Trianglamine hydrochloride crystals for a highly sensitive and selective humidity sensor

•Synthesis and coating of trianglamine hydrochloride on IDE substrates.•Morphological characterization of trianglamine hydrochloride crystals.•Sensing of humidity.•Analysis of the sensitivity, selectivity, hysteresis, stability, and temperature coefficient of the humidity sensor. In this work, we pr...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. B, Chemical Vol. 294; pp. 40 - 47
Main Authors Chappanda, Karumbaiah N., Chaix, Arnaud, Surya, Sandeep G., Moosa, Basem A., Khashab, Niveen M., Salama, Khaled N.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.09.2019
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0925-4005
1873-3077
DOI10.1016/j.snb.2019.05.008

Cover

Abstract •Synthesis and coating of trianglamine hydrochloride on IDE substrates.•Morphological characterization of trianglamine hydrochloride crystals.•Sensing of humidity.•Analysis of the sensitivity, selectivity, hysteresis, stability, and temperature coefficient of the humidity sensor. In this work, we present a highly sensitive and selective capacitive humidity sensor. Trianglamine hydrochloride is used as the sensing material, which is synthesized by a [3+3] cyclocondensation reaction between terpthaldehyde and 1R,2R-cyclohexanediamine followed by addition of hydrochloric acid and vapor diffusion of acetone. The crystalline trianglamine hydrochloride salts are dispersed in acetonitrile and then coated on interdigitated electrode substrates by drop casting. The sensor response is characterized for relative humidity (RH) ranging from 5% to 95%. The sensor has a nonlinear response, where the sensitivity increases with an increase in RH. The sensor demonstrates, on average, normalized sensitivities of 0.015 and 6.9 per percent of RH below and above 65% RH, respectively. In addition, the sensor is characterized for hysteresis, long-term stability, effect of temperature, and selectivity. The hysteresis of the sensor is a maximum of about 20% RH and is stable for over 25 days. Temperature analysis of the sensors shows that the sensitivity decreases with increase in temperature. The material is shown to be highly selective with respect to volatile organic compounds (VOCs) and toxic/corrosive gasses. Overall, trianglamine hydrochloride is a promising material for developing a highly sensitive and selective capacitive transduction-based humidity sensor.
AbstractList In this work, we present a highly sensitive and selective capacitive humidity sensor. Trianglamine hydrochloride is used as the sensing material, which is synthesized by a [3+3] cyclocondensation reaction between terpthaldehyde and 1R,2R-cyclohexanediamine followed by addition of hydrochloric acid and vapor diffusion of acetone. The crystalline trianglamine hydrochloride salts are dispersed in acetonitrile and then coated on interdigitated electrode substrates by drop casting. The sensor response is characterized for relative humidity (RH) ranging from 5% to 95%. The sensor has a nonlinear response, where the sensitivity increases with an increase in RH. The sensor demonstrates, on average, normalized sensitivities of 0.015 and 6.9 per percent of RH below and above 65% RH, respectively. In addition, the sensor is characterized for hysteresis, long-term stability, effect of temperature, and selectivity. The hysteresis of the sensor is a maximum of about 20% RH and is stable for over 25 days. Temperature analysis of the sensors shows that the sensitivity decreases with increase in temperature. The material is shown to be highly selective with respect to volatile organic compounds (VOCs) and toxic/corrosive gasses. Overall, trianglamine hydrochloride is a promising material for developing a highly sensitive and selective capacitive transduction-based humidity sensor.
•Synthesis and coating of trianglamine hydrochloride on IDE substrates.•Morphological characterization of trianglamine hydrochloride crystals.•Sensing of humidity.•Analysis of the sensitivity, selectivity, hysteresis, stability, and temperature coefficient of the humidity sensor. In this work, we present a highly sensitive and selective capacitive humidity sensor. Trianglamine hydrochloride is used as the sensing material, which is synthesized by a [3+3] cyclocondensation reaction between terpthaldehyde and 1R,2R-cyclohexanediamine followed by addition of hydrochloric acid and vapor diffusion of acetone. The crystalline trianglamine hydrochloride salts are dispersed in acetonitrile and then coated on interdigitated electrode substrates by drop casting. The sensor response is characterized for relative humidity (RH) ranging from 5% to 95%. The sensor has a nonlinear response, where the sensitivity increases with an increase in RH. The sensor demonstrates, on average, normalized sensitivities of 0.015 and 6.9 per percent of RH below and above 65% RH, respectively. In addition, the sensor is characterized for hysteresis, long-term stability, effect of temperature, and selectivity. The hysteresis of the sensor is a maximum of about 20% RH and is stable for over 25 days. Temperature analysis of the sensors shows that the sensitivity decreases with increase in temperature. The material is shown to be highly selective with respect to volatile organic compounds (VOCs) and toxic/corrosive gasses. Overall, trianglamine hydrochloride is a promising material for developing a highly sensitive and selective capacitive transduction-based humidity sensor.
Author Surya, Sandeep G.
Khashab, Niveen M.
Salama, Khaled N.
Chaix, Arnaud
Chappanda, Karumbaiah N.
Moosa, Basem A.
Author_xml – sequence: 1
  givenname: Karumbaiah N.
  orcidid: 0000-0003-0467-6764
  surname: Chappanda
  fullname: Chappanda, Karumbaiah N.
  email: khaled.salama@kaust.edu.sa, karum.chappanda@utah.edu
  organization: Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Hyderabad, 500078, India
– sequence: 2
  givenname: Arnaud
  surname: Chaix
  fullname: Chaix, Arnaud
  organization: Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes & Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
– sequence: 3
  givenname: Sandeep G.
  surname: Surya
  fullname: Surya, Sandeep G.
  organization: Sensors Lab, Advanced Membranes & Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
– sequence: 4
  givenname: Basem A.
  surname: Moosa
  fullname: Moosa, Basem A.
  organization: Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes & Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
– sequence: 5
  givenname: Niveen M.
  surname: Khashab
  fullname: Khashab, Niveen M.
  email: niveen.khashab@kaust.edu.sa
  organization: Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes & Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
– sequence: 6
  givenname: Khaled N.
  orcidid: 0000-0001-7742-1282
  surname: Salama
  fullname: Salama, Khaled N.
  email: khaled.salama@kaust.edu.sa
  organization: Sensors Lab, Advanced Membranes & Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
BookMark eNp9kE1LAzEQhoNUsFZ_gLcFz7tOkt1kiycpfkHBSwVvIc3OdlO2SU22hf57U-vJQ0_DC-8zwzzXZOS8Q0LuKBQUqHhYF9EtCwZ0WkBVANQXZExryXMOUo7IGKasykuA6opcx7gGgJILGJOvRbDarXq9sQ6z7tAEb7reB9tgZsIhDrqPWetDprPOrrr-kEV00Q52j5l2TUo9mt_U7Ta2scOp4MMNuWwTi7d_c0I-X54Xs7d8_vH6Pnua56aEasgpUi6bEpkuuV4yZDWTWMklZ4JWXAowUyFAoEyJcdG2rawZ1cgkZ8AaySfk_rR3G_z3DuOg1n4XXDqpGKsEZZKKOrXoqWWCjzFgq7bBbnQ4KArqKFCtVRKojgIVVCoJTIz8xxg76MF6NwRt-7Pk44nE9PjeYlDRWHQGGxuSLdV4e4b-AZY9jOI
CitedBy_id crossref_primary_10_1002_adma_202410720
crossref_primary_10_1021_acsami_9b20763
crossref_primary_10_1021_acsami_0c16302
crossref_primary_10_1088_2632_959X_ac6764
crossref_primary_10_1039_C9CE01323G
crossref_primary_10_1109_LSENS_2020_3009033
crossref_primary_10_1021_acssensors_9b02318
crossref_primary_10_3390_polym13122013
crossref_primary_10_1021_acsomega_2c04313
crossref_primary_10_1016_j_snb_2020_128934
crossref_primary_10_1021_jacs_3c02815
crossref_primary_10_1016_j_synthmet_2023_117429
crossref_primary_10_1016_j_snb_2020_128542
crossref_primary_10_1039_D4TA05042H
crossref_primary_10_3390_bios11120484
crossref_primary_10_1002_cnma_202400491
crossref_primary_10_1016_j_snb_2021_129637
crossref_primary_10_1016_j_snb_2021_130309
crossref_primary_10_1021_acsami_3c08061
crossref_primary_10_1039_D4SC04207G
crossref_primary_10_1109_JFLEX_2023_3339587
crossref_primary_10_1021_acsami_0c00803
crossref_primary_10_1021_acsami_0c07532
Cites_doi 10.1016/j.snb.2018.05.084
10.1016/S0925-4005(00)00668-7
10.1016/j.snb.2014.11.035
10.3390/s17051009
10.1021/acsami.8b18327
10.3390/s18113898
10.1166/sl.2005.045
10.1016/j.matchemphys.2017.12.033
10.1016/j.snb.2015.09.076
10.3390/s16122073
10.1080/10408430490888977
10.3390/s17071464
10.1021/acssensors.7b00199
10.1016/j.snb.2017.11.060
10.1007/s10853-016-0641-x
10.3390/s17102415
10.1016/j.snb.2017.10.189
10.1016/j.apsusc.2004.08.013
10.1021/ja070788m
10.1039/C6SM00272B
10.1016/j.snb.2017.04.193
10.1016/j.snb.2015.04.092
10.1016/j.snb.2012.11.025
10.1016/j.snb.2014.03.057
10.1039/C7TA11375G
10.1364/OE.24.001206
10.1016/j.jallcom.2016.11.370
10.3390/s17020407
10.3390/s150818153
10.1038/s41598-017-10848-3
10.1016/j.snb.2016.06.041
10.1166/sl.2005.001
10.1016/j.snb.2016.04.070
10.20964/2017.04.21
10.1038/s41467-019-09157-2
10.1016/j.snb.2018.07.077
10.1016/S0924-4247(01)00788-9
10.3390/s17020284
10.1007/s10854-017-7186-x
10.1021/acsnano.5b03325
10.1021/jacs.8b08770
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier Science Ltd. Sep 1, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Sep 1, 2019
DBID AAYXX
CITATION
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1016/j.snb.2019.05.008
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3077
EndPage 47
ExternalDocumentID 10_1016_j_snb_2019_05_008
S0925400519306963
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
SCB
SCH
SEW
SSH
WUQ
7SP
7SR
7TB
7U5
8BQ
8FD
EFKBS
FR3
JG9
L7M
ID FETCH-LOGICAL-c405t-1e137d4e2a43ab2e2827e57b326153760c96606e7153236fff7821ae273202d73
IEDL.DBID AIKHN
ISSN 0925-4005
IngestDate Fri Jul 25 06:45:22 EDT 2025
Tue Jul 01 01:27:31 EDT 2025
Thu Apr 24 23:10:31 EDT 2025
Fri Feb 23 02:31:03 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Humidity sensor
Selectivity
Trianglamine hydrochloride
IDE Capacitors
Macrocycle
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-1e137d4e2a43ab2e2827e57b326153760c96606e7153236fff7821ae273202d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7742-1282
0000-0003-0467-6764
OpenAccessLink http://hdl.handle.net/10754/655986
PQID 2256127168
PQPubID 2047454
PageCount 8
ParticipantIDs proquest_journals_2256127168
crossref_primary_10_1016_j_snb_2019_05_008
crossref_citationtrail_10_1016_j_snb_2019_05_008
elsevier_sciencedirect_doi_10_1016_j_snb_2019_05_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. B, Chemical
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Tchalala, Belmabkhout, Adil, Chappanda, Cadiau, Bhatt, Salama, Eddaoudi (bib0100) 2019; 11
Yuan, Tai, Ye, Liu, Xie, Du, Jiang (bib0175) 2016; 234
Qiang, Wang, Liu, Adhikari, Liang, Wang, Li, Wu, Yang, Meng, Fu, Wu, Kim, Yao (bib0055) 2018; 258
Woyessa, Nielsen, Stefani, Markos, Bang (bib0170) 2016; 24
Feng, Wang, Li (bib0040) 2017; 698
Yasaei, Behranginia, Foroozan, Asadi, Kim, Khalili-Araghi, Salehi-Khojin (bib0190) 2015; 9
Rittersma (bib0005) 2002; 96
Li, Chen, Chen, Ding, Zhao (bib0085) 2018; 207
Chen, Chi (bib0010) 2005; 3
Kano, Kim, Fujii (bib0205) 2017; 6
Zhang, Yu, Jiang, Zhu, Geng, Luo (bib0115) 2005; 242
Surya, Nagarkar, Ghosh, Sonard, Rao (bib0150) 2016; 223
Ruiz, Fernández, Carrasco, Cabañero, Grande, Herrán (bib0215) 2015; 218
Gaspar, Olkkonen, Passoja, Smolander (bib0045) 2017; 17
Lee, Rhee, Gong (bib0225) 2001; 73
Lee, Lee (bib0020) 2005; 3
Eranna, Joshi, Runthala, Gupta (bib0165) 2004; 29
Altenberend, Molina-Lopez, Oprea, Briand, Bârsan, De Rooij, Weimar (bib0025) 2013; 187
Samai, Sapsanis, Patil, Ezzeddine, Moosa, Omran, Emwas, Salama, Khashab (bib0125) 2016; 12
Ahmad, Touati, Zafar, Shah (bib0075) 2017; 12
Liang, He, Wang, Geng, Fu, Ren, Jiang (bib0185) 2015; 208
Chaix, Mouchaham, Shkurenko, Hoang, Moosa, Bhatt, Adil, Salama, Eddaoudi, Khashab (bib0220) 2018; 140
Feng, Wang, Li (bib0070) 2017; 52
Chen, Khor, Liao, Chung (bib0135) 2014; 199
Yuan, Chappanda, Tabib-Azar (bib0140) 2011
Quddious, Yang, Khan, Tahir, Shamim, Salama, Cheema (bib0120) 2016; 16
Park, Kim, Lee, Sohn, Lee, Kim, Shim, Kwon, Choi, Yoo, Suh, Ko, Lee, Lee, Kim, Lee, Jang (bib0195) 2018; 6
Han, Kim, Lee, Kim, Kim, Hong, Cho, Hwang (bib0050) 2017; 17
Chappanda, Tabib-Azar (bib0095) 2011
Phan, Park, Park, Park, Jeon (bib0210) 2017; 7
Yang, Ye, Zeng, Zhang, Yue, Xu, Qiu, Wu (bib0035) 2017; 17
Kuang, Lao, Wang, Xie, Zheng (bib0160) 2007; 129
Chappanda, Shekhah, Yassine, Patole, Eddaoudi, Salama (bib0130) 2018; 257
Hernández-Rivera, Rodríguez-Roldán, Mora-Martínez, Suaste-Gómez (bib0080) 2017; 17
Sapsanis, Omran, Chernikova, Shekhah, Belmabkhout, Buttner, Eddaoudi, Salama (bib0110) 2015; 15
Liu, Wang, Kim (bib0030) 2017; 17
Abdulameer, Suhail, Abdullah, Al-Essa (bib0090) 2017; 28
Sapsanis, Buttner, Omran, Belmabkhout, Shekhah, Eddaoudi, Salama (bib0105) 2016
Chappanda, Tchalala, Shekhah, Surya, Eddaoudi, Salama (bib0145) 2018; 18
Zhao, Yang, Liu (bib0060) 2018; 271
Tchalala, Bhatt, Chappanda, Tavares, Adil, Belmabkhout, Shkurenko, Cadiau, Heymans, Weireld, Maurin, Salama, Eddaoudi (bib0155) 2019; 10
Sharma, Islam (bib0180) 2016; 237
Palaparthy, Kalita, Surya, Baghini, Aslam (bib0015) 2018; 273
Chen, Chung, Yao, Fang (bib0065) 2017
Du, Yang, She, Yuan, Jiang, Lu (bib0200) 2017; 251
Phan (10.1016/j.snb.2019.05.008_bib0210) 2017; 7
Altenberend (10.1016/j.snb.2019.05.008_bib0025) 2013; 187
Li (10.1016/j.snb.2019.05.008_bib0085) 2018; 207
Lee (10.1016/j.snb.2019.05.008_bib0225) 2001; 73
Chen (10.1016/j.snb.2019.05.008_bib0010) 2005; 3
Quddious (10.1016/j.snb.2019.05.008_bib0120) 2016; 16
Qiang (10.1016/j.snb.2019.05.008_bib0055) 2018; 258
Chappanda (10.1016/j.snb.2019.05.008_bib0095) 2011
Rittersma (10.1016/j.snb.2019.05.008_bib0005) 2002; 96
Feng (10.1016/j.snb.2019.05.008_bib0040) 2017; 698
Yuan (10.1016/j.snb.2019.05.008_bib0140) 2011
Surya (10.1016/j.snb.2019.05.008_bib0150) 2016; 223
Chen (10.1016/j.snb.2019.05.008_bib0135) 2014; 199
Kuang (10.1016/j.snb.2019.05.008_bib0160) 2007; 129
Park (10.1016/j.snb.2019.05.008_bib0195) 2018; 6
Tchalala (10.1016/j.snb.2019.05.008_bib0155) 2019; 10
Abdulameer (10.1016/j.snb.2019.05.008_bib0090) 2017; 28
Du (10.1016/j.snb.2019.05.008_bib0200) 2017; 251
Eranna (10.1016/j.snb.2019.05.008_bib0165) 2004; 29
Liang (10.1016/j.snb.2019.05.008_bib0185) 2015; 208
Feng (10.1016/j.snb.2019.05.008_bib0070) 2017; 52
Woyessa (10.1016/j.snb.2019.05.008_bib0170) 2016; 24
Palaparthy (10.1016/j.snb.2019.05.008_bib0015) 2018; 273
Yasaei (10.1016/j.snb.2019.05.008_bib0190) 2015; 9
Ruiz (10.1016/j.snb.2019.05.008_bib0215) 2015; 218
Han (10.1016/j.snb.2019.05.008_bib0050) 2017; 17
Samai (10.1016/j.snb.2019.05.008_bib0125) 2016; 12
Kano (10.1016/j.snb.2019.05.008_bib0205) 2017; 6
Tchalala (10.1016/j.snb.2019.05.008_bib0100) 2019; 11
Sapsanis (10.1016/j.snb.2019.05.008_bib0105) 2016
Chaix (10.1016/j.snb.2019.05.008_bib0220) 2018; 140
Gaspar (10.1016/j.snb.2019.05.008_bib0045) 2017; 17
Chappanda (10.1016/j.snb.2019.05.008_bib0130) 2018; 257
Lee (10.1016/j.snb.2019.05.008_bib0020) 2005; 3
Yang (10.1016/j.snb.2019.05.008_bib0035) 2017; 17
Zhao (10.1016/j.snb.2019.05.008_bib0060) 2018; 271
Zhang (10.1016/j.snb.2019.05.008_bib0115) 2005; 242
Chappanda (10.1016/j.snb.2019.05.008_bib0145) 2018; 18
Liu (10.1016/j.snb.2019.05.008_bib0030) 2017; 17
Chen (10.1016/j.snb.2019.05.008_bib0065) 2017
Ahmad (10.1016/j.snb.2019.05.008_bib0075) 2017; 12
Sharma (10.1016/j.snb.2019.05.008_bib0180) 2016; 237
Hernández-Rivera (10.1016/j.snb.2019.05.008_bib0080) 2017; 17
Sapsanis (10.1016/j.snb.2019.05.008_bib0110) 2015; 15
Yuan (10.1016/j.snb.2019.05.008_bib0175) 2016; 234
References_xml – volume: 29
  start-page: 111
  year: 2004
  end-page: 188
  ident: bib0165
  article-title: Oxide materials for development of integrated gas sensors—a comprehensive review
  publication-title: Crit. Rev. Solid State Mater. Sci.
– volume: 140
  start-page: 14571
  year: 2018
  end-page: 14575
  ident: bib0220
  article-title: Trianglamine-based supramolecular organic framework with permanent intrinsic porosity and tunable selectivity
  publication-title: J. Am. Chem. Soc.
– volume: 271
  start-page: 256
  year: 2018
  end-page: 263
  ident: bib0060
  article-title: Effect of interdigital electrode gap on the performance of SnO
  publication-title: Sens. Actuators B
– start-page: 1453
  year: 2017
  end-page: 1454
  ident: bib0065
  article-title: Vertically integrated CMOS-MEMS capacitive humidity sensor and a resistive temperature detector for environment application
  publication-title: 19th International Conference on Solid-State Sensors Actuators and Microsystems, Transducers
– volume: 11
  start-page: 1706
  year: 2019
  end-page: 1712
  ident: bib0100
  article-title: Concurrent sensing of CO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 24
  start-page: 1206
  year: 2016
  end-page: 1213
  ident: bib0170
  article-title: Temperature insensitive hysteresis free highly sensitive polymer optical fiber bragg grating humidity sensor
  publication-title: Opt. Express
– volume: 7
  start-page: 10561
  year: 2017
  ident: bib0210
  article-title: Black P/graphene hybrid: a fast response humidity sensor with good reversibility and stability
  publication-title: Sci. Rep.
– start-page: 1062
  year: 2011
  end-page: 1065
  ident: bib0095
  article-title: Electrical and AFM structural studies of a humidity sensors based on keratin (human hair)
  publication-title: IEEE Sens.
– volume: 17
  start-page: 0284
  year: 2017
  ident: bib0030
  article-title: High-sensitivity and low-hysteresis porous mimtype capacitive humidity sensor using functional polymer mixed with TiO
  publication-title: Sensors
– volume: 237
  start-page: 443
  year: 2016
  end-page: 451
  ident: bib0180
  article-title: Optimization of porous anodic alumina nanostructure for ultra high sensitive humidity sensor
  publication-title: Sens. Actuators B
– volume: 698
  start-page: 94
  year: 2017
  end-page: 98
  ident: bib0040
  article-title: Capacitive humidity sensing properties of CdS/ZnO sesame-seed-candy structure grown on silicon nanoporous pillar array
  publication-title: J. Alloy. Compd.
– volume: 17
  start-page: 2415
  year: 2017
  ident: bib0035
  article-title: Stable and fast-response capacitive humidity sensors based on a ZnO nanopowder/PVP-RGO multilayer
  publication-title: Sensors
– volume: 12
  start-page: 3012
  year: 2017
  end-page: 3019
  ident: bib0075
  article-title: Integrated capacitive and resistive humidity transduction via surface type nickel phthalocyanine based sensor
  publication-title: Int. J. Electrochem. Sci.
– volume: 6
  start-page: 5016
  year: 2018
  end-page: 5024
  ident: bib0195
  article-title: Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS
  publication-title: J. Mater. Chem. A
– volume: 96
  start-page: 196
  year: 2002
  end-page: 210
  ident: bib0005
  article-title: Recent achievements in miniaturised humidity sensors—a review of transduction techniques
  publication-title: Sens. Actuators A
– volume: 208
  start-page: 363
  year: 2015
  end-page: 368
  ident: bib0185
  article-title: Highly sensitive humidity sensors based on LiCl–pebax 2533 composite nanofibers via electrospinning
  publication-title: Sens. Actuators B
– start-page: 568
  year: 2011
  end-page: 570
  ident: bib0140
  article-title: Microfabricated atmospheric RFmicroplasma devices for gas spectroscopy
  publication-title: 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences
– volume: 3
  start-page: 1
  year: 2005
  end-page: 15
  ident: bib0020
  article-title: Humidity sensors: a review
  publication-title: Sensor Lett.
– volume: 223
  start-page: 114
  year: 2016
  end-page: 122
  ident: bib0150
  article-title: OFET based explosive sensors using diketopyrrolopyrrole and metal organic framework composite active channel material
  publication-title: Sens. Actuators B
– volume: 273
  start-page: 1660
  year: 2018
  end-page: 1669
  ident: bib0015
  article-title: Graphene oxide based soil moisture microsensor for in situ agriculture applications
  publication-title: Sens. Actuators B
– volume: 234
  start-page: 145
  year: 2016
  end-page: 154
  ident: bib0175
  article-title: Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film
  publication-title: Sens. Actuators B
– volume: 258
  start-page: 704
  year: 2018
  end-page: 714
  ident: bib0055
  article-title: High-performance porous MIM-type capacitive humidity sensor realized via inductive coupled plasma and reactive-ion etching
  publication-title: Sens. Actuators B
– volume: 257
  start-page: 609
  year: 2018
  end-page: 619
  ident: bib0130
  article-title: the quest for highly sensitive QCM humidity sensors: the coating of CNT/MOF composite sensing films as case study
  publication-title: Sens. Actuators B
– volume: 187
  start-page: 280
  year: 2013
  end-page: 287
  ident: bib0025
  article-title: Towards fully printed capacitive gas sensors on flexible PET substrates based on Ag interdigitated transducers with increased stability
  publication-title: Sens. Actuators B
– volume: 17
  start-page: 407
  year: 2017
  ident: bib0050
  article-title: Compliment graphene oxide coating on silk fiber surface via electrostatic force for capacitive humidity sensor applications
  publication-title: Sensors
– volume: 10
  start-page: 1328
  year: 2019
  ident: bib0155
  article-title: Fluorinated MOF platform for selective removal and sensing of SO
  publication-title: Nat. Commun.
– volume: 12
  start-page: 2842
  year: 2016
  end-page: 2845
  ident: bib0125
  article-title: A light responsive two-component supramolecular hydrogel: a sensitive platform for the fabrication of humidity sensors
  publication-title: Soft Matter.
– volume: 251
  start-page: 180
  year: 2017
  end-page: 184
  ident: bib0200
  article-title: MoS
  publication-title: Sens. Actuators B
– volume: 242
  start-page: 212
  year: 2005
  end-page: 217
  ident: bib0115
  article-title: Zinc oxide nanorod and nanowire for humidity sensor
  publication-title: Appl. Surf. Sci.
– volume: 28
  start-page: 13472
  year: 2017
  end-page: 13477
  ident: bib0090
  article-title: Fabrication and characterization of NiPcTs organic semiconductors based surface type capacitive–resistive humidity sensors
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 129
  start-page: 6070
  year: 2007
  end-page: 6071
  ident: bib0160
  article-title: High-sensitivity humidity sensor based on a single SnO
  publication-title: J. Am. Chem. Soc.
– volume: 199
  start-page: 384
  year: 2014
  end-page: 388
  ident: bib0135
  article-title: Sensitivity evolution and enhancement mechanism of porous anodic aluminum oxide humidity sensor using magnetic field
  publication-title: Sens. Actuators B
– volume: 15
  start-page: 18153
  year: 2015
  end-page: 18166
  ident: bib0110
  article-title: Insights on capacitive interdigitated electrodes coated with MOF thin films: humidity and VOCs sensing as a case study
  publication-title: Sensors
– start-page: 1
  year: 2016
  end-page: 4
  ident: bib0105
  article-title: A Nafion Coated Capacitive Humidity Sensor on a Flexible PET Substrate, 2016
– volume: 207
  start-page: 135
  year: 2018
  end-page: 140
  ident: bib0085
  article-title: High-sensitive humidity sensor based on graphene oxide with evenly dispersed multiwalled carbon nanotubes
  publication-title: Mater. Chem. Phys.
– volume: 73
  start-page: 124
  year: 2001
  end-page: 129
  ident: bib0225
  article-title: Humidity sensor using epoxy resin containing quaternary ammonium salts
  publication-title: Sens. Actuators B
– volume: 6
  start-page: 828
  year: 2017
  end-page: 833
  ident: bib0205
  article-title: Fast-response and flexible nanocrystal-based humidity sensor for monitoring human respiration and water evaporation on skin
  publication-title: ACS Sens.
– volume: 9
  start-page: 9898
  year: 2015
  end-page: 9905
  ident: bib0190
  article-title: Stable and selective humidity sensing using stacked Black phosphorus flakes
  publication-title: ACS Nano
– volume: 17
  start-page: 1009
  year: 2017
  ident: bib0080
  article-title: A capacitive humidity sensor based on an electrospun PVDF/graphene membrane
  publication-title: Sensors
– volume: 17
  start-page: 1464
  year: 2017
  ident: bib0045
  article-title: Paper as active layer in inkjet-printed capacitive humidity sensors
  publication-title: Sensors
– volume: 3
  start-page: 274
  year: 2005
  end-page: 295
  ident: bib0010
  article-title: Humidity sensors: a review of materials and mechanisms
  publication-title: Sensor Lett.
– volume: 52
  start-page: 3841
  year: 2017
  end-page: 3848
  ident: bib0070
  article-title: LiCl-enhanced capacitive humidity-sensing properties of cadmium sulfide grown on silicon nanoporous pillar array
  publication-title: J. Mater. Sci.
– volume: 16
  start-page: 2073
  year: 2016
  ident: bib0120
  article-title: Paper-based disposable inkjet-printed humidity and H
  publication-title: Sensors
– volume: 218
  start-page: 73
  year: 2015
  end-page: 77
  ident: bib0215
  article-title: Graphene quantum dots as a novel sensing material for low-cost resistive and fast-response humidity sensors
  publication-title: Sens. Actuators B
– volume: 18
  start-page: 3898
  year: 2018
  ident: bib0145
  article-title: A comparative study of interdigitated electrode and quartz crystal microbalance transduction techniques for Metal–Organic framework-based acetone sensors
  publication-title: Sensors
– volume: 271
  start-page: 256
  year: 2018
  ident: 10.1016/j.snb.2019.05.008_bib0060
  article-title: Effect of interdigital electrode gap on the performance of SnO2-modified MoS2 capacitive humidity sensor
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2018.05.084
– volume: 73
  start-page: 124
  year: 2001
  ident: 10.1016/j.snb.2019.05.008_bib0225
  article-title: Humidity sensor using epoxy resin containing quaternary ammonium salts
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(00)00668-7
– volume: 208
  start-page: 363
  year: 2015
  ident: 10.1016/j.snb.2019.05.008_bib0185
  article-title: Highly sensitive humidity sensors based on LiCl–pebax 2533 composite nanofibers via electrospinning
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2014.11.035
– volume: 17
  start-page: 1009
  year: 2017
  ident: 10.1016/j.snb.2019.05.008_bib0080
  article-title: A capacitive humidity sensor based on an electrospun PVDF/graphene membrane
  publication-title: Sensors
  doi: 10.3390/s17051009
– volume: 11
  start-page: 1706
  year: 2019
  ident: 10.1016/j.snb.2019.05.008_bib0100
  article-title: Concurrent sensing of CO2 and H2O from air using ultra-microporous fluorinated MOFs: effect of transduction mechanism on the sensing performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b18327
– volume: 18
  start-page: 3898
  year: 2018
  ident: 10.1016/j.snb.2019.05.008_bib0145
  article-title: A comparative study of interdigitated electrode and quartz crystal microbalance transduction techniques for Metal–Organic framework-based acetone sensors
  publication-title: Sensors
  doi: 10.3390/s18113898
– volume: 3
  start-page: 274
  year: 2005
  ident: 10.1016/j.snb.2019.05.008_bib0010
  article-title: Humidity sensors: a review of materials and mechanisms
  publication-title: Sensor Lett.
  doi: 10.1166/sl.2005.045
– volume: 207
  start-page: 135
  year: 2018
  ident: 10.1016/j.snb.2019.05.008_bib0085
  article-title: High-sensitive humidity sensor based on graphene oxide with evenly dispersed multiwalled carbon nanotubes
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2017.12.033
– volume: 223
  start-page: 114
  year: 2016
  ident: 10.1016/j.snb.2019.05.008_bib0150
  article-title: OFET based explosive sensors using diketopyrrolopyrrole and metal organic framework composite active channel material
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2015.09.076
– volume: 16
  start-page: 2073
  year: 2016
  ident: 10.1016/j.snb.2019.05.008_bib0120
  article-title: Paper-based disposable inkjet-printed humidity and H2S gas sensor for passive sensing applications
  publication-title: Sensors
  doi: 10.3390/s16122073
– volume: 29
  start-page: 111
  year: 2004
  ident: 10.1016/j.snb.2019.05.008_bib0165
  article-title: Oxide materials for development of integrated gas sensors—a comprehensive review
  publication-title: Crit. Rev. Solid State Mater. Sci.
  doi: 10.1080/10408430490888977
– volume: 17
  start-page: 1464
  year: 2017
  ident: 10.1016/j.snb.2019.05.008_bib0045
  article-title: Paper as active layer in inkjet-printed capacitive humidity sensors
  publication-title: Sensors
  doi: 10.3390/s17071464
– volume: 6
  start-page: 828
  year: 2017
  ident: 10.1016/j.snb.2019.05.008_bib0205
  article-title: Fast-response and flexible nanocrystal-based humidity sensor for monitoring human respiration and water evaporation on skin
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.7b00199
– volume: 258
  start-page: 704
  year: 2018
  ident: 10.1016/j.snb.2019.05.008_bib0055
  article-title: High-performance porous MIM-type capacitive humidity sensor realized via inductive coupled plasma and reactive-ion etching
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2017.11.060
– volume: 52
  start-page: 3841
  year: 2017
  ident: 10.1016/j.snb.2019.05.008_bib0070
  article-title: LiCl-enhanced capacitive humidity-sensing properties of cadmium sulfide grown on silicon nanoporous pillar array
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-016-0641-x
– start-page: 1062
  year: 2011
  ident: 10.1016/j.snb.2019.05.008_bib0095
  article-title: Electrical and AFM structural studies of a humidity sensors based on keratin (human hair)
  publication-title: IEEE Sens.
– volume: 17
  start-page: 2415
  year: 2017
  ident: 10.1016/j.snb.2019.05.008_bib0035
  article-title: Stable and fast-response capacitive humidity sensors based on a ZnO nanopowder/PVP-RGO multilayer
  publication-title: Sensors
  doi: 10.3390/s17102415
– volume: 257
  start-page: 609
  year: 2018
  ident: 10.1016/j.snb.2019.05.008_bib0130
  article-title: the quest for highly sensitive QCM humidity sensors: the coating of CNT/MOF composite sensing films as case study
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2017.10.189
– start-page: 1
  year: 2016
  ident: 10.1016/j.snb.2019.05.008_bib0105
– volume: 242
  start-page: 212
  year: 2005
  ident: 10.1016/j.snb.2019.05.008_bib0115
  article-title: Zinc oxide nanorod and nanowire for humidity sensor
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2004.08.013
– volume: 129
  start-page: 6070
  year: 2007
  ident: 10.1016/j.snb.2019.05.008_bib0160
  article-title: High-sensitivity humidity sensor based on a single SnO2 nanowire
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja070788m
– volume: 12
  start-page: 2842
  year: 2016
  ident: 10.1016/j.snb.2019.05.008_bib0125
  article-title: A light responsive two-component supramolecular hydrogel: a sensitive platform for the fabrication of humidity sensors
  publication-title: Soft Matter.
  doi: 10.1039/C6SM00272B
– volume: 251
  start-page: 180
  year: 2017
  ident: 10.1016/j.snb.2019.05.008_bib0200
  article-title: MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2017.04.193
– volume: 218
  start-page: 73
  year: 2015
  ident: 10.1016/j.snb.2019.05.008_bib0215
  article-title: Graphene quantum dots as a novel sensing material for low-cost resistive and fast-response humidity sensors
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2015.04.092
– volume: 187
  start-page: 280
  year: 2013
  ident: 10.1016/j.snb.2019.05.008_bib0025
  article-title: Towards fully printed capacitive gas sensors on flexible PET substrates based on Ag interdigitated transducers with increased stability
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2012.11.025
– volume: 199
  start-page: 384
  year: 2014
  ident: 10.1016/j.snb.2019.05.008_bib0135
  article-title: Sensitivity evolution and enhancement mechanism of porous anodic aluminum oxide humidity sensor using magnetic field
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2014.03.057
– volume: 6
  start-page: 5016
  year: 2018
  ident: 10.1016/j.snb.2019.05.008_bib0195
  article-title: Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der waals composites
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA11375G
– volume: 24
  start-page: 1206
  year: 2016
  ident: 10.1016/j.snb.2019.05.008_bib0170
  article-title: Temperature insensitive hysteresis free highly sensitive polymer optical fiber bragg grating humidity sensor
  publication-title: Opt. Express
  doi: 10.1364/OE.24.001206
– volume: 698
  start-page: 94
  year: 2017
  ident: 10.1016/j.snb.2019.05.008_bib0040
  article-title: Capacitive humidity sensing properties of CdS/ZnO sesame-seed-candy structure grown on silicon nanoporous pillar array
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2016.11.370
– volume: 17
  start-page: 407
  year: 2017
  ident: 10.1016/j.snb.2019.05.008_bib0050
  article-title: Compliment graphene oxide coating on silk fiber surface via electrostatic force for capacitive humidity sensor applications
  publication-title: Sensors
  doi: 10.3390/s17020407
– volume: 15
  start-page: 18153
  year: 2015
  ident: 10.1016/j.snb.2019.05.008_bib0110
  article-title: Insights on capacitive interdigitated electrodes coated with MOF thin films: humidity and VOCs sensing as a case study
  publication-title: Sensors
  doi: 10.3390/s150818153
– start-page: 568
  year: 2011
  ident: 10.1016/j.snb.2019.05.008_bib0140
  article-title: Microfabricated atmospheric RFmicroplasma devices for gas spectroscopy
  publication-title: 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences
– volume: 7
  start-page: 10561
  year: 2017
  ident: 10.1016/j.snb.2019.05.008_bib0210
  article-title: Black P/graphene hybrid: a fast response humidity sensor with good reversibility and stability
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-10848-3
– volume: 237
  start-page: 443
  year: 2016
  ident: 10.1016/j.snb.2019.05.008_bib0180
  article-title: Optimization of porous anodic alumina nanostructure for ultra high sensitive humidity sensor
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2016.06.041
– volume: 3
  start-page: 1
  year: 2005
  ident: 10.1016/j.snb.2019.05.008_bib0020
  article-title: Humidity sensors: a review
  publication-title: Sensor Lett.
  doi: 10.1166/sl.2005.001
– volume: 234
  start-page: 145
  year: 2016
  ident: 10.1016/j.snb.2019.05.008_bib0175
  article-title: Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2016.04.070
– volume: 12
  start-page: 3012
  year: 2017
  ident: 10.1016/j.snb.2019.05.008_bib0075
  article-title: Integrated capacitive and resistive humidity transduction via surface type nickel phthalocyanine based sensor
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.20964/2017.04.21
– volume: 10
  start-page: 1328
  year: 2019
  ident: 10.1016/j.snb.2019.05.008_bib0155
  article-title: Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09157-2
– volume: 273
  start-page: 1660
  year: 2018
  ident: 10.1016/j.snb.2019.05.008_bib0015
  article-title: Graphene oxide based soil moisture microsensor for in situ agriculture applications
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2018.07.077
– volume: 96
  start-page: 196
  year: 2002
  ident: 10.1016/j.snb.2019.05.008_bib0005
  article-title: Recent achievements in miniaturised humidity sensors—a review of transduction techniques
  publication-title: Sens. Actuators A
  doi: 10.1016/S0924-4247(01)00788-9
– volume: 17
  start-page: 0284
  year: 2017
  ident: 10.1016/j.snb.2019.05.008_bib0030
  article-title: High-sensitivity and low-hysteresis porous mimtype capacitive humidity sensor using functional polymer mixed with TiO2 microparticles
  publication-title: Sensors
  doi: 10.3390/s17020284
– start-page: 1453
  year: 2017
  ident: 10.1016/j.snb.2019.05.008_bib0065
  article-title: Vertically integrated CMOS-MEMS capacitive humidity sensor and a resistive temperature detector for environment application
  publication-title: 19th International Conference on Solid-State Sensors Actuators and Microsystems, Transducers
– volume: 28
  start-page: 13472
  year: 2017
  ident: 10.1016/j.snb.2019.05.008_bib0090
  article-title: Fabrication and characterization of NiPcTs organic semiconductors based surface type capacitive–resistive humidity sensors
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-017-7186-x
– volume: 9
  start-page: 9898
  year: 2015
  ident: 10.1016/j.snb.2019.05.008_bib0190
  article-title: Stable and selective humidity sensing using stacked Black phosphorus flakes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03325
– volume: 140
  start-page: 14571
  year: 2018
  ident: 10.1016/j.snb.2019.05.008_bib0220
  article-title: Trianglamine-based supramolecular organic framework with permanent intrinsic porosity and tunable selectivity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08770
SSID ssj0004360
Score 2.425263
Snippet •Synthesis and coating of trianglamine hydrochloride on IDE substrates.•Morphological characterization of trianglamine hydrochloride crystals.•Sensing of...
In this work, we present a highly sensitive and selective capacitive humidity sensor. Trianglamine hydrochloride is used as the sensing material, which is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 40
SubjectTerms Acetone
Acetonitrile
Coated electrodes
Humidity
Humidity sensor
Hydrochloric acid
Hysteresis
IDE Capacitors
Macrocycle
Nonlinear response
Relative humidity
Selectivity
Sensitivity analysis
Sensors
Substrates
Temperature effects
Trianglamine hydrochloride
VOCs
Volatile organic compounds
Title Trianglamine hydrochloride crystals for a highly sensitive and selective humidity sensor
URI https://dx.doi.org/10.1016/j.snb.2019.05.008
https://www.proquest.com/docview/2256127168
Volume 294
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71scCAeIpHQR6YkEKdxHGaESFQAdGFVupm2Ykjitq0asrQhd_OXR68hBgYbdlRdD5__k4-fwdwjme44VpYx6NLQqEj6RiMhZy0ZzU3ge2JQmf2cSD7I3E_DsYNuK7fwlBaZYX9JaYXaF31dCtrdheTSfeJRxjclBSES_SjJrQ9P5JBC9pXdw_9wefzSL94LEzjHZpQX24WaV55ZijBKyr0O6nI5O_H0w-gLk6f223Yqmgjuyr_bAcaNtuFzS9ignswHqIvUUmOGfax53VCxbAovy6xLF6ukQVOc4YUlWlGGsXTNcspeZ3gjuksYXlREYdaz6-zSYLsvBgwX-7D6PZmeN13qroJToz0a-W41vXDRFhPC18bz2JUFdogNMjUXFJv4TFJckobYguXKE1TpAmutshkPO4loX8ArWye2UNgaayRk0RRyqUnYh6bFBFAWj8JZSCEEUfAa3OpuBIVp9oWU1Vnj70otLAiCyseKLTwEVx8TFmUihp_DRb1GqhvbqEQ8f-a1qnXS1V7MleIXEjnMD7sHf_vqyewQa0yw6wDrdXy1Z4iJVmZM2hevrlnleO9Aw8g3r4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QD-rB-DOiqD14Mpl0W7exoyESVOAiJNyadusiBgZhcODi3-573eavGA4e27wuy-vr69f06_cIuYE9XDHJteXgJSGXoW8pOAtZSVNLpjzd5EZnttf3O0P-NPJGFdIq38IgrbLI_XlON9m66GkU3mzMx-PGCwvhcJNDEOZDHG2Rbe65AfL67t6_eB7cNU-F0dpC8_Jq05C8slQhvSs06p1YYvLvzelXmjZ7T_uA7Begkd7n_3VIKjo9InvfpASPyWgAkYQFOabQR1_XMZbCQnZdrGm0WAMGnGQUACqVFBWKJ2uaIXUdkx2VaUwzUw8HW6-r6TgGbG4MZosTMmw_DFodq6iaYEUAvpaWrW03iLl2JHelcjScqQLtBQpwmo3aLSxCQU5fB9CCCUqSBECCLTXgGIc5ceCekmo6S_UZoUkkAZGEYcJ8h0csUgmsf1-7ceB7nCteI6x0l4gKSXGsbDERJXfsTYCHBXpYME-Ah2vk9nPIPNfT2GTMyzkQP4JCQL7fNKxezpcoVmQmIG8BmIPTYfP8f1-9JjudQa8ruo_95wuy6yC3xdB266S6XKz0JYCTpboywfcB61rfgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trianglamine+hydrochloride+crystals+for+a+highly+sensitive+and+selective+humidity+sensor&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Chappanda%2C+Karumbaiah+N.&rft.au=Chaix%2C+Arnaud&rft.au=Surya%2C+Sandeep+G.&rft.au=Moosa%2C+Basem+A.&rft.date=2019-09-01&rft.issn=0925-4005&rft.volume=294&rft.spage=40&rft.epage=47&rft_id=info:doi/10.1016%2Fj.snb.2019.05.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_snb_2019_05_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon