Robust 3D Face Recognition by Local Shape Difference Boosting
This paper proposes a new 3D face recognition approach, Collective Shape Difference Classifier (CSDC), to meet practical application requirements, i.e., high recognition performance, high computational efficiency, and easy implementation. We first present a fast posture alignment method which is sel...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 32; no. 10; pp. 1858 - 1870 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Los Alamitos, CA
IEEE
01.10.2010
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0162-8828 1939-3539 1939-3539 |
DOI | 10.1109/TPAMI.2009.200 |
Cover
Loading…
Abstract | This paper proposes a new 3D face recognition approach, Collective Shape Difference Classifier (CSDC), to meet practical application requirements, i.e., high recognition performance, high computational efficiency, and easy implementation. We first present a fast posture alignment method which is self-dependent and avoids the registration between an input face against every face in the gallery. Then, a Signed Shape Difference Map (SSDM) is computed between two aligned 3D faces as a mediate representation for the shape comparison. Based on the SSDMs, three kinds of features are used to encode both the local similarity and the change characteristics between facial shapes. The most discriminative local features are selected optimally by boosting and trained as weak classifiers for assembling three collective strong classifiers, namely, CSDCs with respect to the three kinds of features. Different schemes are designed for verification and identification to pursue high performance in both recognition and computation. The experiments, carried out on FRGC v2 with the standard protocol, yield three verification rates all better than 97.9 percent with the FAR of 0.1 percent and rank-1 recognition rates above 98 percent. Each recognition against a gallery with 1,000 faces only takes about 3.6 seconds. These experimental results demonstrate that our algorithm is not only effective but also time efficient. |
---|---|
AbstractList | This paper proposes a new 3D face recognition approach, Collective Shape Difference Classifier (CSDC), to meet practical application requirements, i.e., high recognition performance, high computational efficiency, and easy implementation. We first present a fast posture alignment method which is self-dependent and avoids the registration between an input face against every face in the gallery. Then, a Signed Shape Difference Map (SSDM) is computed between two aligned 3D faces as a mediate representation for the shape comparison. Based on the SSDMs, three kinds of features are used to encode both the local similarity and the change characteristics between facial shapes. The most discriminative local features are selected optimally by boosting and trained as weak classifiers for assembling three collective strong classifiers, namely, CSDCs with respect to the three kinds of features. Different schemes are designed for verification and identification to pursue high performance in both recognition and computation. The experiments, carried out on FRGC v2 with the standard protocol, yield three verification rates all better than 97.9 percent with the FAR of 0.1 percent and rank-1 recognition rates above 98 percent. Each recognition against a gallery with 1,000 faces only takes about 3.6 seconds. These experimental results demonstrate that our algorithm is not only effective but also time efficient.This paper proposes a new 3D face recognition approach, Collective Shape Difference Classifier (CSDC), to meet practical application requirements, i.e., high recognition performance, high computational efficiency, and easy implementation. We first present a fast posture alignment method which is self-dependent and avoids the registration between an input face against every face in the gallery. Then, a Signed Shape Difference Map (SSDM) is computed between two aligned 3D faces as a mediate representation for the shape comparison. Based on the SSDMs, three kinds of features are used to encode both the local similarity and the change characteristics between facial shapes. The most discriminative local features are selected optimally by boosting and trained as weak classifiers for assembling three collective strong classifiers, namely, CSDCs with respect to the three kinds of features. Different schemes are designed for verification and identification to pursue high performance in both recognition and computation. The experiments, carried out on FRGC v2 with the standard protocol, yield three verification rates all better than 97.9 percent with the FAR of 0.1 percent and rank-1 recognition rates above 98 percent. Each recognition against a gallery with 1,000 faces only takes about 3.6 seconds. These experimental results demonstrate that our algorithm is not only effective but also time efficient. This paper proposes a new 3D face recognition approach, Collective Shape Difference Classifier (CSDC), to meet practical application requirements, i.e., high recognition performance, high computational efficiency, and easy implementation. We first present a fast posture alignment method which is self-dependent and avoids the registration between an input face against every face in the gallery. Then, a Signed Shape Difference Map (SSDM) is computed between two aligned 3D faces as a mediate representation for the shape comparison. Based on the SSDMs, three kinds of features are used to encode both the local similarity and the change characteristics between facial shapes. The most discriminative local features are selected optimally by boosting and trained as weak classifiers for assembling three collective strong classifiers, namely, CSDCs with respect to the three kinds of features. Different schemes are designed for verification and identification to pursue high performance in both recognition and computation. The experiments, carried out on FRGC v2 with the standard protocol, yield three verification rates all better than 97.9 percent with the FAR of 0.1 percent and rank-1 recognition rates above 98 percent. Each recognition against a gallery with 1,000 faces only takes about 3.6 seconds. These experimental results demonstrate that our algorithm is not only effective but also time efficient. |
Author | Yueming Wang Jianzhuang Liu Xiaoou Tang |
Author_xml | – sequence: 1 givenname: Yueming surname: Wang fullname: Wang, Yueming email: ymingwang@gmail.com organization: Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong. ymingwang@gmail.com – sequence: 2 givenname: Jianzhuang surname: Liu fullname: Liu, Jianzhuang – sequence: 3 givenname: Xiaoou surname: Tang fullname: Tang, Xiaoou |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23212914$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20724762$$D View this record in MEDLINE/PubMed |
BookMark | eNp90cFu1DAQBmALFdFt4coFCUVCCC7ZztiOYx84lJaWSouKSjlbjuMUV1l7GyeHvj0OuwWpUrmML98_I88ckL0QgyPkNcISEdTR9ffjbxdLCqDm8owsUDFVsoqpPbIAFLSUksp9cpDSLQDyCtgLsk-hprwWdEE-XcVmSmPBToszY11x5Wy8CX70MRTNfbGK1vTFj19m44pT33VucCGrzzGm0Yebl-R5Z_rkXu3eQ_Lz7Mv1yddydXl-cXK8Ki2HaiwZNEKCtLatOiZqSgV0rVF149qWopG8QWUN7wS3SKVVzChE01LW5olSNeyQfNj23QzxbnJp1GufrOt7E1yckq65VEIKgVl-_K9EUSNDEJxn-u4RvY3TEPI_NAKVrIJKQVZvd2pq1q7Vm8GvzXCvH1aYwfsdMCkvqxtMsD79c4wiVTiP41tnh5jS4Dpt_WjmRY-D8X2eqeeL6j8X1fNF55Jjy0exh85PBt5sA9459xdXrOYcFPsNGfunBw |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1177_1729881418787743 crossref_primary_10_1049_iet_bmt_2014_0017 crossref_primary_10_1016_j_jnca_2019_102423 crossref_primary_10_1007_s10462_015_9431_0 crossref_primary_10_1016_j_ins_2015_03_063 crossref_primary_10_3390_s22062388 crossref_primary_10_1016_j_patcog_2015_09_035 crossref_primary_10_1109_ACCESS_2022_3158950 crossref_primary_10_3390_jimaging6110112 crossref_primary_10_1016_j_patcog_2022_108971 crossref_primary_10_1016_j_patrec_2012_05_015 crossref_primary_10_1080_18756891_2013_802873 crossref_primary_10_2139_ssrn_4065465 crossref_primary_10_1016_j_engappai_2022_104669 crossref_primary_10_1155_2019_3547416 crossref_primary_10_1109_THMS_2014_2340578 crossref_primary_10_1007_s11554_023_01257_z crossref_primary_10_1007_s10044_014_0439_x crossref_primary_10_1016_j_patcog_2018_12_006 crossref_primary_10_1186_1687_5281_2014_51 crossref_primary_10_1109_TCYB_2014_2308091 crossref_primary_10_1049_iet_cvi_2011_0105 crossref_primary_10_1155_2010_508089 crossref_primary_10_1007_s00371_013_0869_2 crossref_primary_10_5937_EkoIzazov1813119L crossref_primary_10_1016_j_patrec_2013_09_027 crossref_primary_10_1007_s10851_017_0728_2 crossref_primary_10_1007_s11042_023_14407_z crossref_primary_10_1109_TIFS_2012_2206807 crossref_primary_10_1109_TIFS_2014_2337258 crossref_primary_10_3724_SP_J_1146_2010_01182 crossref_primary_10_1016_j_cag_2013_04_001 crossref_primary_10_1007_s11704_015_4590_3 crossref_primary_10_1016_j_imavis_2019_06_016 crossref_primary_10_1016_j_neucom_2016_06_012 crossref_primary_10_1016_j_patcog_2013_07_018 crossref_primary_10_1016_j_patcog_2015_12_017 crossref_primary_10_1016_j_cviu_2016_04_012 crossref_primary_10_1007_s11263_014_0785_6 crossref_primary_10_1109_TIFS_2012_2209876 crossref_primary_10_1109_TPAMI_2016_2565473 crossref_primary_10_1109_TMM_2012_2231059 crossref_primary_10_1016_j_neucom_2019_07_047 crossref_primary_10_5573_ieek_2013_50_5_199 crossref_primary_10_1016_j_jvcir_2019_02_002 crossref_primary_10_3923_rjit_2013_200_208 crossref_primary_10_1109_TIFS_2012_2235833 crossref_primary_10_1145_3615863 crossref_primary_10_1016_j_patrec_2019_10_035 crossref_primary_10_1007_s13319_019_0232_0 crossref_primary_10_1016_j_patrec_2016_04_003 crossref_primary_10_1109_TIP_2012_2222897 crossref_primary_10_1109_TIP_2012_2183882 crossref_primary_10_1007_s10044_015_0456_4 crossref_primary_10_1007_s11760_025_03824_2 crossref_primary_10_1016_j_imavis_2016_05_008 crossref_primary_10_1142_S0218348X17500256 crossref_primary_10_1016_j_neucom_2013_09_014 crossref_primary_10_1016_j_patcog_2017_08_003 crossref_primary_10_1049_iet_cvi_2014_0379 crossref_primary_10_1007_s11042_020_09095_y crossref_primary_10_1007_s11760_016_0871_z crossref_primary_10_1016_j_imavis_2014_12_003 crossref_primary_10_1016_j_compind_2013_04_003 crossref_primary_10_1109_TIFS_2012_2186293 crossref_primary_10_1016_j_image_2021_116464 crossref_primary_10_1016_j_patrec_2016_03_028 crossref_primary_10_1016_j_measurement_2023_113729 crossref_primary_10_1016_j_patcog_2012_09_016 crossref_primary_10_1007_s00371_014_0932_7 crossref_primary_10_1007_s11263_023_01825_7 crossref_primary_10_1016_j_dsp_2013_12_006 crossref_primary_10_1142_S0218001412550038 crossref_primary_10_1049_iet_bmt_2013_0089 crossref_primary_10_1109_TIP_2013_2271115 crossref_primary_10_1117_1_JEI_24_2_023031 crossref_primary_10_3390_app10031047 crossref_primary_10_1016_j_cag_2015_05_027 crossref_primary_10_1109_TIFS_2018_2889255 crossref_primary_10_1007_s11042_013_1556_z crossref_primary_10_1007_s11771_015_2700_x crossref_primary_10_1016_j_ijleo_2015_02_083 crossref_primary_10_1109_TPAMI_2013_48 crossref_primary_10_1016_j_patcog_2016_08_019 crossref_primary_10_1142_S0218001420500020 crossref_primary_10_1007_s11760_024_03128_x crossref_primary_10_1007_s11042_022_12730_5 crossref_primary_10_1016_j_patcog_2012_06_023 crossref_primary_10_1016_j_neucom_2013_11_018 |
Cites_doi | 10.1109/CVPR.2007.383053 10.1023/A:1007614523901 10.1109/CVPR.2005.581 10.1145/954339.954342 10.1109/TPAMI.2006.15 10.1109/CVPR.2005.561 10.1109/TIP.2002.999679 10.1007/s11263-005-1085-y 10.1109/AFGR.2000.840640 10.1016/S0262-8856(99)00052-9 10.1109/ICPR.2000.906199 10.1007/3-540-44887-X_8 10.1109/CVPR.2005.584 10.1007/s11263-007-0085-5 10.1007/11612032_59 10.1109/CVPR.2007.383277 10.1109/ICIP.2004.1421331 10.1109/cvpr.2006.96 10.1109/TPAMI.2004.57 10.1109/CVPR.2007.383279 10.1109/AFGR.1998.670977 10.1109/TPAMI.2007.1011 10.1109/ICIP.2004.1421475 10.1109/AFGR.2004.1301549 10.1109/CVPR.2005.573 10.1016/j.cviu.2005.05.005 10.1109/TPAMI.2007.1017 10.1007/978-3-642-01793-3_2 10.1007/11744047_32 10.1007/978-3-540-88682-2_46 10.1007/978-3-540-74549-5_2 10.1117/12.604171 10.1109/CVPR.1992.223253 10.1109/AMFG.2003.1240848 10.1109/TPAMI.2007.70784 10.1109/CVPR.2001.990517 10.1007/11527923_93 10.1109/ISSPA.2003.1224850 10.1109/CVPR.2006.13 10.1109/ICPR.1992.201567 10.1109/TPAMI.2006.235 10.1016/0031-3203(95)00067-4 10.1109/FGR.2006.6 10.1109/34.121791 10.1109/TPAMI.2006.210 10.1109/TIFS.2007.916287 10.1109/VSMM.1997.622339 10.5244/C.20.79 10.1109/CVPR.2005.268 10.1109/TPAMI.2007.1105 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010 |
DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 |
DOI | 10.1109/TPAMI.2009.200 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Applied Sciences |
EISSN | 1939-3539 |
EndPage | 1870 |
ExternalDocumentID | 2722166191 20724762 23212914 10_1109_TPAMI_2009_200 5374409 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION RIG IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 |
ID | FETCH-LOGICAL-c405t-30b6808ccd5f3672260fda97bedd21a84b19ca4f64c128c93a911ad23dffe89b3 |
IEDL.DBID | RIE |
ISSN | 0162-8828 1939-3539 |
IngestDate | Fri Jul 11 13:09:15 EDT 2025 Fri Jul 11 05:42:09 EDT 2025 Sun Jun 29 16:31:38 EDT 2025 Mon Jul 21 05:52:51 EDT 2025 Mon Jul 21 09:16:20 EDT 2025 Tue Aug 05 12:03:36 EDT 2025 Thu Apr 24 23:11:47 EDT 2025 Tue Aug 26 16:58:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Geometrical shape High performance Image registration signed shape difference map Face recognition Image processing Transmission protocol Pattern recognition Object recognition Aggregate model Posture collective shape difference classifier Alignment Supervised learning Authentication Classification Facies Tridimensional image 3D shape matching Pattern analysis Artificial intelligence Pattern matching |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-30b6808ccd5f3672260fda97bedd21a84b19ca4f64c128c93a911ad23dffe89b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 20724762 |
PQID | 1028350590 |
PQPubID | 85458 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_748968661 proquest_journals_1028350590 pascalfrancis_primary_23212914 ieee_primary_5374409 proquest_miscellaneous_1671310644 crossref_citationtrail_10_1109_TPAMI_2009_200 crossref_primary_10_1109_TPAMI_2009_200 pubmed_primary_20724762 |
PublicationCentury | 2000 |
PublicationDate | 2010-10-01 |
PublicationDateYYYYMMDD | 2010-10-01 |
PublicationDate_xml | – month: 10 year: 2010 text: 2010-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Los Alamitos, CA |
PublicationPlace_xml | – name: Los Alamitos, CA – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2010 |
Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref54 Moreno (ref10) Phillips (ref35) 2006 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 Phillips (ref34) 2002 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Pan (ref33) ref37 ref36 ref31 ref30 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref11 doi: 10.1109/CVPR.2007.383053 – ident: ref41 doi: 10.1023/A:1007614523901 – ident: ref29 doi: 10.1109/CVPR.2005.581 – ident: ref2 doi: 10.1145/954339.954342 – ident: ref13 doi: 10.1109/TPAMI.2006.15 – ident: ref20 doi: 10.1109/CVPR.2005.561 – ident: ref49 doi: 10.1109/TIP.2002.999679 – ident: ref37 doi: 10.1007/s11263-005-1085-y – ident: ref27 doi: 10.1109/AFGR.2000.840640 – ident: ref32 doi: 10.1016/S0262-8856(99)00052-9 – ident: ref16 doi: 10.1109/ICPR.2000.906199 – year: 2006 ident: ref35 article-title: FRVT 2006 and ICE 2006 Large-Scale Results – ident: ref36 doi: 10.1007/3-540-44887-X_8 – start-page: 2168 volume-title: Proc. IEEE Int’l Joint Conf. Neural Network ident: ref33 article-title: 3D Face Recognition by Profile and Surface Matching – ident: ref30 doi: 10.1109/CVPR.2005.584 – ident: ref44 doi: 10.1007/s11263-007-0085-5 – ident: ref12 doi: 10.1007/11612032_59 – ident: ref40 doi: 10.1109/CVPR.2007.383277 – ident: ref19 doi: 10.1109/ICIP.2004.1421331 – ident: ref21 doi: 10.1109/cvpr.2006.96 – ident: ref52 doi: 10.1109/TPAMI.2004.57 – ident: ref25 doi: 10.1109/CVPR.2007.383279 – ident: ref15 doi: 10.1109/AFGR.1998.670977 – ident: ref47 doi: 10.1109/TPAMI.2007.1011 – ident: ref28 doi: 10.1109/ICIP.2004.1421475 – ident: ref23 doi: 10.1109/AFGR.2004.1301549 – ident: ref26 doi: 10.1109/CVPR.2005.573 – ident: ref7 doi: 10.1016/j.cviu.2005.05.005 – ident: ref42 doi: 10.1109/TPAMI.2007.1017 – ident: ref54 doi: 10.1007/978-3-642-01793-3_2 – volume-title: Proc. Irish Machine Vision and Image Processing Conf ident: ref10 article-title: Face Recognition Using 3D Surface-Extracted Descriptors – ident: ref24 doi: 10.1007/11744047_32 – ident: ref46 doi: 10.1007/978-3-540-88682-2_46 – ident: ref51 doi: 10.1007/978-3-540-74549-5_2 – ident: ref5 doi: 10.1117/12.604171 – ident: ref14 doi: 10.1109/CVPR.1992.223253 – ident: ref1 doi: 10.1109/AMFG.2003.1240848 – ident: ref22 doi: 10.1109/TPAMI.2007.70784 – ident: ref48 doi: 10.1109/CVPR.2001.990517 – ident: ref4 doi: 10.1007/11527923_93 – ident: ref18 doi: 10.1109/ISSPA.2003.1224850 – ident: ref53 doi: 10.1109/CVPR.2006.13 – ident: ref8 doi: 10.1109/ICPR.1992.201567 – ident: ref9 doi: 10.1109/TPAMI.2006.235 – ident: ref50 doi: 10.1016/0031-3203(95)00067-4 – ident: ref39 doi: 10.1109/FGR.2006.6 – ident: ref3 doi: 10.1109/34.121791 – ident: ref6 doi: 10.1109/TPAMI.2006.210 – year: 2002 ident: ref34 article-title: FRVT 2002: Overview and Summary – ident: ref45 doi: 10.1109/TIFS.2007.916287 – ident: ref17 doi: 10.1109/VSMM.1997.622339 – ident: ref31 doi: 10.5244/C.20.79 – ident: ref38 doi: 10.1109/CVPR.2005.268 – ident: ref43 doi: 10.1109/TPAMI.2007.1105 |
SSID | ssj0014503 |
Score | 2.4250684 |
Snippet | This paper proposes a new 3D face recognition approach, Collective Shape Difference Classifier (CSDC), to meet practical application requirements, i.e., high... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1858 |
SubjectTerms | 3D shape matching Algorithms Alignment Applied sciences Artificial Intelligence Assembly Biometric Identification - methods Boosting Classifiers collective shape difference classifier Computation Computational efficiency Computer science; control theory; systems Data mining Exact sciences and technology Face - anatomy & histology Face recognition Galleries Humans Image Processing, Computer-Assisted - methods Nose - physiology Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Posture - physiology Principal Component Analysis Recognition Robustness ROC Curve Rough surfaces Shape signed shape difference map Studies Surface roughness Testing Three dimensional |
Title | Robust 3D Face Recognition by Local Shape Difference Boosting |
URI | https://ieeexplore.ieee.org/document/5374409 https://www.ncbi.nlm.nih.gov/pubmed/20724762 https://www.proquest.com/docview/1028350590 https://www.proquest.com/docview/1671310644 https://www.proquest.com/docview/748968661 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PcGBQstHoFRGQuJCttnE8a6PhbIqiEUIWqm3yB47QgIlFZsc4Ncz4ziBIlbiEkXKKMnansyb9cx7AM-VtAozz20f1qTSZJhS3HFpnvvMOvRGOm5OXn9Q55fy3VV5tQMvp14Y730oPvMzPg17-a7Fnv8qOykLprPTu7BLidvQqzXtGMgyqCATgiEPpzQiEjTOM31y8fF0_XagpqQD0_9mi1wuVH4jFgVxFS6NNBsanXqQtdiOO0P8We3Denzzoezk66zv7Ax__kXq-L8_7S7ciUBUnA4r5x7s-OYA9keRBxF9_gBu_8FYeAjcL9ZvOlGciZVBLz6N9UdtI-wP8Z4jo_j8xVx7cRalV8jqVdtuuLz6Plyu3ly8Pk-jAkOKBOS6tMgsS3MgurIu1IKgWlY7oxfWO5fPzVLauUYjayWR4hzqwtC307i8cPSEpbbFA9hr2sY_AmG0wdxSDqyRPs6F17XPUJXoFFpLsDWBdJyLCiM9OatkfKtCmpLpKkwjy2ZqPiTwYrK_Hog5tloe8nhPVnGoEzi-MdXTdcKYBILmMoGjce6r6NibKuCxkjt2E3g2XSaX5H0W0_i2JxtFmT-l2pJuIbbYMOmPWhI4SuDhsKx-Pz-uzsf_fu8ncCtUMISCwiPY6773_ikBo84eB4_4Bc_kBxg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcgAOFFo-AqUYCYkL2ebD8a6PhbLawm6FYCv1FtljR0igpGKTA_x6xo4TKGIlLlGkjJKs7cm8Wc-8B_BScC0wsa7tQ6uYqwRjijsmzjKbaINWceOak1fnYnHB318WlzvweuyFsdb64jM7cad-L9802Lm_yo6L3NHZyRtwk-J-kfbdWuOeAS-8DjJhGPJxSiQCRWOayOP1x5PVWU9OSQdHAJxMMz4V2bVo5OVVXHGk2tD4VL2wxXbk6SPQfA9Ww7v3hSdfJ12rJ_jzL1rH__1x9-BugKLspF8792HH1vuwN8g8sOD1-3DnD87CA3AdY92mZfkpmyu07NNQgdTUTP9gSxcb2ecv6sqy0yC-QlZvmmbjCqwfwMX83frtIg4aDDESlGvjPNFOnAPRFFUupgTWksooOdXWmCxVM65TiYpXgiNFOpS5oq-nMllu6AkzqfOHsFs3tX0MTEmFmaYsWCJ9nnMrK5ugKNAI1JqAawTxMBclBoJyp5PxrfSJSiJLP41OOFO6QwSvRvurnppjq-WBG-_RKgx1BEfXpnq8TiiTYFDKIzgc5r4Mrr0pPSIrXM9uBC_Gy-SUbqdF1bbpyEZQ7k_JNqdbsC02jvZHzAgeRfCoX1a_nx9W55N_v_dzuLVYr5bl8uz8w1O47esZfHnhIey23zv7jGBSq4-8d_wCq-YKYQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+3D+face+recognition+by+local+shape+difference+boosting&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Wang%2C+Yueming&rft.au=Liu%2C+Jianzhuang&rft.au=Tang%2C+Xiaoou&rft.date=2010-10-01&rft.eissn=1939-3539&rft.volume=32&rft.issue=10&rft.spage=1858&rft_id=info:doi/10.1109%2FTPAMI.2009.200&rft_id=info%3Apmid%2F20724762&rft.externalDocID=20724762 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |