Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency

Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time....

Full description

Saved in:
Bibliographic Details
Published inPhysical review letters Vol. 120; no. 18; p. 183602
Main Authors Hsiao, Ya-Fen, Tsai, Pin-Ju, Chen, Hung-Shiue, Lin, Sheng-Xiang, Hung, Chih-Chiao, Lee, Chih-Hsi, Chen, Yi-Hsin, Chen, Yong-Fan, Yu, Ite A, Chen, Ying-Cheng
Format Journal Article
LanguageEnglish
Published United States 04.05.2018
Online AccessGet more information

Cover

Loading…
Abstract Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.
AbstractList Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.
Author Chen, Yi-Hsin
Hsiao, Ya-Fen
Lee, Chih-Hsi
Chen, Ying-Cheng
Chen, Hung-Shiue
Lin, Sheng-Xiang
Hung, Chih-Chiao
Chen, Yong-Fan
Yu, Ite A
Tsai, Pin-Ju
Author_xml – sequence: 1
  givenname: Ya-Fen
  surname: Hsiao
  fullname: Hsiao, Ya-Fen
  organization: Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Central University, Taipei 10617, Taiwan
– sequence: 2
  givenname: Pin-Ju
  surname: Tsai
  fullname: Tsai, Pin-Ju
  organization: Department of Physics, National Taiwan University, Taipei 10617, Taiwan
– sequence: 3
  givenname: Hung-Shiue
  surname: Chen
  fullname: Chen, Hung-Shiue
  organization: Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
– sequence: 4
  givenname: Sheng-Xiang
  surname: Lin
  fullname: Lin, Sheng-Xiang
  organization: Department of Physics, National Taiwan University, Taipei 10617, Taiwan
– sequence: 5
  givenname: Chih-Chiao
  surname: Hung
  fullname: Hung, Chih-Chiao
  organization: Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
– sequence: 6
  givenname: Chih-Hsi
  surname: Lee
  fullname: Lee, Chih-Hsi
  organization: Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
– sequence: 7
  givenname: Yi-Hsin
  surname: Chen
  fullname: Chen, Yi-Hsin
  organization: Department of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan
– sequence: 8
  givenname: Yong-Fan
  surname: Chen
  fullname: Chen, Yong-Fan
  organization: Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan
– sequence: 9
  givenname: Ite A
  surname: Yu
  fullname: Yu, Ite A
  organization: Department of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan
– sequence: 10
  givenname: Ying-Cheng
  surname: Chen
  fullname: Chen, Ying-Cheng
  organization: Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29775362$$D View this record in MEDLINE/PubMed
BookMark eNo1T1tPgzAYbYzGXfQvLPwBZvsVKH1UMt0SzIyZL74spf06MFAIdCb8e_H2dE7OLTkLculah4SsGF0zRvndSzkOr_iZo_drBpOY8oTCBZkzKmQoGItmZDEMH5RSBkl6TWYghYh5AnPyvq1OZT0GG2srXaHzQdaW2H-TfecrrergGZu2H4MHNaAJWhdsatS-bxt1cviTmOo7Z856sg-9ckOnpr4eb8iVVfWAt3-4JG-Pm0O2DfP90y67z0Md0diHEMUoGI2FsFQXaGQBqKk0wKktYouGKZRpKiNQXGhgEiWCjQoOiqGWGpZk9bvbnYsGzbHrq0b14_H_JHwBaMBYgg
CitedBy_id crossref_primary_10_1039_D3CP00775H
crossref_primary_10_1007_s11467_022_1240_8
crossref_primary_10_1103_PhysRevB_106_L081302
crossref_primary_10_1103_PhysRevA_105_063711
crossref_primary_10_1002_lpor_202100297
crossref_primary_10_1103_PhysRevA_107_033503
crossref_primary_10_7498_aps_68_20190039
crossref_primary_10_1080_23746149_2022_2060133
crossref_primary_10_1038_s41598_020_70810_8
crossref_primary_10_1016_j_ijleo_2022_169500
crossref_primary_10_1088_0256_307X_38_9_094202
crossref_primary_10_1140_epjc_s10052_022_10841_9
crossref_primary_10_1103_PhysRevLett_128_060502
crossref_primary_10_1016_j_ijleo_2019_163583
crossref_primary_10_1038_s41598_022_25280_5
crossref_primary_10_1103_PhysRevA_105_063706
crossref_primary_10_1016_j_optcom_2019_05_024
crossref_primary_10_1103_PhysRevA_104_063704
crossref_primary_10_1103_PhysRevApplied_11_024065
crossref_primary_10_1103_PhysRevA_98_063820
crossref_primary_10_1103_PhysRevA_101_063828
crossref_primary_10_1103_PhysRevApplied_21_014048
crossref_primary_10_1088_1361_6455_ad12d5
crossref_primary_10_1364_OE_383999
crossref_primary_10_1103_PhysRevA_106_023709
crossref_primary_10_1103_PhysRevA_97_063801
crossref_primary_10_1364_OE_411990
crossref_primary_10_1364_OE_460026
crossref_primary_10_1364_OPTCON_498692
crossref_primary_10_1103_PhysRevA_104_043713
crossref_primary_10_1103_PhysRevA_105_063724
crossref_primary_10_1103_PhysRevA_97_063805
crossref_primary_10_1109_TPS_2020_3013704
crossref_primary_10_1103_PhysRevResearch_5_033192
crossref_primary_10_1364_OE_400222
crossref_primary_10_1038_s42005_021_00670_9
crossref_primary_10_1103_PhysRevA_100_013844
crossref_primary_10_1103_PhysRevA_101_063837
crossref_primary_10_1038_s41467_018_08118_5
crossref_primary_10_1038_s41598_018_28776_1
crossref_primary_10_1088_1361_6455_ab5bed
crossref_primary_10_1364_OE_416791
crossref_primary_10_1088_1612_202X_adaa64
crossref_primary_10_1364_OE_412554
crossref_primary_10_1103_PhysRevApplied_22_044038
crossref_primary_10_1103_PhysRevLett_122_253602
crossref_primary_10_1038_s41534_023_00698_5
crossref_primary_10_22331_q_2023_01_19_903
crossref_primary_10_1038_s41534_019_0144_0
crossref_primary_10_1103_PhysRevApplied_22_024026
crossref_primary_10_1103_PhysRevResearch_3_013096
crossref_primary_10_1038_s41467_022_30077_1
crossref_primary_10_1038_s41566_019_0368_8
crossref_primary_10_1103_PhysRevA_105_013713
crossref_primary_10_1103_PhysRevLett_126_090501
crossref_primary_10_1088_1367_2630_ab3ca9
crossref_primary_10_1016_j_physleta_2019_125885
crossref_primary_10_1103_PhysRevA_100_063843
crossref_primary_10_1364_OE_415473
crossref_primary_10_1038_s41567_018_0313_7
crossref_primary_10_1364_OPTICA_400695
crossref_primary_10_7498_aps_72_20230966
crossref_primary_10_1103_PhysRevA_98_033419
crossref_primary_10_1364_OL_414263
crossref_primary_10_7566_JPSJ_93_094401
crossref_primary_10_1103_PhysRevApplied_20_014027
crossref_primary_10_1103_PhysRevA_107_042607
crossref_primary_10_1103_PhysRevLett_122_063604
crossref_primary_10_1103_PhysRevA_98_063846
crossref_primary_10_1103_PhysRevA_107_063704
crossref_primary_10_7498_aps_73_20240182
crossref_primary_10_1364_OE_376962
crossref_primary_10_1002_andp_202000536
crossref_primary_10_1088_1361_6455_ad745a
crossref_primary_10_1103_PhysRevA_100_033801
crossref_primary_10_1103_PhysRevA_104_013706
crossref_primary_10_1364_OE_519821
crossref_primary_10_1103_PhysRevA_108_013702
crossref_primary_10_1007_s11082_024_07967_3
crossref_primary_10_1063_5_0255199
crossref_primary_10_1038_s42005_023_01247_4
crossref_primary_10_1088_1674_1056_abda31
crossref_primary_10_1088_1674_1056_ad1c5c
crossref_primary_10_1038_s41566_018_0279_0
crossref_primary_10_1364_JOSAB_510348
crossref_primary_10_1103_PhysRevA_100_032322
crossref_primary_10_1103_PhysRevLett_129_093604
crossref_primary_10_1103_PhysRevA_103_062205
crossref_primary_10_1016_j_optcom_2020_125655
crossref_primary_10_1016_j_optcom_2019_01_074
crossref_primary_10_1039_D5NR00006H
crossref_primary_10_1002_qute_201800100
crossref_primary_10_1063_5_0122003
crossref_primary_10_1103_PhysRevA_103_023711
crossref_primary_10_7498_aps_68_20182215
crossref_primary_10_1364_OL_479915
crossref_primary_10_1002_qute_201900020
crossref_primary_10_1080_09500340_2019_1596324
crossref_primary_10_1088_1674_1056_ab4d44
crossref_primary_10_1103_PhysRevApplied_10_044034
crossref_primary_10_1103_PhysRevLett_131_150804
crossref_primary_10_1038_s42005_021_00604_5
crossref_primary_10_1140_epjp_s13360_023_04496_y
crossref_primary_10_1103_PhysRevA_108_012609
crossref_primary_10_1088_0256_307X_36_7_074202
crossref_primary_10_1103_PhysRevLett_123_113605
crossref_primary_10_1038_s41377_024_01413_5
crossref_primary_10_1103_PhysRevLett_125_150501
crossref_primary_10_1364_OE_448334
crossref_primary_10_1103_PhysRevResearch_2_033155
crossref_primary_10_1109_LPT_2020_3003015
crossref_primary_10_7498_aps_72_20222178
crossref_primary_10_1088_2058_9565_adbb86
crossref_primary_10_1016_j_physo_2024_100211
crossref_primary_10_1088_1612_202X_aae782
crossref_primary_10_1103_PhysRevA_103_062418
crossref_primary_10_1088_1612_202X_ac0bc3
crossref_primary_10_1103_PRXQuantum_4_020308
crossref_primary_10_1088_1367_2630_acbc40
crossref_primary_10_1364_OE_483444
crossref_primary_10_1103_PhysRevA_101_033806
crossref_primary_10_1109_JLT_2019_2918491
crossref_primary_10_1103_PhysRevA_107_012614
crossref_primary_10_1103_PhysRevLett_134_043602
crossref_primary_10_1103_PhysRevA_104_033714
crossref_primary_10_1364_JOSAB_37_000049
crossref_primary_10_1103_PhysRevA_100_012314
crossref_primary_10_1364_OE_27_030530
crossref_primary_10_1364_OPTICA_493732
crossref_primary_10_1103_PhysRevResearch_2_033320
crossref_primary_10_1103_PhysRevA_97_053815
crossref_primary_10_1103_PhysRevA_98_052308
crossref_primary_10_1088_1402_4896_aca845
crossref_primary_10_1116_5_0016007
crossref_primary_10_1364_OE_455247
crossref_primary_10_7498_aps_72_20231203
crossref_primary_10_1103_PhysRevX_14_021018
crossref_primary_10_1088_1674_1056_abfbd3
crossref_primary_10_1103_PhysRevResearch_4_023132
crossref_primary_10_23919_emsci_2024_0021
crossref_primary_10_3103_S1068335623602212
crossref_primary_10_3390_app8071179
crossref_primary_10_1140_epjp_s13360_022_02338_x
crossref_primary_10_1088_1361_6455_aaf36d
crossref_primary_10_1088_1555_6611_ab4bd5
crossref_primary_10_1103_PhysRevLett_128_083605
crossref_primary_10_1103_PhysRevResearch_5_L042029
crossref_primary_10_1140_epjc_s10052_024_13483_1
crossref_primary_10_1364_JOSAB_416387
crossref_primary_10_1364_JOSAB_444022
crossref_primary_10_1038_s41534_022_00638_9
crossref_primary_10_1063_5_0179539
crossref_primary_10_1103_PhysRevResearch_6_L042002
crossref_primary_10_1103_PhysRevA_101_032312
crossref_primary_10_1103_PhysRevApplied_18_044058
crossref_primary_10_1016_j_rinp_2020_102935
crossref_primary_10_1364_OE_484093
crossref_primary_10_1088_1367_2630_ad4abb
crossref_primary_10_1103_PhysRevResearch_7_L012015
crossref_primary_10_1103_PhysRevResearch_2_023102
crossref_primary_10_1016_j_physleta_2021_127673
crossref_primary_10_1103_PhysRevApplied_14_044046
crossref_primary_10_1080_17455030_2023_2226780
crossref_primary_10_1103_PhysRevA_99_033812
crossref_primary_10_1364_OPTICA_412211
crossref_primary_10_1103_PhysRevA_102_063720
crossref_primary_10_1364_OE_446837
crossref_primary_10_1103_PhysRevA_110_052603
crossref_primary_10_1007_s11432_022_3614_7
crossref_primary_10_1103_PhysRevLett_129_120502
crossref_primary_10_1103_PhysRevLett_131_240801
crossref_primary_10_1103_PhysRevX_12_011041
crossref_primary_10_1002_lpor_202300257
crossref_primary_10_1038_s42005_023_01284_z
crossref_primary_10_1063_5_0207712
crossref_primary_10_1088_1367_2630_ab753a
crossref_primary_10_1364_OE_550909
ContentType Journal Article
DBID NPM
DOI 10.1103/PhysRevLett.120.183602
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 29775362
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
ER.
F5P
MVM
N9A
NPBMV
NPM
OK1
P2P
ROL
S7W
SJN
TN5
UBE
UCJ
VQA
WH7
XSW
YNT
ZPR
~02
ID FETCH-LOGICAL-c405t-245e710577f0cbed9b2ec09d230fb5fed1ae988942a37c219e9e2f4b32a1ec9c2
IngestDate Thu Jan 02 23:09:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c405t-245e710577f0cbed9b2ec09d230fb5fed1ae988942a37c219e9e2f4b32a1ec9c2
PMID 29775362
ParticipantIDs pubmed_primary_29775362
PublicationCentury 2000
PublicationDate 2018-05-04
PublicationDateYYYYMMDD 2018-05-04
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2018
SSID ssj0001268
Score 2.6544895
Snippet Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct...
SourceID pubmed
SourceType Index Database
StartPage 183602
Title Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency
URI https://www.ncbi.nlm.nih.gov/pubmed/29775362
Volume 120
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBXpxqAvY9_fQw97K8psWbalx220hLJuZU0h20uRZCkNtG4gSaH9CfvVu1eyHa_LoNuLMVYkHJ_jK-n6nnsJeScAVWCSZWnhPRNaJkyazDPNrSiqTMMUieLkgy_F6FjsT_LJYPCzF7W0Wpqhvd6oK_kfVOEa4Ioq2X9AthsULsA54AtHQBiOt8IYgzTOrrA68izoGndQbBHSLX2dRx_1AQbSXu18hLmqwu8Cu7Hqzbme1lG9CN2xegdGAcQ85ygOs7996z1soWxkLmdBAdStxUeLmQ7-1u-a7a2FZeNFLHR9OKvZ_modRRDN3AhsDDs6na06Xn2OyQyO4AdTNgHSTvsOiVSG8L_oFHDRiCalYmUaxaGdleVJn06yZzRTFJLwzfY8wbwS-D-_uUsUOA1hnOGfHQCX-XlAmcOCNs-KW7TeyLPdNm2RLdhxYAlV9Ptst966Qjb6cril95tvCBNLN4Pc2KSExcr4Abnf7DLoh0iZh2Tg6kfkXgRy8Zj8iMShHXFoSxzaEIdG4tBAHHpR0w3EoQ1xaJ84T8jx3u7404g1RTaYhbX6knGRuxKLPZc-scZVynBnE1XB1tSb3Lsq1U5JqQTXWWlhfnPKcS9MxnXqrLL8KblTX9TuOaGl5jrPRCUqlHcLZ1QC3UtplLReSf-CPIsP5WQeM6mctI_r5V9bXpHtNcdek7seXl33BtaBS_M2QPQLhqJfrg
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Efficient+Coherent+Optical+Memory+Based+on+Electromagnetically+Induced+Transparency&rft.jtitle=Physical+review+letters&rft.au=Hsiao%2C+Ya-Fen&rft.au=Tsai%2C+Pin-Ju&rft.au=Chen%2C+Hung-Shiue&rft.au=Lin%2C+Sheng-Xiang&rft.date=2018-05-04&rft.eissn=1079-7114&rft.volume=120&rft.issue=18&rft.spage=183602&rft_id=info:doi/10.1103%2FPhysRevLett.120.183602&rft_id=info%3Apmid%2F29775362&rft_id=info%3Apmid%2F29775362&rft.externalDocID=29775362