Self-assembled alkanethiol monolayers on gold surfaces: resolving the complex structure at the interface by STM

The surface properties of metals and metal oxides can be modified by adding a single layer of organic molecules. A most popular route for depositing such a molecular layer is via the formation of self-assembled monolayers (SAMs). The molecules that form SAMs have a functionality which binds to the s...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 16; no. 36; pp. 1974 - 199
Main Authors Guo, Quanmin, Li, Fangsen
Format Journal Article
LanguageEnglish
Published England 01.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The surface properties of metals and metal oxides can be modified by adding a single layer of organic molecules. A most popular route for depositing such a molecular layer is via the formation of self-assembled monolayers (SAMs). The molecules that form SAMs have a functionality which binds to the surface and the adsorption is self-regulated to terminate at exactly one single molecular layer. The very first example, which has become the most widely studied system, of SAMs on metal surfaces consists of chemisorbed alkylthiolate on gold. Despite the simplicity in the preparation of alkanethiol SAMs and the seemingly straightforward structure of such SAMs, the detailed bonding between the sulfur head group and gold is still subject to debate. Experimental and theoretical effort in the last six years has led to a much improved understanding of this classical system of SAMs. In this review, we will highlight the most recent progress in the study of the interfacial structure of alkanethiol SAMs on gold. We focus on the important phenomenon of phase transition that occurs from n -propanethiol to n -butanethiol, and propose a unified structural model to explain how the (3 × 4) phase for short chain alkanethiol monolayers (methyl-, ethyl- and propylthiolate monolayers) changes into the (3 × 2√3)-rect./ c (4 × 2) phase for long chain molecular monolayers. New insights into the classical system of self-assembled alkanethiol monolayers on Au(111).
AbstractList The surface properties of metals and metal oxides can be modified by adding a single layer of organic molecules. A most popular route for depositing such a molecular layer is via the formation of self-assembled monolayers (SAMs). The molecules that form SAMs have a functionality which binds to the surface and the adsorption is self-regulated to terminate at exactly one single molecular layer. The very first example, which has become the most widely studied system, of SAMs on metal surfaces consists of chemisorbed alkylthiolate on gold. Despite the simplicity in the preparation of alkanethiol SAMs and the seemingly straightforward structure of such SAMs, the detailed bonding between the sulfur head group and gold is still subject to debate. Experimental and theoretical effort in the last six years has led to a much improved understanding of this classical system of SAMs. In this review, we will highlight the most recent progress in the study of the interfacial structure of alkanethiol SAMs on gold. We focus on the important phenomenon of phase transition that occurs from n -propanethiol to n -butanethiol, and propose a unified structural model to explain how the (3 × 4) phase for short chain alkanethiol monolayers (methyl-, ethyl- and propylthiolate monolayers) changes into the (3 × 2√3)-rect./ c (4 × 2) phase for long chain molecular monolayers. New insights into the classical system of self-assembled alkanethiol monolayers on Au(111).
The surface properties of metals and metal oxides can be modified by adding a single layer of organic molecules. A most popular route for depositing such a molecular layer is viathe formation of self-assembled monolayers (SAMs). The molecules that form SAMs have a functionality which binds to the surface and the adsorption is self-regulated to terminate at exactly one single molecular layer. The very first example, which has become the most widely studied system, of SAMs on metal surfaces consists of chemisorbed alkylthiolate on gold. Despite the simplicity in the preparation of alkanethiol SAMs and the seemingly straightforward structure of such SAMs, the detailed bonding between the sulfur head group and gold is still subject to debate. Experimental and theoretical effort in the last six years has led to a much improved understanding of this classical system of SAMs. In this review, we will highlight the most recent progress in the study of the interfacial structure of alkanethiol SAMs on gold. We focus on the important phenomenon of phase transition that occurs from n-propanethiol to n-butanethiol, and propose a unified structural model to explain how the (3 4) phase for short chain alkanethiol monolayers (methyl-, ethyl- and propylthiolate monolayers) changes into the (3 2[radic]3)-rect./c(4 2) phase for long chain molecular monolayers.
The surface properties of metals and metal oxides can be modified by adding a single layer of organic molecules. A most popular route for depositing such a molecular layer is via the formation of self-assembled monolayers (SAMs). The molecules that form SAMs have a functionality which binds to the surface and the adsorption is self-regulated to terminate at exactly one single molecular layer. The very first example, which has become the most widely studied system, of SAMs on metal surfaces consists of chemisorbed alkylthiolate on gold. Despite the simplicity in the preparation of alkanethiol SAMs and the seemingly straightforward structure of such SAMs, the detailed bonding between the sulfur head group and gold is still subject to debate. Experimental and theoretical effort in the last six years has led to a much improved understanding of this classical system of SAMs. In this review, we will highlight the most recent progress in the study of the interfacial structure of alkanethiol SAMs on gold. We focus on the important phenomenon of phase transition that occurs from n-propanethiol to n-butanethiol, and propose a unified structural model to explain how the (3 × 4) phase for short chain alkanethiol monolayers (methyl-, ethyl- and propylthiolate monolayers) changes into the (3 × 2√3)-rect./c(4 × 2) phase for long chain molecular monolayers.The surface properties of metals and metal oxides can be modified by adding a single layer of organic molecules. A most popular route for depositing such a molecular layer is via the formation of self-assembled monolayers (SAMs). The molecules that form SAMs have a functionality which binds to the surface and the adsorption is self-regulated to terminate at exactly one single molecular layer. The very first example, which has become the most widely studied system, of SAMs on metal surfaces consists of chemisorbed alkylthiolate on gold. Despite the simplicity in the preparation of alkanethiol SAMs and the seemingly straightforward structure of such SAMs, the detailed bonding between the sulfur head group and gold is still subject to debate. Experimental and theoretical effort in the last six years has led to a much improved understanding of this classical system of SAMs. In this review, we will highlight the most recent progress in the study of the interfacial structure of alkanethiol SAMs on gold. We focus on the important phenomenon of phase transition that occurs from n-propanethiol to n-butanethiol, and propose a unified structural model to explain how the (3 × 4) phase for short chain alkanethiol monolayers (methyl-, ethyl- and propylthiolate monolayers) changes into the (3 × 2√3)-rect./c(4 × 2) phase for long chain molecular monolayers.
The surface properties of metals and metal oxides can be modified by adding a single layer of organic molecules. A most popular route for depositing such a molecular layer is via the formation of self-assembled monolayers (SAMs). The molecules that form SAMs have a functionality which binds to the surface and the adsorption is self-regulated to terminate at exactly one single molecular layer. The very first example, which has become the most widely studied system, of SAMs on metal surfaces consists of chemisorbed alkylthiolate on gold. Despite the simplicity in the preparation of alkanethiol SAMs and the seemingly straightforward structure of such SAMs, the detailed bonding between the sulfur head group and gold is still subject to debate. Experimental and theoretical effort in the last six years has led to a much improved understanding of this classical system of SAMs. In this review, we will highlight the most recent progress in the study of the interfacial structure of alkanethiol SAMs on gold. We focus on the important phenomenon of phase transition that occurs from n-propanethiol to n-butanethiol, and propose a unified structural model to explain how the (3 × 4) phase for short chain alkanethiol monolayers (methyl-, ethyl- and propylthiolate monolayers) changes into the (3 × 2√3)-rect./c(4 × 2) phase for long chain molecular monolayers.
Author Li, Fangsen
Guo, Quanmin
AuthorAffiliation University of Birmingham
Tsinghua University
School of Physics and Astronomy
Department of Physics
AuthorAffiliation_xml – name: Department of Physics
– name: Tsinghua University
– name: University of Birmingham
– name: School of Physics and Astronomy
Author_xml – sequence: 1
  givenname: Quanmin
  surname: Guo
  fullname: Guo, Quanmin
– sequence: 2
  givenname: Fangsen
  surname: Li
  fullname: Li, Fangsen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24777119$$D View this record in MEDLINE/PubMed
BookMark eNqFkdtr1UAQxhep2Iu--K6sbyJEZ-9Z38rBG1QUWp_DZjNpo5tsursRz39vPKetIKJPM8P3-wZmvmNyMMUJCXnM4CUDYV956WcAZbW7R46Y1KKyUMuDu97oQ3Kc81cAYIqJB-SQS2MMY_aIxHMMfeVyxrEN2FEXvrkJy9UQAx3jFIPbYso0TvQyho7mJfXOY35NE-YYvg_TJS1XSH0c54A_aC5p8WVJSF3ZCcNUcGeh7ZaeX3x8SO73LmR8dFNPyJe3by4276uzT-8-bE7PKi9BlUowi2ikd0bWvNYtMPB9Z6ATFgFRC9lb6K3quZad4TXnzqpa6E6sk21rcUKe7_fOKV4vmEszDtljCOt1cckN0xzAAF__8V9UKaV5rWpY0ac36NKO2DVzGkaXts3tP1cA9oBPMeeEfeOH4soQp5LcEBoGza_Imo3cfN5FdrpaXvxhud36V_jJHk7Z33G_81_1Z__Sm7nrxU_PCqs3
CitedBy_id crossref_primary_10_1021_acs_jpcc_5b04961
crossref_primary_10_1002_ejic_201600892
crossref_primary_10_1021_acs_jpcc_3c00947
crossref_primary_10_3390_ijms24010718
crossref_primary_10_1088_1361_6528_ac3f54
crossref_primary_10_1021_acs_jpcc_1c06780
crossref_primary_10_1021_la5046767
crossref_primary_10_1039_C7TA09179F
crossref_primary_10_1021_acs_langmuir_7b02760
crossref_primary_10_1016_j_polymertesting_2023_108260
crossref_primary_10_1039_D0CP04164E
crossref_primary_10_1021_acs_jpcc_8b04157
crossref_primary_10_1021_acs_langmuir_2c02276
crossref_primary_10_1002_macp_201800097
crossref_primary_10_1021_acs_jpclett_2c01616
crossref_primary_10_1021_acs_langmuir_1c02187
crossref_primary_10_1021_acsomega_7b00355
crossref_primary_10_1088_1674_1056_ab821d
crossref_primary_10_1016_j_coelec_2018_11_004
crossref_primary_10_1016_j_colsurfa_2018_05_024
crossref_primary_10_1038_s41368_023_00231_6
crossref_primary_10_1021_acs_jpcc_0c07613
crossref_primary_10_1021_acs_chemrev_6b00389
crossref_primary_10_1063_1_4921649
crossref_primary_10_1021_acs_jpcc_6b09259
crossref_primary_10_1039_D0CP02866E
crossref_primary_10_3390_s23020561
crossref_primary_10_1021_acs_jpcc_7b05883
crossref_primary_10_1002_mats_202000010
crossref_primary_10_1021_acsanm_3c01979
crossref_primary_10_1016_j_cis_2023_102956
crossref_primary_10_1088_1361_6528_aa8aa7
crossref_primary_10_1021_acsami_4c02058
crossref_primary_10_1039_C7CP01653K
crossref_primary_10_1016_j_tetlet_2020_152242
crossref_primary_10_1021_acs_jpcc_9b03045
crossref_primary_10_1002_cphc_202300160
crossref_primary_10_1016_j_colcom_2021_100539
crossref_primary_10_1021_acs_analchem_1c03968
crossref_primary_10_1021_acs_jpcc_7b05817
crossref_primary_10_1016_j_matchemphys_2016_06_027
crossref_primary_10_1063_1_4973379
crossref_primary_10_1016_j_cplett_2022_139819
crossref_primary_10_1021_acs_jpcb_8b03390
crossref_primary_10_1021_acs_jpcc_0c03167
crossref_primary_10_1021_acs_jpcc_1c07171
crossref_primary_10_1002_cnma_201700124
crossref_primary_10_1021_acs_jpcc_7b11059
crossref_primary_10_1039_C9CP03613J
crossref_primary_10_1007_s12666_015_0733_3
crossref_primary_10_1038_s42004_019_0198_0
crossref_primary_10_1021_acs_chemmater_0c02798
crossref_primary_10_1002_term_2762
crossref_primary_10_1021_acs_jpcc_0c08521
crossref_primary_10_1021_acs_jpcc_0c08328
crossref_primary_10_1021_acs_langmuir_5b01876
crossref_primary_10_1021_jp510398m
crossref_primary_10_1039_C5NJ03251B
crossref_primary_10_1016_j_colsurfa_2019_123969
crossref_primary_10_1039_D4CP01739K
crossref_primary_10_1021_acs_jpclett_7b02994
crossref_primary_10_1039_C6NR06864B
crossref_primary_10_1039_D1NR05589E
crossref_primary_10_1016_j_trac_2023_117029
crossref_primary_10_1016_j_jsamd_2017_07_008
crossref_primary_10_1039_C8CP03684E
crossref_primary_10_3762_bjnano_8_265
crossref_primary_10_1016_j_carbpol_2023_121504
crossref_primary_10_1002_sstr_202300230
crossref_primary_10_1016_j_colsurfa_2024_134454
crossref_primary_10_1021_acs_biomac_4c01333
crossref_primary_10_1016_j_mtchem_2022_100939
crossref_primary_10_1063_1674_0068_29_cjcp1506122
crossref_primary_10_1021_acs_langmuir_7b01937
crossref_primary_10_1021_acs_jpcc_9b06852
crossref_primary_10_1021_acs_jpcc_9b07149
crossref_primary_10_1002_elan_202100704
crossref_primary_10_1021_acs_jpcc_7b11465
Cites_doi 10.1021/ja036143d
10.1016/j.susc.2005.10.013
10.1021/la1000254
10.1021/la951097j
10.1063/1.1850455
10.1063/1.459528
10.1021/cr9502357
10.1021/jp055538b
10.1146/annurev.physchem.52.1.107
10.1021/jp0700128
10.1103/PhysRevB.63.081405
10.1016/S0079-6816(00)00024-1
10.1021/la9610866
10.1103/PhysRevLett.90.066102
10.1021/la050814z
10.1016/j.apsusc.2010.05.062
10.1038/nnano.2006.130
10.1126/science.1148624
10.1016/j.progsurf.2012.11.001
10.1039/c1cp00037c
10.1063/1.464613
10.1021/la052231v
10.1016/j.susc.2009.01.022
10.1021/cr0300789
10.1038/nchem.1352
10.1103/PhysRevB.79.113412
10.1016/j.progsurf.2009.06.001
10.1126/science.1165291
10.1063/1.479302
10.1039/b907301a
10.1126/science.266.5188.1216
10.1021/la402582q
10.1021/nn302405r
10.1021/la7015963
10.1021/ic301079k
10.1021/la0267701
10.1016/j.susc.2009.03.002
10.1021/ja8011325
10.1039/b921281g
10.1021/la980717o
10.1016/j.cplett.2004.02.109
10.1063/1.456776
10.1524/zpch.1997.202.Part_1_2.263
10.1063/1.4806969
10.1103/PhysRevLett.97.146103
10.1039/b717686b
10.1088/0953-8984/19/30/305019
10.1021/la0107650
10.1021/la9019475
10.1021/nn402652f
10.1039/b505903h
10.1021/jp0257911
10.1021/jp311927z
10.1021/ja902629y
10.1021/la00023a033
10.1021/jp021989+
10.1021/ja800577w
10.1016/j.susc.2011.12.005
10.1021/cr030698+
10.1103/PhysRevLett.111.086102
10.1021/jp984286u
10.1021/jp310800e
10.1021/jp410738e
10.1021/la048979f
10.1103/PhysRevLett.97.166102
10.1021/jp907846u
10.1103/PhysRevB.79.195439
10.1021/ja1056517
10.1021/ja0571592
10.1016/j.progsurf.2008.04.002
10.1039/c2cp23490d
10.1021/la800905e
10.1039/b813948b
10.1021/la0100441
10.1016/S0039-6028(99)01056-0
10.1039/c0cs00056f
10.1021/jp0365054
10.1021/ja309632m
10.1021/la010803f
10.1021/jp4058127
10.1016/j.vacuum.2008.03.017
10.1063/1.467854
10.1021/la001212c
10.1246/cl.2001.942
10.1021/ja00158a012
10.1021/ja993622x
10.1021/ar9602664
10.1021/la010766s
10.1021/la9815291
10.1021/la301779m
10.1021/ja4000905
10.1088/0953-8984/18/48/R01
10.1021/la302943t
10.1021/la981374x
10.1021/ja042621o
10.1016/j.progsurf.2010.05.001
10.1021/ar200260p
10.1039/b712179m
10.1063/1.465030
10.1039/B9NR00160C
10.1016/j.progsurf.2003.12.001
10.1021/nn303734r
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7U5
8FD
L7M
DOI 10.1039/c4cp00596a
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList
Technology Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 199
ExternalDocumentID 24777119
10_1039_C4CP00596A
c4cp00596a
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
0UZ
123
1TJ
29O
2WC
4.4
53G
6TJ
705
70~
71~
7~J
87K
9M8
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACNCT
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
M4U
MVM
N9A
NDZJH
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCLXC
RCNCU
RIG
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
XJT
XOL
YNT
ZCG
-JG
AGSTE
NPM
OK1
UCJ
7X8
7U5
8FD
L7M
ID FETCH-LOGICAL-c405t-319ee74ca748286b010cfd70d39e0ee634f90f95f264d72822a95836d3d729b83
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 06:32:10 EDT 2025
Fri Jul 11 02:03:03 EDT 2025
Wed Feb 19 01:56:29 EST 2025
Thu Apr 24 23:01:39 EDT 2025
Tue Jul 01 02:45:41 EDT 2025
Thu May 19 04:18:28 EDT 2016
Sat Jun 01 02:31:17 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c405t-319ee74ca748286b010cfd70d39e0ee634f90f95f264d72822a95836d3d729b83
Notes Quanmin Guo is a Senior Lecturer at the School of Physics and Astronomy, University of Birmingham. His research interest is in the area of two-dimensional nano-materials, in particular, nanoscale structures grown on solid substrates. His current work focuses on the characterization of molecular self-assembly using scanning probe based techniques. He obtained his PhD from the University of Lancaster in 1989, and worked as a research associate in the Surface Science Research Centre at the University of Liverpool before joining the University of Birmingham in 1998.
Fangsen Li received his PhD from the School of Materials Science and Engineering of the Northwestern Polytechnical University in Xi'an, China in 2011. He visited the Nanoscale Physics Research Laboratory (NPRL) of the University of Birmingham as a joint doctoral student in 2008-2010, working on the characterization of alkanethiol SAMs with STM. He moved to his present position, postdoctoral researcher in Tsinghua University in Beijing, China in 2012. His current research is in the area of structural and electronic properties of ultra thin films and heterostructures.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24777119
PQID 1555628580
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_1620070251
rsc_primary_c4cp00596a
proquest_miscellaneous_1555628580
crossref_citationtrail_10_1039_C4CP00596A
pubmed_primary_24777119
crossref_primary_10_1039_C4CP00596A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2014
References Tao (C4CP00596A-(cit21)/*[position()=1]) 2006; 1
Li (C4CP00596A-(cit42)/*[position()=1]) 2011; 13
Maksymovych (C4CP00596A-(cit37)/*[position()=1]) 2006; 97
Sardar (C4CP00596A-(cit51)/*[position()=1]) 2009; 25
Kind (C4CP00596A-(cit10)/*[position()=1]) 2009; 84
Staub (C4CP00596A-(cit72)/*[position()=1]) 1998; 14
Tamada (C4CP00596A-(cit20)/*[position()=1]) 2001; 17
Love (C4CP00596A-(cit5)/*[position()=1]) 2005; 105
Jackson (C4CP00596A-(cit34)/*[position()=1]) 2009; 603
Chaudhuri (C4CP00596A-(cit26)/*[position()=1]) 2009; 79
Kondoh (C4CP00596A-(cit59)/*[position()=1]) 1999; 103
Dirama (C4CP00596A-(cit19)/*[position()=1]) 2007; 23
Poirier (C4CP00596A-(cit31)/*[position()=1]) 1999; 15
Mehring (C4CP00596A-(cit60)/*[position()=1]) 2010; 256
Angelova (C4CP00596A-(cit22)/*[position()=1]) 2013; 7
Nakaya (C4CP00596A-(cit103)/*[position()=1]) 2012; 10
Qian (C4CP00596A-(cit77)/*[position()=1]) 2003; 19
Li (C4CP00596A-(cit39)/*[position()=1]) 2009; 79
Sharma (C4CP00596A-(cit69)/*[position()=1]) 2008; 24
Dishner (C4CP00596A-(cit57)/*[position()=1]) 1997; 13
Raigoza (C4CP00596A-(cit23)/*[position()=1]) 2012; 134
Häkkinen (C4CP00596A-(cit50)/*[position()=1]) 2008; 37
Vericat (C4CP00596A-(cit7)/*[position()=1]) 2006; 18
Tang (C4CP00596A-(cit44)/*[position()=1]) 2012; 606
Ning (C4CP00596A-(cit55)/*[position()=1]) 2012; 14
Li (C4CP00596A-(cit41)/*[position()=1]) 2012; 28
Li (C4CP00596A-(cit40)/*[position()=1]) 2013; 138
Li (C4CP00596A-(cit100)/*[position()=1]) 2012; 6
Cao (C4CP00596A-(cit18)/*[position()=1]) 2003; 107
De Renzi (C4CP00596A-(cit25)/*[position()=1]) 2004; 108
Pensa (C4CP00596A-(cit15)/*[position()=1]) 2012; 45
Li (C4CP00596A-(cit43)/*[position()=1]) 2010; 26
Fenter (C4CP00596A-(cit87)/*[position()=1]) 1994; 266
Battaglini (C4CP00596A-(cit24)/*[position()=1]) 2012; 28
Picraux (C4CP00596A-(cit70)/*[position()=1]) 2006; 22
Häkkinen (C4CP00596A-(cit14)/*[position()=1]) 2012; 4
Samanta (C4CP00596A-(cit13)/*[position()=1]) 2011; 40
Gao (C4CP00596A-(cit45)/*[position()=1]) 2013; 29
Kondoh (C4CP00596A-(cit79)/*[position()=1]) 2003; 90
Camillone (C4CP00596A-(cit56)/*[position()=1]) 1993; 98
Fostre-Tonigold (C4CP00596A-(cit99)/*[position()=1]) 2013; 111
Noh (C4CP00596A-(cit68)/*[position()=1]) 2006; 110
Jäger (C4CP00596A-(cit82)/*[position()=1]) 1987; 202
Noh (C4CP00596A-(cit74)/*[position()=1]) 2002; 18
Toerker (C4CP00596A-(cit91)/*[position()=1]) 2000; 445
Kautz (C4CP00596A-(cit81)/*[position()=1]) 2009; 113
Carro (C4CP00596A-(cit85)/*[position()=1]) 2013; 117
Lennartz (C4CP00596A-(cit89)/*[position()=1]) 2009; 603
Maksymovych (C4CP00596A-(cit11)/*[position()=1]) 2010; 85
Voznyy (C4CP00596A-(cit35)/*[position()=1]) 2009; 131
Gao (C4CP00596A-(cit84)/*[position()=1]) 2013; 117
Torrelles (C4CP00596A-(cit86)/*[position()=1]) 2004; 20
Wilson (C4CP00596A-(cit53)/*[position()=1]) 2008; 37
Kautz (C4CP00596A-(cit80)/*[position()=1]) 2008; 130
Schwartz (C4CP00596A-(cit3)/*[position()=1]) 2001; 52
Barrena (C4CP00596A-(cit66)/*[position()=1]) 2004; 126
Maksymovych (C4CP00596A-(cit32)/*[position()=1]) 2008; 322
Ulman (C4CP00596A-(cit1)/*[position()=1]) 1996; 96
Kafer (C4CP00596A-(cit98)/*[position()=1]) 2006; 128
Grönbeck (C4CP00596A-(cit16)/*[position()=1]) 2000; 122
Vericat (C4CP00596A-(cit6)/*[position()=1]) 2005; 7
Jin (C4CP00596A-(cit52)/*[position()=1]) 2010; 2
Jadzinsky (C4CP00596A-(cit49)/*[position()=1]) 2007; 318
Bilic (C4CP00596A-(cit95)/*[position()=1]) 2005; 122
Chaudhuri (C4CP00596A-(cit83)/*[position()=1]) 2010; 12
Noh (C4CP00596A-(cit73)/*[position()=1]) 2001; 17
Smith (C4CP00596A-(cit4)/*[position()=1]) 2004; 75
Bracco (C4CP00596A-(cit64)/*[position()=1]) 2008; 82
Chaudhuri (C4CP00596A-(cit36)/*[position()=1]) 2010; 12
Yourdshahyan (C4CP00596A-(cit17)/*[position()=1]) 2001; 63
Dubois (C4CP00596A-(cit67)/*[position()=1]) 1993; 98
Rojas-Cervellera (C4CP00596A-(cit54)/*[position()=1]) 2012; 51
Chidsey (C4CP00596A-(cit27)/*[position()=1]) 1989; 91
Vericat (C4CP00596A-(cit12)/*[position()=1]) 2010; 39
Deering (C4CP00596A-(cit88)/*[position()=1]) 2005; 21
Schreiber (C4CP00596A-(cit2)/*[position()=1]) 2000; 65
Fitts (C4CP00596A-(cit75)/*[position()=1]) 2002; 18
Grönbeck (C4CP00596A-(cit93)/*[position()=1]) 2007; 111
Kawasaki (C4CP00596A-(cit61)/*[position()=1]) 2001
Camillone (C4CP00596A-(cit92)/*[position()=1]) 1994; 101
Roper (C4CP00596A-(cit78)/*[position()=1]) 2004; 389
Fitts (C4CP00596A-(cit76)/*[position()=1]) 2002; 18
Kondoh (C4CP00596A-(cit65)/*[position()=1]) 1999; 111
Templeton (C4CP00596A-(cit47)/*[position()=1]) 2000; 33
Esplandiu (C4CP00596A-(cit97)/*[position()=1]) 2006; 600
Nuzzo (C4CP00596A-(cit28)/*[position()=1]) 1990; 112
Woodruff (C4CP00596A-(cit9)/*[position()=1]) 2008; 10
Delamarche (C4CP00596A-(cit90)/*[position()=1]) 1994; 10
Li (C4CP00596A-(cit30)/*[position()=1]) 2010; 132
Okabayashi (C4CP00596A-(cit102)/*[position()=1]) 2013; 88
She (C4CP00596A-(cit101)/*[position()=1]) 2013; 117
Haick (C4CP00596A-(cit8)/*[position()=1]) 2008; 83
Hagenstrom (C4CP00596A-(cit58)/*[position()=1]) 1999; 15
Nuzzo (C4CP00596A-(cit29)/*[position()=1]) 1990; 93
Daniel (C4CP00596A-(cit48)/*[position()=1]) 2004; 104
Maksymovych (C4CP00596A-(cit38)/*[position()=1]) 2008; 130
Tang (C4CP00596A-(cit46)/*[position()=1]) 2013; 117
Dameron (C4CP00596A-(cit96)/*[position()=1]) 2005; 127
Yu (C4CP00596A-(cit33)/*[position()=1]) 2006; 97
Danısman (C4CP00596A-(cit63)/*[position()=1]) 2002; 106
Camillone (C4CP00596A-(cit71)/*[position()=1]) 1996; 12
Maksymovych (C4CP00596A-(cit94)/*[position()=1]) 2013; 135
Cavanna (C4CP00596A-(cit62)/*[position()=1]) 2007; 19
References_xml – volume: 126
  start-page: 385
  year: 2004
  ident: C4CP00596A-(cit66)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja036143d
– volume: 600
  start-page: 155
  year: 2006
  ident: C4CP00596A-(cit97)/*[position()=1]
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2005.10.013
– volume: 26
  start-page: 9484
  issue: 12
  year: 2010
  ident: C4CP00596A-(cit43)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la1000254
– volume: 12
  start-page: 2737
  year: 1996
  ident: C4CP00596A-(cit71)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la951097j
– volume: 122
  start-page: 094708
  year: 2005
  ident: C4CP00596A-(cit95)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1850455
– volume: 93
  start-page: 767
  year: 1990
  ident: C4CP00596A-(cit29)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.459528
– volume: 96
  start-page: 1533
  year: 1996
  ident: C4CP00596A-(cit1)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr9502357
– volume: 110
  start-page: 2793
  year: 2006
  ident: C4CP00596A-(cit68)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp055538b
– volume: 52
  start-page: 107
  year: 2001
  ident: C4CP00596A-(cit3)/*[position()=1]
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.52.1.107
– volume: 111
  start-page: 3325
  year: 2007
  ident: C4CP00596A-(cit93)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0700128
– volume: 63
  start-page: 81405R
  year: 2001
  ident: C4CP00596A-(cit17)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.63.081405
– volume: 65
  start-page: 151
  year: 2000
  ident: C4CP00596A-(cit2)/*[position()=1]
  publication-title: Prog. Surf. Sci.
  doi: 10.1016/S0079-6816(00)00024-1
– volume: 13
  start-page: 2318
  year: 1997
  ident: C4CP00596A-(cit57)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la9610866
– volume: 90
  start-page: 066102
  year: 2003
  ident: C4CP00596A-(cit79)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.066102
– volume: 21
  start-page: 10260
  issue: 23
  year: 2005
  ident: C4CP00596A-(cit88)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la050814z
– volume: 256
  start-page: 7265
  year: 2010
  ident: C4CP00596A-(cit60)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.05.062
– volume: 1
  start-page: 173
  year: 2006
  ident: C4CP00596A-(cit21)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2006.130
– volume: 318
  start-page: 430
  year: 2007
  ident: C4CP00596A-(cit49)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1148624
– volume: 88
  start-page: 1
  year: 2013
  ident: C4CP00596A-(cit102)/*[position()=1]
  publication-title: Prog. Surf. Sci.
  doi: 10.1016/j.progsurf.2012.11.001
– volume: 13
  start-page: 11958
  issue: 25
  year: 2011
  ident: C4CP00596A-(cit42)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp00037c
– volume: 98
  start-page: 678
  year: 1993
  ident: C4CP00596A-(cit67)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464613
– volume: 22
  start-page: 174
  year: 2006
  ident: C4CP00596A-(cit70)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la052231v
– volume: 603
  start-page: 807
  year: 2009
  ident: C4CP00596A-(cit34)/*[position()=1]
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2009.01.022
– volume: 105
  start-page: 1103
  year: 2005
  ident: C4CP00596A-(cit5)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr0300789
– volume: 4
  start-page: 443
  year: 2012
  ident: C4CP00596A-(cit14)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1352
– volume: 79
  start-page: 113412
  year: 2009
  ident: C4CP00596A-(cit39)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.79.113412
– volume: 84
  start-page: 230
  year: 2009
  ident: C4CP00596A-(cit10)/*[position()=1]
  publication-title: Prog. Surf. Sci.
  doi: 10.1016/j.progsurf.2009.06.001
– volume: 322
  start-page: 1664
  year: 2008
  ident: C4CP00596A-(cit32)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1165291
– volume: 111
  start-page: 1175
  year: 1999
  ident: C4CP00596A-(cit65)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.479302
– volume: 39
  start-page: 1805
  year: 2010
  ident: C4CP00596A-(cit12)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b907301a
– volume: 266
  start-page: 1216
  year: 1994
  ident: C4CP00596A-(cit87)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.266.5188.1216
– volume: 29
  start-page: 11082
  issue: 35
  year: 2013
  ident: C4CP00596A-(cit45)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la402582q
– volume: 10
  start-page: 8728
  year: 2012
  ident: C4CP00596A-(cit103)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn302405r
– volume: 23
  start-page: 12208
  year: 2007
  ident: C4CP00596A-(cit19)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la7015963
– volume: 51
  start-page: 11422
  issue: 21
  year: 2012
  ident: C4CP00596A-(cit54)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic301079k
– volume: 19
  start-page: 6056
  year: 2003
  ident: C4CP00596A-(cit77)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la0267701
– volume: 603
  start-page: 1156
  year: 2009
  ident: C4CP00596A-(cit89)/*[position()=1]
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2009.03.002
– volume: 130
  start-page: 6908
  year: 2008
  ident: C4CP00596A-(cit80)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8011325
– volume: 12
  start-page: 3229
  issue: 13
  year: 2010
  ident: C4CP00596A-(cit83)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b921281g
– volume: 14
  start-page: 6693
  year: 1998
  ident: C4CP00596A-(cit72)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la980717o
– volume: 389
  start-page: 87
  year: 2004
  ident: C4CP00596A-(cit78)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2004.02.109
– volume: 91
  start-page: 4421
  year: 1989
  ident: C4CP00596A-(cit27)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456776
– volume: 202
  start-page: 263
  year: 1987
  ident: C4CP00596A-(cit82)/*[position()=1]
  publication-title: Z. Phys. Chem.
  doi: 10.1524/zpch.1997.202.Part_1_2.263
– volume: 138
  start-page: 194707
  issue: 19
  year: 2013
  ident: C4CP00596A-(cit40)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4806969
– volume: 97
  start-page: 146103
  year: 2006
  ident: C4CP00596A-(cit37)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.146103
– volume: 37
  start-page: 1847
  year: 2008
  ident: C4CP00596A-(cit50)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b717686b
– volume: 19
  start-page: 305019
  year: 2007
  ident: C4CP00596A-(cit62)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/19/30/305019
– volume: 18
  start-page: 1561
  year: 2002
  ident: C4CP00596A-(cit75)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la0107650
– volume: 25
  start-page: 13840
  year: 2009
  ident: C4CP00596A-(cit51)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la9019475
– volume: 7
  start-page: 6489
  issue: 8
  year: 2013
  ident: C4CP00596A-(cit22)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn402652f
– volume: 7
  start-page: 3258
  year: 2005
  ident: C4CP00596A-(cit6)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b505903h
– volume: 106
  start-page: 11771
  year: 2002
  ident: C4CP00596A-(cit63)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0257911
– volume: 117
  start-page: 4647
  year: 2013
  ident: C4CP00596A-(cit101)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp311927z
– volume: 131
  start-page: 12989
  year: 2009
  ident: C4CP00596A-(cit35)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja902629y
– volume: 10
  start-page: 4103
  issue: 11
  year: 1994
  ident: C4CP00596A-(cit90)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la00023a033
– volume: 107
  start-page: 3803
  year: 2003
  ident: C4CP00596A-(cit18)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp021989+
– volume: 130
  start-page: 7518
  year: 2008
  ident: C4CP00596A-(cit38)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja800577w
– volume: 606
  start-page: L31
  year: 2012
  ident: C4CP00596A-(cit44)/*[position()=1]
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2011.12.005
– volume: 104
  start-page: 293
  year: 2004
  ident: C4CP00596A-(cit48)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr030698+
– volume: 111
  start-page: 086102
  year: 2013
  ident: C4CP00596A-(cit99)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.086102
– volume: 103
  start-page: 2585
  year: 1999
  ident: C4CP00596A-(cit59)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp984286u
– volume: 117
  start-page: 2160
  year: 2013
  ident: C4CP00596A-(cit85)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp310800e
– volume: 117
  start-page: 24985
  year: 2013
  ident: C4CP00596A-(cit84)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp410738e
– volume: 20
  start-page: 9396
  issue: 21
  year: 2004
  ident: C4CP00596A-(cit86)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la048979f
– volume: 97
  start-page: 166102
  year: 2006
  ident: C4CP00596A-(cit33)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.166102
– volume: 113
  start-page: 19286
  year: 2009
  ident: C4CP00596A-(cit81)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp907846u
– volume: 79
  start-page: 195439
  year: 2009
  ident: C4CP00596A-(cit26)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.79.195439
– volume: 12
  start-page: 3229
  year: 2010
  ident: C4CP00596A-(cit36)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b921281g
– volume: 132
  start-page: 13059
  year: 2010
  ident: C4CP00596A-(cit30)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1056517
– volume: 128
  start-page: 1723
  year: 2006
  ident: C4CP00596A-(cit98)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0571592
– volume: 83
  start-page: 217
  year: 2008
  ident: C4CP00596A-(cit8)/*[position()=1]
  publication-title: Prog. Surf. Sci.
  doi: 10.1016/j.progsurf.2008.04.002
– volume: 14
  start-page: 9323
  year: 2012
  ident: C4CP00596A-(cit55)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp23490d
– volume: 24
  start-page: 9937
  year: 2008
  ident: C4CP00596A-(cit69)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la800905e
– volume: 10
  start-page: 7211
  year: 2008
  ident: C4CP00596A-(cit9)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b813948b
– volume: 17
  start-page: 7280
  year: 2001
  ident: C4CP00596A-(cit73)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la0100441
– volume: 445
  start-page: 100
  issue: 1
  year: 2000
  ident: C4CP00596A-(cit91)/*[position()=1]
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(99)01056-0
– volume: 40
  start-page: 2567
  year: 2011
  ident: C4CP00596A-(cit13)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00056f
– volume: 108
  start-page: 16
  year: 2004
  ident: C4CP00596A-(cit25)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0365054
– volume: 134
  start-page: 19354
  year: 2012
  ident: C4CP00596A-(cit23)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja309632m
– volume: 18
  start-page: 1953
  year: 2002
  ident: C4CP00596A-(cit74)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la010803f
– volume: 117
  start-page: 21234
  issue: 41
  year: 2013
  ident: C4CP00596A-(cit46)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4058127
– volume: 82
  start-page: 1421
  year: 2008
  ident: C4CP00596A-(cit64)/*[position()=1]
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2008.03.017
– volume: 101
  start-page: 11031
  year: 1994
  ident: C4CP00596A-(cit92)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.467854
– volume: 17
  start-page: 1913
  year: 2001
  ident: C4CP00596A-(cit20)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la001212c
– start-page: 942
  year: 2001
  ident: C4CP00596A-(cit61)/*[position()=1]
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2001.942
– volume: 112
  start-page: 558
  year: 1990
  ident: C4CP00596A-(cit28)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00158a012
– volume: 122
  start-page: 3839
  year: 2000
  ident: C4CP00596A-(cit16)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja993622x
– volume: 33
  start-page: 27
  year: 2000
  ident: C4CP00596A-(cit47)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar9602664
– volume: 18
  start-page: 2096
  year: 2002
  ident: C4CP00596A-(cit76)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la010766s
– volume: 15
  start-page: 2435
  year: 1999
  ident: C4CP00596A-(cit58)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la9815291
– volume: 28
  start-page: 11115
  issue: 30
  year: 2012
  ident: C4CP00596A-(cit41)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la301779m
– volume: 135
  start-page: 4922
  year: 2013
  ident: C4CP00596A-(cit94)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4000905
– volume: 18
  start-page: R867
  year: 2006
  ident: C4CP00596A-(cit7)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/18/48/R01
– volume: 28
  start-page: 15095
  year: 2012
  ident: C4CP00596A-(cit24)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la302943t
– volume: 15
  start-page: 1167
  year: 1999
  ident: C4CP00596A-(cit31)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la981374x
– volume: 127
  start-page: 8697
  year: 2005
  ident: C4CP00596A-(cit96)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja042621o
– volume: 85
  start-page: 206
  year: 2010
  ident: C4CP00596A-(cit11)/*[position()=1]
  publication-title: Prog. Surf. Sci.
  doi: 10.1016/j.progsurf.2010.05.001
– volume: 45
  start-page: 1183
  year: 2012
  ident: C4CP00596A-(cit15)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200260p
– volume: 37
  start-page: 2028
  year: 2008
  ident: C4CP00596A-(cit53)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b712179m
– volume: 98
  start-page: 4234
  year: 1993
  ident: C4CP00596A-(cit56)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.465030
– volume: 2
  start-page: 343
  year: 2010
  ident: C4CP00596A-(cit52)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/B9NR00160C
– volume: 75
  start-page: 1
  year: 2004
  ident: C4CP00596A-(cit4)/*[position()=1]
  publication-title: Prog. Surf. Sci.
  doi: 10.1016/j.progsurf.2003.12.001
– volume: 6
  start-page: 9267
  year: 2012
  ident: C4CP00596A-(cit100)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn303734r
SSID ssj0001513
Score 2.4129546
Snippet The surface properties of metals and metal oxides can be modified by adding a single layer of organic molecules. A most popular route for depositing such a...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1974
SubjectTerms Alkanes
Chains
Gold
Molecular structure
Monolayers
Phase transformations
Sulfur
Surface chemistry
Title Self-assembled alkanethiol monolayers on gold surfaces: resolving the complex structure at the interface by STM
URI https://www.ncbi.nlm.nih.gov/pubmed/24777119
https://www.proquest.com/docview/1555628580
https://www.proquest.com/docview/1620070251
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagPcAF8SrdFpARXNAqkKydh7lVUUtBFC3qVuotchy7qkiTVXe3An49Yzt2UrpChUuUOO_MF_ub8TwQesN1AWtVioDDMqCgKAdM8DDIOCmTqKJSmTKdR1-TwxP6-TQ-7V2CTHTJsnwnfq2NK_kfqUIbyFVHyf6DZP1FoQHWQb6wBAnD8lYyPpa1CoD9youyBuLI6-9cB9mct_UYngGUVs2n9XTAWVtX48XqUmkHLG0EACW7ra9cqJTxK5c_xjaZrJlSMCGOJpmEOUmz1OPZ0ZDKTp2EhasZZ9d0k7WXLIy9YZrnPobs48pYZr-teHNx3jsDGY-CA96cLbrAtM4MEdGBGcL2nDQhAWjaXV7rYZutAee722QAKzLsPCOtqK_t1kOis6LmNJ-ackE-MWqfO_uPMc17Gpo5dsKK_ty7aHMCKgX0iZt7-7NPX_y4DdyH2Fg0-yIumS1h7_uzr9OXGzoJMJRLVznGMJTZQ_SgUy3wnsXJI3RHNo_RvdxJ5wlqr-MFD_CCe7zgtsEaL9jh5QP2aMEACtyhBXu0YL40OzxacPkTA1qeopOD_Vl-GHQFNwIBvH0J4zGTMqWCp1RnFyhBVxeqSsOKMBlKmRCqWKjg3wYWXaXaAZmzOCNJRWCLlRnZQhtN28hthGPFWFyGlZIRoRyIfCTjCWwDHeZZEvEReuu-YyG6bPS6KEpd3JTYCL32x85tDpa1R71y4ijgu-p5L_iG7WpRAGWOdaRwFv7lmEQb7bXCPULPrCz9vSY0TdMoYiO0BcL1zYKKubk1vMzO-h3FvFI7t3r6XXS__6ueow2QoHwBdHdZvuxw-hv7mapc
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-assembled+alkanethiol+monolayers+on+gold+surfaces%3A+resolving+the+complex+structure+at+the+interface+by+STM&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Guo%2C+Quanmin&rft.au=Li%2C+Fangsen&rft.date=2014-01-01&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=16&rft.issue=36&rft.spage=19074&rft_id=info:doi/10.1039%2FC4CP00596A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C4CP00596A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon