Self-assembled alkanethiol monolayers on gold surfaces: resolving the complex structure at the interface by STM
The surface properties of metals and metal oxides can be modified by adding a single layer of organic molecules. A most popular route for depositing such a molecular layer is via the formation of self-assembled monolayers (SAMs). The molecules that form SAMs have a functionality which binds to the s...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 16; no. 36; pp. 1974 - 199 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The surface properties of metals and metal oxides can be modified by adding a single layer of organic molecules. A most popular route for depositing such a molecular layer is
via
the formation of self-assembled monolayers (SAMs). The molecules that form SAMs have a functionality which binds to the surface and the adsorption is self-regulated to terminate at exactly one single molecular layer. The very first example, which has become the most widely studied system, of SAMs on metal surfaces consists of chemisorbed alkylthiolate on gold. Despite the simplicity in the preparation of alkanethiol SAMs and the seemingly straightforward structure of such SAMs, the detailed bonding between the sulfur head group and gold is still subject to debate. Experimental and theoretical effort in the last six years has led to a much improved understanding of this classical system of SAMs. In this review, we will highlight the most recent progress in the study of the interfacial structure of alkanethiol SAMs on gold. We focus on the important phenomenon of phase transition that occurs from
n
-propanethiol to
n
-butanethiol, and propose a unified structural model to explain how the (3 × 4) phase for short chain alkanethiol monolayers (methyl-, ethyl- and propylthiolate monolayers) changes into the (3 × 2√3)-rect./
c
(4 × 2) phase for long chain molecular monolayers.
New insights into the classical system of self-assembled alkanethiol monolayers on Au(111). |
---|---|
AbstractList | The surface properties of metals and metal oxides can be modified by adding a single layer of organic molecules. A most popular route for depositing such a molecular layer is
via
the formation of self-assembled monolayers (SAMs). The molecules that form SAMs have a functionality which binds to the surface and the adsorption is self-regulated to terminate at exactly one single molecular layer. The very first example, which has become the most widely studied system, of SAMs on metal surfaces consists of chemisorbed alkylthiolate on gold. Despite the simplicity in the preparation of alkanethiol SAMs and the seemingly straightforward structure of such SAMs, the detailed bonding between the sulfur head group and gold is still subject to debate. Experimental and theoretical effort in the last six years has led to a much improved understanding of this classical system of SAMs. In this review, we will highlight the most recent progress in the study of the interfacial structure of alkanethiol SAMs on gold. We focus on the important phenomenon of phase transition that occurs from
n
-propanethiol to
n
-butanethiol, and propose a unified structural model to explain how the (3 × 4) phase for short chain alkanethiol monolayers (methyl-, ethyl- and propylthiolate monolayers) changes into the (3 × 2√3)-rect./
c
(4 × 2) phase for long chain molecular monolayers.
New insights into the classical system of self-assembled alkanethiol monolayers on Au(111). The surface properties of metals and metal oxides can be modified by adding a single layer of organic molecules. A most popular route for depositing such a molecular layer is viathe formation of self-assembled monolayers (SAMs). The molecules that form SAMs have a functionality which binds to the surface and the adsorption is self-regulated to terminate at exactly one single molecular layer. The very first example, which has become the most widely studied system, of SAMs on metal surfaces consists of chemisorbed alkylthiolate on gold. Despite the simplicity in the preparation of alkanethiol SAMs and the seemingly straightforward structure of such SAMs, the detailed bonding between the sulfur head group and gold is still subject to debate. Experimental and theoretical effort in the last six years has led to a much improved understanding of this classical system of SAMs. In this review, we will highlight the most recent progress in the study of the interfacial structure of alkanethiol SAMs on gold. We focus on the important phenomenon of phase transition that occurs from n-propanethiol to n-butanethiol, and propose a unified structural model to explain how the (3 4) phase for short chain alkanethiol monolayers (methyl-, ethyl- and propylthiolate monolayers) changes into the (3 2[radic]3)-rect./c(4 2) phase for long chain molecular monolayers. The surface properties of metals and metal oxides can be modified by adding a single layer of organic molecules. A most popular route for depositing such a molecular layer is via the formation of self-assembled monolayers (SAMs). The molecules that form SAMs have a functionality which binds to the surface and the adsorption is self-regulated to terminate at exactly one single molecular layer. The very first example, which has become the most widely studied system, of SAMs on metal surfaces consists of chemisorbed alkylthiolate on gold. Despite the simplicity in the preparation of alkanethiol SAMs and the seemingly straightforward structure of such SAMs, the detailed bonding between the sulfur head group and gold is still subject to debate. Experimental and theoretical effort in the last six years has led to a much improved understanding of this classical system of SAMs. In this review, we will highlight the most recent progress in the study of the interfacial structure of alkanethiol SAMs on gold. We focus on the important phenomenon of phase transition that occurs from n-propanethiol to n-butanethiol, and propose a unified structural model to explain how the (3 × 4) phase for short chain alkanethiol monolayers (methyl-, ethyl- and propylthiolate monolayers) changes into the (3 × 2√3)-rect./c(4 × 2) phase for long chain molecular monolayers.The surface properties of metals and metal oxides can be modified by adding a single layer of organic molecules. A most popular route for depositing such a molecular layer is via the formation of self-assembled monolayers (SAMs). The molecules that form SAMs have a functionality which binds to the surface and the adsorption is self-regulated to terminate at exactly one single molecular layer. The very first example, which has become the most widely studied system, of SAMs on metal surfaces consists of chemisorbed alkylthiolate on gold. Despite the simplicity in the preparation of alkanethiol SAMs and the seemingly straightforward structure of such SAMs, the detailed bonding between the sulfur head group and gold is still subject to debate. Experimental and theoretical effort in the last six years has led to a much improved understanding of this classical system of SAMs. In this review, we will highlight the most recent progress in the study of the interfacial structure of alkanethiol SAMs on gold. We focus on the important phenomenon of phase transition that occurs from n-propanethiol to n-butanethiol, and propose a unified structural model to explain how the (3 × 4) phase for short chain alkanethiol monolayers (methyl-, ethyl- and propylthiolate monolayers) changes into the (3 × 2√3)-rect./c(4 × 2) phase for long chain molecular monolayers. The surface properties of metals and metal oxides can be modified by adding a single layer of organic molecules. A most popular route for depositing such a molecular layer is via the formation of self-assembled monolayers (SAMs). The molecules that form SAMs have a functionality which binds to the surface and the adsorption is self-regulated to terminate at exactly one single molecular layer. The very first example, which has become the most widely studied system, of SAMs on metal surfaces consists of chemisorbed alkylthiolate on gold. Despite the simplicity in the preparation of alkanethiol SAMs and the seemingly straightforward structure of such SAMs, the detailed bonding between the sulfur head group and gold is still subject to debate. Experimental and theoretical effort in the last six years has led to a much improved understanding of this classical system of SAMs. In this review, we will highlight the most recent progress in the study of the interfacial structure of alkanethiol SAMs on gold. We focus on the important phenomenon of phase transition that occurs from n-propanethiol to n-butanethiol, and propose a unified structural model to explain how the (3 × 4) phase for short chain alkanethiol monolayers (methyl-, ethyl- and propylthiolate monolayers) changes into the (3 × 2√3)-rect./c(4 × 2) phase for long chain molecular monolayers. |
Author | Li, Fangsen Guo, Quanmin |
AuthorAffiliation | University of Birmingham Tsinghua University School of Physics and Astronomy Department of Physics |
AuthorAffiliation_xml | – name: Department of Physics – name: Tsinghua University – name: University of Birmingham – name: School of Physics and Astronomy |
Author_xml | – sequence: 1 givenname: Quanmin surname: Guo fullname: Guo, Quanmin – sequence: 2 givenname: Fangsen surname: Li fullname: Li, Fangsen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24777119$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkdtr1UAQxhep2Iu--K6sbyJEZ-9Z38rBG1QUWp_DZjNpo5tsursRz39vPKetIKJPM8P3-wZmvmNyMMUJCXnM4CUDYV956WcAZbW7R46Y1KKyUMuDu97oQ3Kc81cAYIqJB-SQS2MMY_aIxHMMfeVyxrEN2FEXvrkJy9UQAx3jFIPbYso0TvQyho7mJfXOY35NE-YYvg_TJS1XSH0c54A_aC5p8WVJSF3ZCcNUcGeh7ZaeX3x8SO73LmR8dFNPyJe3by4276uzT-8-bE7PKi9BlUowi2ikd0bWvNYtMPB9Z6ATFgFRC9lb6K3quZad4TXnzqpa6E6sk21rcUKe7_fOKV4vmEszDtljCOt1cckN0xzAAF__8V9UKaV5rWpY0ac36NKO2DVzGkaXts3tP1cA9oBPMeeEfeOH4soQp5LcEBoGza_Imo3cfN5FdrpaXvxhud36V_jJHk7Z33G_81_1Z__Sm7nrxU_PCqs3 |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_5b04961 crossref_primary_10_1002_ejic_201600892 crossref_primary_10_1021_acs_jpcc_3c00947 crossref_primary_10_3390_ijms24010718 crossref_primary_10_1088_1361_6528_ac3f54 crossref_primary_10_1021_acs_jpcc_1c06780 crossref_primary_10_1021_la5046767 crossref_primary_10_1039_C7TA09179F crossref_primary_10_1021_acs_langmuir_7b02760 crossref_primary_10_1016_j_polymertesting_2023_108260 crossref_primary_10_1039_D0CP04164E crossref_primary_10_1021_acs_jpcc_8b04157 crossref_primary_10_1021_acs_langmuir_2c02276 crossref_primary_10_1002_macp_201800097 crossref_primary_10_1021_acs_jpclett_2c01616 crossref_primary_10_1021_acs_langmuir_1c02187 crossref_primary_10_1021_acsomega_7b00355 crossref_primary_10_1088_1674_1056_ab821d crossref_primary_10_1016_j_coelec_2018_11_004 crossref_primary_10_1016_j_colsurfa_2018_05_024 crossref_primary_10_1038_s41368_023_00231_6 crossref_primary_10_1021_acs_jpcc_0c07613 crossref_primary_10_1021_acs_chemrev_6b00389 crossref_primary_10_1063_1_4921649 crossref_primary_10_1021_acs_jpcc_6b09259 crossref_primary_10_1039_D0CP02866E crossref_primary_10_3390_s23020561 crossref_primary_10_1021_acs_jpcc_7b05883 crossref_primary_10_1002_mats_202000010 crossref_primary_10_1021_acsanm_3c01979 crossref_primary_10_1016_j_cis_2023_102956 crossref_primary_10_1088_1361_6528_aa8aa7 crossref_primary_10_1021_acsami_4c02058 crossref_primary_10_1039_C7CP01653K crossref_primary_10_1016_j_tetlet_2020_152242 crossref_primary_10_1021_acs_jpcc_9b03045 crossref_primary_10_1002_cphc_202300160 crossref_primary_10_1016_j_colcom_2021_100539 crossref_primary_10_1021_acs_analchem_1c03968 crossref_primary_10_1021_acs_jpcc_7b05817 crossref_primary_10_1016_j_matchemphys_2016_06_027 crossref_primary_10_1063_1_4973379 crossref_primary_10_1016_j_cplett_2022_139819 crossref_primary_10_1021_acs_jpcb_8b03390 crossref_primary_10_1021_acs_jpcc_0c03167 crossref_primary_10_1021_acs_jpcc_1c07171 crossref_primary_10_1002_cnma_201700124 crossref_primary_10_1021_acs_jpcc_7b11059 crossref_primary_10_1039_C9CP03613J crossref_primary_10_1007_s12666_015_0733_3 crossref_primary_10_1038_s42004_019_0198_0 crossref_primary_10_1021_acs_chemmater_0c02798 crossref_primary_10_1002_term_2762 crossref_primary_10_1021_acs_jpcc_0c08521 crossref_primary_10_1021_acs_jpcc_0c08328 crossref_primary_10_1021_acs_langmuir_5b01876 crossref_primary_10_1021_jp510398m crossref_primary_10_1039_C5NJ03251B crossref_primary_10_1016_j_colsurfa_2019_123969 crossref_primary_10_1039_D4CP01739K crossref_primary_10_1021_acs_jpclett_7b02994 crossref_primary_10_1039_C6NR06864B crossref_primary_10_1039_D1NR05589E crossref_primary_10_1016_j_trac_2023_117029 crossref_primary_10_1016_j_jsamd_2017_07_008 crossref_primary_10_1039_C8CP03684E crossref_primary_10_3762_bjnano_8_265 crossref_primary_10_1016_j_carbpol_2023_121504 crossref_primary_10_1002_sstr_202300230 crossref_primary_10_1016_j_colsurfa_2024_134454 crossref_primary_10_1021_acs_biomac_4c01333 crossref_primary_10_1016_j_mtchem_2022_100939 crossref_primary_10_1063_1674_0068_29_cjcp1506122 crossref_primary_10_1021_acs_langmuir_7b01937 crossref_primary_10_1021_acs_jpcc_9b06852 crossref_primary_10_1021_acs_jpcc_9b07149 crossref_primary_10_1002_elan_202100704 crossref_primary_10_1021_acs_jpcc_7b11465 |
Cites_doi | 10.1021/ja036143d 10.1016/j.susc.2005.10.013 10.1021/la1000254 10.1021/la951097j 10.1063/1.1850455 10.1063/1.459528 10.1021/cr9502357 10.1021/jp055538b 10.1146/annurev.physchem.52.1.107 10.1021/jp0700128 10.1103/PhysRevB.63.081405 10.1016/S0079-6816(00)00024-1 10.1021/la9610866 10.1103/PhysRevLett.90.066102 10.1021/la050814z 10.1016/j.apsusc.2010.05.062 10.1038/nnano.2006.130 10.1126/science.1148624 10.1016/j.progsurf.2012.11.001 10.1039/c1cp00037c 10.1063/1.464613 10.1021/la052231v 10.1016/j.susc.2009.01.022 10.1021/cr0300789 10.1038/nchem.1352 10.1103/PhysRevB.79.113412 10.1016/j.progsurf.2009.06.001 10.1126/science.1165291 10.1063/1.479302 10.1039/b907301a 10.1126/science.266.5188.1216 10.1021/la402582q 10.1021/nn302405r 10.1021/la7015963 10.1021/ic301079k 10.1021/la0267701 10.1016/j.susc.2009.03.002 10.1021/ja8011325 10.1039/b921281g 10.1021/la980717o 10.1016/j.cplett.2004.02.109 10.1063/1.456776 10.1524/zpch.1997.202.Part_1_2.263 10.1063/1.4806969 10.1103/PhysRevLett.97.146103 10.1039/b717686b 10.1088/0953-8984/19/30/305019 10.1021/la0107650 10.1021/la9019475 10.1021/nn402652f 10.1039/b505903h 10.1021/jp0257911 10.1021/jp311927z 10.1021/ja902629y 10.1021/la00023a033 10.1021/jp021989+ 10.1021/ja800577w 10.1016/j.susc.2011.12.005 10.1021/cr030698+ 10.1103/PhysRevLett.111.086102 10.1021/jp984286u 10.1021/jp310800e 10.1021/jp410738e 10.1021/la048979f 10.1103/PhysRevLett.97.166102 10.1021/jp907846u 10.1103/PhysRevB.79.195439 10.1021/ja1056517 10.1021/ja0571592 10.1016/j.progsurf.2008.04.002 10.1039/c2cp23490d 10.1021/la800905e 10.1039/b813948b 10.1021/la0100441 10.1016/S0039-6028(99)01056-0 10.1039/c0cs00056f 10.1021/jp0365054 10.1021/ja309632m 10.1021/la010803f 10.1021/jp4058127 10.1016/j.vacuum.2008.03.017 10.1063/1.467854 10.1021/la001212c 10.1246/cl.2001.942 10.1021/ja00158a012 10.1021/ja993622x 10.1021/ar9602664 10.1021/la010766s 10.1021/la9815291 10.1021/la301779m 10.1021/ja4000905 10.1088/0953-8984/18/48/R01 10.1021/la302943t 10.1021/la981374x 10.1021/ja042621o 10.1016/j.progsurf.2010.05.001 10.1021/ar200260p 10.1039/b712179m 10.1063/1.465030 10.1039/B9NR00160C 10.1016/j.progsurf.2003.12.001 10.1021/nn303734r |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7U5 8FD L7M |
DOI | 10.1039/c4cp00596a |
DatabaseName | CrossRef PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 199 |
ExternalDocumentID | 24777119 10_1039_C4CP00596A c4cp00596a |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 0-7 0R~ 0UZ 123 1TJ 29O 2WC 4.4 53G 6TJ 705 70~ 71~ 7~J 87K 9M8 AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACLDK ACNCT ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C6K CAG CITATION COF CS3 D0L DU5 EBS ECGLT EE0 EEHRC EF- EJD F5P FEDTE GGIMP GNO H13 HVGLF HZ~ H~9 H~N IDY IDZ J3G J3H J3I L-8 M4U MVM N9A NDZJH NHB O9- P2P R56 R7B R7C RAOCF RCLXC RCNCU RIG RNS ROL RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UHB VH6 WH7 XJT XOL YNT ZCG -JG AGSTE NPM OK1 UCJ 7X8 7U5 8FD L7M |
ID | FETCH-LOGICAL-c405t-319ee74ca748286b010cfd70d39e0ee634f90f95f264d72822a95836d3d729b83 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 06:32:10 EDT 2025 Fri Jul 11 02:03:03 EDT 2025 Wed Feb 19 01:56:29 EST 2025 Thu Apr 24 23:01:39 EDT 2025 Tue Jul 01 02:45:41 EDT 2025 Thu May 19 04:18:28 EDT 2016 Sat Jun 01 02:31:17 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c405t-319ee74ca748286b010cfd70d39e0ee634f90f95f264d72822a95836d3d729b83 |
Notes | Quanmin Guo is a Senior Lecturer at the School of Physics and Astronomy, University of Birmingham. His research interest is in the area of two-dimensional nano-materials, in particular, nanoscale structures grown on solid substrates. His current work focuses on the characterization of molecular self-assembly using scanning probe based techniques. He obtained his PhD from the University of Lancaster in 1989, and worked as a research associate in the Surface Science Research Centre at the University of Liverpool before joining the University of Birmingham in 1998. Fangsen Li received his PhD from the School of Materials Science and Engineering of the Northwestern Polytechnical University in Xi'an, China in 2011. He visited the Nanoscale Physics Research Laboratory (NPRL) of the University of Birmingham as a joint doctoral student in 2008-2010, working on the characterization of alkanethiol SAMs with STM. He moved to his present position, postdoctoral researcher in Tsinghua University in Beijing, China in 2012. His current research is in the area of structural and electronic properties of ultra thin films and heterostructures. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24777119 |
PQID | 1555628580 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_1620070251 rsc_primary_c4cp00596a proquest_miscellaneous_1555628580 crossref_citationtrail_10_1039_C4CP00596A pubmed_primary_24777119 crossref_primary_10_1039_C4CP00596A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2014 |
References | Tao (C4CP00596A-(cit21)/*[position()=1]) 2006; 1 Li (C4CP00596A-(cit42)/*[position()=1]) 2011; 13 Maksymovych (C4CP00596A-(cit37)/*[position()=1]) 2006; 97 Sardar (C4CP00596A-(cit51)/*[position()=1]) 2009; 25 Kind (C4CP00596A-(cit10)/*[position()=1]) 2009; 84 Staub (C4CP00596A-(cit72)/*[position()=1]) 1998; 14 Tamada (C4CP00596A-(cit20)/*[position()=1]) 2001; 17 Love (C4CP00596A-(cit5)/*[position()=1]) 2005; 105 Jackson (C4CP00596A-(cit34)/*[position()=1]) 2009; 603 Chaudhuri (C4CP00596A-(cit26)/*[position()=1]) 2009; 79 Kondoh (C4CP00596A-(cit59)/*[position()=1]) 1999; 103 Dirama (C4CP00596A-(cit19)/*[position()=1]) 2007; 23 Poirier (C4CP00596A-(cit31)/*[position()=1]) 1999; 15 Mehring (C4CP00596A-(cit60)/*[position()=1]) 2010; 256 Angelova (C4CP00596A-(cit22)/*[position()=1]) 2013; 7 Nakaya (C4CP00596A-(cit103)/*[position()=1]) 2012; 10 Qian (C4CP00596A-(cit77)/*[position()=1]) 2003; 19 Li (C4CP00596A-(cit39)/*[position()=1]) 2009; 79 Sharma (C4CP00596A-(cit69)/*[position()=1]) 2008; 24 Dishner (C4CP00596A-(cit57)/*[position()=1]) 1997; 13 Raigoza (C4CP00596A-(cit23)/*[position()=1]) 2012; 134 Häkkinen (C4CP00596A-(cit50)/*[position()=1]) 2008; 37 Vericat (C4CP00596A-(cit7)/*[position()=1]) 2006; 18 Tang (C4CP00596A-(cit44)/*[position()=1]) 2012; 606 Ning (C4CP00596A-(cit55)/*[position()=1]) 2012; 14 Li (C4CP00596A-(cit41)/*[position()=1]) 2012; 28 Li (C4CP00596A-(cit40)/*[position()=1]) 2013; 138 Li (C4CP00596A-(cit100)/*[position()=1]) 2012; 6 Cao (C4CP00596A-(cit18)/*[position()=1]) 2003; 107 De Renzi (C4CP00596A-(cit25)/*[position()=1]) 2004; 108 Pensa (C4CP00596A-(cit15)/*[position()=1]) 2012; 45 Li (C4CP00596A-(cit43)/*[position()=1]) 2010; 26 Fenter (C4CP00596A-(cit87)/*[position()=1]) 1994; 266 Battaglini (C4CP00596A-(cit24)/*[position()=1]) 2012; 28 Picraux (C4CP00596A-(cit70)/*[position()=1]) 2006; 22 Häkkinen (C4CP00596A-(cit14)/*[position()=1]) 2012; 4 Samanta (C4CP00596A-(cit13)/*[position()=1]) 2011; 40 Gao (C4CP00596A-(cit45)/*[position()=1]) 2013; 29 Kondoh (C4CP00596A-(cit79)/*[position()=1]) 2003; 90 Camillone (C4CP00596A-(cit56)/*[position()=1]) 1993; 98 Fostre-Tonigold (C4CP00596A-(cit99)/*[position()=1]) 2013; 111 Noh (C4CP00596A-(cit68)/*[position()=1]) 2006; 110 Jäger (C4CP00596A-(cit82)/*[position()=1]) 1987; 202 Noh (C4CP00596A-(cit74)/*[position()=1]) 2002; 18 Toerker (C4CP00596A-(cit91)/*[position()=1]) 2000; 445 Kautz (C4CP00596A-(cit81)/*[position()=1]) 2009; 113 Carro (C4CP00596A-(cit85)/*[position()=1]) 2013; 117 Lennartz (C4CP00596A-(cit89)/*[position()=1]) 2009; 603 Maksymovych (C4CP00596A-(cit11)/*[position()=1]) 2010; 85 Voznyy (C4CP00596A-(cit35)/*[position()=1]) 2009; 131 Gao (C4CP00596A-(cit84)/*[position()=1]) 2013; 117 Torrelles (C4CP00596A-(cit86)/*[position()=1]) 2004; 20 Wilson (C4CP00596A-(cit53)/*[position()=1]) 2008; 37 Kautz (C4CP00596A-(cit80)/*[position()=1]) 2008; 130 Schwartz (C4CP00596A-(cit3)/*[position()=1]) 2001; 52 Barrena (C4CP00596A-(cit66)/*[position()=1]) 2004; 126 Maksymovych (C4CP00596A-(cit32)/*[position()=1]) 2008; 322 Ulman (C4CP00596A-(cit1)/*[position()=1]) 1996; 96 Kafer (C4CP00596A-(cit98)/*[position()=1]) 2006; 128 Grönbeck (C4CP00596A-(cit16)/*[position()=1]) 2000; 122 Vericat (C4CP00596A-(cit6)/*[position()=1]) 2005; 7 Jin (C4CP00596A-(cit52)/*[position()=1]) 2010; 2 Jadzinsky (C4CP00596A-(cit49)/*[position()=1]) 2007; 318 Bilic (C4CP00596A-(cit95)/*[position()=1]) 2005; 122 Chaudhuri (C4CP00596A-(cit83)/*[position()=1]) 2010; 12 Noh (C4CP00596A-(cit73)/*[position()=1]) 2001; 17 Smith (C4CP00596A-(cit4)/*[position()=1]) 2004; 75 Bracco (C4CP00596A-(cit64)/*[position()=1]) 2008; 82 Chaudhuri (C4CP00596A-(cit36)/*[position()=1]) 2010; 12 Yourdshahyan (C4CP00596A-(cit17)/*[position()=1]) 2001; 63 Dubois (C4CP00596A-(cit67)/*[position()=1]) 1993; 98 Rojas-Cervellera (C4CP00596A-(cit54)/*[position()=1]) 2012; 51 Chidsey (C4CP00596A-(cit27)/*[position()=1]) 1989; 91 Vericat (C4CP00596A-(cit12)/*[position()=1]) 2010; 39 Deering (C4CP00596A-(cit88)/*[position()=1]) 2005; 21 Schreiber (C4CP00596A-(cit2)/*[position()=1]) 2000; 65 Fitts (C4CP00596A-(cit75)/*[position()=1]) 2002; 18 Grönbeck (C4CP00596A-(cit93)/*[position()=1]) 2007; 111 Kawasaki (C4CP00596A-(cit61)/*[position()=1]) 2001 Camillone (C4CP00596A-(cit92)/*[position()=1]) 1994; 101 Roper (C4CP00596A-(cit78)/*[position()=1]) 2004; 389 Fitts (C4CP00596A-(cit76)/*[position()=1]) 2002; 18 Kondoh (C4CP00596A-(cit65)/*[position()=1]) 1999; 111 Templeton (C4CP00596A-(cit47)/*[position()=1]) 2000; 33 Esplandiu (C4CP00596A-(cit97)/*[position()=1]) 2006; 600 Nuzzo (C4CP00596A-(cit28)/*[position()=1]) 1990; 112 Woodruff (C4CP00596A-(cit9)/*[position()=1]) 2008; 10 Delamarche (C4CP00596A-(cit90)/*[position()=1]) 1994; 10 Li (C4CP00596A-(cit30)/*[position()=1]) 2010; 132 Okabayashi (C4CP00596A-(cit102)/*[position()=1]) 2013; 88 She (C4CP00596A-(cit101)/*[position()=1]) 2013; 117 Haick (C4CP00596A-(cit8)/*[position()=1]) 2008; 83 Hagenstrom (C4CP00596A-(cit58)/*[position()=1]) 1999; 15 Nuzzo (C4CP00596A-(cit29)/*[position()=1]) 1990; 93 Daniel (C4CP00596A-(cit48)/*[position()=1]) 2004; 104 Maksymovych (C4CP00596A-(cit38)/*[position()=1]) 2008; 130 Tang (C4CP00596A-(cit46)/*[position()=1]) 2013; 117 Dameron (C4CP00596A-(cit96)/*[position()=1]) 2005; 127 Yu (C4CP00596A-(cit33)/*[position()=1]) 2006; 97 Danısman (C4CP00596A-(cit63)/*[position()=1]) 2002; 106 Camillone (C4CP00596A-(cit71)/*[position()=1]) 1996; 12 Maksymovych (C4CP00596A-(cit94)/*[position()=1]) 2013; 135 Cavanna (C4CP00596A-(cit62)/*[position()=1]) 2007; 19 |
References_xml | – volume: 126 start-page: 385 year: 2004 ident: C4CP00596A-(cit66)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja036143d – volume: 600 start-page: 155 year: 2006 ident: C4CP00596A-(cit97)/*[position()=1] publication-title: Surf. Sci. doi: 10.1016/j.susc.2005.10.013 – volume: 26 start-page: 9484 issue: 12 year: 2010 ident: C4CP00596A-(cit43)/*[position()=1] publication-title: Langmuir doi: 10.1021/la1000254 – volume: 12 start-page: 2737 year: 1996 ident: C4CP00596A-(cit71)/*[position()=1] publication-title: Langmuir doi: 10.1021/la951097j – volume: 122 start-page: 094708 year: 2005 ident: C4CP00596A-(cit95)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1850455 – volume: 93 start-page: 767 year: 1990 ident: C4CP00596A-(cit29)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.459528 – volume: 96 start-page: 1533 year: 1996 ident: C4CP00596A-(cit1)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr9502357 – volume: 110 start-page: 2793 year: 2006 ident: C4CP00596A-(cit68)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp055538b – volume: 52 start-page: 107 year: 2001 ident: C4CP00596A-(cit3)/*[position()=1] publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.52.1.107 – volume: 111 start-page: 3325 year: 2007 ident: C4CP00596A-(cit93)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp0700128 – volume: 63 start-page: 81405R year: 2001 ident: C4CP00596A-(cit17)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.63.081405 – volume: 65 start-page: 151 year: 2000 ident: C4CP00596A-(cit2)/*[position()=1] publication-title: Prog. Surf. Sci. doi: 10.1016/S0079-6816(00)00024-1 – volume: 13 start-page: 2318 year: 1997 ident: C4CP00596A-(cit57)/*[position()=1] publication-title: Langmuir doi: 10.1021/la9610866 – volume: 90 start-page: 066102 year: 2003 ident: C4CP00596A-(cit79)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.066102 – volume: 21 start-page: 10260 issue: 23 year: 2005 ident: C4CP00596A-(cit88)/*[position()=1] publication-title: Langmuir doi: 10.1021/la050814z – volume: 256 start-page: 7265 year: 2010 ident: C4CP00596A-(cit60)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.05.062 – volume: 1 start-page: 173 year: 2006 ident: C4CP00596A-(cit21)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2006.130 – volume: 318 start-page: 430 year: 2007 ident: C4CP00596A-(cit49)/*[position()=1] publication-title: Science doi: 10.1126/science.1148624 – volume: 88 start-page: 1 year: 2013 ident: C4CP00596A-(cit102)/*[position()=1] publication-title: Prog. Surf. Sci. doi: 10.1016/j.progsurf.2012.11.001 – volume: 13 start-page: 11958 issue: 25 year: 2011 ident: C4CP00596A-(cit42)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp00037c – volume: 98 start-page: 678 year: 1993 ident: C4CP00596A-(cit67)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.464613 – volume: 22 start-page: 174 year: 2006 ident: C4CP00596A-(cit70)/*[position()=1] publication-title: Langmuir doi: 10.1021/la052231v – volume: 603 start-page: 807 year: 2009 ident: C4CP00596A-(cit34)/*[position()=1] publication-title: Surf. Sci. doi: 10.1016/j.susc.2009.01.022 – volume: 105 start-page: 1103 year: 2005 ident: C4CP00596A-(cit5)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr0300789 – volume: 4 start-page: 443 year: 2012 ident: C4CP00596A-(cit14)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1352 – volume: 79 start-page: 113412 year: 2009 ident: C4CP00596A-(cit39)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.79.113412 – volume: 84 start-page: 230 year: 2009 ident: C4CP00596A-(cit10)/*[position()=1] publication-title: Prog. Surf. Sci. doi: 10.1016/j.progsurf.2009.06.001 – volume: 322 start-page: 1664 year: 2008 ident: C4CP00596A-(cit32)/*[position()=1] publication-title: Science doi: 10.1126/science.1165291 – volume: 111 start-page: 1175 year: 1999 ident: C4CP00596A-(cit65)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.479302 – volume: 39 start-page: 1805 year: 2010 ident: C4CP00596A-(cit12)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b907301a – volume: 266 start-page: 1216 year: 1994 ident: C4CP00596A-(cit87)/*[position()=1] publication-title: Science doi: 10.1126/science.266.5188.1216 – volume: 29 start-page: 11082 issue: 35 year: 2013 ident: C4CP00596A-(cit45)/*[position()=1] publication-title: Langmuir doi: 10.1021/la402582q – volume: 10 start-page: 8728 year: 2012 ident: C4CP00596A-(cit103)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn302405r – volume: 23 start-page: 12208 year: 2007 ident: C4CP00596A-(cit19)/*[position()=1] publication-title: Langmuir doi: 10.1021/la7015963 – volume: 51 start-page: 11422 issue: 21 year: 2012 ident: C4CP00596A-(cit54)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic301079k – volume: 19 start-page: 6056 year: 2003 ident: C4CP00596A-(cit77)/*[position()=1] publication-title: Langmuir doi: 10.1021/la0267701 – volume: 603 start-page: 1156 year: 2009 ident: C4CP00596A-(cit89)/*[position()=1] publication-title: Surf. Sci. doi: 10.1016/j.susc.2009.03.002 – volume: 130 start-page: 6908 year: 2008 ident: C4CP00596A-(cit80)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8011325 – volume: 12 start-page: 3229 issue: 13 year: 2010 ident: C4CP00596A-(cit83)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b921281g – volume: 14 start-page: 6693 year: 1998 ident: C4CP00596A-(cit72)/*[position()=1] publication-title: Langmuir doi: 10.1021/la980717o – volume: 389 start-page: 87 year: 2004 ident: C4CP00596A-(cit78)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.02.109 – volume: 91 start-page: 4421 year: 1989 ident: C4CP00596A-(cit27)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.456776 – volume: 202 start-page: 263 year: 1987 ident: C4CP00596A-(cit82)/*[position()=1] publication-title: Z. Phys. Chem. doi: 10.1524/zpch.1997.202.Part_1_2.263 – volume: 138 start-page: 194707 issue: 19 year: 2013 ident: C4CP00596A-(cit40)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4806969 – volume: 97 start-page: 146103 year: 2006 ident: C4CP00596A-(cit37)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.146103 – volume: 37 start-page: 1847 year: 2008 ident: C4CP00596A-(cit50)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b717686b – volume: 19 start-page: 305019 year: 2007 ident: C4CP00596A-(cit62)/*[position()=1] publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/19/30/305019 – volume: 18 start-page: 1561 year: 2002 ident: C4CP00596A-(cit75)/*[position()=1] publication-title: Langmuir doi: 10.1021/la0107650 – volume: 25 start-page: 13840 year: 2009 ident: C4CP00596A-(cit51)/*[position()=1] publication-title: Langmuir doi: 10.1021/la9019475 – volume: 7 start-page: 6489 issue: 8 year: 2013 ident: C4CP00596A-(cit22)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn402652f – volume: 7 start-page: 3258 year: 2005 ident: C4CP00596A-(cit6)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b505903h – volume: 106 start-page: 11771 year: 2002 ident: C4CP00596A-(cit63)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp0257911 – volume: 117 start-page: 4647 year: 2013 ident: C4CP00596A-(cit101)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp311927z – volume: 131 start-page: 12989 year: 2009 ident: C4CP00596A-(cit35)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja902629y – volume: 10 start-page: 4103 issue: 11 year: 1994 ident: C4CP00596A-(cit90)/*[position()=1] publication-title: Langmuir doi: 10.1021/la00023a033 – volume: 107 start-page: 3803 year: 2003 ident: C4CP00596A-(cit18)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp021989+ – volume: 130 start-page: 7518 year: 2008 ident: C4CP00596A-(cit38)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800577w – volume: 606 start-page: L31 year: 2012 ident: C4CP00596A-(cit44)/*[position()=1] publication-title: Surf. Sci. doi: 10.1016/j.susc.2011.12.005 – volume: 104 start-page: 293 year: 2004 ident: C4CP00596A-(cit48)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr030698+ – volume: 111 start-page: 086102 year: 2013 ident: C4CP00596A-(cit99)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.086102 – volume: 103 start-page: 2585 year: 1999 ident: C4CP00596A-(cit59)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp984286u – volume: 117 start-page: 2160 year: 2013 ident: C4CP00596A-(cit85)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp310800e – volume: 117 start-page: 24985 year: 2013 ident: C4CP00596A-(cit84)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp410738e – volume: 20 start-page: 9396 issue: 21 year: 2004 ident: C4CP00596A-(cit86)/*[position()=1] publication-title: Langmuir doi: 10.1021/la048979f – volume: 97 start-page: 166102 year: 2006 ident: C4CP00596A-(cit33)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.166102 – volume: 113 start-page: 19286 year: 2009 ident: C4CP00596A-(cit81)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp907846u – volume: 79 start-page: 195439 year: 2009 ident: C4CP00596A-(cit26)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.79.195439 – volume: 12 start-page: 3229 year: 2010 ident: C4CP00596A-(cit36)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b921281g – volume: 132 start-page: 13059 year: 2010 ident: C4CP00596A-(cit30)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1056517 – volume: 128 start-page: 1723 year: 2006 ident: C4CP00596A-(cit98)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0571592 – volume: 83 start-page: 217 year: 2008 ident: C4CP00596A-(cit8)/*[position()=1] publication-title: Prog. Surf. Sci. doi: 10.1016/j.progsurf.2008.04.002 – volume: 14 start-page: 9323 year: 2012 ident: C4CP00596A-(cit55)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp23490d – volume: 24 start-page: 9937 year: 2008 ident: C4CP00596A-(cit69)/*[position()=1] publication-title: Langmuir doi: 10.1021/la800905e – volume: 10 start-page: 7211 year: 2008 ident: C4CP00596A-(cit9)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b813948b – volume: 17 start-page: 7280 year: 2001 ident: C4CP00596A-(cit73)/*[position()=1] publication-title: Langmuir doi: 10.1021/la0100441 – volume: 445 start-page: 100 issue: 1 year: 2000 ident: C4CP00596A-(cit91)/*[position()=1] publication-title: Surf. Sci. doi: 10.1016/S0039-6028(99)01056-0 – volume: 40 start-page: 2567 year: 2011 ident: C4CP00596A-(cit13)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00056f – volume: 108 start-page: 16 year: 2004 ident: C4CP00596A-(cit25)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp0365054 – volume: 134 start-page: 19354 year: 2012 ident: C4CP00596A-(cit23)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309632m – volume: 18 start-page: 1953 year: 2002 ident: C4CP00596A-(cit74)/*[position()=1] publication-title: Langmuir doi: 10.1021/la010803f – volume: 117 start-page: 21234 issue: 41 year: 2013 ident: C4CP00596A-(cit46)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp4058127 – volume: 82 start-page: 1421 year: 2008 ident: C4CP00596A-(cit64)/*[position()=1] publication-title: Vacuum doi: 10.1016/j.vacuum.2008.03.017 – volume: 101 start-page: 11031 year: 1994 ident: C4CP00596A-(cit92)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.467854 – volume: 17 start-page: 1913 year: 2001 ident: C4CP00596A-(cit20)/*[position()=1] publication-title: Langmuir doi: 10.1021/la001212c – start-page: 942 year: 2001 ident: C4CP00596A-(cit61)/*[position()=1] publication-title: Chem. Lett. doi: 10.1246/cl.2001.942 – volume: 112 start-page: 558 year: 1990 ident: C4CP00596A-(cit28)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00158a012 – volume: 122 start-page: 3839 year: 2000 ident: C4CP00596A-(cit16)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja993622x – volume: 33 start-page: 27 year: 2000 ident: C4CP00596A-(cit47)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar9602664 – volume: 18 start-page: 2096 year: 2002 ident: C4CP00596A-(cit76)/*[position()=1] publication-title: Langmuir doi: 10.1021/la010766s – volume: 15 start-page: 2435 year: 1999 ident: C4CP00596A-(cit58)/*[position()=1] publication-title: Langmuir doi: 10.1021/la9815291 – volume: 28 start-page: 11115 issue: 30 year: 2012 ident: C4CP00596A-(cit41)/*[position()=1] publication-title: Langmuir doi: 10.1021/la301779m – volume: 135 start-page: 4922 year: 2013 ident: C4CP00596A-(cit94)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4000905 – volume: 18 start-page: R867 year: 2006 ident: C4CP00596A-(cit7)/*[position()=1] publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/18/48/R01 – volume: 28 start-page: 15095 year: 2012 ident: C4CP00596A-(cit24)/*[position()=1] publication-title: Langmuir doi: 10.1021/la302943t – volume: 15 start-page: 1167 year: 1999 ident: C4CP00596A-(cit31)/*[position()=1] publication-title: Langmuir doi: 10.1021/la981374x – volume: 127 start-page: 8697 year: 2005 ident: C4CP00596A-(cit96)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja042621o – volume: 85 start-page: 206 year: 2010 ident: C4CP00596A-(cit11)/*[position()=1] publication-title: Prog. Surf. Sci. doi: 10.1016/j.progsurf.2010.05.001 – volume: 45 start-page: 1183 year: 2012 ident: C4CP00596A-(cit15)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar200260p – volume: 37 start-page: 2028 year: 2008 ident: C4CP00596A-(cit53)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b712179m – volume: 98 start-page: 4234 year: 1993 ident: C4CP00596A-(cit56)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.465030 – volume: 2 start-page: 343 year: 2010 ident: C4CP00596A-(cit52)/*[position()=1] publication-title: Nanoscale doi: 10.1039/B9NR00160C – volume: 75 start-page: 1 year: 2004 ident: C4CP00596A-(cit4)/*[position()=1] publication-title: Prog. Surf. Sci. doi: 10.1016/j.progsurf.2003.12.001 – volume: 6 start-page: 9267 year: 2012 ident: C4CP00596A-(cit100)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn303734r |
SSID | ssj0001513 |
Score | 2.4129546 |
Snippet | The surface properties of metals and metal oxides can be modified by adding a single layer of organic molecules. A most popular route for depositing such a... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1974 |
SubjectTerms | Alkanes Chains Gold Molecular structure Monolayers Phase transformations Sulfur Surface chemistry |
Title | Self-assembled alkanethiol monolayers on gold surfaces: resolving the complex structure at the interface by STM |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24777119 https://www.proquest.com/docview/1555628580 https://www.proquest.com/docview/1620070251 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagPcAF8SrdFpARXNAqkKydh7lVUUtBFC3qVuotchy7qkiTVXe3An49Yzt2UrpChUuUOO_MF_ub8TwQesN1AWtVioDDMqCgKAdM8DDIOCmTqKJSmTKdR1-TwxP6-TQ-7V2CTHTJsnwnfq2NK_kfqUIbyFVHyf6DZP1FoQHWQb6wBAnD8lYyPpa1CoD9youyBuLI6-9cB9mct_UYngGUVs2n9XTAWVtX48XqUmkHLG0EACW7ra9cqJTxK5c_xjaZrJlSMCGOJpmEOUmz1OPZ0ZDKTp2EhasZZ9d0k7WXLIy9YZrnPobs48pYZr-teHNx3jsDGY-CA96cLbrAtM4MEdGBGcL2nDQhAWjaXV7rYZutAee722QAKzLsPCOtqK_t1kOis6LmNJ-ackE-MWqfO_uPMc17Gpo5dsKK_ty7aHMCKgX0iZt7-7NPX_y4DdyH2Fg0-yIumS1h7_uzr9OXGzoJMJRLVznGMJTZQ_SgUy3wnsXJI3RHNo_RvdxJ5wlqr-MFD_CCe7zgtsEaL9jh5QP2aMEACtyhBXu0YL40OzxacPkTA1qeopOD_Vl-GHQFNwIBvH0J4zGTMqWCp1RnFyhBVxeqSsOKMBlKmRCqWKjg3wYWXaXaAZmzOCNJRWCLlRnZQhtN28hthGPFWFyGlZIRoRyIfCTjCWwDHeZZEvEReuu-YyG6bPS6KEpd3JTYCL32x85tDpa1R71y4ijgu-p5L_iG7WpRAGWOdaRwFv7lmEQb7bXCPULPrCz9vSY0TdMoYiO0BcL1zYKKubk1vMzO-h3FvFI7t3r6XXS__6ueow2QoHwBdHdZvuxw-hv7mapc |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-assembled+alkanethiol+monolayers+on+gold+surfaces%3A+resolving+the+complex+structure+at+the+interface+by+STM&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Guo%2C+Quanmin&rft.au=Li%2C+Fangsen&rft.date=2014-01-01&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=16&rft.issue=36&rft.spage=19074&rft_id=info:doi/10.1039%2FC4CP00596A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C4CP00596A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |