJ9ER1NaiPTddlJ6v8bC2oDNdsdjWhOJU12IU8ymH-K81bsHZbMRnRabxz7cHUyHE9bEq4tkmaMHxrBfPAwU5dObySRH7Et0F4asWnJLk5mP_mmj_34kOYLWKH9G9yyE0xt8Td4QwZGzasBz2b9vQvOxd9_rteuv9AKZA154
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB7xEAIOK5aHKCzgA6zEISp2nLo5oNUuD5UFKrSiErdgOw4glQRIq9X-KP7jzuTRVkhw45rEsTSeGX_jGX8DsKuDMFRxO_C0k74n24Z7oZWx1_alCbREAK7oNvJlt9Xpyd83wc0UvNZ3YaissvaJhaOOM0tn5E3iIafwQP54evaoaRQlV-sOGqVWnLt_fzFiyw_PjnF594Q4Pbk-6nhVUwHPIjYZoEFxHSjFY6KqMlai59Y-Rh02NCqx4iDWQsaCG640RyxvRBhoYxQCEWsdsZXhf6dhFlFGiEY0--uke_VnfBFTlnxVXArP97kY50Wb9IweIUILRVF0PbkPjsHtRD1ZscWdLsGXCpuyn6UyfYUply7D4gRj4TLMFRWjNl-B3tGogyHLEkZ1XmlGpM9M9-9QcoP7x5whImZE40GwOL1jL-6xbEjBhrlLhn3Wf0gcjTYFyycG7avQ-xRxrsFMmqVuHZgKYxEnLYzVrZMYeGprET-YFmqLr9E5NKBZSyyyFYE59dHoR7zmLH8j4wbsj0Y8leQdH3y7WS9CVJlxHo2UrgE7o7dof5RU0anLhnnkSwxPhK8a8J1Wbjz2vYk2PpxoB-Y715cX0cVZ93wTFsrcFZ35fIOZwcvQbSEEGpjtSvEY3H62rv8HftUQsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+prognostic+algorithms+for+estimating+remaining+useful+life+of+batteries&rft.jtitle=Transactions+of+the+Institute+of+Measurement+and+Control&rft.au=Saha%2C+Bhaskar&rft.au=Goebel%2C+Kai&rft.au=Christophersen%2C+Jon&rft.date=2009-06-01&rft.issn=0142-3312&rft.eissn=1477-0369&rft.volume=31&rft.issue=3-4&rft.spage=293&rft.epage=308&rft_id=info:doi/10.1177%2F0142331208092030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_0142331208092030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-3312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-3312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-3312&client=summon