Multilevel Dynamic Generalized Structured Component Analysis for Brain Connectivity Analysis in Functional Neuroimaging Data
We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject time series data. Time series data of multiple subjects are typically hierarchically structured, where time points are nested within subjects wh...
Saved in:
Published in | Psychometrika Vol. 81; no. 2; pp. 565 - 581 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0033-3123 1860-0980 1860-0980 |
DOI | 10.1007/s11336-015-9440-6 |
Cover
Loading…
Abstract | We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject time series data. Time series data of multiple subjects are typically hierarchically structured, where time points are nested within subjects who are in turn nested within a group. The proposed approach, named multilevel dynamic GSCA, accommodates the nested structure in time series data. Explicitly taking the nested structure into account, the proposed method allows investigating subject-wise variability of the loadings and path coefficients by looking at the variance estimates of the corresponding random effects, as well as fixed loadings between observed and latent variables and fixed path coefficients between latent variables. We demonstrate the effectiveness of the proposed approach by applying the method to the multi-subject functional neuroimaging data for brain connectivity analysis, where time series data-level measurements are nested within subjects. |
---|---|
AbstractList | We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject time series data. Time series data of multiple subjects are typically hierarchically structured, where time points are nested within subjects who are in turn nested within a group. The proposed approach, named multilevel dynamic GSCA, accommodates the nested structure in time series data. Explicitly taking the nested structure into account, the proposed method allows investigating subject-wise variability of the loadings and path coefficients by looking at the variance estimates of the corresponding random effects, as well as fixed loadings between observed and latent variables and fixed path coefficients between latent variables. We demonstrate the effectiveness of the proposed approach by applying the method to the multi-subject functional neuroimaging data for brain connectivity analysis, where time series data-level measurements are nested within subjects.We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject time series data. Time series data of multiple subjects are typically hierarchically structured, where time points are nested within subjects who are in turn nested within a group. The proposed approach, named multilevel dynamic GSCA, accommodates the nested structure in time series data. Explicitly taking the nested structure into account, the proposed method allows investigating subject-wise variability of the loadings and path coefficients by looking at the variance estimates of the corresponding random effects, as well as fixed loadings between observed and latent variables and fixed path coefficients between latent variables. We demonstrate the effectiveness of the proposed approach by applying the method to the multi-subject functional neuroimaging data for brain connectivity analysis, where time series data-level measurements are nested within subjects. We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject time series data. Time series data of multiple subjects are typically hierarchically structured, where time points are nested within subjects who are in turn nested within a group. The proposed approach, named multilevel dynamic GSCA, accommodates the nested structure in time series data. Explicitly taking the nested structure into account, the proposed method allows investigating subject-wise variability of the loadings and path coefficients by looking at the variance estimates of the corresponding random effects, as well as fixed loadings between observed and latent variables and fixed path coefficients between latent variables. We demonstrate the effectiveness of the proposed approach by applying the method to the multi-subject functional neuroimaging data for brain connectivity analysis, where time series data-level measurements are nested within subjects. |
Author | Hwang, Heungsun Takane, Yoshio Jung, Kwanghee Woodward, Todd S. |
Author_xml | – sequence: 1 givenname: Kwanghee surname: Jung fullname: Jung, Kwanghee email: kwanghee.jung@uth.tmc.edu organization: Department of Pediatrics, Children’s Learning Institute, The University of Texas Health Science Center at Houston – sequence: 2 givenname: Yoshio surname: Takane fullname: Takane, Yoshio organization: University of Victoria – sequence: 3 givenname: Heungsun surname: Hwang fullname: Hwang, Heungsun organization: McGill University – sequence: 4 givenname: Todd S. surname: Woodward fullname: Woodward, Todd S. organization: University of British Columbia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25697370$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URKeFH8AGRWLTTeDaTvxYliktSAUWwNpyHGfkynEGPyoN4sfjYVqBKgErX_l-5_r6nBN0FJZgEXqO4RUG4K8TxpSyFnDfyq6Dlj1CKywYtCAFHKEVAKUtxYQeo5OUbgBAYiGeoGPSM8kphxX68aH47Ly9tb652AU9O9Nc2WCj9u67HZvPORaTS6zlepm39f2Qm_Og_S651ExLbN5E7UJthmBNdrcu7373a-OyhHq91Jvmoy1xcbPeuLBpLnTWT9HjSftkn92dp-jr5dsv63ft9aer9-vz69Z00OcWcyP1SAwRgOVEBz4MkjBiZS1Y3xs-4Z5woCPmYpoGyukIpDOEdZ2wvDf0FJ0d5m7j8q3YlNXskrHe62CXkhQWIBjnvZT_R7kklHdYsoq-fIDeLCXWj_6iqusURFepF3dUGWY7qm2sDsSduo-gAvwAmLikFO2kjMt6b1muznqFQe3DVoewVQ1b7cNW-wXwA-X98H9pyEGTKhs2Nv6x9F9FPwFTPrtf |
CitedBy_id | crossref_primary_10_1007_s41237_019_00080_w crossref_primary_10_1108_EJM_06_2021_0416 crossref_primary_10_1061__ASCE_ME_1943_5479_0000999 crossref_primary_10_3389_fpsyg_2019_02215 crossref_primary_10_1108_IJBM_12_2020_0595 |
Cites_doi | 10.1016/j.euroneuro.2010.03.008 10.1007/s11336-012-9294-0 10.1007/s11336-010-9157-5 10.1016/j.neuroimage.2010.08.051 10.1016/j.neuroscience.2005.05.043 10.1002/hbm.20259 10.1007/s002000100081 10.1007/BF02296971 10.1007/BF02295841 10.1007/s11336-012-9284-2 10.1002/hbm.460020107 10.1016/j.compbiomed.2011.09.004 10.1016/j.biopsych.2005.08.009 10.1137/1.9781611970319 10.1007/BF02294589 10.1201/b17872 |
ContentType | Journal Article |
Copyright | The Psychometric Society 2015 The Psychometric Society 2016 |
Copyright_xml | – notice: The Psychometric Society 2015 – notice: The Psychometric Society 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 0-V 3V. 7TK 7WY 7WZ 7X7 7XB 87Z 88B 88E 88G 8AO 8FI 8FJ 8FK 8FL ABUWG AFKRA ALSLI AZQEC BENPR BEZIV CCPQU CJNVE DWQXO FRNLG FYUFA F~G GHDGH GNUQQ K60 K6~ K9. L.- M0C M0P M0S M1P M2M PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEDU PQEST PQQKQ PQUKI PSYQQ Q9U 7X8 |
DOI | 10.1007/s11336-015-9440-6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Social Sciences Premium Collection ProQuest Central (Corporate) Neurosciences Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Education Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Business Premium Collection ProQuest One Community College Education Collection ProQuest Central Korea Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Global Education Database ProQuest Health & Medical Collection Medical Database Psychology Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Education ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Education ProQuest Business Collection (Alumni Edition) ProQuest One Psychology ProQuest Central Student ProQuest Central Essentials ABI/INFORM Complete Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection Social Science Premium Collection ABI/INFORM Global Education Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ABI/INFORM Complete (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Education Journals ProQuest Psychology Journals (Alumni) ProQuest Medical Library ProQuest Psychology Journals ProQuest One Business (Alumni) ProQuest Education Journals (Alumni Edition) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts ProQuest One Education CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Psychology Law |
EISSN | 1860-0980 |
EndPage | 581 |
ExternalDocumentID | 4067521241 25697370 10_1007_s11336_015_9440_6 |
Genre | Journal Article |
GroupedDBID | --Z -4V -55 -5G -BR -EM -W8 -Y2 -~C -~X .86 .GO .VR 0-V 06D 09C 0R~ 0VY 123 186 199 1N0 1SB 203 28- 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 78A 7WY 7X7 88E 8AO 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAHSB AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABGDZ ABGFU ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABPPZ ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACCUC ACDLN ACGFS ACHQT ACHSB ACHXU ACKIV ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMHG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BPHCQ BSONS BVXVI CAG CCPQU CJNVE COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IRVIT ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LAK LLZTM LPU M0C M0P M1P M2M M4Y MA- MVM N2Q N9A NB0 NDZJH NEJ NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT P19 P2P P9L PF- PQBIZ PQBZA PQEDU PQQKQ PROAC PSQYO PSYQQ PT4 PT5 Q2X QOK QOS R4E R89 R9I RCA RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SBS SBU SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A U9L UAP UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WHG WIP WK6 WK8 XOL YLTOR YYQ Z45 Z81 Z83 Z8U Z92 ZCG ZGI ZMTXR ZOVNA ZXP ~EX AAPKM AAYXX ABFSG ABXHF ACSTC ADHKG ADXHL AETEA AEZWR AFHIU AFOHR AGQPQ AGTDA AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION IPYYG PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FK AAXMD K9. L.- PJZUB PKEHL PPXIY PQEST PQUKI PUEGO Q9U 7X8 |
ID | FETCH-LOGICAL-c405t-17c9ad2c28019f3b7bb9262e97bb655c7f152703d178ffb373d024c26448e75c3 |
IEDL.DBID | U2A |
ISSN | 0033-3123 1860-0980 |
IngestDate | Fri Jul 11 02:55:44 EDT 2025 Sun Aug 24 03:24:11 EDT 2025 Sat Aug 23 12:29:22 EDT 2025 Thu Apr 03 07:04:36 EDT 2025 Tue Jul 01 02:08:21 EDT 2025 Thu Apr 24 23:01:48 EDT 2025 Fri Feb 21 02:36:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | multilevel analysis alternating least squares (ALS) algorithm brain connectivity analysis structural equation modeling time series data generalized structured component analysis functional neuroimaging multi-subject data |
Language | English |
License | https://www.cambridge.org/core/terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-17c9ad2c28019f3b7bb9262e97bb655c7f152703d178ffb373d024c26448e75c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25697370 |
PQID | 1791233084 |
PQPubID | 47416 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_1808677599 proquest_miscellaneous_1792374196 proquest_journals_1791233084 pubmed_primary_25697370 crossref_citationtrail_10_1007_s11336_015_9440_6 crossref_primary_10_1007_s11336_015_9440_6 springer_journals_10_1007_s11336_015_9440_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160600 2016-06-00 2016-Jun 20160601 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 6 year: 2016 text: 20160600 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Cambridge |
PublicationTitle | Psychometrika |
PublicationTitleAbbrev | Psychometrika |
PublicationTitleAlternate | Psychometrika |
PublicationYear | 2016 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Greve, Brown, Mueller, Glover, Liu (CR7) 2013; 78 Gates, Molenaar, Hillary, Slobounov (CR6) 2011; 54 Jung, Takane, Hwang, Woodward (CR11) 2012; 77 Woodward, Cairo, Ruff, Takane, Hunter, Ngan (CR18) 2006; 139 Van Den Heuvel, Hulshoff Pol (CR17) 2010; 20 Chen, Glen, Saad, Hamilton, Thomason, Gotlib, Cox (CR2) 2011; 41 Efron (CR4) 1982 Friston (CR5) 1994; 2 Takane, Hunter (CR15) 2001; 12 Hwang, Takane (CR8) 2004; 69 Hwang, Takane (CR9) 2014 Kim, Zhu, Chang, Bentler, Ernst (CR12) 2007; 28 Cairo, Woodward, Ngan (CR1) 2006; 59 Hwang, Ho, Lee (CR10) 2010; 75 deLeeuw, Young, Takane (CR3) 1976; 41 Takane (CR14) 2013 Snijders, Bosker (CR13) 1999 Takane, Shibayama (CR16) 1991; 56 S0033312300020159_CR6 S0033312300020159_CR5 S0033312300020159_CR8 S0033312300020159_CR7 S0033312300020159_CR9 Takane (S0033312300020159_CR14) 2013 S0033312300020159_CR11 S0033312300020159_CR10 Snijders (S0033312300020159_CR13) 1999 S0033312300020159_CR12 S0033312300020159_CR15 S0033312300020159_CR17 S0033312300020159_CR16 S0033312300020159_CR2 S0033312300020159_CR18 S0033312300020159_CR1 S0033312300020159_CR4 S0033312300020159_CR3 25106392 - Psychometrika. 2013 Jul;78(3):396-416 21975109 - Comput Biol Med. 2011 Dec;41(12):1142-55 16324799 - Neuroscience. 2006 Apr 28;139(1):317-25 26467168 - Psychometrika. 2016 Jun;81(2):582-584 20471808 - Eur Neuropsychopharmacol. 2010 Aug;20(8):519-34 16718669 - Hum Brain Mapp. 2007 Feb;28(2):85-93 16229823 - Biol Psychiatry. 2006 Apr 15;59(8):740-6 20804852 - Neuroimage. 2011 Jan 15;54(2):1151-8 |
References_xml | – volume: 20 start-page: 519 year: 2010 end-page: 534 ident: CR17 article-title: Exploring the brain network: A review on resting-state fMRI functional connectivity publication-title: European Neuropsychopharmacology doi: 10.1016/j.euroneuro.2010.03.008 – volume: 78 start-page: 396 year: 2013 end-page: 416 ident: CR7 article-title: A survey of the sources of noise in fMRI publication-title: Psychometrika doi: 10.1007/s11336-012-9294-0 – volume: 75 start-page: 228 year: 2010 end-page: 242 ident: CR10 article-title: Generalized structured component analysis with latent interactions publication-title: Psychometrika doi: 10.1007/s11336-010-9157-5 – volume: 54 start-page: 1151 year: 2011 end-page: 1158 ident: CR6 article-title: Extended unified SEM approach for modeling event-related fMRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.08.051 – year: 2013 ident: CR14 publication-title: Constrained principal component analysis and related techniques – year: 2014 ident: CR9 publication-title: Generalized structured component analysis: A component-based approach to structural equation modeling – volume: 139 start-page: 317 year: 2006 end-page: 325 ident: CR18 article-title: Functional connectivity reveals load dependent neural systems underlying encoding and maintenance in verbal working memory publication-title: Neuroscience doi: 10.1016/j.neuroscience.2005.05.043 – volume: 28 start-page: 85 year: 2007 end-page: 93 ident: CR12 article-title: Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data publication-title: Human Brain Mapping doi: 10.1002/hbm.20259 – volume: 12 start-page: 391 year: 2001 end-page: 419 ident: CR15 article-title: Constrained principal component analysis: A comprehensive theory publication-title: Applicable Algebra in Engineering, Communication and Computing doi: 10.1007/s002000100081 – volume: 41 start-page: 471 year: 1976 end-page: 503 ident: CR3 article-title: Additive structure in qualitative data: An alternating least squares method with optimal scaling features publication-title: Psychometrika doi: 10.1007/BF02296971 – volume: 69 start-page: 81 year: 2004 end-page: 99 ident: CR8 article-title: Generalized structured component analysis publication-title: Psychometrika doi: 10.1007/BF02295841 – volume: 77 start-page: 827 year: 2012 end-page: 848 ident: CR11 article-title: Dynamic GSCA (Generalized Structured Component Analysis) with applications to the analysis of effective connectivity in functional neuroimaging data publication-title: Psychometrika doi: 10.1007/s11336-012-9284-2 – year: 1999 ident: CR13 publication-title: Multilevel analysis: An introduction to basic and advanced multilevel modeling – volume: 2 start-page: 56 year: 1994 end-page: 78 ident: CR5 article-title: Functional and effective connectivity in neuroimaging: A synthesis publication-title: Human Brain Mapping doi: 10.1002/hbm.460020107 – volume: 41 start-page: 1142 year: 2011 end-page: 1155 ident: CR2 article-title: Vector autoregression, structural equation modeling, and their synthesis in neuroimaging data analysis publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2011.09.004 – volume: 59 start-page: 740 year: 2006 end-page: 746 ident: CR1 article-title: Decreased encoding efficiency in schizophrenia publication-title: Biological Psychiatry doi: 10.1016/j.biopsych.2005.08.009 – year: 1982 ident: CR4 publication-title: The jackknife, the bootstrap and other resampling plans doi: 10.1137/1.9781611970319 – volume: 56 start-page: 97 year: 1991 end-page: 120 ident: CR16 article-title: Principal component analysis with external information on both subjects and variables publication-title: Psychometrika doi: 10.1007/BF02294589 – ident: S0033312300020159_CR17 doi: 10.1016/j.euroneuro.2010.03.008 – ident: S0033312300020159_CR12 doi: 10.1002/hbm.20259 – ident: S0033312300020159_CR11 doi: 10.1007/s11336-012-9284-2 – ident: S0033312300020159_CR9 doi: 10.1201/b17872 – ident: S0033312300020159_CR5 doi: 10.1002/hbm.460020107 – volume-title: Multilevel analysis: An introduction to basic and advanced multilevel modeling year: 1999 ident: S0033312300020159_CR13 – ident: S0033312300020159_CR10 doi: 10.1007/s11336-010-9157-5 – ident: S0033312300020159_CR15 doi: 10.1007/s002000100081 – ident: S0033312300020159_CR3 doi: 10.1007/BF02296971 – ident: S0033312300020159_CR7 doi: 10.1007/s11336-012-9294-0 – ident: S0033312300020159_CR16 doi: 10.1007/BF02294589 – ident: S0033312300020159_CR18 doi: 10.1016/j.neuroscience.2005.05.043 – ident: S0033312300020159_CR4 doi: 10.1137/1.9781611970319 – ident: S0033312300020159_CR6 doi: 10.1016/j.neuroimage.2010.08.051 – ident: S0033312300020159_CR2 doi: 10.1016/j.compbiomed.2011.09.004 – volume-title: Constrained principal component analysis and related techniques year: 2013 ident: S0033312300020159_CR14 – ident: S0033312300020159_CR1 doi: 10.1016/j.biopsych.2005.08.009 – ident: S0033312300020159_CR8 doi: 10.1007/BF02295841 – reference: 20471808 - Eur Neuropsychopharmacol. 2010 Aug;20(8):519-34 – reference: 25106392 - Psychometrika. 2013 Jul;78(3):396-416 – reference: 16229823 - Biol Psychiatry. 2006 Apr 15;59(8):740-6 – reference: 16324799 - Neuroscience. 2006 Apr 28;139(1):317-25 – reference: 26467168 - Psychometrika. 2016 Jun;81(2):582-584 – reference: 20804852 - Neuroimage. 2011 Jan 15;54(2):1151-8 – reference: 16718669 - Hum Brain Mapp. 2007 Feb;28(2):85-93 – reference: 21975109 - Comput Biol Med. 2011 Dec;41(12):1142-55 |
SSID | ssj0009188 |
Score | 2.145952 |
Snippet | We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 565 |
SubjectTerms | Algorithms Assessment Behavioral Science and Psychology Brain Brain - physiology Brain - physiopathology Case-Control Studies Experimental Groups Functional Neuroimaging Hemodynamics Humanities Humans Law Least Squares Statistics Least-Squares Analysis Magnetic Resonance Imaging Medical imaging Memory, Short-Term - physiology Multilevel Analysis Neuroimaging Parameter estimation Principal Component Analysis Psychology Psychometrics Schizophrenia - physiopathology Statistical Theory and Methods Statistics as Topic Statistics for Social Sciences Structural equation modeling Structural Equation Models Testing and Evaluation Time series Variables |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA86X_YifjudEsEnJbg2bdI8iTrHEPRFB3srbZLCQLvptgfFP9679GPKcG-FpHDbXe9-l7v8jpBzoZNI-pliJs0kC6JEMKWVYjxV3AhhLTeYKD4-if4geBiGw_LAbVq2VVY-0TlqM9Z4Rn6FNJo-JN9RcD15Zzg1Cqur5QiNdbKB1GXY0iWHckG660WFJ-Z4h8znVVXTXZ2D5Axz6ZApLG-Kv3FpCWwuFUpd_Oltkc0SONKbQtPbZM3mO6RZ-6_PXfLtLtO-YhcQ7RaD5mnJKj36soY-O6rY-Qc8ohcY5xBvaEVKQgG80lucF0Fd74supkos1mGhBzGwODqkjtNj9OZGHNFuMkv2yKB3_3LXZ-VwBaYBo82YJ7VKjK99CFEq46lMU6QOtAoeRBhqmeHA2w6oSkZZlnLJDYRz7fI5K0PN90kjB0kPCZVZqACohynkboHvicRmBjyBsYH2vISrFulUf22sS-ZxHIDxGi84k1EbMWgjRm3EokUu6lcmBe3Gqs3tSl9x-QVO44W9tMhZvQzfDhZEktyO526PzwFSKbFiT9RByr9Qwc84KGyhlgjgopJcdlrksjKOXwL8J-7RanGPSRNAmSja0dqkAbZhTwD4zNJTZ90_8eL-XQ priority: 102 providerName: ProQuest |
Title | Multilevel Dynamic Generalized Structured Component Analysis for Brain Connectivity Analysis in Functional Neuroimaging Data |
URI | https://link.springer.com/article/10.1007/s11336-015-9440-6 https://www.ncbi.nlm.nih.gov/pubmed/25697370 https://www.proquest.com/docview/1791233084 https://www.proquest.com/docview/1792374196 https://www.proquest.com/docview/1808677599 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-cvvgifjs_RgSflELbNEnzOHVz-DFEHcynkqYpCLqJm4jiH-8lbTfFD_CpgaQl7SV3v-tdfgewx7WKRZhLL0tz4UWx4p7UUno0lTTj3BiaWUfxoss7vei0z_rlOe5Rle1ehSSdpp4edkN3ynq_zJM2IMlrMMes646LuBc2p0y7QVyoX2oPjoW0CmX-9IivxugbwvwWHXVGp70ICyVaJM1CvEswYwbLUDtXL8swP1Fdryvw7s7R3tsEIHJc1JgnJaH03ZvJyLVjiX1-wqZVAMMBmhpS8ZEQxK3k0JaKIC7tRRcFJab92NFG81f8NSSOzuPuwVU3IsdqrFah127dHHW8sq6CpxGejb1AaKmyUIdonWROU5GmljXQSGxwxrTIba1bH6Uk4jxPqaAZWnLtXDkjmKZrMDvAmW4AETmTiNFZim5bFAZcmTxDJZCZSAeBorIOfvWBE12SjtvaF_fJlC7ZyiRBmSRWJgmvw_7klseCceOvwduV1JJy840Sy7gaUurHUR12J924bWwsRA3M8NmNCSmiKcn_GBP7lu2PSXyN9WJFTGaESFEKKvw6HFRL5NMEfpvu5r9Gb8E8wjNeJKZtwywuFbODEGicNqAm-qIBc82T27MWXg9b3curhtsIH3cKAEQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N7oG9IDZ-FbZhJHgBWTR2YscPaNroqo5tFYJN2ltIbEeaNNrBOqEh_ib-xt3ZScs00be9RbITXXLnu_ty9ncAr5Utcy1qw11Va57mpeLGGsNlZaRTynvpCCgejtTwOP10kp0swd_2LAxtq2x9YnDUbmLpH_l7otEUCL7zdOv8B6euUVRdbVtoRLPY91e_ELJdfNjro37fCDHYPfo45E1XAW4xOZnyRFtTOmEF-mZTy0pXFXHmeYMXKsusrqnTaw9l1HldV1JLh3HMBiDjdWYlPvceLKcSoUwHlnd2R5-_zGl-kzz6fkmn1oRs66jhsB7CQULvGTdUUFU3I-Gt9PZWaTZEvMFDeNCkqmw72tYqLPnxGqzMPObVI_gTju-e0b4j1o-t7VnDY3362zv2NZDTXv7ES_I7kzFGONbSoDBMl9kOdahgYbeNjX0s5uM4MMCoG39WssAicvo9NFVi_XJaPobjO_nwT6AzRkmfAdN1ZhAaZBWixVQkqvS1Q9_jfGqTpJSmC7320xa24TqnlhtnxZylmbRRoDYK0kahuvB2dst5JPpYNHm91VfRrPmLYm6hXXg1G8bVSiWYcuwnl2GOkJjEGbVgTt4jksHM4Gs8jbYwkwgTVKOl7nXhXWsc_wjwP3GfLxb3JdwfHh0eFAd7o_0XsIIpoYqb4dahg3biNzDtmlabja0z-HbXy-saAZI7XQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qBemL-O1p1RX0RVl62c3uZh9E1PNorRZBC_cWk_2AQr3rxxWp-Jf51zmzm9wpxXvrW2A3YZL5zsz-BuCZdk1lRLTct9Hwsmo0t85aLlsrvdYhSE-J4qc9vb1ffpioyRr87s_CUFtlbxOTofYzR__ItwhGU2DyXZVbsWuL-Dwavz465jRBiiqt_TiNLCK74fwHpm-nr3ZGyOvnQozff323zbsJA9xhoDLnhXG28cIJtNM2yta0LeHnBYsXWilnIk19HSK9poqxlUZ69GkuJTXBKCfxuVfgqpGqIB0zE7ME_C2q7AUknV8Tsq-opmN7mBhSHq-4pdKq_tcnXgh0LxRpk-8b34DrXdDK3mQpuwlrYXoLNha28_w2_EoHeQ-pA4mN8pB71iFaH_wMnn1JMLVnJ3hJFmg2RV_HekAUhoEze0uzKljqu3F5osVyHRfG6H_zb0uW8EQOvqfxSmzUzJs7sH8pn_0urE-R0vvATFQWkwTVYt5YikI3IXq0Qj6UrigaaQcw7D9t7TrUcxq-cVgv8ZqJGzVyoyZu1HoALxa3HGXIj1WbN3t-1Z32n9ZLWR3A08Uy6i0VY5ppmJ2lPUJiOGf1ij3VkOAGlcXXuJdlYUERhqrWSDMcwMteOP4i4H_kPlhN7hO4hkpVf9zZ230IGxgb6twVtwnrKCbhEcZf8_ZxEnQG3y5bs_4AbXc-LQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilevel+Dynamic+Generalized+Structured+Component+Analysis+for+Brain+Connectivity+Analysis+in+Functional+Neuroimaging+Data&rft.jtitle=Psychometrika&rft.au=Jung%2C+Kwanghee&rft.au=Takane%2C+Yoshio&rft.au=Hwang%2C+Heungsun&rft.au=Woodward%2C+Todd+S.&rft.date=2016-06-01&rft.issn=0033-3123&rft.eissn=1860-0980&rft.volume=81&rft.issue=2&rft.spage=565&rft.epage=581&rft_id=info:doi/10.1007%2Fs11336-015-9440-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11336_015_9440_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-3123&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-3123&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-3123&client=summon |