Effect of drying temperature and drying method on drying rate and bioactive compounds in cassumunar ginger (Zingiber montanum)

[Display omitted] •Drying of Zingiber montanum was done by hot air oven, greenhouse solar, and sun drying.•64 and 85 % of curcumin losses were observed for solar and sun drying, respectively.•Volatile oil contents reduced after drying but their compositions were unchanged. In this study, influences...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied research on medicinal and aromatic plants Vol. 18; p. 100262
Main Authors Mahayothee, Busarakorn, Thamsala, Thipharat, Khuwijitjaru, Pramote, Janjai, Serm
Format Journal Article
LanguageEnglish
Published Elsevier GmbH 01.09.2020
Subjects
Online AccessGet full text
ISSN2214-7861
2214-7861
DOI10.1016/j.jarmap.2020.100262

Cover

Loading…
Abstract [Display omitted] •Drying of Zingiber montanum was done by hot air oven, greenhouse solar, and sun drying.•64 and 85 % of curcumin losses were observed for solar and sun drying, respectively.•Volatile oil contents reduced after drying but their compositions were unchanged. In this study, influences of drying of cassumunar ginger (Zingiber montanum) slices using a hot air dryer at 40, 50, 60, 70, and 80 °C, a large-scale greenhouse solar dryer, and sun drying on drying kinetics, color, bioactive compounds, and antioxidant capacities were investigated. The Page model was adequate for describing the drying kinetics and increasing of the temperature accelerated the drying rate, therefore the drying time at 80 °C was shortest (1.5 h). The hot air drying effectively preserved curcumin content and color of the dried products. Drying at higher temperatures, however, resulted in losses of essential oil yield. In contrast, solar and sun drying significantly degraded curcumin and therefore adversely affected the color of dried products. Although, all conditions of drying resulted in volatile oil losses of 18–36 %, different drying conditions did not affect the obtained oil compositions. In addition, it was found that the dried sample from the hot air dryer and the greenhouse solar dryer exhibited slightly higher antioxidant capacities than those from sun drying.
AbstractList In this study, influences of drying of cassumunar ginger (Zingiber montanum) slices using a hot air dryer at 40, 50, 60, 70, and 80 °C, a large-scale greenhouse solar dryer, and sun drying on drying kinetics, color, bioactive compounds, and antioxidant capacities were investigated. The Page model was adequate for describing the drying kinetics and increasing of the temperature accelerated the drying rate, therefore the drying time at 80 °C was shortest (1.5 h). The hot air drying effectively preserved curcumin content and color of the dried products. Drying at higher temperatures, however, resulted in losses of essential oil yield. In contrast, solar and sun drying significantly degraded curcumin and therefore adversely affected the color of dried products. Although, all conditions of drying resulted in volatile oil losses of 18–36 %, different drying conditions did not affect the obtained oil compositions. In addition, it was found that the dried sample from the hot air dryer and the greenhouse solar dryer exhibited slightly higher antioxidant capacities than those from sun drying.
[Display omitted] •Drying of Zingiber montanum was done by hot air oven, greenhouse solar, and sun drying.•64 and 85 % of curcumin losses were observed for solar and sun drying, respectively.•Volatile oil contents reduced after drying but their compositions were unchanged. In this study, influences of drying of cassumunar ginger (Zingiber montanum) slices using a hot air dryer at 40, 50, 60, 70, and 80 °C, a large-scale greenhouse solar dryer, and sun drying on drying kinetics, color, bioactive compounds, and antioxidant capacities were investigated. The Page model was adequate for describing the drying kinetics and increasing of the temperature accelerated the drying rate, therefore the drying time at 80 °C was shortest (1.5 h). The hot air drying effectively preserved curcumin content and color of the dried products. Drying at higher temperatures, however, resulted in losses of essential oil yield. In contrast, solar and sun drying significantly degraded curcumin and therefore adversely affected the color of dried products. Although, all conditions of drying resulted in volatile oil losses of 18–36 %, different drying conditions did not affect the obtained oil compositions. In addition, it was found that the dried sample from the hot air dryer and the greenhouse solar dryer exhibited slightly higher antioxidant capacities than those from sun drying.
ArticleNumber 100262
Author Janjai, Serm
Mahayothee, Busarakorn
Khuwijitjaru, Pramote
Thamsala, Thipharat
Author_xml – sequence: 1
  givenname: Busarakorn
  surname: Mahayothee
  fullname: Mahayothee, Busarakorn
  email: mahayothee_b@su.ac.th
  organization: Department of Food Technology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
– sequence: 2
  givenname: Thipharat
  surname: Thamsala
  fullname: Thamsala, Thipharat
  organization: Department of Food Technology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
– sequence: 3
  givenname: Pramote
  surname: Khuwijitjaru
  fullname: Khuwijitjaru, Pramote
  organization: Department of Food Technology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
– sequence: 4
  givenname: Serm
  surname: Janjai
  fullname: Janjai, Serm
  organization: Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
BookMark eNqFkT9rHDEQxUWwIY7tb5BCpV3cWdJp_6UwBHOJDQdu7MaNmJVmHR0naSNpD67JZ4-OtSGkSKp5PN4bmN98Iic-eCTkM2dLznh9s11uIToYl4KJo8VELT6QMyG4XDRtzU_-0B_JZUpbxkpvJXnLzsiv9TCgzjQM1MSD9a80oxsxQp4iUvDm3XaYfwRDg383SmQO9DaAznaPVAc3hsmbRK2nGlKa3OQh0teSx0ivXsq0fVEu-Ax-ctcX5HSAXcLLt3lOnr-tn-7uF5vH7w93XzcLLVmVFwI7Ibq-7iVr-cA6LhppWsO1qUxXA3TlGhRS1mBY1bOm6XTNtOxF20qo-mp1Tq7mvWMMPydMWTmbNO524DFMSQnZNLXkKyFLVM5RHUNKEQc1RusgHhRn6khcbdVMXB2Jq5l4qX35q6ZthmzLpRHs7n_l27mMhcHeYlRJW_QajY3lO8oE--8FvwEi0qGe
CitedBy_id crossref_primary_10_1515_ijfe_2024_0019
crossref_primary_10_1115_1_4065465
crossref_primary_10_1007_s11130_023_01109_y
crossref_primary_10_1021_acs_langmuir_3c03412
crossref_primary_10_1007_s13399_023_04665_0
crossref_primary_10_1016_j_lwt_2020_110687
crossref_primary_10_1007_s11694_024_02843_w
crossref_primary_10_1111_jfpp_15988
crossref_primary_10_3389_fpls_2023_1137840
crossref_primary_10_1002_jsfa_12660
crossref_primary_10_1021_acs_jafc_1c00256
crossref_primary_10_1155_2023_6128517
crossref_primary_10_1016_j_jarmap_2024_100543
crossref_primary_10_1016_j_foodres_2022_111043
Cites_doi 10.1016/j.foodchem.2015.11.033
10.1016/S0378-8741(03)00098-9
10.1016/j.lwt.2018.01.002
10.1016/j.scienta.2010.07.011
10.1208/s12249-015-0376-z
10.1016/j.foodhyd.2015.11.024
10.1016/j.indcrop.2017.12.012
10.1021/jf403496k
10.1021/jf073105v
10.1016/S0891-5849(98)00315-3
10.1016/j.jarmap.2016.09.001
10.56808/3027-7922.2415
10.1016/j.foodchem.2007.04.038
10.1016/j.jarmap.2018.10.003
10.1016/S0023-6438(95)80008-5
10.1002/jsfa.2641
10.1016/j.indcrop.2013.10.020
10.1016/j.fbp.2011.10.003
10.1021/jf00020a008
10.1016/j.proeng.2012.01.1290
10.1016/j.lwt.2019.05.054
10.26656/fr.2017.2(6).109
10.1021/jf00045a004
10.1016/j.foodchem.2010.12.014
10.1016/B978-0-12-800173-8.00003-9
10.1007/s00217-008-0993-9
10.1007/BF02660721
10.1111/1541-4337.12196
10.1002/ptr.4661
10.1007/s13197-013-0941-y
10.1016/j.lwt.2019.05.108
10.1007/s00231-015-1729-6
10.1002/jsfa.8474
10.1111/jfpp.12904
10.1016/j.ctim.2017.09.009
ContentType Journal Article
Copyright 2020 Elsevier GmbH
Copyright_xml – notice: 2020 Elsevier GmbH
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jarmap.2020.100262
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
EISSN 2214-7861
ExternalDocumentID 10_1016_j_jarmap_2020_100262
S2214786120300231
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATLK
AAXUO
ABGRD
ABLVK
ABMAC
ABMZM
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
PC.
RIG
ROL
SPCBC
SSA
SSH
SSZ
T5K
~G-
AAHBH
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACIEU
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
7S9
L.6
ID FETCH-LOGICAL-c405t-2e9229b6b4081f091274d8d1cd5d96aa9341e2446ad05b0779c60c4b2884a5b53
IEDL.DBID AIKHN
ISSN 2214-7861
IngestDate Fri Jul 11 08:46:30 EDT 2025
Thu Apr 24 22:57:14 EDT 2025
Tue Jul 01 01:03:13 EDT 2025
Fri Feb 23 02:46:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Solar drying
Zingiber cassumunar
Volatile oil
Medicinal plant
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-2e9229b6b4081f091274d8d1cd5d96aa9341e2446ad05b0779c60c4b2884a5b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2477641324
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2477641324
crossref_primary_10_1016_j_jarmap_2020_100262
crossref_citationtrail_10_1016_j_jarmap_2020_100262
elsevier_sciencedirect_doi_10_1016_j_jarmap_2020_100262
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationTitle Journal of applied research on medicinal and aromatic plants
PublicationYear 2020
Publisher Elsevier GmbH
Publisher_xml – name: Elsevier GmbH
References An, Zhao, Wang, Wu, Xu, Xiao (bib0020) 2016; 197
Manochai, Paisooksantivatana, Choi, Hong (bib0120) 2010; 126
Lestari, Indrayanto (bib0105) 2014
Arabhosseini, Padhye, van Beek, van Boxtel, Huisman, Posthumus, Müller (bib0030) 2006; 86
Sanatombi, Sanatombi (bib0165) 2017; 4
Jeenapongsa, Yoovathaworn, Sriwatanakul, Pongprayoon, Sriwatanakul (bib0075) 2003; 87
Mühlbauer, Müller (bib0135) 2020
AOAC (bib0025) 2005
Kaewchoothong, Tewtrakul, Panichayupakaranant (bib0085) 2012; 26
Priprem, Janpim, Nualkaew, Mahakunakorn (bib0150) 2016; 17
Tangyuenyongwatana (bib0180) 2017; 41
Argyropoulos, Müller (bib0035) 2014; 52
Wojdylo, Oszmianski, Czemerys (bib0195) 2007; 105
Lachowicz, Michalska, Lech, Majerska, Oszmiański, Figiel (bib0095) 2019; 111
Wang, Jung, McGorrin, Traber, Leonard, Cherian, Zhao (bib0190) 2018; 90
Masuda, Jitoe (bib0125) 1994; 42
Wu, Zhang, Li (bib0200) 2019; 111
Chongmelaxme, Sruamsiri, Dilokthornsakul, Dhippayom, Kongkaew, Saokaew, Chuthaputti, Chaiyakunapruk (bib0055) 2017; 35
Kaewkiew, Nabnean, Janjai (bib0090) 2012; 32
Sukatta, Rugthaworn, Punjee, Chidchenchey, Keeratinijakal (bib0170) 2009; 43
Masuda, Jitoe, Mabry (bib0130) 1995; 72
Amorati, Foti, Valgimigli (bib0015) 2013; 61
Borah, Sethi, Sarkar, Hazarika (bib0040) 2017; 41
Lemus-Mondaca, Vega-Gálvez, Rojas, Stucken, Delporte, Valenzuela-Barra, Jagus, Agüero, Pasten (bib0100) 2018; 11
Akpinar, Toraman (bib0010) 2016; 52
Bua-in, Paisooksantivatana (bib0050) 2009; 43
Li, Shin, Lee, Chen, Park (bib0115) 2016; 56
Re, Pellegrini, Proteggente, Pannala, Yang, Rice-Evans (bib0160) 1999; 26
Li, Xiang, Ye, Li, Zhang, Guo (bib0110) 2011; 126
Murthy, Manohar (bib0140) 2014; 51
Suresh, Gurudutt, Srinivasan (bib0175) 2009; 228
Adams (bib0005) 2017
Brand-Williams, Cuvelier, Berset (bib0045) 1995; 28
Ding, An, Zhao, Li, Guo, Wang (bib0065) 2012; 90
Green, Hibbert, Bailey-Shaw, Williams, Mitchell, Garraway (bib0070) 2008; 56
Verma, Joshi, Padalia, Singh, Goswami, Verma, Iqbal, Chanda, Verma, Darokar, Chauhan, Kandwal (bib0185) 2018; 98
Jitoe, Masuda, Tengah, Suprapta, Gara, Nakatani (bib0080) 1992; 40
Onwude, Hashim, Janius, Nawi, Abdan (bib0145) 2016; 15
Raza, Ali, Yusof, Nasir, Muneer (bib0155) 2018; 2
Dehghani Mashkani, Larijani, Mehrafarin, Naghdi Badi (bib0060) 2018; 112
Jeenapongsa (10.1016/j.jarmap.2020.100262_bib0075) 2003; 87
Borah (10.1016/j.jarmap.2020.100262_bib0040) 2017; 41
Brand-Williams (10.1016/j.jarmap.2020.100262_bib0045) 1995; 28
Akpinar (10.1016/j.jarmap.2020.100262_bib0010) 2016; 52
Lestari (10.1016/j.jarmap.2020.100262_bib0105) 2014
Lemus-Mondaca (10.1016/j.jarmap.2020.100262_bib0100) 2018; 11
Onwude (10.1016/j.jarmap.2020.100262_bib0145) 2016; 15
Kaewchoothong (10.1016/j.jarmap.2020.100262_bib0085) 2012; 26
Masuda (10.1016/j.jarmap.2020.100262_bib0130) 1995; 72
Murthy (10.1016/j.jarmap.2020.100262_bib0140) 2014; 51
An (10.1016/j.jarmap.2020.100262_bib0020) 2016; 197
Tangyuenyongwatana (10.1016/j.jarmap.2020.100262_bib0180) 2017; 41
Jitoe (10.1016/j.jarmap.2020.100262_bib0080) 1992; 40
Masuda (10.1016/j.jarmap.2020.100262_bib0125) 1994; 42
Priprem (10.1016/j.jarmap.2020.100262_bib0150) 2016; 17
Verma (10.1016/j.jarmap.2020.100262_bib0185) 2018; 98
Manochai (10.1016/j.jarmap.2020.100262_bib0120) 2010; 126
Raza (10.1016/j.jarmap.2020.100262_bib0155) 2018; 2
AOAC (10.1016/j.jarmap.2020.100262_bib0025) 2005
Li (10.1016/j.jarmap.2020.100262_bib0115) 2016; 56
Wojdylo (10.1016/j.jarmap.2020.100262_bib0195) 2007; 105
Sanatombi (10.1016/j.jarmap.2020.100262_bib0165) 2017; 4
Bua-in (10.1016/j.jarmap.2020.100262_bib0050) 2009; 43
Dehghani Mashkani (10.1016/j.jarmap.2020.100262_bib0060) 2018; 112
Suresh (10.1016/j.jarmap.2020.100262_bib0175) 2009; 228
Wang (10.1016/j.jarmap.2020.100262_bib0190) 2018; 90
Sukatta (10.1016/j.jarmap.2020.100262_bib0170) 2009; 43
Adams (10.1016/j.jarmap.2020.100262_bib0005) 2017
Kaewkiew (10.1016/j.jarmap.2020.100262_bib0090) 2012; 32
Re (10.1016/j.jarmap.2020.100262_bib0160) 1999; 26
Wu (10.1016/j.jarmap.2020.100262_bib0200) 2019; 111
Li (10.1016/j.jarmap.2020.100262_bib0110) 2011; 126
Green (10.1016/j.jarmap.2020.100262_bib0070) 2008; 56
Lachowicz (10.1016/j.jarmap.2020.100262_bib0095) 2019; 111
Argyropoulos (10.1016/j.jarmap.2020.100262_bib0035) 2014; 52
Amorati (10.1016/j.jarmap.2020.100262_bib0015) 2013; 61
Mühlbauer (10.1016/j.jarmap.2020.100262_bib0135) 2020
Chongmelaxme (10.1016/j.jarmap.2020.100262_bib0055) 2017; 35
Ding (10.1016/j.jarmap.2020.100262_bib0065) 2012; 90
Arabhosseini (10.1016/j.jarmap.2020.100262_bib0030) 2006; 86
References_xml – year: 2005
  ident: bib0025
  article-title: Official Methods of Analysis of AOAC International
– volume: 105
  start-page: 940
  year: 2007
  end-page: 949
  ident: bib0195
  article-title: Antioxidant activity and phenolic compounds in 32 selected herbs
  publication-title: Food Chemistry
– volume: 2
  start-page: 500
  year: 2018
  end-page: 504
  ident: bib0155
  article-title: Effect of different drying treatments on concentration of curcumin in raw
  publication-title: Food Research
– volume: 197
  start-page: 1292
  year: 2016
  end-page: 1300
  ident: bib0020
  article-title: Comparison of different drying methods on Chinese ginger (
  publication-title: Food Chemistry
– volume: 40
  start-page: 1337
  year: 1992
  end-page: 1340
  ident: bib0080
  article-title: Antioxidant activity of tropical ginger extracts and analysis of the contained curcuminoids
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 32
  start-page: 433
  year: 2012
  end-page: 439
  ident: bib0090
  article-title: Experimental investigation of the performance of a large-scale greenhouse type solar dryer for drying chilli in Thailand
  publication-title: Procedia Engineering
– volume: 86
  start-page: 2543
  year: 2006
  end-page: 2550
  ident: bib0030
  article-title: Loss of essential oil of tarragon (
  publication-title: Journal of the Science of Food and Agriculture
– volume: 41
  start-page: 1
  year: 2017
  end-page: 6
  ident: bib0180
  article-title: HPTLC analysis of (E)-4-(3’,4’-dimethoxyphenyl)but-3-en-1-ol in
  publication-title: Thai Journal of Pharmaceutical Sciences
– volume: 52
  start-page: 118
  year: 2014
  end-page: 124
  ident: bib0035
  article-title: Changes of essential oil content and composition during convective drying of lemon balm (
  publication-title: Industrial Crops and Products
– volume: 43
  start-page: 467
  year: 2009
  end-page: 475
  ident: bib0050
  article-title: Essential oil and antioxidant activity of cassumunar ginger (Zingiberaceae:
  publication-title: Kasetsart Journal (Natural Science)
– volume: 72
  start-page: 1053
  year: 1995
  end-page: 1057
  ident: bib0130
  article-title: Isolation and structure determination of cassumunarins A, B, and C: New anti-inflammatory antioxidants from a tropical ginger, Zingiber cassumunar
  publication-title: Journal of the American Oil Chemists’ Society
– volume: 17
  start-page: 631
  year: 2016
  end-page: 639
  ident: bib0150
  article-title: Topical niosome gel of
  publication-title: AAPS PharmSciTech
– volume: 98
  start-page: 321
  year: 2018
  end-page: 327
  ident: bib0185
  article-title: Chemical composition and antibacterial, antifungal, allelopathic and acetylcholinesterase inhibitory activities of cassumunar-ginger
  publication-title: Journal of the Science of Food and Agriculture
– volume: 26
  start-page: 1789
  year: 2012
  end-page: 1792
  ident: bib0085
  article-title: Inhibitory effect of phenylbutanoid-rich
  publication-title: Phytotherapy Research
– volume: 111
  start-page: 727
  year: 2019
  end-page: 736
  ident: bib0095
  article-title: Comparison of the effect of four drying methods on polyphenols in saskatoon berry
  publication-title: LWT
– volume: 11
  start-page: 37
  year: 2018
  end-page: 46
  ident: bib0100
  article-title: Antioxidant, antimicrobial and anti-inflammatory potential of Stevia rebaudiana leaves: effect of different drying methods
  publication-title: Journal of Applied Research on Medicinal and Aromatic Plants
– volume: 126
  start-page: 1890
  year: 2011
  end-page: 1895
  ident: bib0110
  article-title: Qualitative and quantitative analysis of curcuminoids in herbal medicines derived from
  publication-title: Food Chemistry
– volume: 112
  start-page: 389
  year: 2018
  end-page: 395
  ident: bib0060
  article-title: Changes in the essential oil content and composition of
  publication-title: Industrial Crops and Products
– volume: 42
  start-page: 1850
  year: 1994
  end-page: 1856
  ident: bib0125
  article-title: Antioxidative and antiinflammatory compounds from tropical gingers: Isolation, structure determination, and activities of cassumunins A, B, and C, New complex curcuminoids from
  publication-title: Journal of Agricultural and Food Chemistry
– year: 2020
  ident: bib0135
  article-title: Drying Atlas: Drying Kinetics and Quality of Agricultural Products
– volume: 41
  year: 2017
  ident: bib0040
  article-title: Drying kinetics of sliced turmeric (
  publication-title: Journal of Food Processing and Preservation
– volume: 90
  start-page: 515
  year: 2012
  end-page: 524
  ident: bib0065
  article-title: Effect of drying methods on volatiles of Chinese ginger (
  publication-title: Food and Bioproducts Processing
– volume: 56
  start-page: 41
  year: 2016
  end-page: 49
  ident: bib0115
  article-title: Soluble starch formulated nanocomposite increases water solubility and stability of curcumin
  publication-title: Food Hydrocolloids
– year: 2017
  ident: bib0005
  article-title: Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy
– volume: 26
  start-page: 1231
  year: 1999
  end-page: 1237
  ident: bib0160
  article-title: Antioxidant activity applying an improved ABTS radical cation decolorization assay
  publication-title: Free Radical Biology and Medicine
– volume: 51
  start-page: 3712
  year: 2014
  end-page: 3721
  ident: bib0140
  article-title: Hot air drying characteristics of mango ginger: prediction of drying kinetics by mathematical modeling and artificial neural network
  publication-title: Journal of Food Science and Technology
– volume: 52
  start-page: 2271
  year: 2016
  end-page: 2281
  ident: bib0010
  article-title: Determination of drying kinetics and convective heat transfer coefficients of ginger slices
  publication-title: Heat and Mass Transfer
– volume: 111
  start-page: 790
  year: 2019
  end-page: 798
  ident: bib0200
  article-title: Influence of infrared drying on the drying kinetics, bioactive compounds and flavor of
  publication-title: LWT
– volume: 61
  start-page: 10835
  year: 2013
  end-page: 10847
  ident: bib0015
  article-title: Antioxidant activity of essential oils
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 4
  start-page: 1
  year: 2017
  end-page: 4
  ident: bib0165
  article-title: Biotechnology of
  publication-title: Journal of Applied Research on Medicinal and Aromatic Plants
– volume: 90
  start-page: 526
  year: 2018
  end-page: 534
  ident: bib0190
  article-title: Investigation of drying conditions on bioactive compounds, lipid oxidation, and enzyme activity of Oregon hazelnuts (
  publication-title: LWT
– volume: 35
  start-page: 70
  year: 2017
  end-page: 77
  ident: bib0055
  article-title: Clinical effects of
  publication-title: Complementary Therapies in Medicine
– volume: 228
  start-page: 807
  year: 2009
  end-page: 812
  ident: bib0175
  article-title: Degradation of bioactive spice compound: curcumin during domestic cooking
  publication-title: European Food Research and Technology
– start-page: 113
  year: 2014
  end-page: 204
  ident: bib0105
  article-title: Curcumin
  publication-title: Profiles of Drug Substances, Excipients and Related Methodology
– volume: 43
  start-page: 212
  year: 2009
  end-page: 217
  ident: bib0170
  article-title: Chemical composition and physical properties of oil from plai (
  publication-title: Kasetsart Journal (Natural Science)
– volume: 126
  start-page: 462
  year: 2010
  end-page: 466
  ident: bib0120
  article-title: Variation in DPPH scavenging activity and major volatile oil components of cassumunar ginger,
  publication-title: Scientia Horticulturae
– volume: 28
  start-page: 25
  year: 1995
  end-page: 30
  ident: bib0045
  article-title: Use of a free radical method to evaluate antioxidant activity
  publication-title: Lebensmittel-Wissenschaft und -Technologie
– volume: 87
  start-page: 143
  year: 2003
  end-page: 148
  ident: bib0075
  article-title: Anti-inflammatory activity of (E)-1-(3,4-dimethoxyphenyl)butadiene from
  publication-title: Journal of Ethnopharmacology
– volume: 56
  start-page: 3664
  year: 2008
  end-page: 3670
  ident: bib0070
  article-title: Extraction, processing, and storage effects on curcuminoids and oleoresin yields from
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 15
  start-page: 599
  year: 2016
  end-page: 618
  ident: bib0145
  article-title: Modeling the thin-layer drying of fruits and vegetables: a review
  publication-title: Comprehensive Reviews in Food Science and Food Safety
– volume: 197
  start-page: 1292
  year: 2016
  ident: 10.1016/j.jarmap.2020.100262_bib0020
  article-title: Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): changes in volatiles, chemical profile, antioxidant properties, and microstructure
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2015.11.033
– volume: 87
  start-page: 143
  year: 2003
  ident: 10.1016/j.jarmap.2020.100262_bib0075
  article-title: Anti-inflammatory activity of (E)-1-(3,4-dimethoxyphenyl)butadiene from Zingiber cassumunar Roxb
  publication-title: Journal of Ethnopharmacology
  doi: 10.1016/S0378-8741(03)00098-9
– year: 2005
  ident: 10.1016/j.jarmap.2020.100262_bib0025
– volume: 90
  start-page: 526
  year: 2018
  ident: 10.1016/j.jarmap.2020.100262_bib0190
  article-title: Investigation of drying conditions on bioactive compounds, lipid oxidation, and enzyme activity of Oregon hazelnuts (Corylus avellana L.)
  publication-title: LWT
  doi: 10.1016/j.lwt.2018.01.002
– volume: 126
  start-page: 462
  year: 2010
  ident: 10.1016/j.jarmap.2020.100262_bib0120
  article-title: Variation in DPPH scavenging activity and major volatile oil components of cassumunar ginger, Zingiber montanum (Koenig), in response to water deficit and light intensity
  publication-title: Scientia Horticulturae
  doi: 10.1016/j.scienta.2010.07.011
– volume: 17
  start-page: 631
  year: 2016
  ident: 10.1016/j.jarmap.2020.100262_bib0150
  article-title: Topical niosome gel of Zingiber cassumunar roxb. Extract for anti-inflammatory activity enhanced skin permeation and stability of compound D
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-015-0376-z
– volume: 56
  start-page: 41
  year: 2016
  ident: 10.1016/j.jarmap.2020.100262_bib0115
  article-title: Soluble starch formulated nanocomposite increases water solubility and stability of curcumin
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2015.11.024
– volume: 112
  start-page: 389
  year: 2018
  ident: 10.1016/j.jarmap.2020.100262_bib0060
  article-title: Changes in the essential oil content and composition of Thymus daenensis Celak. under different drying methods
  publication-title: Industrial Crops and Products
  doi: 10.1016/j.indcrop.2017.12.012
– volume: 61
  start-page: 10835
  year: 2013
  ident: 10.1016/j.jarmap.2020.100262_bib0015
  article-title: Antioxidant activity of essential oils
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf403496k
– volume: 56
  start-page: 3664
  year: 2008
  ident: 10.1016/j.jarmap.2020.100262_bib0070
  article-title: Extraction, processing, and storage effects on curcuminoids and oleoresin yields from Curcuma longa L. grown in Jamaica
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf073105v
– volume: 26
  start-page: 1231
  year: 1999
  ident: 10.1016/j.jarmap.2020.100262_bib0160
  article-title: Antioxidant activity applying an improved ABTS radical cation decolorization assay
  publication-title: Free Radical Biology and Medicine
  doi: 10.1016/S0891-5849(98)00315-3
– volume: 4
  start-page: 1
  year: 2017
  ident: 10.1016/j.jarmap.2020.100262_bib0165
  article-title: Biotechnology of Zingiber montanum (Koenig) Link ex A. Dietr.: a review
  publication-title: Journal of Applied Research on Medicinal and Aromatic Plants
  doi: 10.1016/j.jarmap.2016.09.001
– year: 2017
  ident: 10.1016/j.jarmap.2020.100262_bib0005
– volume: 43
  start-page: 467
  year: 2009
  ident: 10.1016/j.jarmap.2020.100262_bib0050
  article-title: Essential oil and antioxidant activity of cassumunar ginger (Zingiberaceae: zingiber montanum (Koenig) Link ex Dietr.) collected from various parts of Thailand
  publication-title: Kasetsart Journal (Natural Science)
– volume: 41
  start-page: 1
  year: 2017
  ident: 10.1016/j.jarmap.2020.100262_bib0180
  article-title: HPTLC analysis of (E)-4-(3’,4’-dimethoxyphenyl)but-3-en-1-ol in Zingiber cassumunar Roxb rhizome extract: method validation and its application on studying compound-genetic relationship
  publication-title: Thai Journal of Pharmaceutical Sciences
  doi: 10.56808/3027-7922.2415
– volume: 105
  start-page: 940
  year: 2007
  ident: 10.1016/j.jarmap.2020.100262_bib0195
  article-title: Antioxidant activity and phenolic compounds in 32 selected herbs
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2007.04.038
– volume: 11
  start-page: 37
  year: 2018
  ident: 10.1016/j.jarmap.2020.100262_bib0100
  article-title: Antioxidant, antimicrobial and anti-inflammatory potential of Stevia rebaudiana leaves: effect of different drying methods
  publication-title: Journal of Applied Research on Medicinal and Aromatic Plants
  doi: 10.1016/j.jarmap.2018.10.003
– volume: 28
  start-page: 25
  year: 1995
  ident: 10.1016/j.jarmap.2020.100262_bib0045
  article-title: Use of a free radical method to evaluate antioxidant activity
  publication-title: Lebensmittel-Wissenschaft und -Technologie
  doi: 10.1016/S0023-6438(95)80008-5
– volume: 86
  start-page: 2543
  year: 2006
  ident: 10.1016/j.jarmap.2020.100262_bib0030
  article-title: Loss of essential oil of tarragon (Artemisia dracunculus L.) due to drying
  publication-title: Journal of the Science of Food and Agriculture
  doi: 10.1002/jsfa.2641
– volume: 52
  start-page: 118
  year: 2014
  ident: 10.1016/j.jarmap.2020.100262_bib0035
  article-title: Changes of essential oil content and composition during convective drying of lemon balm (Melissa officinalis L.)
  publication-title: Industrial Crops and Products
  doi: 10.1016/j.indcrop.2013.10.020
– volume: 90
  start-page: 515
  year: 2012
  ident: 10.1016/j.jarmap.2020.100262_bib0065
  article-title: Effect of drying methods on volatiles of Chinese ginger (Zingiber officinale Roscoe)
  publication-title: Food and Bioproducts Processing
  doi: 10.1016/j.fbp.2011.10.003
– volume: 40
  start-page: 1337
  year: 1992
  ident: 10.1016/j.jarmap.2020.100262_bib0080
  article-title: Antioxidant activity of tropical ginger extracts and analysis of the contained curcuminoids
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf00020a008
– volume: 32
  start-page: 433
  year: 2012
  ident: 10.1016/j.jarmap.2020.100262_bib0090
  article-title: Experimental investigation of the performance of a large-scale greenhouse type solar dryer for drying chilli in Thailand
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2012.01.1290
– volume: 111
  start-page: 727
  year: 2019
  ident: 10.1016/j.jarmap.2020.100262_bib0095
  article-title: Comparison of the effect of four drying methods on polyphenols in saskatoon berry
  publication-title: LWT
  doi: 10.1016/j.lwt.2019.05.054
– volume: 2
  start-page: 500
  year: 2018
  ident: 10.1016/j.jarmap.2020.100262_bib0155
  article-title: Effect of different drying treatments on concentration of curcumin in raw Curcuma longa L
  publication-title: Food Research
  doi: 10.26656/fr.2017.2(6).109
– volume: 43
  start-page: 212
  year: 2009
  ident: 10.1016/j.jarmap.2020.100262_bib0170
  article-title: Chemical composition and physical properties of oil from plai (Zingiber cassumunar Roxb.) obtained by hydro distillation and hexane extraction
  publication-title: Kasetsart Journal (Natural Science)
– volume: 42
  start-page: 1850
  year: 1994
  ident: 10.1016/j.jarmap.2020.100262_bib0125
  article-title: Antioxidative and antiinflammatory compounds from tropical gingers: Isolation, structure determination, and activities of cassumunins A, B, and C, New complex curcuminoids from Zingiber cassumunar
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf00045a004
– volume: 126
  start-page: 1890
  year: 2011
  ident: 10.1016/j.jarmap.2020.100262_bib0110
  article-title: Qualitative and quantitative analysis of curcuminoids in herbal medicines derived from Curcuma species
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2010.12.014
– year: 2020
  ident: 10.1016/j.jarmap.2020.100262_bib0135
– start-page: 113
  year: 2014
  ident: 10.1016/j.jarmap.2020.100262_bib0105
  article-title: Curcumin
  doi: 10.1016/B978-0-12-800173-8.00003-9
– volume: 228
  start-page: 807
  year: 2009
  ident: 10.1016/j.jarmap.2020.100262_bib0175
  article-title: Degradation of bioactive spice compound: curcumin during domestic cooking
  publication-title: European Food Research and Technology
  doi: 10.1007/s00217-008-0993-9
– volume: 72
  start-page: 1053
  year: 1995
  ident: 10.1016/j.jarmap.2020.100262_bib0130
  article-title: Isolation and structure determination of cassumunarins A, B, and C: New anti-inflammatory antioxidants from a tropical ginger, Zingiber cassumunar
  publication-title: Journal of the American Oil Chemists’ Society
  doi: 10.1007/BF02660721
– volume: 15
  start-page: 599
  year: 2016
  ident: 10.1016/j.jarmap.2020.100262_bib0145
  article-title: Modeling the thin-layer drying of fruits and vegetables: a review
  publication-title: Comprehensive Reviews in Food Science and Food Safety
  doi: 10.1111/1541-4337.12196
– volume: 26
  start-page: 1789
  year: 2012
  ident: 10.1016/j.jarmap.2020.100262_bib0085
  article-title: Inhibitory effect of phenylbutanoid-rich Zingiber cassumunar extracts on nitric oxide production by murine macrophage-like RAW264.7 cells
  publication-title: Phytotherapy Research
  doi: 10.1002/ptr.4661
– volume: 51
  start-page: 3712
  year: 2014
  ident: 10.1016/j.jarmap.2020.100262_bib0140
  article-title: Hot air drying characteristics of mango ginger: prediction of drying kinetics by mathematical modeling and artificial neural network
  publication-title: Journal of Food Science and Technology
  doi: 10.1007/s13197-013-0941-y
– volume: 111
  start-page: 790
  year: 2019
  ident: 10.1016/j.jarmap.2020.100262_bib0200
  article-title: Influence of infrared drying on the drying kinetics, bioactive compounds and flavor of Cordyceps militaris
  publication-title: LWT
  doi: 10.1016/j.lwt.2019.05.108
– volume: 52
  start-page: 2271
  year: 2016
  ident: 10.1016/j.jarmap.2020.100262_bib0010
  article-title: Determination of drying kinetics and convective heat transfer coefficients of ginger slices
  publication-title: Heat and Mass Transfer
  doi: 10.1007/s00231-015-1729-6
– volume: 98
  start-page: 321
  year: 2018
  ident: 10.1016/j.jarmap.2020.100262_bib0185
  article-title: Chemical composition and antibacterial, antifungal, allelopathic and acetylcholinesterase inhibitory activities of cassumunar-ginger
  publication-title: Journal of the Science of Food and Agriculture
  doi: 10.1002/jsfa.8474
– volume: 41
  year: 2017
  ident: 10.1016/j.jarmap.2020.100262_bib0040
  article-title: Drying kinetics of sliced turmeric (Curcuma longa L.) in a solar-biomass integrated drying system
  publication-title: Journal of Food Processing and Preservation
  doi: 10.1111/jfpp.12904
– volume: 35
  start-page: 70
  year: 2017
  ident: 10.1016/j.jarmap.2020.100262_bib0055
  article-title: Clinical effects of Zingiber cassumunar (Plai): a systematic review
  publication-title: Complementary Therapies in Medicine
  doi: 10.1016/j.ctim.2017.09.009
SSID ssj0001634180
Score 2.3625789
Snippet [Display omitted] •Drying of Zingiber montanum was done by hot air oven, greenhouse solar, and sun drying.•64 and 85 % of curcumin losses were observed for...
In this study, influences of drying of cassumunar ginger (Zingiber montanum) slices using a hot air dryer at 40, 50, 60, 70, and 80 °C, a large-scale...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100262
SubjectTerms air drying
antioxidant activity
bioactive compounds
color
curcumin
drying temperature
essential oils
ginger
greenhouses
Medicinal plant
plant fats and oils
solar dryers
Solar drying
Volatile oil
Zingiber cassumunar
Zingiber montanum
Title Effect of drying temperature and drying method on drying rate and bioactive compounds in cassumunar ginger (Zingiber montanum)
URI https://dx.doi.org/10.1016/j.jarmap.2020.100262
https://www.proquest.com/docview/2477641324
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELW2y4ULatUioAW5EodysHbj2E58RAi0sIJDywrExfJHUi1ik9Xu5trfzkycFIFUIfWUxMpE0XgyM3Zm3iPkWCtprQqSjX1aMhGCYFr4grlUS64zVyQtmM71jZrMxNW9vB-Qs74XBssqO98ffXrrrbuRUafN0XI-H_3iSLGTQ4QGO0UUsw9ki6da5UOydXo5ndy8bLUocNUthxqKMJTpm-jaSq9H3DxG7EoeEUkV_1eQeuOu2xh08ZHsdMkjPY3v94kMiuoz-RMBiGld0rDCpiWKcFMdVjK1VeiHI1k0rat-AFEi2hvcvLat36NYYY5ES2s6r6iHxLpZNJVd0d_t7h_98YD8Rg7OwHohrWwWJ1_I7OL89mzCOlYF5iE52zBeaM61U05ANlBCugDr0pCHxAcZtLJWg7IKCPrKhrF04yzTXo29cDzPhZVOprtkWNVVsUeoFKW33IukxH5WWLklYA9ZmXmdpN4lbp-kvRqN7yDHkfniyfS1ZY8mKt-g8k1U_j5hf6WWEXLjnfuzfobMK9MxEBXekfzeT6iBrwp_ldiqqJu14SLLFMR3Lg7---lfyTZexYK0b2S4WTXFIWQwG3fUWSgepz_vps-Zu_Ff
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-wwEA-6Hp4XUZ4Pv82Dd_Adwm7TJN0cl0VZn7oXFeRdQj5aWdFW1u3Vv92ZplUURPBW0kwpk-nML-nMbwj5o5W0VgXJBj4tmAhBMC18zlyqJdeZy5OGTOdiqibX4t-NvFki464WBtMqW98ffXrjrduRfqvN_uNs1r_k2GJnCBEa7BRZzJbJCrJTiR5ZGZ2eTaZvRy0KXHXTQw1FGMp0RXRNptcdHh4jdyWPjKSKfxakPrjrJgadrJO1FjzSUXy_DbKUlz_JcyQgplVBwxyLlijSTbVcydSWoRuOzaJpVXYDyBLRTHCzyjZ-j2KGOTZaeqKzknoA1vVDXdo5vW1O_-jRf-xv5OAKrBdgZf3wd5NcnxxfjSes7arAPICzBeO55lw75QSggQLgAuxLwzAkPsiglbUalJVD0Fc2DKQbZJn2auCF48OhsNLJ9BfplVWZbxEqReEt9yIpsJ4Vdm4J2ENWZF4nqXeJ2yZpp0bjW8px7Hxxb7rcsjsTlW9Q-SYqf5uwV6nHSLnxxfysWyHzznQMRIUvJH93C2rgq8JfJbbMq_rJcJFlCuI7Fzvffvoh-TG5ujg356fTs12yindictoe6S3mdb4PaGbhDlprfQFolPKi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+drying+temperature+and+drying+method+on+drying+rate+and+bioactive+compounds+in+cassumunar+ginger+%28Zingiber+montanum%29&rft.jtitle=Journal+of+applied+research+on+medicinal+and+aromatic+plants&rft.au=Mahayothee%2C+Busarakorn&rft.au=Thamsala%2C+Thipharat&rft.au=Khuwijitjaru%2C+Pramote&rft.au=Janjai%2C+Serm&rft.date=2020-09-01&rft.pub=Elsevier+GmbH&rft.issn=2214-7861&rft.eissn=2214-7861&rft.volume=18&rft_id=info:doi/10.1016%2Fj.jarmap.2020.100262&rft.externalDocID=S2214786120300231
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-7861&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-7861&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-7861&client=summon