Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency
Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time....
Saved in:
Published in | Physical review letters Vol. 120; no. 18; p. 183602 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
04.05.2018
|
Online Access | Get more information |
Cover
Loading…
Abstract | Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science. |
---|---|
AbstractList | Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science. |
Author | Chen, Yi-Hsin Hsiao, Ya-Fen Lee, Chih-Hsi Chen, Ying-Cheng Chen, Hung-Shiue Lin, Sheng-Xiang Hung, Chih-Chiao Chen, Yong-Fan Yu, Ite A Tsai, Pin-Ju |
Author_xml | – sequence: 1 givenname: Ya-Fen surname: Hsiao fullname: Hsiao, Ya-Fen organization: Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Central University, Taipei 10617, Taiwan – sequence: 2 givenname: Pin-Ju surname: Tsai fullname: Tsai, Pin-Ju organization: Department of Physics, National Taiwan University, Taipei 10617, Taiwan – sequence: 3 givenname: Hung-Shiue surname: Chen fullname: Chen, Hung-Shiue organization: Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan – sequence: 4 givenname: Sheng-Xiang surname: Lin fullname: Lin, Sheng-Xiang organization: Department of Physics, National Taiwan University, Taipei 10617, Taiwan – sequence: 5 givenname: Chih-Chiao surname: Hung fullname: Hung, Chih-Chiao organization: Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan – sequence: 6 givenname: Chih-Hsi surname: Lee fullname: Lee, Chih-Hsi organization: Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan – sequence: 7 givenname: Yi-Hsin surname: Chen fullname: Chen, Yi-Hsin organization: Department of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan – sequence: 8 givenname: Yong-Fan surname: Chen fullname: Chen, Yong-Fan organization: Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan – sequence: 9 givenname: Ite A surname: Yu fullname: Yu, Ite A organization: Department of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan – sequence: 10 givenname: Ying-Cheng surname: Chen fullname: Chen, Ying-Cheng organization: Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29775362$$D View this record in MEDLINE/PubMed |
BookMark | eNo1T1tPgzAYbYzGXfQvLPwBZvsVKH1UMt0SzIyZL74spf06MFAIdCb8e_H2dE7OLTkLculah4SsGF0zRvndSzkOr_iZo_drBpOY8oTCBZkzKmQoGItmZDEMH5RSBkl6TWYghYh5AnPyvq1OZT0GG2srXaHzQdaW2H-TfecrrergGZu2H4MHNaAJWhdsatS-bxt1cviTmOo7Z856sg-9ckOnpr4eb8iVVfWAt3-4JG-Pm0O2DfP90y67z0Md0diHEMUoGI2FsFQXaGQBqKk0wKktYouGKZRpKiNQXGhgEiWCjQoOiqGWGpZk9bvbnYsGzbHrq0b14_H_JHwBaMBYgg |
CitedBy_id | crossref_primary_10_1039_D3CP00775H crossref_primary_10_1007_s11467_022_1240_8 crossref_primary_10_1103_PhysRevB_106_L081302 crossref_primary_10_1103_PhysRevA_105_063711 crossref_primary_10_1002_lpor_202100297 crossref_primary_10_1103_PhysRevA_107_033503 crossref_primary_10_7498_aps_68_20190039 crossref_primary_10_1080_23746149_2022_2060133 crossref_primary_10_1038_s41598_020_70810_8 crossref_primary_10_1016_j_ijleo_2022_169500 crossref_primary_10_1088_0256_307X_38_9_094202 crossref_primary_10_1140_epjc_s10052_022_10841_9 crossref_primary_10_1103_PhysRevLett_128_060502 crossref_primary_10_1016_j_ijleo_2019_163583 crossref_primary_10_1038_s41598_022_25280_5 crossref_primary_10_1103_PhysRevA_105_063706 crossref_primary_10_1016_j_optcom_2019_05_024 crossref_primary_10_1103_PhysRevA_104_063704 crossref_primary_10_1103_PhysRevApplied_11_024065 crossref_primary_10_1103_PhysRevA_98_063820 crossref_primary_10_1103_PhysRevA_101_063828 crossref_primary_10_1103_PhysRevApplied_21_014048 crossref_primary_10_1088_1361_6455_ad12d5 crossref_primary_10_1364_OE_383999 crossref_primary_10_1103_PhysRevA_106_023709 crossref_primary_10_1103_PhysRevA_97_063801 crossref_primary_10_1364_OE_411990 crossref_primary_10_1364_OE_460026 crossref_primary_10_1364_OPTCON_498692 crossref_primary_10_1103_PhysRevA_104_043713 crossref_primary_10_1103_PhysRevA_105_063724 crossref_primary_10_1103_PhysRevA_97_063805 crossref_primary_10_1109_TPS_2020_3013704 crossref_primary_10_1103_PhysRevResearch_5_033192 crossref_primary_10_1364_OE_400222 crossref_primary_10_1038_s42005_021_00670_9 crossref_primary_10_1103_PhysRevA_100_013844 crossref_primary_10_1103_PhysRevA_101_063837 crossref_primary_10_1038_s41467_018_08118_5 crossref_primary_10_1038_s41598_018_28776_1 crossref_primary_10_1088_1361_6455_ab5bed crossref_primary_10_1364_OE_416791 crossref_primary_10_1088_1612_202X_adaa64 crossref_primary_10_1364_OE_412554 crossref_primary_10_1103_PhysRevApplied_22_044038 crossref_primary_10_1103_PhysRevLett_122_253602 crossref_primary_10_1038_s41534_023_00698_5 crossref_primary_10_22331_q_2023_01_19_903 crossref_primary_10_1038_s41534_019_0144_0 crossref_primary_10_1103_PhysRevApplied_22_024026 crossref_primary_10_1103_PhysRevResearch_3_013096 crossref_primary_10_1038_s41467_022_30077_1 crossref_primary_10_1038_s41566_019_0368_8 crossref_primary_10_1103_PhysRevA_105_013713 crossref_primary_10_1103_PhysRevLett_126_090501 crossref_primary_10_1088_1367_2630_ab3ca9 crossref_primary_10_1016_j_physleta_2019_125885 crossref_primary_10_1103_PhysRevA_100_063843 crossref_primary_10_1364_OE_415473 crossref_primary_10_1038_s41567_018_0313_7 crossref_primary_10_1364_OPTICA_400695 crossref_primary_10_7498_aps_72_20230966 crossref_primary_10_1103_PhysRevA_98_033419 crossref_primary_10_1364_OL_414263 crossref_primary_10_7566_JPSJ_93_094401 crossref_primary_10_1103_PhysRevApplied_20_014027 crossref_primary_10_1103_PhysRevA_107_042607 crossref_primary_10_1103_PhysRevLett_122_063604 crossref_primary_10_1103_PhysRevA_98_063846 crossref_primary_10_1103_PhysRevA_107_063704 crossref_primary_10_7498_aps_73_20240182 crossref_primary_10_1364_OE_376962 crossref_primary_10_1002_andp_202000536 crossref_primary_10_1088_1361_6455_ad745a crossref_primary_10_1103_PhysRevA_100_033801 crossref_primary_10_1103_PhysRevA_104_013706 crossref_primary_10_1364_OE_519821 crossref_primary_10_1103_PhysRevA_108_013702 crossref_primary_10_1007_s11082_024_07967_3 crossref_primary_10_1063_5_0255199 crossref_primary_10_1038_s42005_023_01247_4 crossref_primary_10_1088_1674_1056_abda31 crossref_primary_10_1088_1674_1056_ad1c5c crossref_primary_10_1038_s41566_018_0279_0 crossref_primary_10_1364_JOSAB_510348 crossref_primary_10_1103_PhysRevA_100_032322 crossref_primary_10_1103_PhysRevLett_129_093604 crossref_primary_10_1103_PhysRevA_103_062205 crossref_primary_10_1016_j_optcom_2020_125655 crossref_primary_10_1016_j_optcom_2019_01_074 crossref_primary_10_1039_D5NR00006H crossref_primary_10_1002_qute_201800100 crossref_primary_10_1063_5_0122003 crossref_primary_10_1103_PhysRevA_103_023711 crossref_primary_10_7498_aps_68_20182215 crossref_primary_10_1364_OL_479915 crossref_primary_10_1002_qute_201900020 crossref_primary_10_1080_09500340_2019_1596324 crossref_primary_10_1088_1674_1056_ab4d44 crossref_primary_10_1103_PhysRevApplied_10_044034 crossref_primary_10_1103_PhysRevLett_131_150804 crossref_primary_10_1038_s42005_021_00604_5 crossref_primary_10_1140_epjp_s13360_023_04496_y crossref_primary_10_1103_PhysRevA_108_012609 crossref_primary_10_1088_0256_307X_36_7_074202 crossref_primary_10_1103_PhysRevLett_123_113605 crossref_primary_10_1038_s41377_024_01413_5 crossref_primary_10_1103_PhysRevLett_125_150501 crossref_primary_10_1364_OE_448334 crossref_primary_10_1103_PhysRevResearch_2_033155 crossref_primary_10_1109_LPT_2020_3003015 crossref_primary_10_7498_aps_72_20222178 crossref_primary_10_1088_2058_9565_adbb86 crossref_primary_10_1016_j_physo_2024_100211 crossref_primary_10_1088_1612_202X_aae782 crossref_primary_10_1103_PhysRevA_103_062418 crossref_primary_10_1088_1612_202X_ac0bc3 crossref_primary_10_1103_PRXQuantum_4_020308 crossref_primary_10_1088_1367_2630_acbc40 crossref_primary_10_1364_OE_483444 crossref_primary_10_1103_PhysRevA_101_033806 crossref_primary_10_1109_JLT_2019_2918491 crossref_primary_10_1103_PhysRevA_107_012614 crossref_primary_10_1103_PhysRevLett_134_043602 crossref_primary_10_1103_PhysRevA_104_033714 crossref_primary_10_1364_JOSAB_37_000049 crossref_primary_10_1103_PhysRevA_100_012314 crossref_primary_10_1364_OE_27_030530 crossref_primary_10_1364_OPTICA_493732 crossref_primary_10_1103_PhysRevResearch_2_033320 crossref_primary_10_1103_PhysRevA_97_053815 crossref_primary_10_1103_PhysRevA_98_052308 crossref_primary_10_1088_1402_4896_aca845 crossref_primary_10_1116_5_0016007 crossref_primary_10_1364_OE_455247 crossref_primary_10_7498_aps_72_20231203 crossref_primary_10_1103_PhysRevX_14_021018 crossref_primary_10_1088_1674_1056_abfbd3 crossref_primary_10_1103_PhysRevResearch_4_023132 crossref_primary_10_23919_emsci_2024_0021 crossref_primary_10_3103_S1068335623602212 crossref_primary_10_3390_app8071179 crossref_primary_10_1140_epjp_s13360_022_02338_x crossref_primary_10_1088_1361_6455_aaf36d crossref_primary_10_1088_1555_6611_ab4bd5 crossref_primary_10_1103_PhysRevLett_128_083605 crossref_primary_10_1103_PhysRevResearch_5_L042029 crossref_primary_10_1140_epjc_s10052_024_13483_1 crossref_primary_10_1364_JOSAB_416387 crossref_primary_10_1364_JOSAB_444022 crossref_primary_10_1038_s41534_022_00638_9 crossref_primary_10_1063_5_0179539 crossref_primary_10_1103_PhysRevResearch_6_L042002 crossref_primary_10_1103_PhysRevA_101_032312 crossref_primary_10_1103_PhysRevApplied_18_044058 crossref_primary_10_1016_j_rinp_2020_102935 crossref_primary_10_1364_OE_484093 crossref_primary_10_1088_1367_2630_ad4abb crossref_primary_10_1103_PhysRevResearch_7_L012015 crossref_primary_10_1103_PhysRevResearch_2_023102 crossref_primary_10_1016_j_physleta_2021_127673 crossref_primary_10_1103_PhysRevApplied_14_044046 crossref_primary_10_1080_17455030_2023_2226780 crossref_primary_10_1103_PhysRevA_99_033812 crossref_primary_10_1364_OPTICA_412211 crossref_primary_10_1103_PhysRevA_102_063720 crossref_primary_10_1364_OE_446837 crossref_primary_10_1103_PhysRevA_110_052603 crossref_primary_10_1007_s11432_022_3614_7 crossref_primary_10_1103_PhysRevLett_129_120502 crossref_primary_10_1103_PhysRevLett_131_240801 crossref_primary_10_1103_PhysRevX_12_011041 crossref_primary_10_1002_lpor_202300257 crossref_primary_10_1038_s42005_023_01284_z crossref_primary_10_1063_5_0207712 crossref_primary_10_1088_1367_2630_ab753a crossref_primary_10_1364_OE_550909 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1103/PhysRevLett.120.183602 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1079-7114 |
ExternalDocumentID | 29775362 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 123 2-P 29O 3MX 5VS 85S ACBEA ACGFO ACNCT AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CS3 D0L DU5 EBS EJD ER. F5P MVM N9A NPBMV NPM OK1 P2P ROL S7W SJN TN5 UBE UCJ VQA WH7 XSW YNT ZPR ~02 |
ID | FETCH-LOGICAL-c405t-245e710577f0cbed9b2ec09d230fb5fed1ae988942a37c219e9e2f4b32a1ec9c2 |
IngestDate | Thu Jan 02 23:09:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c405t-245e710577f0cbed9b2ec09d230fb5fed1ae988942a37c219e9e2f4b32a1ec9c2 |
PMID | 29775362 |
ParticipantIDs | pubmed_primary_29775362 |
PublicationCentury | 2000 |
PublicationDate | 2018-05-04 |
PublicationDateYYYYMMDD | 2018-05-04 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review letters |
PublicationTitleAlternate | Phys Rev Lett |
PublicationYear | 2018 |
SSID | ssj0001268 |
Score | 2.6544895 |
Snippet | Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 183602 |
Title | Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29775362 |
Volume | 120 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBXpxqAvY9_fQw97K8psWbalx220hLJuZU0h20uRZCkNtG4gSaH9CfvVu1eyHa_LoNuLMVYkHJ_jK-n6nnsJeScAVWCSZWnhPRNaJkyazDPNrSiqTMMUieLkgy_F6FjsT_LJYPCzF7W0Wpqhvd6oK_kfVOEa4Ioq2X9AthsULsA54AtHQBiOt8IYgzTOrrA68izoGndQbBHSLX2dRx_1AQbSXu18hLmqwu8Cu7Hqzbme1lG9CN2xegdGAcQ85ygOs7996z1soWxkLmdBAdStxUeLmQ7-1u-a7a2FZeNFLHR9OKvZ_modRRDN3AhsDDs6na06Xn2OyQyO4AdTNgHSTvsOiVSG8L_oFHDRiCalYmUaxaGdleVJn06yZzRTFJLwzfY8wbwS-D-_uUsUOA1hnOGfHQCX-XlAmcOCNs-KW7TeyLPdNm2RLdhxYAlV9Ptst966Qjb6cril95tvCBNLN4Pc2KSExcr4Abnf7DLoh0iZh2Tg6kfkXgRy8Zj8iMShHXFoSxzaEIdG4tBAHHpR0w3EoQ1xaJ84T8jx3u7404g1RTaYhbX6knGRuxKLPZc-scZVynBnE1XB1tSb3Lsq1U5JqQTXWWlhfnPKcS9MxnXqrLL8KblTX9TuOaGl5jrPRCUqlHcLZ1QC3UtplLReSf-CPIsP5WQeM6mctI_r5V9bXpHtNcdek7seXl33BtaBS_M2QPQLhqJfrg |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Efficient+Coherent+Optical+Memory+Based+on+Electromagnetically+Induced+Transparency&rft.jtitle=Physical+review+letters&rft.au=Hsiao%2C+Ya-Fen&rft.au=Tsai%2C+Pin-Ju&rft.au=Chen%2C+Hung-Shiue&rft.au=Lin%2C+Sheng-Xiang&rft.date=2018-05-04&rft.eissn=1079-7114&rft.volume=120&rft.issue=18&rft.spage=183602&rft_id=info:doi/10.1103%2FPhysRevLett.120.183602&rft_id=info%3Apmid%2F29775362&rft_id=info%3Apmid%2F29775362&rft.externalDocID=29775362 |