Robust 3D Face Recognition by Local Shape Difference Boosting

This paper proposes a new 3D face recognition approach, Collective Shape Difference Classifier (CSDC), to meet practical application requirements, i.e., high recognition performance, high computational efficiency, and easy implementation. We first present a fast posture alignment method which is sel...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 32; no. 10; pp. 1858 - 1870
Main Authors Wang, Yueming, Liu, Jianzhuang, Tang, Xiaoou
Format Journal Article
LanguageEnglish
Published Los Alamitos, CA IEEE 01.10.2010
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
1939-3539
DOI10.1109/TPAMI.2009.200

Cover

Loading…
Abstract This paper proposes a new 3D face recognition approach, Collective Shape Difference Classifier (CSDC), to meet practical application requirements, i.e., high recognition performance, high computational efficiency, and easy implementation. We first present a fast posture alignment method which is self-dependent and avoids the registration between an input face against every face in the gallery. Then, a Signed Shape Difference Map (SSDM) is computed between two aligned 3D faces as a mediate representation for the shape comparison. Based on the SSDMs, three kinds of features are used to encode both the local similarity and the change characteristics between facial shapes. The most discriminative local features are selected optimally by boosting and trained as weak classifiers for assembling three collective strong classifiers, namely, CSDCs with respect to the three kinds of features. Different schemes are designed for verification and identification to pursue high performance in both recognition and computation. The experiments, carried out on FRGC v2 with the standard protocol, yield three verification rates all better than 97.9 percent with the FAR of 0.1 percent and rank-1 recognition rates above 98 percent. Each recognition against a gallery with 1,000 faces only takes about 3.6 seconds. These experimental results demonstrate that our algorithm is not only effective but also time efficient.
AbstractList This paper proposes a new 3D face recognition approach, Collective Shape Difference Classifier (CSDC), to meet practical application requirements, i.e., high recognition performance, high computational efficiency, and easy implementation. We first present a fast posture alignment method which is self-dependent and avoids the registration between an input face against every face in the gallery. Then, a Signed Shape Difference Map (SSDM) is computed between two aligned 3D faces as a mediate representation for the shape comparison. Based on the SSDMs, three kinds of features are used to encode both the local similarity and the change characteristics between facial shapes. The most discriminative local features are selected optimally by boosting and trained as weak classifiers for assembling three collective strong classifiers, namely, CSDCs with respect to the three kinds of features. Different schemes are designed for verification and identification to pursue high performance in both recognition and computation. The experiments, carried out on FRGC v2 with the standard protocol, yield three verification rates all better than 97.9 percent with the FAR of 0.1 percent and rank-1 recognition rates above 98 percent. Each recognition against a gallery with 1,000 faces only takes about 3.6 seconds. These experimental results demonstrate that our algorithm is not only effective but also time efficient.This paper proposes a new 3D face recognition approach, Collective Shape Difference Classifier (CSDC), to meet practical application requirements, i.e., high recognition performance, high computational efficiency, and easy implementation. We first present a fast posture alignment method which is self-dependent and avoids the registration between an input face against every face in the gallery. Then, a Signed Shape Difference Map (SSDM) is computed between two aligned 3D faces as a mediate representation for the shape comparison. Based on the SSDMs, three kinds of features are used to encode both the local similarity and the change characteristics between facial shapes. The most discriminative local features are selected optimally by boosting and trained as weak classifiers for assembling three collective strong classifiers, namely, CSDCs with respect to the three kinds of features. Different schemes are designed for verification and identification to pursue high performance in both recognition and computation. The experiments, carried out on FRGC v2 with the standard protocol, yield three verification rates all better than 97.9 percent with the FAR of 0.1 percent and rank-1 recognition rates above 98 percent. Each recognition against a gallery with 1,000 faces only takes about 3.6 seconds. These experimental results demonstrate that our algorithm is not only effective but also time efficient.
This paper proposes a new 3D face recognition approach, Collective Shape Difference Classifier (CSDC), to meet practical application requirements, i.e., high recognition performance, high computational efficiency, and easy implementation. We first present a fast posture alignment method which is self-dependent and avoids the registration between an input face against every face in the gallery. Then, a Signed Shape Difference Map (SSDM) is computed between two aligned 3D faces as a mediate representation for the shape comparison. Based on the SSDMs, three kinds of features are used to encode both the local similarity and the change characteristics between facial shapes. The most discriminative local features are selected optimally by boosting and trained as weak classifiers for assembling three collective strong classifiers, namely, CSDCs with respect to the three kinds of features. Different schemes are designed for verification and identification to pursue high performance in both recognition and computation. The experiments, carried out on FRGC v2 with the standard protocol, yield three verification rates all better than 97.9 percent with the FAR of 0.1 percent and rank-1 recognition rates above 98 percent. Each recognition against a gallery with 1,000 faces only takes about 3.6 seconds. These experimental results demonstrate that our algorithm is not only effective but also time efficient.
Author Yueming Wang
Jianzhuang Liu
Xiaoou Tang
Author_xml – sequence: 1
  givenname: Yueming
  surname: Wang
  fullname: Wang, Yueming
  email: ymingwang@gmail.com
  organization: Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong. ymingwang@gmail.com
– sequence: 2
  givenname: Jianzhuang
  surname: Liu
  fullname: Liu, Jianzhuang
– sequence: 3
  givenname: Xiaoou
  surname: Tang
  fullname: Tang, Xiaoou
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23212914$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20724762$$D View this record in MEDLINE/PubMed
BookMark eNp90cFu1DAQBmALFdFt4coFCUVCCC7ZztiOYx84lJaWSouKSjlbjuMUV1l7GyeHvj0OuwWpUrmML98_I88ckL0QgyPkNcISEdTR9ffjbxdLCqDm8owsUDFVsoqpPbIAFLSUksp9cpDSLQDyCtgLsk-hprwWdEE-XcVmSmPBToszY11x5Wy8CX70MRTNfbGK1vTFj19m44pT33VucCGrzzGm0Yebl-R5Z_rkXu3eQ_Lz7Mv1yddydXl-cXK8Ki2HaiwZNEKCtLatOiZqSgV0rVF149qWopG8QWUN7wS3SKVVzChE01LW5olSNeyQfNj23QzxbnJp1GufrOt7E1yckq65VEIKgVl-_K9EUSNDEJxn-u4RvY3TEPI_NAKVrIJKQVZvd2pq1q7Vm8GvzXCvH1aYwfsdMCkvqxtMsD79c4wiVTiP41tnh5jS4Dpt_WjmRY-D8X2eqeeL6j8X1fNF55Jjy0exh85PBt5sA9459xdXrOYcFPsNGfunBw
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1177_1729881418787743
crossref_primary_10_1049_iet_bmt_2014_0017
crossref_primary_10_1016_j_jnca_2019_102423
crossref_primary_10_1007_s10462_015_9431_0
crossref_primary_10_1016_j_ins_2015_03_063
crossref_primary_10_3390_s22062388
crossref_primary_10_1016_j_patcog_2015_09_035
crossref_primary_10_1109_ACCESS_2022_3158950
crossref_primary_10_3390_jimaging6110112
crossref_primary_10_1016_j_patcog_2022_108971
crossref_primary_10_1016_j_patrec_2012_05_015
crossref_primary_10_1080_18756891_2013_802873
crossref_primary_10_2139_ssrn_4065465
crossref_primary_10_1016_j_engappai_2022_104669
crossref_primary_10_1155_2019_3547416
crossref_primary_10_1109_THMS_2014_2340578
crossref_primary_10_1007_s11554_023_01257_z
crossref_primary_10_1007_s10044_014_0439_x
crossref_primary_10_1016_j_patcog_2018_12_006
crossref_primary_10_1186_1687_5281_2014_51
crossref_primary_10_1109_TCYB_2014_2308091
crossref_primary_10_1049_iet_cvi_2011_0105
crossref_primary_10_1155_2010_508089
crossref_primary_10_1007_s00371_013_0869_2
crossref_primary_10_5937_EkoIzazov1813119L
crossref_primary_10_1016_j_patrec_2013_09_027
crossref_primary_10_1007_s10851_017_0728_2
crossref_primary_10_1007_s11042_023_14407_z
crossref_primary_10_1109_TIFS_2012_2206807
crossref_primary_10_1109_TIFS_2014_2337258
crossref_primary_10_3724_SP_J_1146_2010_01182
crossref_primary_10_1016_j_cag_2013_04_001
crossref_primary_10_1007_s11704_015_4590_3
crossref_primary_10_1016_j_imavis_2019_06_016
crossref_primary_10_1016_j_neucom_2016_06_012
crossref_primary_10_1016_j_patcog_2013_07_018
crossref_primary_10_1016_j_patcog_2015_12_017
crossref_primary_10_1016_j_cviu_2016_04_012
crossref_primary_10_1007_s11263_014_0785_6
crossref_primary_10_1109_TIFS_2012_2209876
crossref_primary_10_1109_TPAMI_2016_2565473
crossref_primary_10_1109_TMM_2012_2231059
crossref_primary_10_1016_j_neucom_2019_07_047
crossref_primary_10_5573_ieek_2013_50_5_199
crossref_primary_10_1016_j_jvcir_2019_02_002
crossref_primary_10_3923_rjit_2013_200_208
crossref_primary_10_1109_TIFS_2012_2235833
crossref_primary_10_1145_3615863
crossref_primary_10_1016_j_patrec_2019_10_035
crossref_primary_10_1007_s13319_019_0232_0
crossref_primary_10_1016_j_patrec_2016_04_003
crossref_primary_10_1109_TIP_2012_2222897
crossref_primary_10_1109_TIP_2012_2183882
crossref_primary_10_1007_s10044_015_0456_4
crossref_primary_10_1007_s11760_025_03824_2
crossref_primary_10_1016_j_imavis_2016_05_008
crossref_primary_10_1142_S0218348X17500256
crossref_primary_10_1016_j_neucom_2013_09_014
crossref_primary_10_1016_j_patcog_2017_08_003
crossref_primary_10_1049_iet_cvi_2014_0379
crossref_primary_10_1007_s11042_020_09095_y
crossref_primary_10_1007_s11760_016_0871_z
crossref_primary_10_1016_j_imavis_2014_12_003
crossref_primary_10_1016_j_compind_2013_04_003
crossref_primary_10_1109_TIFS_2012_2186293
crossref_primary_10_1016_j_image_2021_116464
crossref_primary_10_1016_j_patrec_2016_03_028
crossref_primary_10_1016_j_measurement_2023_113729
crossref_primary_10_1016_j_patcog_2012_09_016
crossref_primary_10_1007_s00371_014_0932_7
crossref_primary_10_1007_s11263_023_01825_7
crossref_primary_10_1016_j_dsp_2013_12_006
crossref_primary_10_1142_S0218001412550038
crossref_primary_10_1049_iet_bmt_2013_0089
crossref_primary_10_1109_TIP_2013_2271115
crossref_primary_10_1117_1_JEI_24_2_023031
crossref_primary_10_3390_app10031047
crossref_primary_10_1016_j_cag_2015_05_027
crossref_primary_10_1109_TIFS_2018_2889255
crossref_primary_10_1007_s11042_013_1556_z
crossref_primary_10_1007_s11771_015_2700_x
crossref_primary_10_1016_j_ijleo_2015_02_083
crossref_primary_10_1109_TPAMI_2013_48
crossref_primary_10_1016_j_patcog_2016_08_019
crossref_primary_10_1142_S0218001420500020
crossref_primary_10_1007_s11760_024_03128_x
crossref_primary_10_1007_s11042_022_12730_5
crossref_primary_10_1016_j_patcog_2012_06_023
crossref_primary_10_1016_j_neucom_2013_11_018
Cites_doi 10.1109/CVPR.2007.383053
10.1023/A:1007614523901
10.1109/CVPR.2005.581
10.1145/954339.954342
10.1109/TPAMI.2006.15
10.1109/CVPR.2005.561
10.1109/TIP.2002.999679
10.1007/s11263-005-1085-y
10.1109/AFGR.2000.840640
10.1016/S0262-8856(99)00052-9
10.1109/ICPR.2000.906199
10.1007/3-540-44887-X_8
10.1109/CVPR.2005.584
10.1007/s11263-007-0085-5
10.1007/11612032_59
10.1109/CVPR.2007.383277
10.1109/ICIP.2004.1421331
10.1109/cvpr.2006.96
10.1109/TPAMI.2004.57
10.1109/CVPR.2007.383279
10.1109/AFGR.1998.670977
10.1109/TPAMI.2007.1011
10.1109/ICIP.2004.1421475
10.1109/AFGR.2004.1301549
10.1109/CVPR.2005.573
10.1016/j.cviu.2005.05.005
10.1109/TPAMI.2007.1017
10.1007/978-3-642-01793-3_2
10.1007/11744047_32
10.1007/978-3-540-88682-2_46
10.1007/978-3-540-74549-5_2
10.1117/12.604171
10.1109/CVPR.1992.223253
10.1109/AMFG.2003.1240848
10.1109/TPAMI.2007.70784
10.1109/CVPR.2001.990517
10.1007/11527923_93
10.1109/ISSPA.2003.1224850
10.1109/CVPR.2006.13
10.1109/ICPR.1992.201567
10.1109/TPAMI.2006.235
10.1016/0031-3203(95)00067-4
10.1109/FGR.2006.6
10.1109/34.121791
10.1109/TPAMI.2006.210
10.1109/TIFS.2007.916287
10.1109/VSMM.1997.622339
10.5244/C.20.79
10.1109/CVPR.2005.268
10.1109/TPAMI.2007.1105
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
DOI 10.1109/TPAMI.2009.200
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database

Technology Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1939-3539
EndPage 1870
ExternalDocumentID 2722166191
20724762
23212914
10_1109_TPAMI_2009_200
5374409
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
RIG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
ID FETCH-LOGICAL-c405t-30b6808ccd5f3672260fda97bedd21a84b19ca4f64c128c93a911ad23dffe89b3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Fri Jul 11 13:09:15 EDT 2025
Fri Jul 11 05:42:09 EDT 2025
Sun Jun 29 16:31:38 EDT 2025
Mon Jul 21 05:52:51 EDT 2025
Mon Jul 21 09:16:20 EDT 2025
Tue Aug 05 12:03:36 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
Tue Aug 26 16:58:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Geometrical shape
High performance
Image registration
signed shape difference map
Face recognition
Image processing
Transmission protocol
Pattern recognition
Object recognition
Aggregate model
Posture
collective shape difference classifier
Alignment
Supervised learning
Authentication
Classification
Facies
Tridimensional image
3D shape matching
Pattern analysis
Artificial intelligence
Pattern matching
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-30b6808ccd5f3672260fda97bedd21a84b19ca4f64c128c93a911ad23dffe89b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 20724762
PQID 1028350590
PQPubID 85458
PageCount 13
ParticipantIDs proquest_miscellaneous_748968661
proquest_journals_1028350590
pascalfrancis_primary_23212914
ieee_primary_5374409
proquest_miscellaneous_1671310644
crossref_citationtrail_10_1109_TPAMI_2009_200
crossref_primary_10_1109_TPAMI_2009_200
pubmed_primary_20724762
PublicationCentury 2000
PublicationDate 2010-10-01
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2010
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref54
Moreno (ref10)
Phillips (ref35) 2006
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Phillips (ref34) 2002
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Pan (ref33)
ref37
ref36
ref31
ref30
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref11
  doi: 10.1109/CVPR.2007.383053
– ident: ref41
  doi: 10.1023/A:1007614523901
– ident: ref29
  doi: 10.1109/CVPR.2005.581
– ident: ref2
  doi: 10.1145/954339.954342
– ident: ref13
  doi: 10.1109/TPAMI.2006.15
– ident: ref20
  doi: 10.1109/CVPR.2005.561
– ident: ref49
  doi: 10.1109/TIP.2002.999679
– ident: ref37
  doi: 10.1007/s11263-005-1085-y
– ident: ref27
  doi: 10.1109/AFGR.2000.840640
– ident: ref32
  doi: 10.1016/S0262-8856(99)00052-9
– ident: ref16
  doi: 10.1109/ICPR.2000.906199
– year: 2006
  ident: ref35
  article-title: FRVT 2006 and ICE 2006 Large-Scale Results
– ident: ref36
  doi: 10.1007/3-540-44887-X_8
– start-page: 2168
  volume-title: Proc. IEEE Int’l Joint Conf. Neural Network
  ident: ref33
  article-title: 3D Face Recognition by Profile and Surface Matching
– ident: ref30
  doi: 10.1109/CVPR.2005.584
– ident: ref44
  doi: 10.1007/s11263-007-0085-5
– ident: ref12
  doi: 10.1007/11612032_59
– ident: ref40
  doi: 10.1109/CVPR.2007.383277
– ident: ref19
  doi: 10.1109/ICIP.2004.1421331
– ident: ref21
  doi: 10.1109/cvpr.2006.96
– ident: ref52
  doi: 10.1109/TPAMI.2004.57
– ident: ref25
  doi: 10.1109/CVPR.2007.383279
– ident: ref15
  doi: 10.1109/AFGR.1998.670977
– ident: ref47
  doi: 10.1109/TPAMI.2007.1011
– ident: ref28
  doi: 10.1109/ICIP.2004.1421475
– ident: ref23
  doi: 10.1109/AFGR.2004.1301549
– ident: ref26
  doi: 10.1109/CVPR.2005.573
– ident: ref7
  doi: 10.1016/j.cviu.2005.05.005
– ident: ref42
  doi: 10.1109/TPAMI.2007.1017
– ident: ref54
  doi: 10.1007/978-3-642-01793-3_2
– volume-title: Proc. Irish Machine Vision and Image Processing Conf
  ident: ref10
  article-title: Face Recognition Using 3D Surface-Extracted Descriptors
– ident: ref24
  doi: 10.1007/11744047_32
– ident: ref46
  doi: 10.1007/978-3-540-88682-2_46
– ident: ref51
  doi: 10.1007/978-3-540-74549-5_2
– ident: ref5
  doi: 10.1117/12.604171
– ident: ref14
  doi: 10.1109/CVPR.1992.223253
– ident: ref1
  doi: 10.1109/AMFG.2003.1240848
– ident: ref22
  doi: 10.1109/TPAMI.2007.70784
– ident: ref48
  doi: 10.1109/CVPR.2001.990517
– ident: ref4
  doi: 10.1007/11527923_93
– ident: ref18
  doi: 10.1109/ISSPA.2003.1224850
– ident: ref53
  doi: 10.1109/CVPR.2006.13
– ident: ref8
  doi: 10.1109/ICPR.1992.201567
– ident: ref9
  doi: 10.1109/TPAMI.2006.235
– ident: ref50
  doi: 10.1016/0031-3203(95)00067-4
– ident: ref39
  doi: 10.1109/FGR.2006.6
– ident: ref3
  doi: 10.1109/34.121791
– ident: ref6
  doi: 10.1109/TPAMI.2006.210
– year: 2002
  ident: ref34
  article-title: FRVT 2002: Overview and Summary
– ident: ref45
  doi: 10.1109/TIFS.2007.916287
– ident: ref17
  doi: 10.1109/VSMM.1997.622339
– ident: ref31
  doi: 10.5244/C.20.79
– ident: ref38
  doi: 10.1109/CVPR.2005.268
– ident: ref43
  doi: 10.1109/TPAMI.2007.1105
SSID ssj0014503
Score 2.4250684
Snippet This paper proposes a new 3D face recognition approach, Collective Shape Difference Classifier (CSDC), to meet practical application requirements, i.e., high...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1858
SubjectTerms 3D shape matching
Algorithms
Alignment
Applied sciences
Artificial Intelligence
Assembly
Biometric Identification - methods
Boosting
Classifiers
collective shape difference classifier
Computation
Computational efficiency
Computer science; control theory; systems
Data mining
Exact sciences and technology
Face - anatomy & histology
Face recognition
Galleries
Humans
Image Processing, Computer-Assisted - methods
Nose - physiology
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Posture - physiology
Principal Component Analysis
Recognition
Robustness
ROC Curve
Rough surfaces
Shape
signed shape difference map
Studies
Surface roughness
Testing
Three dimensional
Title Robust 3D Face Recognition by Local Shape Difference Boosting
URI https://ieeexplore.ieee.org/document/5374409
https://www.ncbi.nlm.nih.gov/pubmed/20724762
https://www.proquest.com/docview/1028350590
https://www.proquest.com/docview/1671310644
https://www.proquest.com/docview/748968661
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PcGBQstHoFRGQuJCttnE8a6PhbIqiEUIWqm3yB47QgIlFZsc4Ncz4ziBIlbiEkXKKMnansyb9cx7AM-VtAozz20f1qTSZJhS3HFpnvvMOvRGOm5OXn9Q55fy3VV5tQMvp14Y730oPvMzPg17-a7Fnv8qOykLprPTu7BLidvQqzXtGMgyqCATgiEPpzQiEjTOM31y8fF0_XagpqQD0_9mi1wuVH4jFgVxFS6NNBsanXqQtdiOO0P8We3Denzzoezk66zv7Ax__kXq-L8_7S7ciUBUnA4r5x7s-OYA9keRBxF9_gBu_8FYeAjcL9ZvOlGciZVBLz6N9UdtI-wP8Z4jo_j8xVx7cRalV8jqVdtuuLz6Plyu3ly8Pk-jAkOKBOS6tMgsS3MgurIu1IKgWlY7oxfWO5fPzVLauUYjayWR4hzqwtC307i8cPSEpbbFA9hr2sY_AmG0wdxSDqyRPs6F17XPUJXoFFpLsDWBdJyLCiM9OatkfKtCmpLpKkwjy2ZqPiTwYrK_Hog5tloe8nhPVnGoEzi-MdXTdcKYBILmMoGjce6r6NibKuCxkjt2E3g2XSaX5H0W0_i2JxtFmT-l2pJuIbbYMOmPWhI4SuDhsKx-Pz-uzsf_fu8ncCtUMISCwiPY6773_ikBo84eB4_4Bc_kBxg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcgAOFFo-AqUYCYkL2ebD8a6PhbLawm6FYCv1FtljR0igpGKTA_x6xo4TKGIlLlGkjJKs7cm8Wc-8B_BScC0wsa7tQ6uYqwRjijsmzjKbaINWceOak1fnYnHB318WlzvweuyFsdb64jM7cad-L9802Lm_yo6L3NHZyRtwk-J-kfbdWuOeAS-8DjJhGPJxSiQCRWOayOP1x5PVWU9OSQdHAJxMMz4V2bVo5OVVXHGk2tD4VL2wxXbk6SPQfA9Ww7v3hSdfJ12rJ_jzL1rH__1x9-BugKLspF8792HH1vuwN8g8sOD1-3DnD87CA3AdY92mZfkpmyu07NNQgdTUTP9gSxcb2ecv6sqy0yC-QlZvmmbjCqwfwMX83frtIg4aDDESlGvjPNFOnAPRFFUupgTWksooOdXWmCxVM65TiYpXgiNFOpS5oq-nMllu6AkzqfOHsFs3tX0MTEmFmaYsWCJ9nnMrK5ugKNAI1JqAawTxMBclBoJyp5PxrfSJSiJLP41OOFO6QwSvRvurnppjq-WBG-_RKgx1BEfXpnq8TiiTYFDKIzgc5r4Mrr0pPSIrXM9uBC_Gy-SUbqdF1bbpyEZQ7k_JNqdbsC02jvZHzAgeRfCoX1a_nx9W55N_v_dzuLVYr5bl8uz8w1O47esZfHnhIey23zv7jGBSq4-8d_wCq-YKYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+3D+face+recognition+by+local+shape+difference+boosting&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Wang%2C+Yueming&rft.au=Liu%2C+Jianzhuang&rft.au=Tang%2C+Xiaoou&rft.date=2010-10-01&rft.eissn=1939-3539&rft.volume=32&rft.issue=10&rft.spage=1858&rft_id=info:doi/10.1109%2FTPAMI.2009.200&rft_id=info%3Apmid%2F20724762&rft.externalDocID=20724762
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon