Blood flow patterns underlie developmental heart defects

Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used t...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Heart and circulatory physiology Vol. 312; no. 3; pp. H632 - H642
Main Authors Midgett, Madeline, Thornburg, Kent, Rugonyi, Sandra
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.03.2017
SeriesIntegrative Cardiovascular Physiology and Pathophysiology
Subjects
Online AccessGet full text
ISSN0363-6135
1522-1539
1522-1539
DOI10.1152/ajpheart.00641.2016

Cover

Loading…
Abstract Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10–35% led predominantly to ventricular septal defects, whereas constricting by 35–60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment. NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel “dose-response” type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects.
AbstractList Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10-35% led predominantly to ventricular septal defects, whereas constricting by 35-60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment.NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel "dose-response" type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects.Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10-35% led predominantly to ventricular septal defects, whereas constricting by 35-60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment.NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel "dose-response" type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects.
Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10–35% led predominantly to ventricular septal defects, whereas constricting by 35–60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment. NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel “dose-response” type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects.
Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel “dose-response” type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects. Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10–35% led predominantly to ventricular septal defects, whereas constricting by 35–60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment. NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel “dose-response” type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects.
Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10-35% led predominantly to ventricular septal defects, whereas constricting by 35-60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment. Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel "dose-response" type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects.
Author Rugonyi, Sandra
Midgett, Madeline
Thornburg, Kent
Author_xml – sequence: 1
  givenname: Madeline
  surname: Midgett
  fullname: Midgett, Madeline
  organization: Biomedical Engineering, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; and
– sequence: 2
  givenname: Kent
  surname: Thornburg
  fullname: Thornburg, Kent
  organization: Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
– sequence: 3
  givenname: Sandra
  surname: Rugonyi
  fullname: Rugonyi, Sandra
  organization: Biomedical Engineering, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; and, Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28062416$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtLAzEQDqJoffwCQfboZWveu70IWnyB4EXPIU0mdiXdrEmq-O9N1Yp6kDlkmPkeQ75dtNmHHhA6JHhMiKAn-mmYg455jLHkZEwxkRtoVDa0JoJNNtEIM8lqSZjYQbspPWGMRSPZNtqhLZaUEzlC7bkPwVbOh9dq0DlD7FO17C1E30Fl4QV8GBbQZ-2rD7cyc2By2kdbTvsEB1_vHnq4vLifXte3d1c307Pb2nAscs0ENlwYbRtw2GFBhXMza8FyLt2MMEuZxQ0Qw5luLOGNbq0ojSR80ko6Y3vo9FN3WM4WYE05JWqvhtgtdHxTQXfq96bv5uoxvCjBMS1VBI6_BGJ4XkLKatElA97rHsIyKdIKKdqJaHiBHv30-jZZf1cBsE-AiSGlCO4bQrBahaLWoaiPUNQqlMKa_GGZLuvchdXBnf-X-w7ZL5Xn
CitedBy_id crossref_primary_10_3389_fphys_2018_00373
crossref_primary_10_2174_1573403X18666220415150943
crossref_primary_10_1016_j_pbiomolbio_2018_05_005
crossref_primary_10_1364_BOE_475027
crossref_primary_10_3389_fphys_2018_00735
crossref_primary_10_3390_jcdd7010008
crossref_primary_10_1007_s10571_020_00863_w
crossref_primary_10_1152_ajpheart_00495_2019
crossref_primary_10_3390_jcdd9090303
crossref_primary_10_3389_fbioe_2019_00096
crossref_primary_10_3390_jcdd8080090
crossref_primary_10_1002_bdr2_2462
crossref_primary_10_3389_fphys_2017_00056
crossref_primary_10_7554_eLife_58138
crossref_primary_10_3390_jcdd8040032
crossref_primary_10_1002_bdr2_1136
crossref_primary_10_3390_genes13040636
crossref_primary_10_1038_s41598_022_14955_8
crossref_primary_10_1016_j_aquatox_2022_106294
crossref_primary_10_1038_s41598_020_57694_4
crossref_primary_10_1200_JCO_2017_77_2574
crossref_primary_10_21508_1027_4065_2021_66_2_41_48
crossref_primary_10_1097_HCO_0000000000000816
crossref_primary_10_3390_jcdd12030083
crossref_primary_10_3390_ijms22063263
crossref_primary_10_1007_s00246_024_03745_w
crossref_primary_10_1016_j_yjmcc_2017_05_012
crossref_primary_10_1146_annurev_genom_083118_015012
crossref_primary_10_1161_CIR_0000000000000606
crossref_primary_10_3389_fphys_2018_01045
crossref_primary_10_1111_joa_13112
crossref_primary_10_1016_j_toxlet_2017_12_027
crossref_primary_10_1002_ar_24605
crossref_primary_10_1016_j_crtox_2023_100125
crossref_primary_10_3390_life15010077
crossref_primary_10_3390_jcdd9110379
crossref_primary_10_1002_dvdy_589
crossref_primary_10_1007_s00360_020_01274_5
crossref_primary_10_1038_s42003_023_05132_2
crossref_primary_10_3389_fphys_2017_00631
crossref_primary_10_3389_fgene_2021_806136
crossref_primary_10_3390_jcdd4040024
crossref_primary_10_1017_S143192761900672X
crossref_primary_10_1038_s41431_022_01147_1
crossref_primary_10_3390_jcdd6010011
crossref_primary_10_1016_j_reprotox_2018_08_018
crossref_primary_10_1007_s11899_023_00689_5
crossref_primary_10_1152_ajpheart_00309_2018
crossref_primary_10_1098_rstb_2017_0330
crossref_primary_10_1111_ahe_12346
crossref_primary_10_1186_s43055_021_00616_9
crossref_primary_10_1016_j_scitotenv_2024_174979
Cites_doi 10.1161/01.RES.65.2.483
10.1016/j.hfc.2008.02.007
10.1038/nature01282
10.1371/journal.pone.0040869
10.1007/978-1-4612-0207-3_13
10.1152/ajpheart.1989.257.1.H55
10.1161/CIRCRESAHA.112.300853
10.1242/jeb.00216
10.1161/01.RES.80.4.473
10.1016/S0079-6107(98)00025-X
10.1002/wdev.98
10.1016/j.euje.2005.12.014
10.1161/HYPERTENSIONAHA.107.103440
10.1203/01.PDR.0000148710.69159.61
10.1067/mje.2001.113234
10.1002/aja.1001950404
10.1152/ajpheart.2000.279.3.H959
10.1016/S0735-1097(14)60732-4.
10.1364/BOE.1.000798
10.1292/jvms.67.1207
10.3389/fphys.2017.00056
10.1002/ar.a.20133
10.1007/s10237-012-0414-7
10.1016/S0894-7317(03)00279-7
10.1016/S0006-3495(94)80876-8
10.1016/S0079-6107(98)00010-8
10.2174/157340310791162703
10.1093/ejechocard/jer021
10.1016/0002-9378(88)90415-2
10.1002/dvdy.20326
10.1098/rsif.2014.0643
10.1152/ajpheart.00879.2001
10.1093/hmg/10.2.163
10.1016/0002-9149(73)90810-2
10.1213/ANE.0000000000000016
10.3390/jdb1010047
10.3390/jcdd2020108
10.1016/j.ydbio.2009.10.009
10.3389/fphys.2014.00287
10.1152/ajpheart.00100.2013
10.1016/j.ajog.2003.11.018
10.1111/j.1549-8719.2010.00025.x
10.1136/hrt.79.3.295
10.1002/(SICI)1097-0185(19990201)254:2<238::AID-AR10>3.0.CO;2-V
10.1101/gad.8.9.1007
10.1006/dbio.2002.0706
10.1098/rsif.2011.0184
10.1152/ajplung.2001.281.3.L529
10.1161/CIRCULATIONAHA.110.937995
10.1088/0031-9155/53/18/015
10.1242/dev.063495
10.1161/CIRCULATIONAHA.106.618124
ContentType Journal Article
Copyright Copyright © 2017 the American Physiological Society.
Copyright © 2017 the American Physiological Society 2017 American Physiological Society
Copyright_xml – notice: Copyright © 2017 the American Physiological Society.
– notice: Copyright © 2017 the American Physiological Society 2017 American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1152/ajpheart.00641.2016
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate BLOOD FLOW AND CONGENITAL HEART DEFECTS
EISSN 1522-1539
EndPage H642
ExternalDocumentID PMC5402020
28062416
10_1152_ajpheart_00641_2016
Genre Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL094570
– fundername: NICHD NIH HHS
  grantid: P01 HD034430
– fundername: HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)
  grantid: R01 HL094570; F31 HL129684
– fundername: American Heart Association (AHA)
  grantid: 16PRE31180006
GroupedDBID ---
23M
2WC
39C
4.4
53G
5GY
5VS
6J9
AAFWJ
AAYXX
ABJNI
ACBEA
ACIWK
ACPRK
ADBBV
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BKOMP
BTFSW
CITATION
E3Z
EBS
EJD
EMOBN
F5P
GX1
H13
ITBOX
KQ8
OK1
P2P
PQQKQ
RAP
RHI
RPL
RPRKH
TR2
UKR
W8F
WH7
WOQ
XSW
YSK
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c405t-350c45cad7ef0f0525ffbdded446fb13d23d07e1c43a7d147a8d57d16149862b3
ISSN 0363-6135
1522-1539
IngestDate Thu Aug 21 18:27:59 EDT 2025
Fri Jul 11 02:23:46 EDT 2025
Thu Apr 03 07:03:22 EDT 2025
Tue Jul 01 01:16:34 EDT 2025
Thu Apr 24 23:05:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords outflow tract banding
vitelline vein ligation
chick embryo
hemodynamics
congenital heart defects
Language English
License Copyright © 2017 the American Physiological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c405t-350c45cad7ef0f0525ffbdded446fb13d23d07e1c43a7d147a8d57d16149862b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5402020
PMID 28062416
PQID 1856589574
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5402020
proquest_miscellaneous_1856589574
pubmed_primary_28062416
crossref_primary_10_1152_ajpheart_00641_2016
crossref_citationtrail_10_1152_ajpheart_00641_2016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda, MD
PublicationSeriesTitle Integrative Cardiovascular Physiology and Pathophysiology
PublicationTitle American journal of physiology. Heart and circulatory physiology
PublicationTitleAlternate Am J Physiol Heart Circ Physiol
PublicationYear 2017
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B2
B3
B4
B5
B6
B7
B8
B40
B41
B42
B44
B45
B46
B47
B48
Allen HD (B1) 2008
Clark EB (B9) 1978; 14
B49
B50
B51
B52
B53
B10
B33a
B54
B11
B12
B13
B14
B15
B16
B17
B18
B19
Roos-Hesselink JW (B43) 2005; 13
21127734 - Biomed Opt Express. 2010 Sep 08;1(3):798-811
21831889 - J R Soc Interface. 2011 Nov 7;8(64):1550-61
3055994 - Am J Obstet Gynecol. 1988 Nov;159(5):1069-71
18723935 - Phys Med Biol. 2008 Sep 21;53(18):5077-91
15765508 - Dev Dyn. 2005 May;233(1):122-9
2752553 - Circ Res. 1989 Aug;65(2):483-93
11504676 - Am J Physiol Lung Cell Mol Physiol. 2001 Sep;281(3):L529-33
9972809 - Anat Rec. 1999 Feb 1;254(2):238-52
1304821 - Dev Dyn. 1992 Dec;195(4):231-72
22760547 - Biomech Model Mechanobiol. 2012 Nov;11(8):1187-204
12520305 - Nature. 2003 Jan 9;421(6919):172-7
15611355 - Pediatr Res. 2005 Feb;57(2):169-76
11152664 - Hum Mol Genet. 2001 Jan 15;10 (2):163-9
28228731 - Front Physiol. 2017 Feb 08;8:56
24356157 - Anesth Analg. 2014 Jan;118(1):21-68
19835857 - Dev Biol. 2009 Dec 15;336(2):137-44
9118477 - Circ Res. 1997 Apr;80(4):473-81
21385887 - Eur J Echocardiogr. 2011 Mar;12 (3):167-205
11490324 - J Am Soc Echocardiogr. 2001 Aug;14 (8):764-72
22844414 - PLoS One. 2012;7(7):e40869
15167841 - Am J Obstet Gynecol. 2004 May;190(5):1347-58
21532774 - Curr Cardiol Rev. 2010 May;6(2):91-7
16397378 - J Vet Med Sci. 2005 Dec;67(12):1207-15
10993756 - Am J Physiol Heart Circ Physiol. 2000 Sep;279(3):H959-69
24014420 - Wiley Interdiscip Rev Dev Biol. 2013 Jul;2(4):499-530
9602666 - Heart. 1998 Mar;79(3):295-300
2750949 - Am J Physiol. 1989 Jul;257(1 Pt 2):H55-61
9785956 - Prog Biophys Mol Biol. 1998;69(2-3):559-72
17101870 - Circulation. 2006 Nov 14;114(20):2190-7
8038399 - Biophys J. 1994 Apr;66(4):953-61
23410880 - Circ Res. 2013 Feb 15;112(4):707-20
7926783 - Genes Dev. 1994 May 1;8(9):1007-18
12931102 - J Am Soc Echocardiogr. 2003 Sep;16(9):906-21
16458610 - Eur J Echocardiogr. 2006 Mar;7(2):79-108
18598977 - Heart Fail Clin. 2008 Jul;4(3):235-45
23709601 - Am J Physiol Heart Circ Physiol. 2013 Aug 1;305(3):H386-96
737312 - Birth Defects Orig Artic Ser. 1978;14(7):431-42
25696460 - Neth Heart J. 2005 Mar;13(3):88-91
22912411 - Development. 2012 Sep;139(18):3277-99
12582147 - J Exp Biol. 2003 Mar;206(Pt 6):1051-7
20497977 - Circulation. 2010 Jun 8;121(22):2427-36
12003850 - Am J Physiol Heart Circ Physiol. 2002 Jun;282(6):H2386-96
26878022 - J Cardiovasc Dev Dis. 2015;2(2):108-124
25165602 - J R Soc Interface. 2014 Nov 6;11(100):20140643
20374481 - Microcirculation. 2010 Apr;17(3):164-78
25136319 - Front Physiol. 2014 Aug 01;5:287
12086469 - Dev Biol. 2002 Jul 15;247(2):307-26
9785941 - Prog Biophys Mol Biol. 1998;69(2-3):237-55
4682409 - Am J Cardiol. 1973 Jan;31(1):51-6
18541735 - Hypertension. 2008 Aug;52(2):195-200
15678488 - Anat Rec A Discov Mol Cell Evol Biol. 2005 Mar;283(1):193-201
References_xml – ident: B3
  doi: 10.1161/01.RES.65.2.483
– ident: B45
  doi: 10.1016/j.hfc.2008.02.007
– ident: B24
  doi: 10.1038/nature01282
– ident: B29
  doi: 10.1371/journal.pone.0040869
– ident: B26
  doi: 10.1007/978-1-4612-0207-3_13
– ident: B8
  doi: 10.1152/ajpheart.1989.257.1.H55
– ident: B14
  doi: 10.1161/CIRCRESAHA.112.300853
– ident: B48
  doi: 10.1242/jeb.00216
– ident: B23
  doi: 10.1161/01.RES.80.4.473
– ident: B40
  doi: 10.1016/S0079-6107(98)00025-X
– ident: B38
  doi: 10.1002/wdev.98
– volume-title: Moss and Adam’s Heart Disease in Infants, Children, and Adolescents: Including the Fetus and Young Adult
  year: 2008
  ident: B1
– ident: B27
  doi: 10.1016/j.euje.2005.12.014
– ident: B25
  doi: 10.1161/HYPERTENSIONAHA.107.103440
– ident: B16
  doi: 10.1203/01.PDR.0000148710.69159.61
– ident: B6
  doi: 10.1067/mje.2001.113234
– ident: B20
  doi: 10.1002/aja.1001950404
– ident: B53
  doi: 10.1152/ajpheart.2000.279.3.H959
– ident: B4
  doi: 10.1016/S0735-1097(14)60732-4.
– ident: B30
  doi: 10.1364/BOE.1.000798
– ident: B51
  doi: 10.1292/jvms.67.1207
– ident: B33a
  doi: 10.3389/fphys.2017.00056
– ident: B52
  doi: 10.1002/ar.a.20133
– volume: 13
  start-page: 88
  year: 2005
  ident: B43
  publication-title: Neth Heart J
– ident: B17
  doi: 10.1007/s10237-012-0414-7
– ident: B39
  doi: 10.1016/S0894-7317(03)00279-7
– ident: B2
  doi: 10.1016/S0006-3495(94)80876-8
– volume: 14
  start-page: 431
  year: 1978
  ident: B9
  publication-title: Birth Defects Orig Artic Ser
– ident: B50
  doi: 10.1016/S0079-6107(98)00010-8
– ident: B42
  doi: 10.2174/157340310791162703
– ident: B36
  doi: 10.1093/ejechocard/jer021
– ident: B37
  doi: 10.1016/0002-9378(88)90415-2
– ident: B18
  doi: 10.1002/dvdy.20326
– ident: B33
  doi: 10.1098/rsif.2014.0643
– ident: B54
  doi: 10.1152/ajpheart.00879.2001
– ident: B13
  doi: 10.1093/hmg/10.2.163
– ident: B21
  doi: 10.1016/0002-9149(73)90810-2
– ident: B19
  doi: 10.1213/ANE.0000000000000016
– ident: B31
  doi: 10.3390/jdb1010047
– ident: B32
  doi: 10.3390/jcdd2020108
– ident: B12
  doi: 10.1016/j.ydbio.2009.10.009
– ident: B34
  doi: 10.3389/fphys.2014.00287
– ident: B47
  doi: 10.1152/ajpheart.00100.2013
– ident: B5
  doi: 10.1016/j.ajog.2003.11.018
– ident: B11
  doi: 10.1111/j.1549-8719.2010.00025.x
– ident: B22
  doi: 10.1136/hrt.79.3.295
– ident: B46
  doi: 10.1002/(SICI)1097-0185(19990201)254:2<238::AID-AR10>3.0.CO;2-V
– ident: B49
  doi: 10.1101/gad.8.9.1007
– ident: B41
  doi: 10.1006/dbio.2002.0706
– ident: B7
  doi: 10.1098/rsif.2011.0184
– ident: B15
  doi: 10.1152/ajplung.2001.281.3.L529
– ident: B10
  doi: 10.1161/CIRCULATIONAHA.110.937995
– ident: B44
  doi: 10.1088/0031-9155/53/18/015
– ident: B28
  doi: 10.1242/dev.063495
– ident: B35
  doi: 10.1161/CIRCULATIONAHA.106.618124
– reference: 12931102 - J Am Soc Echocardiogr. 2003 Sep;16(9):906-21
– reference: 17101870 - Circulation. 2006 Nov 14;114(20):2190-7
– reference: 18598977 - Heart Fail Clin. 2008 Jul;4(3):235-45
– reference: 15167841 - Am J Obstet Gynecol. 2004 May;190(5):1347-58
– reference: 25136319 - Front Physiol. 2014 Aug 01;5:287
– reference: 20374481 - Microcirculation. 2010 Apr;17(3):164-78
– reference: 8038399 - Biophys J. 1994 Apr;66(4):953-61
– reference: 21532774 - Curr Cardiol Rev. 2010 May;6(2):91-7
– reference: 12003850 - Am J Physiol Heart Circ Physiol. 2002 Jun;282(6):H2386-96
– reference: 15611355 - Pediatr Res. 2005 Feb;57(2):169-76
– reference: 9602666 - Heart. 1998 Mar;79(3):295-300
– reference: 24014420 - Wiley Interdiscip Rev Dev Biol. 2013 Jul;2(4):499-530
– reference: 3055994 - Am J Obstet Gynecol. 1988 Nov;159(5):1069-71
– reference: 16397378 - J Vet Med Sci. 2005 Dec;67(12):1207-15
– reference: 23410880 - Circ Res. 2013 Feb 15;112(4):707-20
– reference: 21831889 - J R Soc Interface. 2011 Nov 7;8(64):1550-61
– reference: 19835857 - Dev Biol. 2009 Dec 15;336(2):137-44
– reference: 21385887 - Eur J Echocardiogr. 2011 Mar;12 (3):167-205
– reference: 21127734 - Biomed Opt Express. 2010 Sep 08;1(3):798-811
– reference: 10993756 - Am J Physiol Heart Circ Physiol. 2000 Sep;279(3):H959-69
– reference: 28228731 - Front Physiol. 2017 Feb 08;8:56
– reference: 12086469 - Dev Biol. 2002 Jul 15;247(2):307-26
– reference: 7926783 - Genes Dev. 1994 May 1;8(9):1007-18
– reference: 11504676 - Am J Physiol Lung Cell Mol Physiol. 2001 Sep;281(3):L529-33
– reference: 9785941 - Prog Biophys Mol Biol. 1998;69(2-3):237-55
– reference: 9118477 - Circ Res. 1997 Apr;80(4):473-81
– reference: 20497977 - Circulation. 2010 Jun 8;121(22):2427-36
– reference: 737312 - Birth Defects Orig Artic Ser. 1978;14(7):431-42
– reference: 11152664 - Hum Mol Genet. 2001 Jan 15;10 (2):163-9
– reference: 18541735 - Hypertension. 2008 Aug;52(2):195-200
– reference: 25696460 - Neth Heart J. 2005 Mar;13(3):88-91
– reference: 1304821 - Dev Dyn. 1992 Dec;195(4):231-72
– reference: 22760547 - Biomech Model Mechanobiol. 2012 Nov;11(8):1187-204
– reference: 23709601 - Am J Physiol Heart Circ Physiol. 2013 Aug 1;305(3):H386-96
– reference: 4682409 - Am J Cardiol. 1973 Jan;31(1):51-6
– reference: 22912411 - Development. 2012 Sep;139(18):3277-99
– reference: 2750949 - Am J Physiol. 1989 Jul;257(1 Pt 2):H55-61
– reference: 24356157 - Anesth Analg. 2014 Jan;118(1):21-68
– reference: 12520305 - Nature. 2003 Jan 9;421(6919):172-7
– reference: 16458610 - Eur J Echocardiogr. 2006 Mar;7(2):79-108
– reference: 9785956 - Prog Biophys Mol Biol. 1998;69(2-3):559-72
– reference: 11490324 - J Am Soc Echocardiogr. 2001 Aug;14 (8):764-72
– reference: 2752553 - Circ Res. 1989 Aug;65(2):483-93
– reference: 18723935 - Phys Med Biol. 2008 Sep 21;53(18):5077-91
– reference: 26878022 - J Cardiovasc Dev Dis. 2015;2(2):108-124
– reference: 15678488 - Anat Rec A Discov Mol Cell Evol Biol. 2005 Mar;283(1):193-201
– reference: 9972809 - Anat Rec. 1999 Feb 1;254(2):238-52
– reference: 25165602 - J R Soc Interface. 2014 Nov 6;11(100):20140643
– reference: 22844414 - PLoS One. 2012;7(7):e40869
– reference: 15765508 - Dev Dyn. 2005 May;233(1):122-9
– reference: 12582147 - J Exp Biol. 2003 Mar;206(Pt 6):1051-7
SSID ssj0005763
Score 2.4493039
Snippet Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation....
Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage H632
SubjectTerms Animals
Arteries - abnormalities
Arteries - diagnostic imaging
Blood Flow Velocity
Branchial Region - blood supply
Branchial Region - diagnostic imaging
Chick Embryo
Chickens
Coronary Circulation
Fetus - blood supply
Heart Defects, Congenital - diagnostic imaging
Heart Defects, Congenital - physiopathology
Heart Septal Defects, Ventricular - diagnostic imaging
Heart Septal Defects, Ventricular - physiopathology
Heart Ventricles - abnormalities
Heart Ventricles - diagnostic imaging
Hemodynamics
Phenotype
Regional Blood Flow - physiology
Tomography, X-Ray Computed
Title Blood flow patterns underlie developmental heart defects
URI https://www.ncbi.nlm.nih.gov/pubmed/28062416
https://www.proquest.com/docview/1856589574
https://pubmed.ncbi.nlm.nih.gov/PMC5402020
Volume 312
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELagSIgXBC3HcslIiBdISWI7x2NBrVbQlkNZad8iO07oojap0qxQ-fXMOI43S1eo8BIljnPI32QyM575TMirhFVREkUSEICviatUehKUnpcqFSoZ6VgbnoKj42g64x_nYr4iVDDVJZ3aLX5trCv5H1ShDXDFKtl_QNbdFBpgH_CFLSAM22th_B6zzt9Up81P5EfF0N6FWde2BcNyKIc6c_WObQdtJntjbJG6KZsRh4QJd5h4-y7WKbV9FnqxaDFp1czKr3o4xLDwyyZ_IPXkaL4-O2law7BgC4Fcps235femvlz0kelat3Icg4D_mkvCGtQmuLSgO3vlV25os7qWBeFIqNhIc06jPs55VaULpIiVP87NQGEeHke_PthAoH38OT-YHR7m2f48u0luheA54Goen76uCOTBvTI1F8PLWSIqOH634RHrxsoVD-TPRNqRZZLdI3etS0H3evm4T26U9TbZ2asBqbNL-pp-cVhtk9tHNpdihyRGeihKDx2khw7SQ9ekh5o3plZ6HpDZwX72YerZdTS8AszxzmPCL7gopI7Lyq9w4cKqUvBb05xHlQqYDpn24zIoOJOxDngsEy1gByy3FBxexR6Srbqpy8eEhppJ8KB1KtOSy6RQYKAqLpiflGlcpMmEhMOA5YUlmce1Tk5z42yKMB9GOTejnOMoT8hbd9F5z7Hy9-4vByRy0IU4wSXrslle5GB7gkGdiphPyKMeGXdDzCAAaxWujtcwcx2QZ339TL04MXzrAmMsof_kGs99Su6svo9nZKtrl-VzsFo79cLI4W_7-Z20
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blood+flow+patterns+underlie+developmental+heart+defects&rft.jtitle=American+journal+of+physiology.+Heart+and+circulatory+physiology&rft.au=Midgett%2C+Madeline&rft.au=Thornburg%2C+Kent&rft.au=Rugonyi%2C+Sandra&rft.date=2017-03-01&rft.issn=1522-1539&rft.eissn=1522-1539&rft.volume=312&rft.issue=3&rft.spage=H632&rft_id=info:doi/10.1152%2Fajpheart.00641.2016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6135&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6135&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6135&client=summon