Blood flow patterns underlie developmental heart defects
Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used t...
Saved in:
Published in | American journal of physiology. Heart and circulatory physiology Vol. 312; no. 3; pp. H632 - H642 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.03.2017
|
Series | Integrative Cardiovascular Physiology and Pathophysiology |
Subjects | |
Online Access | Get full text |
ISSN | 0363-6135 1522-1539 1522-1539 |
DOI | 10.1152/ajpheart.00641.2016 |
Cover
Loading…
Abstract | Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10–35% led predominantly to ventricular septal defects, whereas constricting by 35–60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment.
NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel “dose-response” type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects. |
---|---|
AbstractList | Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10-35% led predominantly to ventricular septal defects, whereas constricting by 35-60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment.NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel "dose-response" type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects.Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10-35% led predominantly to ventricular septal defects, whereas constricting by 35-60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment.NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel "dose-response" type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects. Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10–35% led predominantly to ventricular septal defects, whereas constricting by 35–60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment. NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel “dose-response” type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects. Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel “dose-response” type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects. Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10–35% led predominantly to ventricular septal defects, whereas constricting by 35–60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment. NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel “dose-response” type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects. Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10-35% led predominantly to ventricular septal defects, whereas constricting by 35-60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment. Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel "dose-response" type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects. |
Author | Rugonyi, Sandra Midgett, Madeline Thornburg, Kent |
Author_xml | – sequence: 1 givenname: Madeline surname: Midgett fullname: Midgett, Madeline organization: Biomedical Engineering, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; and – sequence: 2 givenname: Kent surname: Thornburg fullname: Thornburg, Kent organization: Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon – sequence: 3 givenname: Sandra surname: Rugonyi fullname: Rugonyi, Sandra organization: Biomedical Engineering, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; and, Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28062416$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUtLAzEQDqJoffwCQfboZWveu70IWnyB4EXPIU0mdiXdrEmq-O9N1Yp6kDlkmPkeQ75dtNmHHhA6JHhMiKAn-mmYg455jLHkZEwxkRtoVDa0JoJNNtEIM8lqSZjYQbspPWGMRSPZNtqhLZaUEzlC7bkPwVbOh9dq0DlD7FO17C1E30Fl4QV8GBbQZ-2rD7cyc2By2kdbTvsEB1_vHnq4vLifXte3d1c307Pb2nAscs0ENlwYbRtw2GFBhXMza8FyLt2MMEuZxQ0Qw5luLOGNbq0ojSR80ko6Y3vo9FN3WM4WYE05JWqvhtgtdHxTQXfq96bv5uoxvCjBMS1VBI6_BGJ4XkLKatElA97rHsIyKdIKKdqJaHiBHv30-jZZf1cBsE-AiSGlCO4bQrBahaLWoaiPUNQqlMKa_GGZLuvchdXBnf-X-w7ZL5Xn |
CitedBy_id | crossref_primary_10_3389_fphys_2018_00373 crossref_primary_10_2174_1573403X18666220415150943 crossref_primary_10_1016_j_pbiomolbio_2018_05_005 crossref_primary_10_1364_BOE_475027 crossref_primary_10_3389_fphys_2018_00735 crossref_primary_10_3390_jcdd7010008 crossref_primary_10_1007_s10571_020_00863_w crossref_primary_10_1152_ajpheart_00495_2019 crossref_primary_10_3390_jcdd9090303 crossref_primary_10_3389_fbioe_2019_00096 crossref_primary_10_3390_jcdd8080090 crossref_primary_10_1002_bdr2_2462 crossref_primary_10_3389_fphys_2017_00056 crossref_primary_10_7554_eLife_58138 crossref_primary_10_3390_jcdd8040032 crossref_primary_10_1002_bdr2_1136 crossref_primary_10_3390_genes13040636 crossref_primary_10_1038_s41598_022_14955_8 crossref_primary_10_1016_j_aquatox_2022_106294 crossref_primary_10_1038_s41598_020_57694_4 crossref_primary_10_1200_JCO_2017_77_2574 crossref_primary_10_21508_1027_4065_2021_66_2_41_48 crossref_primary_10_1097_HCO_0000000000000816 crossref_primary_10_3390_jcdd12030083 crossref_primary_10_3390_ijms22063263 crossref_primary_10_1007_s00246_024_03745_w crossref_primary_10_1016_j_yjmcc_2017_05_012 crossref_primary_10_1146_annurev_genom_083118_015012 crossref_primary_10_1161_CIR_0000000000000606 crossref_primary_10_3389_fphys_2018_01045 crossref_primary_10_1111_joa_13112 crossref_primary_10_1016_j_toxlet_2017_12_027 crossref_primary_10_1002_ar_24605 crossref_primary_10_1016_j_crtox_2023_100125 crossref_primary_10_3390_life15010077 crossref_primary_10_3390_jcdd9110379 crossref_primary_10_1002_dvdy_589 crossref_primary_10_1007_s00360_020_01274_5 crossref_primary_10_1038_s42003_023_05132_2 crossref_primary_10_3389_fphys_2017_00631 crossref_primary_10_3389_fgene_2021_806136 crossref_primary_10_3390_jcdd4040024 crossref_primary_10_1017_S143192761900672X crossref_primary_10_1038_s41431_022_01147_1 crossref_primary_10_3390_jcdd6010011 crossref_primary_10_1016_j_reprotox_2018_08_018 crossref_primary_10_1007_s11899_023_00689_5 crossref_primary_10_1152_ajpheart_00309_2018 crossref_primary_10_1098_rstb_2017_0330 crossref_primary_10_1111_ahe_12346 crossref_primary_10_1186_s43055_021_00616_9 crossref_primary_10_1016_j_scitotenv_2024_174979 |
Cites_doi | 10.1161/01.RES.65.2.483 10.1016/j.hfc.2008.02.007 10.1038/nature01282 10.1371/journal.pone.0040869 10.1007/978-1-4612-0207-3_13 10.1152/ajpheart.1989.257.1.H55 10.1161/CIRCRESAHA.112.300853 10.1242/jeb.00216 10.1161/01.RES.80.4.473 10.1016/S0079-6107(98)00025-X 10.1002/wdev.98 10.1016/j.euje.2005.12.014 10.1161/HYPERTENSIONAHA.107.103440 10.1203/01.PDR.0000148710.69159.61 10.1067/mje.2001.113234 10.1002/aja.1001950404 10.1152/ajpheart.2000.279.3.H959 10.1016/S0735-1097(14)60732-4. 10.1364/BOE.1.000798 10.1292/jvms.67.1207 10.3389/fphys.2017.00056 10.1002/ar.a.20133 10.1007/s10237-012-0414-7 10.1016/S0894-7317(03)00279-7 10.1016/S0006-3495(94)80876-8 10.1016/S0079-6107(98)00010-8 10.2174/157340310791162703 10.1093/ejechocard/jer021 10.1016/0002-9378(88)90415-2 10.1002/dvdy.20326 10.1098/rsif.2014.0643 10.1152/ajpheart.00879.2001 10.1093/hmg/10.2.163 10.1016/0002-9149(73)90810-2 10.1213/ANE.0000000000000016 10.3390/jdb1010047 10.3390/jcdd2020108 10.1016/j.ydbio.2009.10.009 10.3389/fphys.2014.00287 10.1152/ajpheart.00100.2013 10.1016/j.ajog.2003.11.018 10.1111/j.1549-8719.2010.00025.x 10.1136/hrt.79.3.295 10.1002/(SICI)1097-0185(19990201)254:2<238::AID-AR10>3.0.CO;2-V 10.1101/gad.8.9.1007 10.1006/dbio.2002.0706 10.1098/rsif.2011.0184 10.1152/ajplung.2001.281.3.L529 10.1161/CIRCULATIONAHA.110.937995 10.1088/0031-9155/53/18/015 10.1242/dev.063495 10.1161/CIRCULATIONAHA.106.618124 |
ContentType | Journal Article |
Copyright | Copyright © 2017 the American Physiological Society. Copyright © 2017 the American Physiological Society 2017 American Physiological Society |
Copyright_xml | – notice: Copyright © 2017 the American Physiological Society. – notice: Copyright © 2017 the American Physiological Society 2017 American Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1152/ajpheart.00641.2016 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | BLOOD FLOW AND CONGENITAL HEART DEFECTS |
EISSN | 1522-1539 |
EndPage | H642 |
ExternalDocumentID | PMC5402020 28062416 10_1152_ajpheart_00641_2016 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL094570 – fundername: NICHD NIH HHS grantid: P01 HD034430 – fundername: HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI) grantid: R01 HL094570; F31 HL129684 – fundername: American Heart Association (AHA) grantid: 16PRE31180006 |
GroupedDBID | --- 23M 2WC 39C 4.4 53G 5GY 5VS 6J9 AAFWJ AAYXX ABJNI ACBEA ACIWK ACPRK ADBBV AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BKOMP BTFSW CITATION E3Z EBS EJD EMOBN F5P GX1 H13 ITBOX KQ8 OK1 P2P PQQKQ RAP RHI RPL RPRKH TR2 UKR W8F WH7 WOQ XSW YSK ~02 CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c405t-350c45cad7ef0f0525ffbdded446fb13d23d07e1c43a7d147a8d57d16149862b3 |
ISSN | 0363-6135 1522-1539 |
IngestDate | Thu Aug 21 18:27:59 EDT 2025 Fri Jul 11 02:23:46 EDT 2025 Thu Apr 03 07:03:22 EDT 2025 Tue Jul 01 01:16:34 EDT 2025 Thu Apr 24 23:05:37 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | outflow tract banding vitelline vein ligation chick embryo hemodynamics congenital heart defects |
Language | English |
License | Copyright © 2017 the American Physiological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c405t-350c45cad7ef0f0525ffbdded446fb13d23d07e1c43a7d147a8d57d16149862b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5402020 |
PMID | 28062416 |
PQID | 1856589574 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5402020 proquest_miscellaneous_1856589574 pubmed_primary_28062416 crossref_primary_10_1152_ajpheart_00641_2016 crossref_citationtrail_10_1152_ajpheart_00641_2016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda, MD |
PublicationSeriesTitle | Integrative Cardiovascular Physiology and Pathophysiology |
PublicationTitle | American journal of physiology. Heart and circulatory physiology |
PublicationTitleAlternate | Am J Physiol Heart Circ Physiol |
PublicationYear | 2017 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B2 B3 B4 B5 B6 B7 B8 B40 B41 B42 B44 B45 B46 B47 B48 Allen HD (B1) 2008 Clark EB (B9) 1978; 14 B49 B50 B51 B52 B53 B10 B33a B54 B11 B12 B13 B14 B15 B16 B17 B18 B19 Roos-Hesselink JW (B43) 2005; 13 21127734 - Biomed Opt Express. 2010 Sep 08;1(3):798-811 21831889 - J R Soc Interface. 2011 Nov 7;8(64):1550-61 3055994 - Am J Obstet Gynecol. 1988 Nov;159(5):1069-71 18723935 - Phys Med Biol. 2008 Sep 21;53(18):5077-91 15765508 - Dev Dyn. 2005 May;233(1):122-9 2752553 - Circ Res. 1989 Aug;65(2):483-93 11504676 - Am J Physiol Lung Cell Mol Physiol. 2001 Sep;281(3):L529-33 9972809 - Anat Rec. 1999 Feb 1;254(2):238-52 1304821 - Dev Dyn. 1992 Dec;195(4):231-72 22760547 - Biomech Model Mechanobiol. 2012 Nov;11(8):1187-204 12520305 - Nature. 2003 Jan 9;421(6919):172-7 15611355 - Pediatr Res. 2005 Feb;57(2):169-76 11152664 - Hum Mol Genet. 2001 Jan 15;10 (2):163-9 28228731 - Front Physiol. 2017 Feb 08;8:56 24356157 - Anesth Analg. 2014 Jan;118(1):21-68 19835857 - Dev Biol. 2009 Dec 15;336(2):137-44 9118477 - Circ Res. 1997 Apr;80(4):473-81 21385887 - Eur J Echocardiogr. 2011 Mar;12 (3):167-205 11490324 - J Am Soc Echocardiogr. 2001 Aug;14 (8):764-72 22844414 - PLoS One. 2012;7(7):e40869 15167841 - Am J Obstet Gynecol. 2004 May;190(5):1347-58 21532774 - Curr Cardiol Rev. 2010 May;6(2):91-7 16397378 - J Vet Med Sci. 2005 Dec;67(12):1207-15 10993756 - Am J Physiol Heart Circ Physiol. 2000 Sep;279(3):H959-69 24014420 - Wiley Interdiscip Rev Dev Biol. 2013 Jul;2(4):499-530 9602666 - Heart. 1998 Mar;79(3):295-300 2750949 - Am J Physiol. 1989 Jul;257(1 Pt 2):H55-61 9785956 - Prog Biophys Mol Biol. 1998;69(2-3):559-72 17101870 - Circulation. 2006 Nov 14;114(20):2190-7 8038399 - Biophys J. 1994 Apr;66(4):953-61 23410880 - Circ Res. 2013 Feb 15;112(4):707-20 7926783 - Genes Dev. 1994 May 1;8(9):1007-18 12931102 - J Am Soc Echocardiogr. 2003 Sep;16(9):906-21 16458610 - Eur J Echocardiogr. 2006 Mar;7(2):79-108 18598977 - Heart Fail Clin. 2008 Jul;4(3):235-45 23709601 - Am J Physiol Heart Circ Physiol. 2013 Aug 1;305(3):H386-96 737312 - Birth Defects Orig Artic Ser. 1978;14(7):431-42 25696460 - Neth Heart J. 2005 Mar;13(3):88-91 22912411 - Development. 2012 Sep;139(18):3277-99 12582147 - J Exp Biol. 2003 Mar;206(Pt 6):1051-7 20497977 - Circulation. 2010 Jun 8;121(22):2427-36 12003850 - Am J Physiol Heart Circ Physiol. 2002 Jun;282(6):H2386-96 26878022 - J Cardiovasc Dev Dis. 2015;2(2):108-124 25165602 - J R Soc Interface. 2014 Nov 6;11(100):20140643 20374481 - Microcirculation. 2010 Apr;17(3):164-78 25136319 - Front Physiol. 2014 Aug 01;5:287 12086469 - Dev Biol. 2002 Jul 15;247(2):307-26 9785941 - Prog Biophys Mol Biol. 1998;69(2-3):237-55 4682409 - Am J Cardiol. 1973 Jan;31(1):51-6 18541735 - Hypertension. 2008 Aug;52(2):195-200 15678488 - Anat Rec A Discov Mol Cell Evol Biol. 2005 Mar;283(1):193-201 |
References_xml | – ident: B3 doi: 10.1161/01.RES.65.2.483 – ident: B45 doi: 10.1016/j.hfc.2008.02.007 – ident: B24 doi: 10.1038/nature01282 – ident: B29 doi: 10.1371/journal.pone.0040869 – ident: B26 doi: 10.1007/978-1-4612-0207-3_13 – ident: B8 doi: 10.1152/ajpheart.1989.257.1.H55 – ident: B14 doi: 10.1161/CIRCRESAHA.112.300853 – ident: B48 doi: 10.1242/jeb.00216 – ident: B23 doi: 10.1161/01.RES.80.4.473 – ident: B40 doi: 10.1016/S0079-6107(98)00025-X – ident: B38 doi: 10.1002/wdev.98 – volume-title: Moss and Adam’s Heart Disease in Infants, Children, and Adolescents: Including the Fetus and Young Adult year: 2008 ident: B1 – ident: B27 doi: 10.1016/j.euje.2005.12.014 – ident: B25 doi: 10.1161/HYPERTENSIONAHA.107.103440 – ident: B16 doi: 10.1203/01.PDR.0000148710.69159.61 – ident: B6 doi: 10.1067/mje.2001.113234 – ident: B20 doi: 10.1002/aja.1001950404 – ident: B53 doi: 10.1152/ajpheart.2000.279.3.H959 – ident: B4 doi: 10.1016/S0735-1097(14)60732-4. – ident: B30 doi: 10.1364/BOE.1.000798 – ident: B51 doi: 10.1292/jvms.67.1207 – ident: B33a doi: 10.3389/fphys.2017.00056 – ident: B52 doi: 10.1002/ar.a.20133 – volume: 13 start-page: 88 year: 2005 ident: B43 publication-title: Neth Heart J – ident: B17 doi: 10.1007/s10237-012-0414-7 – ident: B39 doi: 10.1016/S0894-7317(03)00279-7 – ident: B2 doi: 10.1016/S0006-3495(94)80876-8 – volume: 14 start-page: 431 year: 1978 ident: B9 publication-title: Birth Defects Orig Artic Ser – ident: B50 doi: 10.1016/S0079-6107(98)00010-8 – ident: B42 doi: 10.2174/157340310791162703 – ident: B36 doi: 10.1093/ejechocard/jer021 – ident: B37 doi: 10.1016/0002-9378(88)90415-2 – ident: B18 doi: 10.1002/dvdy.20326 – ident: B33 doi: 10.1098/rsif.2014.0643 – ident: B54 doi: 10.1152/ajpheart.00879.2001 – ident: B13 doi: 10.1093/hmg/10.2.163 – ident: B21 doi: 10.1016/0002-9149(73)90810-2 – ident: B19 doi: 10.1213/ANE.0000000000000016 – ident: B31 doi: 10.3390/jdb1010047 – ident: B32 doi: 10.3390/jcdd2020108 – ident: B12 doi: 10.1016/j.ydbio.2009.10.009 – ident: B34 doi: 10.3389/fphys.2014.00287 – ident: B47 doi: 10.1152/ajpheart.00100.2013 – ident: B5 doi: 10.1016/j.ajog.2003.11.018 – ident: B11 doi: 10.1111/j.1549-8719.2010.00025.x – ident: B22 doi: 10.1136/hrt.79.3.295 – ident: B46 doi: 10.1002/(SICI)1097-0185(19990201)254:2<238::AID-AR10>3.0.CO;2-V – ident: B49 doi: 10.1101/gad.8.9.1007 – ident: B41 doi: 10.1006/dbio.2002.0706 – ident: B7 doi: 10.1098/rsif.2011.0184 – ident: B15 doi: 10.1152/ajplung.2001.281.3.L529 – ident: B10 doi: 10.1161/CIRCULATIONAHA.110.937995 – ident: B44 doi: 10.1088/0031-9155/53/18/015 – ident: B28 doi: 10.1242/dev.063495 – ident: B35 doi: 10.1161/CIRCULATIONAHA.106.618124 – reference: 12931102 - J Am Soc Echocardiogr. 2003 Sep;16(9):906-21 – reference: 17101870 - Circulation. 2006 Nov 14;114(20):2190-7 – reference: 18598977 - Heart Fail Clin. 2008 Jul;4(3):235-45 – reference: 15167841 - Am J Obstet Gynecol. 2004 May;190(5):1347-58 – reference: 25136319 - Front Physiol. 2014 Aug 01;5:287 – reference: 20374481 - Microcirculation. 2010 Apr;17(3):164-78 – reference: 8038399 - Biophys J. 1994 Apr;66(4):953-61 – reference: 21532774 - Curr Cardiol Rev. 2010 May;6(2):91-7 – reference: 12003850 - Am J Physiol Heart Circ Physiol. 2002 Jun;282(6):H2386-96 – reference: 15611355 - Pediatr Res. 2005 Feb;57(2):169-76 – reference: 9602666 - Heart. 1998 Mar;79(3):295-300 – reference: 24014420 - Wiley Interdiscip Rev Dev Biol. 2013 Jul;2(4):499-530 – reference: 3055994 - Am J Obstet Gynecol. 1988 Nov;159(5):1069-71 – reference: 16397378 - J Vet Med Sci. 2005 Dec;67(12):1207-15 – reference: 23410880 - Circ Res. 2013 Feb 15;112(4):707-20 – reference: 21831889 - J R Soc Interface. 2011 Nov 7;8(64):1550-61 – reference: 19835857 - Dev Biol. 2009 Dec 15;336(2):137-44 – reference: 21385887 - Eur J Echocardiogr. 2011 Mar;12 (3):167-205 – reference: 21127734 - Biomed Opt Express. 2010 Sep 08;1(3):798-811 – reference: 10993756 - Am J Physiol Heart Circ Physiol. 2000 Sep;279(3):H959-69 – reference: 28228731 - Front Physiol. 2017 Feb 08;8:56 – reference: 12086469 - Dev Biol. 2002 Jul 15;247(2):307-26 – reference: 7926783 - Genes Dev. 1994 May 1;8(9):1007-18 – reference: 11504676 - Am J Physiol Lung Cell Mol Physiol. 2001 Sep;281(3):L529-33 – reference: 9785941 - Prog Biophys Mol Biol. 1998;69(2-3):237-55 – reference: 9118477 - Circ Res. 1997 Apr;80(4):473-81 – reference: 20497977 - Circulation. 2010 Jun 8;121(22):2427-36 – reference: 737312 - Birth Defects Orig Artic Ser. 1978;14(7):431-42 – reference: 11152664 - Hum Mol Genet. 2001 Jan 15;10 (2):163-9 – reference: 18541735 - Hypertension. 2008 Aug;52(2):195-200 – reference: 25696460 - Neth Heart J. 2005 Mar;13(3):88-91 – reference: 1304821 - Dev Dyn. 1992 Dec;195(4):231-72 – reference: 22760547 - Biomech Model Mechanobiol. 2012 Nov;11(8):1187-204 – reference: 23709601 - Am J Physiol Heart Circ Physiol. 2013 Aug 1;305(3):H386-96 – reference: 4682409 - Am J Cardiol. 1973 Jan;31(1):51-6 – reference: 22912411 - Development. 2012 Sep;139(18):3277-99 – reference: 2750949 - Am J Physiol. 1989 Jul;257(1 Pt 2):H55-61 – reference: 24356157 - Anesth Analg. 2014 Jan;118(1):21-68 – reference: 12520305 - Nature. 2003 Jan 9;421(6919):172-7 – reference: 16458610 - Eur J Echocardiogr. 2006 Mar;7(2):79-108 – reference: 9785956 - Prog Biophys Mol Biol. 1998;69(2-3):559-72 – reference: 11490324 - J Am Soc Echocardiogr. 2001 Aug;14 (8):764-72 – reference: 2752553 - Circ Res. 1989 Aug;65(2):483-93 – reference: 18723935 - Phys Med Biol. 2008 Sep 21;53(18):5077-91 – reference: 26878022 - J Cardiovasc Dev Dis. 2015;2(2):108-124 – reference: 15678488 - Anat Rec A Discov Mol Cell Evol Biol. 2005 Mar;283(1):193-201 – reference: 9972809 - Anat Rec. 1999 Feb 1;254(2):238-52 – reference: 25165602 - J R Soc Interface. 2014 Nov 6;11(100):20140643 – reference: 22844414 - PLoS One. 2012;7(7):e40869 – reference: 15765508 - Dev Dyn. 2005 May;233(1):122-9 – reference: 12582147 - J Exp Biol. 2003 Mar;206(Pt 6):1051-7 |
SSID | ssj0005763 |
Score | 2.4493039 |
Snippet | Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation.... Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | H632 |
SubjectTerms | Animals Arteries - abnormalities Arteries - diagnostic imaging Blood Flow Velocity Branchial Region - blood supply Branchial Region - diagnostic imaging Chick Embryo Chickens Coronary Circulation Fetus - blood supply Heart Defects, Congenital - diagnostic imaging Heart Defects, Congenital - physiopathology Heart Septal Defects, Ventricular - diagnostic imaging Heart Septal Defects, Ventricular - physiopathology Heart Ventricles - abnormalities Heart Ventricles - diagnostic imaging Hemodynamics Phenotype Regional Blood Flow - physiology Tomography, X-Ray Computed |
Title | Blood flow patterns underlie developmental heart defects |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28062416 https://www.proquest.com/docview/1856589574 https://pubmed.ncbi.nlm.nih.gov/PMC5402020 |
Volume | 312 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELagSIgXBC3HcslIiBdISWI7x2NBrVbQlkNZad8iO07oojap0qxQ-fXMOI43S1eo8BIljnPI32QyM575TMirhFVREkUSEICviatUehKUnpcqFSoZ6VgbnoKj42g64x_nYr4iVDDVJZ3aLX5trCv5H1ShDXDFKtl_QNbdFBpgH_CFLSAM22th_B6zzt9Up81P5EfF0N6FWde2BcNyKIc6c_WObQdtJntjbJG6KZsRh4QJd5h4-y7WKbV9FnqxaDFp1czKr3o4xLDwyyZ_IPXkaL4-O2law7BgC4Fcps235femvlz0kelat3Icg4D_mkvCGtQmuLSgO3vlV25os7qWBeFIqNhIc06jPs55VaULpIiVP87NQGEeHke_PthAoH38OT-YHR7m2f48u0luheA54Goen76uCOTBvTI1F8PLWSIqOH634RHrxsoVD-TPRNqRZZLdI3etS0H3evm4T26U9TbZ2asBqbNL-pp-cVhtk9tHNpdihyRGeihKDx2khw7SQ9ekh5o3plZ6HpDZwX72YerZdTS8AszxzmPCL7gopI7Lyq9w4cKqUvBb05xHlQqYDpn24zIoOJOxDngsEy1gByy3FBxexR6Srbqpy8eEhppJ8KB1KtOSy6RQYKAqLpiflGlcpMmEhMOA5YUlmce1Tk5z42yKMB9GOTejnOMoT8hbd9F5z7Hy9-4vByRy0IU4wSXrslle5GB7gkGdiphPyKMeGXdDzCAAaxWujtcwcx2QZ339TL04MXzrAmMsof_kGs99Su6svo9nZKtrl-VzsFo79cLI4W_7-Z20 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blood+flow+patterns+underlie+developmental+heart+defects&rft.jtitle=American+journal+of+physiology.+Heart+and+circulatory+physiology&rft.au=Midgett%2C+Madeline&rft.au=Thornburg%2C+Kent&rft.au=Rugonyi%2C+Sandra&rft.date=2017-03-01&rft.issn=1522-1539&rft.eissn=1522-1539&rft.volume=312&rft.issue=3&rft.spage=H632&rft_id=info:doi/10.1152%2Fajpheart.00641.2016&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6135&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6135&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6135&client=summon |