Trianglamine hydrochloride crystals for a highly sensitive and selective humidity sensor
•Synthesis and coating of trianglamine hydrochloride on IDE substrates.•Morphological characterization of trianglamine hydrochloride crystals.•Sensing of humidity.•Analysis of the sensitivity, selectivity, hysteresis, stability, and temperature coefficient of the humidity sensor. In this work, we pr...
Saved in:
Published in | Sensors and actuators. B, Chemical Vol. 294; pp. 40 - 47 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.09.2019
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0925-4005 1873-3077 |
DOI | 10.1016/j.snb.2019.05.008 |
Cover
Abstract | •Synthesis and coating of trianglamine hydrochloride on IDE substrates.•Morphological characterization of trianglamine hydrochloride crystals.•Sensing of humidity.•Analysis of the sensitivity, selectivity, hysteresis, stability, and temperature coefficient of the humidity sensor.
In this work, we present a highly sensitive and selective capacitive humidity sensor. Trianglamine hydrochloride is used as the sensing material, which is synthesized by a [3+3] cyclocondensation reaction between terpthaldehyde and 1R,2R-cyclohexanediamine followed by addition of hydrochloric acid and vapor diffusion of acetone. The crystalline trianglamine hydrochloride salts are dispersed in acetonitrile and then coated on interdigitated electrode substrates by drop casting. The sensor response is characterized for relative humidity (RH) ranging from 5% to 95%. The sensor has a nonlinear response, where the sensitivity increases with an increase in RH. The sensor demonstrates, on average, normalized sensitivities of 0.015 and 6.9 per percent of RH below and above 65% RH, respectively. In addition, the sensor is characterized for hysteresis, long-term stability, effect of temperature, and selectivity. The hysteresis of the sensor is a maximum of about 20% RH and is stable for over 25 days. Temperature analysis of the sensors shows that the sensitivity decreases with increase in temperature. The material is shown to be highly selective with respect to volatile organic compounds (VOCs) and toxic/corrosive gasses. Overall, trianglamine hydrochloride is a promising material for developing a highly sensitive and selective capacitive transduction-based humidity sensor. |
---|---|
AbstractList | In this work, we present a highly sensitive and selective capacitive humidity sensor. Trianglamine hydrochloride is used as the sensing material, which is synthesized by a [3+3] cyclocondensation reaction between terpthaldehyde and 1R,2R-cyclohexanediamine followed by addition of hydrochloric acid and vapor diffusion of acetone. The crystalline trianglamine hydrochloride salts are dispersed in acetonitrile and then coated on interdigitated electrode substrates by drop casting. The sensor response is characterized for relative humidity (RH) ranging from 5% to 95%. The sensor has a nonlinear response, where the sensitivity increases with an increase in RH. The sensor demonstrates, on average, normalized sensitivities of 0.015 and 6.9 per percent of RH below and above 65% RH, respectively. In addition, the sensor is characterized for hysteresis, long-term stability, effect of temperature, and selectivity. The hysteresis of the sensor is a maximum of about 20% RH and is stable for over 25 days. Temperature analysis of the sensors shows that the sensitivity decreases with increase in temperature. The material is shown to be highly selective with respect to volatile organic compounds (VOCs) and toxic/corrosive gasses. Overall, trianglamine hydrochloride is a promising material for developing a highly sensitive and selective capacitive transduction-based humidity sensor. •Synthesis and coating of trianglamine hydrochloride on IDE substrates.•Morphological characterization of trianglamine hydrochloride crystals.•Sensing of humidity.•Analysis of the sensitivity, selectivity, hysteresis, stability, and temperature coefficient of the humidity sensor. In this work, we present a highly sensitive and selective capacitive humidity sensor. Trianglamine hydrochloride is used as the sensing material, which is synthesized by a [3+3] cyclocondensation reaction between terpthaldehyde and 1R,2R-cyclohexanediamine followed by addition of hydrochloric acid and vapor diffusion of acetone. The crystalline trianglamine hydrochloride salts are dispersed in acetonitrile and then coated on interdigitated electrode substrates by drop casting. The sensor response is characterized for relative humidity (RH) ranging from 5% to 95%. The sensor has a nonlinear response, where the sensitivity increases with an increase in RH. The sensor demonstrates, on average, normalized sensitivities of 0.015 and 6.9 per percent of RH below and above 65% RH, respectively. In addition, the sensor is characterized for hysteresis, long-term stability, effect of temperature, and selectivity. The hysteresis of the sensor is a maximum of about 20% RH and is stable for over 25 days. Temperature analysis of the sensors shows that the sensitivity decreases with increase in temperature. The material is shown to be highly selective with respect to volatile organic compounds (VOCs) and toxic/corrosive gasses. Overall, trianglamine hydrochloride is a promising material for developing a highly sensitive and selective capacitive transduction-based humidity sensor. |
Author | Surya, Sandeep G. Khashab, Niveen M. Salama, Khaled N. Chaix, Arnaud Chappanda, Karumbaiah N. Moosa, Basem A. |
Author_xml | – sequence: 1 givenname: Karumbaiah N. orcidid: 0000-0003-0467-6764 surname: Chappanda fullname: Chappanda, Karumbaiah N. email: khaled.salama@kaust.edu.sa, karum.chappanda@utah.edu organization: Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Hyderabad, 500078, India – sequence: 2 givenname: Arnaud surname: Chaix fullname: Chaix, Arnaud organization: Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes & Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia – sequence: 3 givenname: Sandeep G. surname: Surya fullname: Surya, Sandeep G. organization: Sensors Lab, Advanced Membranes & Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia – sequence: 4 givenname: Basem A. surname: Moosa fullname: Moosa, Basem A. organization: Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes & Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia – sequence: 5 givenname: Niveen M. surname: Khashab fullname: Khashab, Niveen M. email: niveen.khashab@kaust.edu.sa organization: Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes & Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia – sequence: 6 givenname: Khaled N. orcidid: 0000-0001-7742-1282 surname: Salama fullname: Salama, Khaled N. email: khaled.salama@kaust.edu.sa organization: Sensors Lab, Advanced Membranes & Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia |
BookMark | eNp9kE1LAzEQhoNUsFZ_gLcFz7tOkt1kiycpfkHBSwVvIc3OdlO2SU22hf57U-vJQ0_DC-8zwzzXZOS8Q0LuKBQUqHhYF9EtCwZ0WkBVANQXZExryXMOUo7IGKasykuA6opcx7gGgJILGJOvRbDarXq9sQ6z7tAEb7reB9tgZsIhDrqPWetDprPOrrr-kEV00Q52j5l2TUo9mt_U7Ta2scOp4MMNuWwTi7d_c0I-X54Xs7d8_vH6Pnua56aEasgpUi6bEpkuuV4yZDWTWMklZ4JWXAowUyFAoEyJcdG2rawZ1cgkZ8AaySfk_rR3G_z3DuOg1n4XXDqpGKsEZZKKOrXoqWWCjzFgq7bBbnQ4KArqKFCtVRKojgIVVCoJTIz8xxg76MF6NwRt-7Pk44nE9PjeYlDRWHQGGxuSLdV4e4b-AZY9jOI |
CitedBy_id | crossref_primary_10_1002_adma_202410720 crossref_primary_10_1021_acsami_9b20763 crossref_primary_10_1021_acsami_0c16302 crossref_primary_10_1088_2632_959X_ac6764 crossref_primary_10_1039_C9CE01323G crossref_primary_10_1109_LSENS_2020_3009033 crossref_primary_10_1021_acssensors_9b02318 crossref_primary_10_3390_polym13122013 crossref_primary_10_1021_acsomega_2c04313 crossref_primary_10_1016_j_snb_2020_128934 crossref_primary_10_1021_jacs_3c02815 crossref_primary_10_1016_j_synthmet_2023_117429 crossref_primary_10_1016_j_snb_2020_128542 crossref_primary_10_1039_D4TA05042H crossref_primary_10_3390_bios11120484 crossref_primary_10_1002_cnma_202400491 crossref_primary_10_1016_j_snb_2021_129637 crossref_primary_10_1016_j_snb_2021_130309 crossref_primary_10_1021_acsami_3c08061 crossref_primary_10_1039_D4SC04207G crossref_primary_10_1109_JFLEX_2023_3339587 crossref_primary_10_1021_acsami_0c00803 crossref_primary_10_1021_acsami_0c07532 |
Cites_doi | 10.1016/j.snb.2018.05.084 10.1016/S0925-4005(00)00668-7 10.1016/j.snb.2014.11.035 10.3390/s17051009 10.1021/acsami.8b18327 10.3390/s18113898 10.1166/sl.2005.045 10.1016/j.matchemphys.2017.12.033 10.1016/j.snb.2015.09.076 10.3390/s16122073 10.1080/10408430490888977 10.3390/s17071464 10.1021/acssensors.7b00199 10.1016/j.snb.2017.11.060 10.1007/s10853-016-0641-x 10.3390/s17102415 10.1016/j.snb.2017.10.189 10.1016/j.apsusc.2004.08.013 10.1021/ja070788m 10.1039/C6SM00272B 10.1016/j.snb.2017.04.193 10.1016/j.snb.2015.04.092 10.1016/j.snb.2012.11.025 10.1016/j.snb.2014.03.057 10.1039/C7TA11375G 10.1364/OE.24.001206 10.1016/j.jallcom.2016.11.370 10.3390/s17020407 10.3390/s150818153 10.1038/s41598-017-10848-3 10.1016/j.snb.2016.06.041 10.1166/sl.2005.001 10.1016/j.snb.2016.04.070 10.20964/2017.04.21 10.1038/s41467-019-09157-2 10.1016/j.snb.2018.07.077 10.1016/S0924-4247(01)00788-9 10.3390/s17020284 10.1007/s10854-017-7186-x 10.1021/acsnano.5b03325 10.1021/jacs.8b08770 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier Science Ltd. Sep 1, 2019 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Sep 1, 2019 |
DBID | AAYXX CITATION 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
DOI | 10.1016/j.snb.2019.05.008 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3077 |
EndPage | 47 |
ExternalDocumentID | 10_1016_j_snb_2019_05_008 S0925400519306963 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSK SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HMU HVGLF HZ~ R2- SCB SCH SEW SSH WUQ 7SP 7SR 7TB 7U5 8BQ 8FD EFKBS FR3 JG9 L7M |
ID | FETCH-LOGICAL-c405t-1e137d4e2a43ab2e2827e57b326153760c96606e7153236fff7821ae273202d73 |
IEDL.DBID | AIKHN |
ISSN | 0925-4005 |
IngestDate | Fri Jul 25 06:45:22 EDT 2025 Tue Jul 01 01:27:31 EDT 2025 Thu Apr 24 23:10:31 EDT 2025 Fri Feb 23 02:31:03 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Humidity sensor Selectivity Trianglamine hydrochloride IDE Capacitors Macrocycle |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-1e137d4e2a43ab2e2827e57b326153760c96606e7153236fff7821ae273202d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7742-1282 0000-0003-0467-6764 |
OpenAccessLink | http://hdl.handle.net/10754/655986 |
PQID | 2256127168 |
PQPubID | 2047454 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2256127168 crossref_primary_10_1016_j_snb_2019_05_008 crossref_citationtrail_10_1016_j_snb_2019_05_008 elsevier_sciencedirect_doi_10_1016_j_snb_2019_05_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. B, Chemical |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Tchalala, Belmabkhout, Adil, Chappanda, Cadiau, Bhatt, Salama, Eddaoudi (bib0100) 2019; 11 Yuan, Tai, Ye, Liu, Xie, Du, Jiang (bib0175) 2016; 234 Qiang, Wang, Liu, Adhikari, Liang, Wang, Li, Wu, Yang, Meng, Fu, Wu, Kim, Yao (bib0055) 2018; 258 Woyessa, Nielsen, Stefani, Markos, Bang (bib0170) 2016; 24 Feng, Wang, Li (bib0040) 2017; 698 Yasaei, Behranginia, Foroozan, Asadi, Kim, Khalili-Araghi, Salehi-Khojin (bib0190) 2015; 9 Rittersma (bib0005) 2002; 96 Li, Chen, Chen, Ding, Zhao (bib0085) 2018; 207 Chen, Chi (bib0010) 2005; 3 Kano, Kim, Fujii (bib0205) 2017; 6 Zhang, Yu, Jiang, Zhu, Geng, Luo (bib0115) 2005; 242 Surya, Nagarkar, Ghosh, Sonard, Rao (bib0150) 2016; 223 Ruiz, Fernández, Carrasco, Cabañero, Grande, Herrán (bib0215) 2015; 218 Gaspar, Olkkonen, Passoja, Smolander (bib0045) 2017; 17 Lee, Rhee, Gong (bib0225) 2001; 73 Lee, Lee (bib0020) 2005; 3 Eranna, Joshi, Runthala, Gupta (bib0165) 2004; 29 Altenberend, Molina-Lopez, Oprea, Briand, Bârsan, De Rooij, Weimar (bib0025) 2013; 187 Samai, Sapsanis, Patil, Ezzeddine, Moosa, Omran, Emwas, Salama, Khashab (bib0125) 2016; 12 Ahmad, Touati, Zafar, Shah (bib0075) 2017; 12 Liang, He, Wang, Geng, Fu, Ren, Jiang (bib0185) 2015; 208 Chaix, Mouchaham, Shkurenko, Hoang, Moosa, Bhatt, Adil, Salama, Eddaoudi, Khashab (bib0220) 2018; 140 Feng, Wang, Li (bib0070) 2017; 52 Chen, Khor, Liao, Chung (bib0135) 2014; 199 Yuan, Chappanda, Tabib-Azar (bib0140) 2011 Quddious, Yang, Khan, Tahir, Shamim, Salama, Cheema (bib0120) 2016; 16 Park, Kim, Lee, Sohn, Lee, Kim, Shim, Kwon, Choi, Yoo, Suh, Ko, Lee, Lee, Kim, Lee, Jang (bib0195) 2018; 6 Han, Kim, Lee, Kim, Kim, Hong, Cho, Hwang (bib0050) 2017; 17 Chappanda, Tabib-Azar (bib0095) 2011 Phan, Park, Park, Park, Jeon (bib0210) 2017; 7 Yang, Ye, Zeng, Zhang, Yue, Xu, Qiu, Wu (bib0035) 2017; 17 Kuang, Lao, Wang, Xie, Zheng (bib0160) 2007; 129 Chappanda, Shekhah, Yassine, Patole, Eddaoudi, Salama (bib0130) 2018; 257 Hernández-Rivera, Rodríguez-Roldán, Mora-Martínez, Suaste-Gómez (bib0080) 2017; 17 Sapsanis, Omran, Chernikova, Shekhah, Belmabkhout, Buttner, Eddaoudi, Salama (bib0110) 2015; 15 Liu, Wang, Kim (bib0030) 2017; 17 Abdulameer, Suhail, Abdullah, Al-Essa (bib0090) 2017; 28 Sapsanis, Buttner, Omran, Belmabkhout, Shekhah, Eddaoudi, Salama (bib0105) 2016 Chappanda, Tchalala, Shekhah, Surya, Eddaoudi, Salama (bib0145) 2018; 18 Zhao, Yang, Liu (bib0060) 2018; 271 Tchalala, Bhatt, Chappanda, Tavares, Adil, Belmabkhout, Shkurenko, Cadiau, Heymans, Weireld, Maurin, Salama, Eddaoudi (bib0155) 2019; 10 Sharma, Islam (bib0180) 2016; 237 Palaparthy, Kalita, Surya, Baghini, Aslam (bib0015) 2018; 273 Chen, Chung, Yao, Fang (bib0065) 2017 Du, Yang, She, Yuan, Jiang, Lu (bib0200) 2017; 251 Phan (10.1016/j.snb.2019.05.008_bib0210) 2017; 7 Altenberend (10.1016/j.snb.2019.05.008_bib0025) 2013; 187 Li (10.1016/j.snb.2019.05.008_bib0085) 2018; 207 Lee (10.1016/j.snb.2019.05.008_bib0225) 2001; 73 Chen (10.1016/j.snb.2019.05.008_bib0010) 2005; 3 Quddious (10.1016/j.snb.2019.05.008_bib0120) 2016; 16 Qiang (10.1016/j.snb.2019.05.008_bib0055) 2018; 258 Chappanda (10.1016/j.snb.2019.05.008_bib0095) 2011 Rittersma (10.1016/j.snb.2019.05.008_bib0005) 2002; 96 Feng (10.1016/j.snb.2019.05.008_bib0040) 2017; 698 Yuan (10.1016/j.snb.2019.05.008_bib0140) 2011 Surya (10.1016/j.snb.2019.05.008_bib0150) 2016; 223 Chen (10.1016/j.snb.2019.05.008_bib0135) 2014; 199 Kuang (10.1016/j.snb.2019.05.008_bib0160) 2007; 129 Park (10.1016/j.snb.2019.05.008_bib0195) 2018; 6 Tchalala (10.1016/j.snb.2019.05.008_bib0155) 2019; 10 Abdulameer (10.1016/j.snb.2019.05.008_bib0090) 2017; 28 Du (10.1016/j.snb.2019.05.008_bib0200) 2017; 251 Eranna (10.1016/j.snb.2019.05.008_bib0165) 2004; 29 Liang (10.1016/j.snb.2019.05.008_bib0185) 2015; 208 Feng (10.1016/j.snb.2019.05.008_bib0070) 2017; 52 Woyessa (10.1016/j.snb.2019.05.008_bib0170) 2016; 24 Palaparthy (10.1016/j.snb.2019.05.008_bib0015) 2018; 273 Yasaei (10.1016/j.snb.2019.05.008_bib0190) 2015; 9 Ruiz (10.1016/j.snb.2019.05.008_bib0215) 2015; 218 Han (10.1016/j.snb.2019.05.008_bib0050) 2017; 17 Samai (10.1016/j.snb.2019.05.008_bib0125) 2016; 12 Kano (10.1016/j.snb.2019.05.008_bib0205) 2017; 6 Tchalala (10.1016/j.snb.2019.05.008_bib0100) 2019; 11 Sapsanis (10.1016/j.snb.2019.05.008_bib0105) 2016 Chaix (10.1016/j.snb.2019.05.008_bib0220) 2018; 140 Gaspar (10.1016/j.snb.2019.05.008_bib0045) 2017; 17 Chappanda (10.1016/j.snb.2019.05.008_bib0130) 2018; 257 Lee (10.1016/j.snb.2019.05.008_bib0020) 2005; 3 Yang (10.1016/j.snb.2019.05.008_bib0035) 2017; 17 Zhao (10.1016/j.snb.2019.05.008_bib0060) 2018; 271 Zhang (10.1016/j.snb.2019.05.008_bib0115) 2005; 242 Chappanda (10.1016/j.snb.2019.05.008_bib0145) 2018; 18 Liu (10.1016/j.snb.2019.05.008_bib0030) 2017; 17 Chen (10.1016/j.snb.2019.05.008_bib0065) 2017 Ahmad (10.1016/j.snb.2019.05.008_bib0075) 2017; 12 Sharma (10.1016/j.snb.2019.05.008_bib0180) 2016; 237 Hernández-Rivera (10.1016/j.snb.2019.05.008_bib0080) 2017; 17 Sapsanis (10.1016/j.snb.2019.05.008_bib0110) 2015; 15 Yuan (10.1016/j.snb.2019.05.008_bib0175) 2016; 234 |
References_xml | – volume: 29 start-page: 111 year: 2004 end-page: 188 ident: bib0165 article-title: Oxide materials for development of integrated gas sensors—a comprehensive review publication-title: Crit. Rev. Solid State Mater. Sci. – volume: 140 start-page: 14571 year: 2018 end-page: 14575 ident: bib0220 article-title: Trianglamine-based supramolecular organic framework with permanent intrinsic porosity and tunable selectivity publication-title: J. Am. Chem. Soc. – volume: 271 start-page: 256 year: 2018 end-page: 263 ident: bib0060 article-title: Effect of interdigital electrode gap on the performance of SnO publication-title: Sens. Actuators B – start-page: 1453 year: 2017 end-page: 1454 ident: bib0065 article-title: Vertically integrated CMOS-MEMS capacitive humidity sensor and a resistive temperature detector for environment application publication-title: 19th International Conference on Solid-State Sensors Actuators and Microsystems, Transducers – volume: 11 start-page: 1706 year: 2019 end-page: 1712 ident: bib0100 article-title: Concurrent sensing of CO publication-title: ACS Appl. Mater. Interfaces – volume: 24 start-page: 1206 year: 2016 end-page: 1213 ident: bib0170 article-title: Temperature insensitive hysteresis free highly sensitive polymer optical fiber bragg grating humidity sensor publication-title: Opt. Express – volume: 7 start-page: 10561 year: 2017 ident: bib0210 article-title: Black P/graphene hybrid: a fast response humidity sensor with good reversibility and stability publication-title: Sci. Rep. – start-page: 1062 year: 2011 end-page: 1065 ident: bib0095 article-title: Electrical and AFM structural studies of a humidity sensors based on keratin (human hair) publication-title: IEEE Sens. – volume: 17 start-page: 0284 year: 2017 ident: bib0030 article-title: High-sensitivity and low-hysteresis porous mimtype capacitive humidity sensor using functional polymer mixed with TiO publication-title: Sensors – volume: 237 start-page: 443 year: 2016 end-page: 451 ident: bib0180 article-title: Optimization of porous anodic alumina nanostructure for ultra high sensitive humidity sensor publication-title: Sens. Actuators B – volume: 698 start-page: 94 year: 2017 end-page: 98 ident: bib0040 article-title: Capacitive humidity sensing properties of CdS/ZnO sesame-seed-candy structure grown on silicon nanoporous pillar array publication-title: J. Alloy. Compd. – volume: 17 start-page: 2415 year: 2017 ident: bib0035 article-title: Stable and fast-response capacitive humidity sensors based on a ZnO nanopowder/PVP-RGO multilayer publication-title: Sensors – volume: 12 start-page: 3012 year: 2017 end-page: 3019 ident: bib0075 article-title: Integrated capacitive and resistive humidity transduction via surface type nickel phthalocyanine based sensor publication-title: Int. J. Electrochem. Sci. – volume: 6 start-page: 5016 year: 2018 end-page: 5024 ident: bib0195 article-title: Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS publication-title: J. Mater. Chem. A – volume: 96 start-page: 196 year: 2002 end-page: 210 ident: bib0005 article-title: Recent achievements in miniaturised humidity sensors—a review of transduction techniques publication-title: Sens. Actuators A – volume: 208 start-page: 363 year: 2015 end-page: 368 ident: bib0185 article-title: Highly sensitive humidity sensors based on LiCl–pebax 2533 composite nanofibers via electrospinning publication-title: Sens. Actuators B – start-page: 568 year: 2011 end-page: 570 ident: bib0140 article-title: Microfabricated atmospheric RFmicroplasma devices for gas spectroscopy publication-title: 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences – volume: 3 start-page: 1 year: 2005 end-page: 15 ident: bib0020 article-title: Humidity sensors: a review publication-title: Sensor Lett. – volume: 223 start-page: 114 year: 2016 end-page: 122 ident: bib0150 article-title: OFET based explosive sensors using diketopyrrolopyrrole and metal organic framework composite active channel material publication-title: Sens. Actuators B – volume: 273 start-page: 1660 year: 2018 end-page: 1669 ident: bib0015 article-title: Graphene oxide based soil moisture microsensor for in situ agriculture applications publication-title: Sens. Actuators B – volume: 234 start-page: 145 year: 2016 end-page: 154 ident: bib0175 article-title: Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film publication-title: Sens. Actuators B – volume: 258 start-page: 704 year: 2018 end-page: 714 ident: bib0055 article-title: High-performance porous MIM-type capacitive humidity sensor realized via inductive coupled plasma and reactive-ion etching publication-title: Sens. Actuators B – volume: 257 start-page: 609 year: 2018 end-page: 619 ident: bib0130 article-title: the quest for highly sensitive QCM humidity sensors: the coating of CNT/MOF composite sensing films as case study publication-title: Sens. Actuators B – volume: 187 start-page: 280 year: 2013 end-page: 287 ident: bib0025 article-title: Towards fully printed capacitive gas sensors on flexible PET substrates based on Ag interdigitated transducers with increased stability publication-title: Sens. Actuators B – volume: 17 start-page: 407 year: 2017 ident: bib0050 article-title: Compliment graphene oxide coating on silk fiber surface via electrostatic force for capacitive humidity sensor applications publication-title: Sensors – volume: 10 start-page: 1328 year: 2019 ident: bib0155 article-title: Fluorinated MOF platform for selective removal and sensing of SO publication-title: Nat. Commun. – volume: 12 start-page: 2842 year: 2016 end-page: 2845 ident: bib0125 article-title: A light responsive two-component supramolecular hydrogel: a sensitive platform for the fabrication of humidity sensors publication-title: Soft Matter. – volume: 251 start-page: 180 year: 2017 end-page: 184 ident: bib0200 article-title: MoS publication-title: Sens. Actuators B – volume: 242 start-page: 212 year: 2005 end-page: 217 ident: bib0115 article-title: Zinc oxide nanorod and nanowire for humidity sensor publication-title: Appl. Surf. Sci. – volume: 28 start-page: 13472 year: 2017 end-page: 13477 ident: bib0090 article-title: Fabrication and characterization of NiPcTs organic semiconductors based surface type capacitive–resistive humidity sensors publication-title: J. Mater. Sci. Mater. Electron. – volume: 129 start-page: 6070 year: 2007 end-page: 6071 ident: bib0160 article-title: High-sensitivity humidity sensor based on a single SnO publication-title: J. Am. Chem. Soc. – volume: 199 start-page: 384 year: 2014 end-page: 388 ident: bib0135 article-title: Sensitivity evolution and enhancement mechanism of porous anodic aluminum oxide humidity sensor using magnetic field publication-title: Sens. Actuators B – volume: 15 start-page: 18153 year: 2015 end-page: 18166 ident: bib0110 article-title: Insights on capacitive interdigitated electrodes coated with MOF thin films: humidity and VOCs sensing as a case study publication-title: Sensors – start-page: 1 year: 2016 end-page: 4 ident: bib0105 article-title: A Nafion Coated Capacitive Humidity Sensor on a Flexible PET Substrate, 2016 – volume: 207 start-page: 135 year: 2018 end-page: 140 ident: bib0085 article-title: High-sensitive humidity sensor based on graphene oxide with evenly dispersed multiwalled carbon nanotubes publication-title: Mater. Chem. Phys. – volume: 73 start-page: 124 year: 2001 end-page: 129 ident: bib0225 article-title: Humidity sensor using epoxy resin containing quaternary ammonium salts publication-title: Sens. Actuators B – volume: 6 start-page: 828 year: 2017 end-page: 833 ident: bib0205 article-title: Fast-response and flexible nanocrystal-based humidity sensor for monitoring human respiration and water evaporation on skin publication-title: ACS Sens. – volume: 9 start-page: 9898 year: 2015 end-page: 9905 ident: bib0190 article-title: Stable and selective humidity sensing using stacked Black phosphorus flakes publication-title: ACS Nano – volume: 17 start-page: 1009 year: 2017 ident: bib0080 article-title: A capacitive humidity sensor based on an electrospun PVDF/graphene membrane publication-title: Sensors – volume: 17 start-page: 1464 year: 2017 ident: bib0045 article-title: Paper as active layer in inkjet-printed capacitive humidity sensors publication-title: Sensors – volume: 3 start-page: 274 year: 2005 end-page: 295 ident: bib0010 article-title: Humidity sensors: a review of materials and mechanisms publication-title: Sensor Lett. – volume: 52 start-page: 3841 year: 2017 end-page: 3848 ident: bib0070 article-title: LiCl-enhanced capacitive humidity-sensing properties of cadmium sulfide grown on silicon nanoporous pillar array publication-title: J. Mater. Sci. – volume: 16 start-page: 2073 year: 2016 ident: bib0120 article-title: Paper-based disposable inkjet-printed humidity and H publication-title: Sensors – volume: 218 start-page: 73 year: 2015 end-page: 77 ident: bib0215 article-title: Graphene quantum dots as a novel sensing material for low-cost resistive and fast-response humidity sensors publication-title: Sens. Actuators B – volume: 18 start-page: 3898 year: 2018 ident: bib0145 article-title: A comparative study of interdigitated electrode and quartz crystal microbalance transduction techniques for Metal–Organic framework-based acetone sensors publication-title: Sensors – volume: 271 start-page: 256 year: 2018 ident: 10.1016/j.snb.2019.05.008_bib0060 article-title: Effect of interdigital electrode gap on the performance of SnO2-modified MoS2 capacitive humidity sensor publication-title: Sens. Actuators B doi: 10.1016/j.snb.2018.05.084 – volume: 73 start-page: 124 year: 2001 ident: 10.1016/j.snb.2019.05.008_bib0225 article-title: Humidity sensor using epoxy resin containing quaternary ammonium salts publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(00)00668-7 – volume: 208 start-page: 363 year: 2015 ident: 10.1016/j.snb.2019.05.008_bib0185 article-title: Highly sensitive humidity sensors based on LiCl–pebax 2533 composite nanofibers via electrospinning publication-title: Sens. Actuators B doi: 10.1016/j.snb.2014.11.035 – volume: 17 start-page: 1009 year: 2017 ident: 10.1016/j.snb.2019.05.008_bib0080 article-title: A capacitive humidity sensor based on an electrospun PVDF/graphene membrane publication-title: Sensors doi: 10.3390/s17051009 – volume: 11 start-page: 1706 year: 2019 ident: 10.1016/j.snb.2019.05.008_bib0100 article-title: Concurrent sensing of CO2 and H2O from air using ultra-microporous fluorinated MOFs: effect of transduction mechanism on the sensing performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b18327 – volume: 18 start-page: 3898 year: 2018 ident: 10.1016/j.snb.2019.05.008_bib0145 article-title: A comparative study of interdigitated electrode and quartz crystal microbalance transduction techniques for Metal–Organic framework-based acetone sensors publication-title: Sensors doi: 10.3390/s18113898 – volume: 3 start-page: 274 year: 2005 ident: 10.1016/j.snb.2019.05.008_bib0010 article-title: Humidity sensors: a review of materials and mechanisms publication-title: Sensor Lett. doi: 10.1166/sl.2005.045 – volume: 207 start-page: 135 year: 2018 ident: 10.1016/j.snb.2019.05.008_bib0085 article-title: High-sensitive humidity sensor based on graphene oxide with evenly dispersed multiwalled carbon nanotubes publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2017.12.033 – volume: 223 start-page: 114 year: 2016 ident: 10.1016/j.snb.2019.05.008_bib0150 article-title: OFET based explosive sensors using diketopyrrolopyrrole and metal organic framework composite active channel material publication-title: Sens. Actuators B doi: 10.1016/j.snb.2015.09.076 – volume: 16 start-page: 2073 year: 2016 ident: 10.1016/j.snb.2019.05.008_bib0120 article-title: Paper-based disposable inkjet-printed humidity and H2S gas sensor for passive sensing applications publication-title: Sensors doi: 10.3390/s16122073 – volume: 29 start-page: 111 year: 2004 ident: 10.1016/j.snb.2019.05.008_bib0165 article-title: Oxide materials for development of integrated gas sensors—a comprehensive review publication-title: Crit. Rev. Solid State Mater. Sci. doi: 10.1080/10408430490888977 – volume: 17 start-page: 1464 year: 2017 ident: 10.1016/j.snb.2019.05.008_bib0045 article-title: Paper as active layer in inkjet-printed capacitive humidity sensors publication-title: Sensors doi: 10.3390/s17071464 – volume: 6 start-page: 828 year: 2017 ident: 10.1016/j.snb.2019.05.008_bib0205 article-title: Fast-response and flexible nanocrystal-based humidity sensor for monitoring human respiration and water evaporation on skin publication-title: ACS Sens. doi: 10.1021/acssensors.7b00199 – volume: 258 start-page: 704 year: 2018 ident: 10.1016/j.snb.2019.05.008_bib0055 article-title: High-performance porous MIM-type capacitive humidity sensor realized via inductive coupled plasma and reactive-ion etching publication-title: Sens. Actuators B doi: 10.1016/j.snb.2017.11.060 – volume: 52 start-page: 3841 year: 2017 ident: 10.1016/j.snb.2019.05.008_bib0070 article-title: LiCl-enhanced capacitive humidity-sensing properties of cadmium sulfide grown on silicon nanoporous pillar array publication-title: J. Mater. Sci. doi: 10.1007/s10853-016-0641-x – start-page: 1062 year: 2011 ident: 10.1016/j.snb.2019.05.008_bib0095 article-title: Electrical and AFM structural studies of a humidity sensors based on keratin (human hair) publication-title: IEEE Sens. – volume: 17 start-page: 2415 year: 2017 ident: 10.1016/j.snb.2019.05.008_bib0035 article-title: Stable and fast-response capacitive humidity sensors based on a ZnO nanopowder/PVP-RGO multilayer publication-title: Sensors doi: 10.3390/s17102415 – volume: 257 start-page: 609 year: 2018 ident: 10.1016/j.snb.2019.05.008_bib0130 article-title: the quest for highly sensitive QCM humidity sensors: the coating of CNT/MOF composite sensing films as case study publication-title: Sens. Actuators B doi: 10.1016/j.snb.2017.10.189 – start-page: 1 year: 2016 ident: 10.1016/j.snb.2019.05.008_bib0105 – volume: 242 start-page: 212 year: 2005 ident: 10.1016/j.snb.2019.05.008_bib0115 article-title: Zinc oxide nanorod and nanowire for humidity sensor publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2004.08.013 – volume: 129 start-page: 6070 year: 2007 ident: 10.1016/j.snb.2019.05.008_bib0160 article-title: High-sensitivity humidity sensor based on a single SnO2 nanowire publication-title: J. Am. Chem. Soc. doi: 10.1021/ja070788m – volume: 12 start-page: 2842 year: 2016 ident: 10.1016/j.snb.2019.05.008_bib0125 article-title: A light responsive two-component supramolecular hydrogel: a sensitive platform for the fabrication of humidity sensors publication-title: Soft Matter. doi: 10.1039/C6SM00272B – volume: 251 start-page: 180 year: 2017 ident: 10.1016/j.snb.2019.05.008_bib0200 article-title: MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery publication-title: Sens. Actuators B doi: 10.1016/j.snb.2017.04.193 – volume: 218 start-page: 73 year: 2015 ident: 10.1016/j.snb.2019.05.008_bib0215 article-title: Graphene quantum dots as a novel sensing material for low-cost resistive and fast-response humidity sensors publication-title: Sens. Actuators B doi: 10.1016/j.snb.2015.04.092 – volume: 187 start-page: 280 year: 2013 ident: 10.1016/j.snb.2019.05.008_bib0025 article-title: Towards fully printed capacitive gas sensors on flexible PET substrates based on Ag interdigitated transducers with increased stability publication-title: Sens. Actuators B doi: 10.1016/j.snb.2012.11.025 – volume: 199 start-page: 384 year: 2014 ident: 10.1016/j.snb.2019.05.008_bib0135 article-title: Sensitivity evolution and enhancement mechanism of porous anodic aluminum oxide humidity sensor using magnetic field publication-title: Sens. Actuators B doi: 10.1016/j.snb.2014.03.057 – volume: 6 start-page: 5016 year: 2018 ident: 10.1016/j.snb.2019.05.008_bib0195 article-title: Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der waals composites publication-title: J. Mater. Chem. A doi: 10.1039/C7TA11375G – volume: 24 start-page: 1206 year: 2016 ident: 10.1016/j.snb.2019.05.008_bib0170 article-title: Temperature insensitive hysteresis free highly sensitive polymer optical fiber bragg grating humidity sensor publication-title: Opt. Express doi: 10.1364/OE.24.001206 – volume: 698 start-page: 94 year: 2017 ident: 10.1016/j.snb.2019.05.008_bib0040 article-title: Capacitive humidity sensing properties of CdS/ZnO sesame-seed-candy structure grown on silicon nanoporous pillar array publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2016.11.370 – volume: 17 start-page: 407 year: 2017 ident: 10.1016/j.snb.2019.05.008_bib0050 article-title: Compliment graphene oxide coating on silk fiber surface via electrostatic force for capacitive humidity sensor applications publication-title: Sensors doi: 10.3390/s17020407 – volume: 15 start-page: 18153 year: 2015 ident: 10.1016/j.snb.2019.05.008_bib0110 article-title: Insights on capacitive interdigitated electrodes coated with MOF thin films: humidity and VOCs sensing as a case study publication-title: Sensors doi: 10.3390/s150818153 – start-page: 568 year: 2011 ident: 10.1016/j.snb.2019.05.008_bib0140 article-title: Microfabricated atmospheric RFmicroplasma devices for gas spectroscopy publication-title: 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences – volume: 7 start-page: 10561 year: 2017 ident: 10.1016/j.snb.2019.05.008_bib0210 article-title: Black P/graphene hybrid: a fast response humidity sensor with good reversibility and stability publication-title: Sci. Rep. doi: 10.1038/s41598-017-10848-3 – volume: 237 start-page: 443 year: 2016 ident: 10.1016/j.snb.2019.05.008_bib0180 article-title: Optimization of porous anodic alumina nanostructure for ultra high sensitive humidity sensor publication-title: Sens. Actuators B doi: 10.1016/j.snb.2016.06.041 – volume: 3 start-page: 1 year: 2005 ident: 10.1016/j.snb.2019.05.008_bib0020 article-title: Humidity sensors: a review publication-title: Sensor Lett. doi: 10.1166/sl.2005.001 – volume: 234 start-page: 145 year: 2016 ident: 10.1016/j.snb.2019.05.008_bib0175 article-title: Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film publication-title: Sens. Actuators B doi: 10.1016/j.snb.2016.04.070 – volume: 12 start-page: 3012 year: 2017 ident: 10.1016/j.snb.2019.05.008_bib0075 article-title: Integrated capacitive and resistive humidity transduction via surface type nickel phthalocyanine based sensor publication-title: Int. J. Electrochem. Sci. doi: 10.20964/2017.04.21 – volume: 10 start-page: 1328 year: 2019 ident: 10.1016/j.snb.2019.05.008_bib0155 article-title: Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air publication-title: Nat. Commun. doi: 10.1038/s41467-019-09157-2 – volume: 273 start-page: 1660 year: 2018 ident: 10.1016/j.snb.2019.05.008_bib0015 article-title: Graphene oxide based soil moisture microsensor for in situ agriculture applications publication-title: Sens. Actuators B doi: 10.1016/j.snb.2018.07.077 – volume: 96 start-page: 196 year: 2002 ident: 10.1016/j.snb.2019.05.008_bib0005 article-title: Recent achievements in miniaturised humidity sensors—a review of transduction techniques publication-title: Sens. Actuators A doi: 10.1016/S0924-4247(01)00788-9 – volume: 17 start-page: 0284 year: 2017 ident: 10.1016/j.snb.2019.05.008_bib0030 article-title: High-sensitivity and low-hysteresis porous mimtype capacitive humidity sensor using functional polymer mixed with TiO2 microparticles publication-title: Sensors doi: 10.3390/s17020284 – start-page: 1453 year: 2017 ident: 10.1016/j.snb.2019.05.008_bib0065 article-title: Vertically integrated CMOS-MEMS capacitive humidity sensor and a resistive temperature detector for environment application publication-title: 19th International Conference on Solid-State Sensors Actuators and Microsystems, Transducers – volume: 28 start-page: 13472 year: 2017 ident: 10.1016/j.snb.2019.05.008_bib0090 article-title: Fabrication and characterization of NiPcTs organic semiconductors based surface type capacitive–resistive humidity sensors publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-017-7186-x – volume: 9 start-page: 9898 year: 2015 ident: 10.1016/j.snb.2019.05.008_bib0190 article-title: Stable and selective humidity sensing using stacked Black phosphorus flakes publication-title: ACS Nano doi: 10.1021/acsnano.5b03325 – volume: 140 start-page: 14571 year: 2018 ident: 10.1016/j.snb.2019.05.008_bib0220 article-title: Trianglamine-based supramolecular organic framework with permanent intrinsic porosity and tunable selectivity publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08770 |
SSID | ssj0004360 |
Score | 2.425263 |
Snippet | •Synthesis and coating of trianglamine hydrochloride on IDE substrates.•Morphological characterization of trianglamine hydrochloride crystals.•Sensing of... In this work, we present a highly sensitive and selective capacitive humidity sensor. Trianglamine hydrochloride is used as the sensing material, which is... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 40 |
SubjectTerms | Acetone Acetonitrile Coated electrodes Humidity Humidity sensor Hydrochloric acid Hysteresis IDE Capacitors Macrocycle Nonlinear response Relative humidity Selectivity Sensitivity analysis Sensors Substrates Temperature effects Trianglamine hydrochloride VOCs Volatile organic compounds |
Title | Trianglamine hydrochloride crystals for a highly sensitive and selective humidity sensor |
URI | https://dx.doi.org/10.1016/j.snb.2019.05.008 https://www.proquest.com/docview/2256127168 |
Volume | 294 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71scCAeIpHQR6YkEKdxHGaESFQAdGFVupm2Ykjitq0asrQhd_OXR68hBgYbdlRdD5__k4-fwdwjme44VpYx6NLQqEj6RiMhZy0ZzU3ge2JQmf2cSD7I3E_DsYNuK7fwlBaZYX9JaYXaF31dCtrdheTSfeJRxjclBSES_SjJrQ9P5JBC9pXdw_9wefzSL94LEzjHZpQX24WaV55ZijBKyr0O6nI5O_H0w-gLk6f223Yqmgjuyr_bAcaNtuFzS9ignswHqIvUUmOGfax53VCxbAovy6xLF6ukQVOc4YUlWlGGsXTNcspeZ3gjuksYXlREYdaz6-zSYLsvBgwX-7D6PZmeN13qroJToz0a-W41vXDRFhPC18bz2JUFdogNMjUXFJv4TFJckobYguXKE1TpAmutshkPO4loX8ArWye2UNgaayRk0RRyqUnYh6bFBFAWj8JZSCEEUfAa3OpuBIVp9oWU1Vnj70otLAiCyseKLTwEVx8TFmUihp_DRb1GqhvbqEQ8f-a1qnXS1V7MleIXEjnMD7sHf_vqyewQa0yw6wDrdXy1Z4iJVmZM2hevrlnleO9Aw8g3r4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QD-rB-DOiqD14Mpl0W7exoyESVOAiJNyadusiBgZhcODi3-573eavGA4e27wuy-vr69f06_cIuYE9XDHJteXgJSGXoW8pOAtZSVNLpjzd5EZnttf3O0P-NPJGFdIq38IgrbLI_XlON9m66GkU3mzMx-PGCwvhcJNDEOZDHG2Rbe65AfL67t6_eB7cNU-F0dpC8_Jq05C8slQhvSs06p1YYvLvzelXmjZ7T_uA7Begkd7n_3VIKjo9InvfpASPyWgAkYQFOabQR1_XMZbCQnZdrGm0WAMGnGQUACqVFBWKJ2uaIXUdkx2VaUwzUw8HW6-r6TgGbG4MZosTMmw_DFodq6iaYEUAvpaWrW03iLl2JHelcjScqQLtBQpwmo3aLSxCQU5fB9CCCUqSBECCLTXgGIc5ceCekmo6S_UZoUkkAZGEYcJ8h0csUgmsf1-7ceB7nCteI6x0l4gKSXGsbDERJXfsTYCHBXpYME-Ah2vk9nPIPNfT2GTMyzkQP4JCQL7fNKxezpcoVmQmIG8BmIPTYfP8f1-9JjudQa8ruo_95wuy6yC3xdB266S6XKz0JYCTpboywfcB61rfgA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trianglamine+hydrochloride+crystals+for+a+highly+sensitive+and+selective+humidity+sensor&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Chappanda%2C+Karumbaiah+N.&rft.au=Chaix%2C+Arnaud&rft.au=Surya%2C+Sandeep+G.&rft.au=Moosa%2C+Basem+A.&rft.date=2019-09-01&rft.issn=0925-4005&rft.volume=294&rft.spage=40&rft.epage=47&rft_id=info:doi/10.1016%2Fj.snb.2019.05.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_snb_2019_05_008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon |