Multilevel Dynamic Generalized Structured Component Analysis for Brain Connectivity Analysis in Functional Neuroimaging Data

We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject time series data. Time series data of multiple subjects are typically hierarchically structured, where time points are nested within subjects wh...

Full description

Saved in:
Bibliographic Details
Published inPsychometrika Vol. 81; no. 2; pp. 565 - 581
Main Authors Jung, Kwanghee, Takane, Yoshio, Hwang, Heungsun, Woodward, Todd S.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2016
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0033-3123
1860-0980
1860-0980
DOI10.1007/s11336-015-9440-6

Cover

Loading…
Abstract We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject time series data. Time series data of multiple subjects are typically hierarchically structured, where time points are nested within subjects who are in turn nested within a group. The proposed approach, named multilevel dynamic GSCA, accommodates the nested structure in time series data. Explicitly taking the nested structure into account, the proposed method allows investigating subject-wise variability of the loadings and path coefficients by looking at the variance estimates of the corresponding random effects, as well as fixed loadings between observed and latent variables and fixed path coefficients between latent variables. We demonstrate the effectiveness of the proposed approach by applying the method to the multi-subject functional neuroimaging data for brain connectivity analysis, where time series data-level measurements are nested within subjects.
AbstractList We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject time series data. Time series data of multiple subjects are typically hierarchically structured, where time points are nested within subjects who are in turn nested within a group. The proposed approach, named multilevel dynamic GSCA, accommodates the nested structure in time series data. Explicitly taking the nested structure into account, the proposed method allows investigating subject-wise variability of the loadings and path coefficients by looking at the variance estimates of the corresponding random effects, as well as fixed loadings between observed and latent variables and fixed path coefficients between latent variables. We demonstrate the effectiveness of the proposed approach by applying the method to the multi-subject functional neuroimaging data for brain connectivity analysis, where time series data-level measurements are nested within subjects.We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject time series data. Time series data of multiple subjects are typically hierarchically structured, where time points are nested within subjects who are in turn nested within a group. The proposed approach, named multilevel dynamic GSCA, accommodates the nested structure in time series data. Explicitly taking the nested structure into account, the proposed method allows investigating subject-wise variability of the loadings and path coefficients by looking at the variance estimates of the corresponding random effects, as well as fixed loadings between observed and latent variables and fixed path coefficients between latent variables. We demonstrate the effectiveness of the proposed approach by applying the method to the multi-subject functional neuroimaging data for brain connectivity analysis, where time series data-level measurements are nested within subjects.
We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject time series data. Time series data of multiple subjects are typically hierarchically structured, where time points are nested within subjects who are in turn nested within a group. The proposed approach, named multilevel dynamic GSCA, accommodates the nested structure in time series data. Explicitly taking the nested structure into account, the proposed method allows investigating subject-wise variability of the loadings and path coefficients by looking at the variance estimates of the corresponding random effects, as well as fixed loadings between observed and latent variables and fixed path coefficients between latent variables. We demonstrate the effectiveness of the proposed approach by applying the method to the multi-subject functional neuroimaging data for brain connectivity analysis, where time series data-level measurements are nested within subjects.
Author Hwang, Heungsun
Takane, Yoshio
Jung, Kwanghee
Woodward, Todd S.
Author_xml – sequence: 1
  givenname: Kwanghee
  surname: Jung
  fullname: Jung, Kwanghee
  email: kwanghee.jung@uth.tmc.edu
  organization: Department of Pediatrics, Children’s Learning Institute, The University of Texas Health Science Center at Houston
– sequence: 2
  givenname: Yoshio
  surname: Takane
  fullname: Takane, Yoshio
  organization: University of Victoria
– sequence: 3
  givenname: Heungsun
  surname: Hwang
  fullname: Hwang, Heungsun
  organization: McGill University
– sequence: 4
  givenname: Todd S.
  surname: Woodward
  fullname: Woodward, Todd S.
  organization: University of British Columbia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25697370$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URKeFH8AGRWLTTeDaTvxYliktSAUWwNpyHGfkynEGPyoN4sfjYVqBKgErX_l-5_r6nBN0FJZgEXqO4RUG4K8TxpSyFnDfyq6Dlj1CKywYtCAFHKEVAKUtxYQeo5OUbgBAYiGeoGPSM8kphxX68aH47Ly9tb652AU9O9Nc2WCj9u67HZvPORaTS6zlepm39f2Qm_Og_S651ExLbN5E7UJthmBNdrcu7373a-OyhHq91Jvmoy1xcbPeuLBpLnTWT9HjSftkn92dp-jr5dsv63ft9aer9-vz69Z00OcWcyP1SAwRgOVEBz4MkjBiZS1Y3xs-4Z5woCPmYpoGyukIpDOEdZ2wvDf0FJ0d5m7j8q3YlNXskrHe62CXkhQWIBjnvZT_R7kklHdYsoq-fIDeLCXWj_6iqusURFepF3dUGWY7qm2sDsSduo-gAvwAmLikFO2kjMt6b1muznqFQe3DVoewVQ1b7cNW-wXwA-X98H9pyEGTKhs2Nv6x9F9FPwFTPrtf
CitedBy_id crossref_primary_10_1007_s41237_019_00080_w
crossref_primary_10_1108_EJM_06_2021_0416
crossref_primary_10_1061__ASCE_ME_1943_5479_0000999
crossref_primary_10_3389_fpsyg_2019_02215
crossref_primary_10_1108_IJBM_12_2020_0595
Cites_doi 10.1016/j.euroneuro.2010.03.008
10.1007/s11336-012-9294-0
10.1007/s11336-010-9157-5
10.1016/j.neuroimage.2010.08.051
10.1016/j.neuroscience.2005.05.043
10.1002/hbm.20259
10.1007/s002000100081
10.1007/BF02296971
10.1007/BF02295841
10.1007/s11336-012-9284-2
10.1002/hbm.460020107
10.1016/j.compbiomed.2011.09.004
10.1016/j.biopsych.2005.08.009
10.1137/1.9781611970319
10.1007/BF02294589
10.1201/b17872
ContentType Journal Article
Copyright The Psychometric Society 2015
The Psychometric Society 2016
Copyright_xml – notice: The Psychometric Society 2015
– notice: The Psychometric Society 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
0-V
3V.
7TK
7WY
7WZ
7X7
7XB
87Z
88B
88E
88G
8AO
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
BEZIV
CCPQU
CJNVE
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
K60
K6~
K9.
L.-
M0C
M0P
M0S
M1P
M2M
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEDU
PQEST
PQQKQ
PQUKI
PSYQQ
Q9U
7X8
DOI 10.1007/s11336-015-9440-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Social Sciences Premium Collection
ProQuest Central (Corporate)
Neurosciences Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Education Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Business Premium Collection
ProQuest One Community College
Education Collection
ProQuest Central Korea
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Global
Education Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Education
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
ProQuest Central Student
ProQuest Central Essentials
ABI/INFORM Complete
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
Education Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ABI/INFORM Complete (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Education Journals
ProQuest Psychology Journals (Alumni)
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Business (Alumni)
ProQuest Education Journals (Alumni Edition)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Neurosciences Abstracts
ProQuest One Education
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Law
EISSN 1860-0980
EndPage 581
ExternalDocumentID 4067521241
25697370
10_1007_s11336_015_9440_6
Genre Journal Article
GroupedDBID --Z
-4V
-55
-5G
-BR
-EM
-W8
-Y2
-~C
-~X
.86
.GO
.VR
0-V
06D
09C
0R~
0VY
123
186
199
1N0
1SB
203
28-
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
78A
7WY
7X7
88E
8AO
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAHSB
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABGDZ
ABGFU
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABPPZ
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACCUC
ACDLN
ACGFS
ACHQT
ACHSB
ACHXU
ACKIV
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMHG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BPHCQ
BSONS
BVXVI
CAG
CCPQU
CJNVE
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IRVIT
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAK
LLZTM
LPU
M0C
M0P
M1P
M2M
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NEJ
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
P19
P2P
P9L
PF-
PQBIZ
PQBZA
PQEDU
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RCA
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBS
SBU
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UAP
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WHG
WIP
WK6
WK8
XOL
YLTOR
YYQ
Z45
Z81
Z83
Z8U
Z92
ZCG
ZGI
ZMTXR
ZOVNA
ZXP
~EX
AAPKM
AAYXX
ABFSG
ABXHF
ACSTC
ADHKG
ADXHL
AETEA
AEZWR
AFHIU
AFOHR
AGQPQ
AGTDA
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
IPYYG
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FK
AAXMD
K9.
L.-
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PUEGO
Q9U
7X8
ID FETCH-LOGICAL-c405t-17c9ad2c28019f3b7bb9262e97bb655c7f152703d178ffb373d024c26448e75c3
IEDL.DBID U2A
ISSN 0033-3123
1860-0980
IngestDate Fri Jul 11 02:55:44 EDT 2025
Sun Aug 24 03:24:11 EDT 2025
Sat Aug 23 12:29:22 EDT 2025
Thu Apr 03 07:04:36 EDT 2025
Tue Jul 01 02:08:21 EDT 2025
Thu Apr 24 23:01:48 EDT 2025
Fri Feb 21 02:36:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords multilevel analysis
alternating least squares (ALS) algorithm
brain connectivity analysis
structural equation modeling
time series data
generalized structured component analysis
functional neuroimaging
multi-subject data
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-17c9ad2c28019f3b7bb9262e97bb655c7f152703d178ffb373d024c26448e75c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25697370
PQID 1791233084
PQPubID 47416
PageCount 17
ParticipantIDs proquest_miscellaneous_1808677599
proquest_miscellaneous_1792374196
proquest_journals_1791233084
pubmed_primary_25697370
crossref_citationtrail_10_1007_s11336_015_9440_6
crossref_primary_10_1007_s11336_015_9440_6
springer_journals_10_1007_s11336_015_9440_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160600
2016-06-00
2016-Jun
20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 6
  year: 2016
  text: 20160600
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Cambridge
PublicationTitle Psychometrika
PublicationTitleAbbrev Psychometrika
PublicationTitleAlternate Psychometrika
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Greve, Brown, Mueller, Glover, Liu (CR7) 2013; 78
Gates, Molenaar, Hillary, Slobounov (CR6) 2011; 54
Jung, Takane, Hwang, Woodward (CR11) 2012; 77
Woodward, Cairo, Ruff, Takane, Hunter, Ngan (CR18) 2006; 139
Van Den Heuvel, Hulshoff Pol (CR17) 2010; 20
Chen, Glen, Saad, Hamilton, Thomason, Gotlib, Cox (CR2) 2011; 41
Efron (CR4) 1982
Friston (CR5) 1994; 2
Takane, Hunter (CR15) 2001; 12
Hwang, Takane (CR8) 2004; 69
Hwang, Takane (CR9) 2014
Kim, Zhu, Chang, Bentler, Ernst (CR12) 2007; 28
Cairo, Woodward, Ngan (CR1) 2006; 59
Hwang, Ho, Lee (CR10) 2010; 75
deLeeuw, Young, Takane (CR3) 1976; 41
Takane (CR14) 2013
Snijders, Bosker (CR13) 1999
Takane, Shibayama (CR16) 1991; 56
S0033312300020159_CR6
S0033312300020159_CR5
S0033312300020159_CR8
S0033312300020159_CR7
S0033312300020159_CR9
Takane (S0033312300020159_CR14) 2013
S0033312300020159_CR11
S0033312300020159_CR10
Snijders (S0033312300020159_CR13) 1999
S0033312300020159_CR12
S0033312300020159_CR15
S0033312300020159_CR17
S0033312300020159_CR16
S0033312300020159_CR2
S0033312300020159_CR18
S0033312300020159_CR1
S0033312300020159_CR4
S0033312300020159_CR3
25106392 - Psychometrika. 2013 Jul;78(3):396-416
21975109 - Comput Biol Med. 2011 Dec;41(12):1142-55
16324799 - Neuroscience. 2006 Apr 28;139(1):317-25
26467168 - Psychometrika. 2016 Jun;81(2):582-584
20471808 - Eur Neuropsychopharmacol. 2010 Aug;20(8):519-34
16718669 - Hum Brain Mapp. 2007 Feb;28(2):85-93
16229823 - Biol Psychiatry. 2006 Apr 15;59(8):740-6
20804852 - Neuroimage. 2011 Jan 15;54(2):1151-8
References_xml – volume: 20
  start-page: 519
  year: 2010
  end-page: 534
  ident: CR17
  article-title: Exploring the brain network: A review on resting-state fMRI functional connectivity
  publication-title: European Neuropsychopharmacology
  doi: 10.1016/j.euroneuro.2010.03.008
– volume: 78
  start-page: 396
  year: 2013
  end-page: 416
  ident: CR7
  article-title: A survey of the sources of noise in fMRI
  publication-title: Psychometrika
  doi: 10.1007/s11336-012-9294-0
– volume: 75
  start-page: 228
  year: 2010
  end-page: 242
  ident: CR10
  article-title: Generalized structured component analysis with latent interactions
  publication-title: Psychometrika
  doi: 10.1007/s11336-010-9157-5
– volume: 54
  start-page: 1151
  year: 2011
  end-page: 1158
  ident: CR6
  article-title: Extended unified SEM approach for modeling event-related fMRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.08.051
– year: 2013
  ident: CR14
  publication-title: Constrained principal component analysis and related techniques
– year: 2014
  ident: CR9
  publication-title: Generalized structured component analysis: A component-based approach to structural equation modeling
– volume: 139
  start-page: 317
  year: 2006
  end-page: 325
  ident: CR18
  article-title: Functional connectivity reveals load dependent neural systems underlying encoding and maintenance in verbal working memory
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2005.05.043
– volume: 28
  start-page: 85
  year: 2007
  end-page: 93
  ident: CR12
  article-title: Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.20259
– volume: 12
  start-page: 391
  year: 2001
  end-page: 419
  ident: CR15
  article-title: Constrained principal component analysis: A comprehensive theory
  publication-title: Applicable Algebra in Engineering, Communication and Computing
  doi: 10.1007/s002000100081
– volume: 41
  start-page: 471
  year: 1976
  end-page: 503
  ident: CR3
  article-title: Additive structure in qualitative data: An alternating least squares method with optimal scaling features
  publication-title: Psychometrika
  doi: 10.1007/BF02296971
– volume: 69
  start-page: 81
  year: 2004
  end-page: 99
  ident: CR8
  article-title: Generalized structured component analysis
  publication-title: Psychometrika
  doi: 10.1007/BF02295841
– volume: 77
  start-page: 827
  year: 2012
  end-page: 848
  ident: CR11
  article-title: Dynamic GSCA (Generalized Structured Component Analysis) with applications to the analysis of effective connectivity in functional neuroimaging data
  publication-title: Psychometrika
  doi: 10.1007/s11336-012-9284-2
– year: 1999
  ident: CR13
  publication-title: Multilevel analysis: An introduction to basic and advanced multilevel modeling
– volume: 2
  start-page: 56
  year: 1994
  end-page: 78
  ident: CR5
  article-title: Functional and effective connectivity in neuroimaging: A synthesis
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.460020107
– volume: 41
  start-page: 1142
  year: 2011
  end-page: 1155
  ident: CR2
  article-title: Vector autoregression, structural equation modeling, and their synthesis in neuroimaging data analysis
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2011.09.004
– volume: 59
  start-page: 740
  year: 2006
  end-page: 746
  ident: CR1
  article-title: Decreased encoding efficiency in schizophrenia
  publication-title: Biological Psychiatry
  doi: 10.1016/j.biopsych.2005.08.009
– year: 1982
  ident: CR4
  publication-title: The jackknife, the bootstrap and other resampling plans
  doi: 10.1137/1.9781611970319
– volume: 56
  start-page: 97
  year: 1991
  end-page: 120
  ident: CR16
  article-title: Principal component analysis with external information on both subjects and variables
  publication-title: Psychometrika
  doi: 10.1007/BF02294589
– ident: S0033312300020159_CR17
  doi: 10.1016/j.euroneuro.2010.03.008
– ident: S0033312300020159_CR12
  doi: 10.1002/hbm.20259
– ident: S0033312300020159_CR11
  doi: 10.1007/s11336-012-9284-2
– ident: S0033312300020159_CR9
  doi: 10.1201/b17872
– ident: S0033312300020159_CR5
  doi: 10.1002/hbm.460020107
– volume-title: Multilevel analysis: An introduction to basic and advanced multilevel modeling
  year: 1999
  ident: S0033312300020159_CR13
– ident: S0033312300020159_CR10
  doi: 10.1007/s11336-010-9157-5
– ident: S0033312300020159_CR15
  doi: 10.1007/s002000100081
– ident: S0033312300020159_CR3
  doi: 10.1007/BF02296971
– ident: S0033312300020159_CR7
  doi: 10.1007/s11336-012-9294-0
– ident: S0033312300020159_CR16
  doi: 10.1007/BF02294589
– ident: S0033312300020159_CR18
  doi: 10.1016/j.neuroscience.2005.05.043
– ident: S0033312300020159_CR4
  doi: 10.1137/1.9781611970319
– ident: S0033312300020159_CR6
  doi: 10.1016/j.neuroimage.2010.08.051
– ident: S0033312300020159_CR2
  doi: 10.1016/j.compbiomed.2011.09.004
– volume-title: Constrained principal component analysis and related techniques
  year: 2013
  ident: S0033312300020159_CR14
– ident: S0033312300020159_CR1
  doi: 10.1016/j.biopsych.2005.08.009
– ident: S0033312300020159_CR8
  doi: 10.1007/BF02295841
– reference: 20471808 - Eur Neuropsychopharmacol. 2010 Aug;20(8):519-34
– reference: 25106392 - Psychometrika. 2013 Jul;78(3):396-416
– reference: 16229823 - Biol Psychiatry. 2006 Apr 15;59(8):740-6
– reference: 16324799 - Neuroscience. 2006 Apr 28;139(1):317-25
– reference: 26467168 - Psychometrika. 2016 Jun;81(2):582-584
– reference: 20804852 - Neuroimage. 2011 Jan 15;54(2):1151-8
– reference: 16718669 - Hum Brain Mapp. 2007 Feb;28(2):85-93
– reference: 21975109 - Comput Biol Med. 2011 Dec;41(12):1142-55
SSID ssj0009188
Score 2.145952
Snippet We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 565
SubjectTerms Algorithms
Assessment
Behavioral Science and Psychology
Brain
Brain - physiology
Brain - physiopathology
Case-Control Studies
Experimental Groups
Functional Neuroimaging
Hemodynamics
Humanities
Humans
Law
Least Squares Statistics
Least-Squares Analysis
Magnetic Resonance Imaging
Medical imaging
Memory, Short-Term - physiology
Multilevel Analysis
Neuroimaging
Parameter estimation
Principal Component Analysis
Psychology
Psychometrics
Schizophrenia - physiopathology
Statistical Theory and Methods
Statistics as Topic
Statistics for Social Sciences
Structural equation modeling
Structural Equation Models
Testing and Evaluation
Time series
Variables
SummonAdditionalLinks – databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA86X_YifjudEsEnJbg2bdI8iTrHEPRFB3srbZLCQLvptgfFP9679GPKcG-FpHDbXe9-l7v8jpBzoZNI-pliJs0kC6JEMKWVYjxV3AhhLTeYKD4-if4geBiGw_LAbVq2VVY-0TlqM9Z4Rn6FNJo-JN9RcD15Zzg1Cqur5QiNdbKB1GXY0iWHckG660WFJ-Z4h8znVVXTXZ2D5Axz6ZApLG-Kv3FpCWwuFUpd_Oltkc0SONKbQtPbZM3mO6RZ-6_PXfLtLtO-YhcQ7RaD5mnJKj36soY-O6rY-Qc8ohcY5xBvaEVKQgG80lucF0Fd74supkos1mGhBzGwODqkjtNj9OZGHNFuMkv2yKB3_3LXZ-VwBaYBo82YJ7VKjK99CFEq46lMU6QOtAoeRBhqmeHA2w6oSkZZlnLJDYRz7fI5K0PN90kjB0kPCZVZqACohynkboHvicRmBjyBsYH2vISrFulUf22sS-ZxHIDxGi84k1EbMWgjRm3EokUu6lcmBe3Gqs3tSl9x-QVO44W9tMhZvQzfDhZEktyO526PzwFSKbFiT9RByr9Qwc84KGyhlgjgopJcdlrksjKOXwL8J-7RanGPSRNAmSja0dqkAbZhTwD4zNJTZ90_8eL-XQ
  priority: 102
  providerName: ProQuest
Title Multilevel Dynamic Generalized Structured Component Analysis for Brain Connectivity Analysis in Functional Neuroimaging Data
URI https://link.springer.com/article/10.1007/s11336-015-9440-6
https://www.ncbi.nlm.nih.gov/pubmed/25697370
https://www.proquest.com/docview/1791233084
https://www.proquest.com/docview/1792374196
https://www.proquest.com/docview/1808677599
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-cvvgifjs_RgSflELbNEnzOHVz-DFEHcynkqYpCLqJm4jiH-8lbTfFD_CpgaQl7SV3v-tdfgewx7WKRZhLL0tz4UWx4p7UUno0lTTj3BiaWUfxoss7vei0z_rlOe5Rle1ehSSdpp4edkN3ynq_zJM2IMlrMMes646LuBc2p0y7QVyoX2oPjoW0CmX-9IivxugbwvwWHXVGp70ICyVaJM1CvEswYwbLUDtXL8swP1Fdryvw7s7R3tsEIHJc1JgnJaH03ZvJyLVjiX1-wqZVAMMBmhpS8ZEQxK3k0JaKIC7tRRcFJab92NFG81f8NSSOzuPuwVU3IsdqrFah127dHHW8sq6CpxGejb1AaKmyUIdonWROU5GmljXQSGxwxrTIba1bH6Uk4jxPqaAZWnLtXDkjmKZrMDvAmW4AETmTiNFZim5bFAZcmTxDJZCZSAeBorIOfvWBE12SjtvaF_fJlC7ZyiRBmSRWJgmvw_7klseCceOvwduV1JJy840Sy7gaUurHUR12J924bWwsRA3M8NmNCSmiKcn_GBP7lu2PSXyN9WJFTGaESFEKKvw6HFRL5NMEfpvu5r9Gb8E8wjNeJKZtwywuFbODEGicNqAm-qIBc82T27MWXg9b3curhtsIH3cKAEQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N7oG9IDZ-FbZhJHgBWTR2YscPaNroqo5tFYJN2ltIbEeaNNrBOqEh_ib-xt3ZScs00be9RbITXXLnu_ty9ncAr5Utcy1qw11Va57mpeLGGsNlZaRTynvpCCgejtTwOP10kp0swd_2LAxtq2x9YnDUbmLpH_l7otEUCL7zdOv8B6euUVRdbVtoRLPY91e_ELJdfNjro37fCDHYPfo45E1XAW4xOZnyRFtTOmEF-mZTy0pXFXHmeYMXKsusrqnTaw9l1HldV1JLh3HMBiDjdWYlPvceLKcSoUwHlnd2R5-_zGl-kzz6fkmn1oRs66jhsB7CQULvGTdUUFU3I-Gt9PZWaTZEvMFDeNCkqmw72tYqLPnxGqzMPObVI_gTju-e0b4j1o-t7VnDY3362zv2NZDTXv7ES_I7kzFGONbSoDBMl9kOdahgYbeNjX0s5uM4MMCoG39WssAicvo9NFVi_XJaPobjO_nwT6AzRkmfAdN1ZhAaZBWixVQkqvS1Q9_jfGqTpJSmC7320xa24TqnlhtnxZylmbRRoDYK0kahuvB2dst5JPpYNHm91VfRrPmLYm6hXXg1G8bVSiWYcuwnl2GOkJjEGbVgTt4jksHM4Gs8jbYwkwgTVKOl7nXhXWsc_wjwP3GfLxb3JdwfHh0eFAd7o_0XsIIpoYqb4dahg3biNzDtmlabja0z-HbXy-saAZI7XQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qBemL-O1p1RX0RVl62c3uZh9E1PNorRZBC_cWk_2AQr3rxxWp-Jf51zmzm9wpxXvrW2A3YZL5zsz-BuCZdk1lRLTct9Hwsmo0t85aLlsrvdYhSE-J4qc9vb1ffpioyRr87s_CUFtlbxOTofYzR__ItwhGU2DyXZVbsWuL-Dwavz465jRBiiqt_TiNLCK74fwHpm-nr3ZGyOvnQozff323zbsJA9xhoDLnhXG28cIJtNM2yta0LeHnBYsXWilnIk19HSK9poqxlUZ69GkuJTXBKCfxuVfgqpGqIB0zE7ME_C2q7AUknV8Tsq-opmN7mBhSHq-4pdKq_tcnXgh0LxRpk-8b34DrXdDK3mQpuwlrYXoLNha28_w2_EoHeQ-pA4mN8pB71iFaH_wMnn1JMLVnJ3hJFmg2RV_HekAUhoEze0uzKljqu3F5osVyHRfG6H_zb0uW8EQOvqfxSmzUzJs7sH8pn_0urE-R0vvATFQWkwTVYt5YikI3IXq0Qj6UrigaaQcw7D9t7TrUcxq-cVgv8ZqJGzVyoyZu1HoALxa3HGXIj1WbN3t-1Z32n9ZLWR3A08Uy6i0VY5ppmJ2lPUJiOGf1ij3VkOAGlcXXuJdlYUERhqrWSDMcwMteOP4i4H_kPlhN7hO4hkpVf9zZ230IGxgb6twVtwnrKCbhEcZf8_ZxEnQG3y5bs_4AbXc-LQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilevel+Dynamic+Generalized+Structured+Component+Analysis+for+Brain+Connectivity+Analysis+in+Functional+Neuroimaging+Data&rft.jtitle=Psychometrika&rft.au=Jung%2C+Kwanghee&rft.au=Takane%2C+Yoshio&rft.au=Hwang%2C+Heungsun&rft.au=Woodward%2C+Todd+S.&rft.date=2016-06-01&rft.issn=0033-3123&rft.eissn=1860-0980&rft.volume=81&rft.issue=2&rft.spage=565&rft.epage=581&rft_id=info:doi/10.1007%2Fs11336-015-9440-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11336_015_9440_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-3123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-3123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-3123&client=summon