Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe
Serious nitrogen (N) deposition in terrestrial ecosystems causes soil acidification and changes the structure and function of the microbial community. However, it is unclear how these changes are dependent on N deposition rates, other factors induced by N (e.g., pH), and their interactions. In this...
Saved in:
Published in | Soil biology & biochemistry Vol. 79; pp. 81 - 90 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.12.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Serious nitrogen (N) deposition in terrestrial ecosystems causes soil acidification and changes the structure and function of the microbial community. However, it is unclear how these changes are dependent on N deposition rates, other factors induced by N (e.g., pH), and their interactions. In this study, we investigated the responses of soil prokaryotic community structure and stability after a 13-year N addition in the semi-arid Leymus chinensis steppe in Inner Mongolia, China. Our results demonstrated that the prokaryotic community structure changed at the low N addition rate of 1.75 g N m−2 yr−1; however, dramatic changes in microbial abundance, respiratory quotient, and prokaryotic diversity occurred at N addition rates of more than 5.25 g N m−2 yr−1 when the soil pH dropped below 6.0. The two patterns indicated the difference in driving forces for different microbial properties. The N-driven and pH-driven processes are likely the most important mechanisms determining the responses of bacterial community to N. Some copiotrophic/oligotrophic bacteria, e.g., Proteobacteria and Acidobacteria, changed their relative abundances with the N addition continuously even at a low rate, indicating that they were more sensitive to N directly. Some bacterial groups significantly changed their relative abundance at a high N addition rate when pH dropped below 6.0, e.g., Verrucomicrobia and Armatimonadetes, indicating that they were more sensitive to pH below 6.0. N addition altered the prokaryotic community structure through enrichment of copiotrophic bacteria (species adjustment) at low N addition rates and through enrichment of nitrophilous taxa and significant loss of diversity at high N rates. The results also demonstrated that a high N addition diminished the stability of the prokaryotic community structure and activity through reduction in species diversity and bacterial interaction. Overall, this study supported the hypothesis that the responses of prokaryota to N were dependent on deposition rates, and N-driven and pH-driven processes were the important mechanisms to control the shift of the prokaryotic community.
•The responses of prokaryota to nitrogen are dependent on deposition rates.•Nitrogen-driven and pH-driven processes are important mechanisms.•Prokaryota changes dramatically when pH drops below 6.0 at high N deposition rates.•High N deposition simplifies the microbial interaction network.•High N deposition diminishes the stability of prokaryotic community structure. |
---|---|
AbstractList | Serious nitrogen (N) deposition in terrestrial ecosystems causes soil acidification and changes the structure and function of the microbial community. However, it is unclear how these changes are dependent on N deposition rates, other factors induced by N (e.g., pH), and their interactions. In this study, we investigated the responses of soil prokaryotic community structure and stability after a 13-year N addition in the semi-arid Leymus chinensis steppe in Inner Mongolia, China. Our results demonstrated that the prokaryotic community structure changed at the low N addition rate of 1.75 g N m super(-2) yr super(-1); however, dramatic changes in microbial abundance, respiratory quotient, and prokaryotic diversity occurred at N addition rates of more than 5.25 g N m super(-2) yr super(-1) when the soil pH dropped below 6.0. The two patterns indicated the difference in driving forces for different microbial properties. The N-driven and pH-driven processes are likely the most important mechanisms determining the responses of bacterial community to N. Some copiotrophic/oligotrophic bacteria, e.g., Proteobacteria and Acidobacteria, changed their relative abundances with the N addition continuously even at a low rate, indicating that they were more sensitive to N directly. Some bacterial groups significantly changed their relative abundance at a high N addition rate when pH dropped below 6.0, e.g., Verrucomicrobia and Armatimonadetes, indicating that they were more sensitive to pH below 6.0. N addition altered the prokaryotic community structure through enrichment of copiotrophic bacteria (species adjustment) at low N addition rates and through enrichment of nitrophilous taxa and significant loss of diversity at high N rates. The results also demonstrated that a high N addition diminished the stability of the prokaryotic community structure and activity through reduction in species diversity and bacterial interaction. Overall, this study supported the hypothesis that the responses of prokaryota to N were dependent on deposition rates, and N-driven and pH-driven processes were the important mechanisms to control the shift of the prokaryotic community. Serious nitrogen (N) deposition in terrestrial ecosystems causes soil acidification and changes the structure and function of the microbial community. However, it is unclear how these changes are dependent on N deposition rates, other factors induced by N (e.g., pH), and their interactions. In this study, we investigated the responses of soil prokaryotic community structure and stability after a 13-year N addition in the semi-arid Leymus chinensis steppe in Inner Mongolia, China. Our results demonstrated that the prokaryotic community structure changed at the low N addition rate of 1.75 g N m−2 yr−1; however, dramatic changes in microbial abundance, respiratory quotient, and prokaryotic diversity occurred at N addition rates of more than 5.25 g N m−2 yr−1 when the soil pH dropped below 6.0. The two patterns indicated the difference in driving forces for different microbial properties. The N-driven and pH-driven processes are likely the most important mechanisms determining the responses of bacterial community to N. Some copiotrophic/oligotrophic bacteria, e.g., Proteobacteria and Acidobacteria, changed their relative abundances with the N addition continuously even at a low rate, indicating that they were more sensitive to N directly. Some bacterial groups significantly changed their relative abundance at a high N addition rate when pH dropped below 6.0, e.g., Verrucomicrobia and Armatimonadetes, indicating that they were more sensitive to pH below 6.0. N addition altered the prokaryotic community structure through enrichment of copiotrophic bacteria (species adjustment) at low N addition rates and through enrichment of nitrophilous taxa and significant loss of diversity at high N rates. The results also demonstrated that a high N addition diminished the stability of the prokaryotic community structure and activity through reduction in species diversity and bacterial interaction. Overall, this study supported the hypothesis that the responses of prokaryota to N were dependent on deposition rates, and N-driven and pH-driven processes were the important mechanisms to control the shift of the prokaryotic community. •The responses of prokaryota to nitrogen are dependent on deposition rates.•Nitrogen-driven and pH-driven processes are important mechanisms.•Prokaryota changes dramatically when pH drops below 6.0 at high N deposition rates.•High N deposition simplifies the microbial interaction network.•High N deposition diminishes the stability of prokaryotic community structure. Serious nitrogen (N) deposition in terrestrial ecosystems causes soil acidification and changes the structure and function of the microbial community. However, it is unclear how these changes are dependent on N deposition rates, other factors induced by N (e.g., pH), and their interactions. In this study, we investigated the responses of soil prokaryotic community structure and stability after a 13-year N addition in the semi-arid Leymus chinensis steppe in Inner Mongolia, China. Our results demonstrated that the prokaryotic community structure changed at the low N addition rate of 1.75 g N m−2 yr−1; however, dramatic changes in microbial abundance, respiratory quotient, and prokaryotic diversity occurred at N addition rates of more than 5.25 g N m−2 yr−1 when the soil pH dropped below 6.0. The two patterns indicated the difference in driving forces for different microbial properties. The N-driven and pH-driven processes are likely the most important mechanisms determining the responses of bacterial community to N. Some copiotrophic/oligotrophic bacteria, e.g., Proteobacteria and Acidobacteria, changed their relative abundances with the N addition continuously even at a low rate, indicating that they were more sensitive to N directly. Some bacterial groups significantly changed their relative abundance at a high N addition rate when pH dropped below 6.0, e.g., Verrucomicrobia and Armatimonadetes, indicating that they were more sensitive to pH below 6.0. N addition altered the prokaryotic community structure through enrichment of copiotrophic bacteria (species adjustment) at low N addition rates and through enrichment of nitrophilous taxa and significant loss of diversity at high N rates. The results also demonstrated that a high N addition diminished the stability of the prokaryotic community structure and activity through reduction in species diversity and bacterial interaction. Overall, this study supported the hypothesis that the responses of prokaryota to N were dependent on deposition rates, and N-driven and pH-driven processes were the important mechanisms to control the shift of the prokaryotic community. |
Author | Dai, Yumei Wang, Yanfen Heděnec, Petr Zhili He Wang, Junming Li, Jiabao Pei, Kequan Frouz, Jan Yao, Minjie Bai, Yongfei Liu, Chi Zhang, Shiheng Li, Xiangzhen Rui, Junpeng |
Author_xml | – sequence: 1 givenname: Minjie surname: Yao fullname: Yao, Minjie organization: Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, CAS, Sichuan 610041, PR China – sequence: 2 givenname: Junpeng surname: Rui fullname: Rui, Junpeng organization: Key Laboratory of Environmental and Applied Microbiology, CAS, Sichuan 610041, PR China – sequence: 3 givenname: Jiabao surname: Li fullname: Li, Jiabao organization: Key Laboratory of Environmental and Applied Microbiology, CAS, Sichuan 610041, PR China – sequence: 4 givenname: Yumei surname: Dai fullname: Dai, Yumei organization: Key Laboratory of Environmental and Applied Microbiology, CAS, Sichuan 610041, PR China – sequence: 5 givenname: Yongfei surname: Bai fullname: Bai, Yongfei organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China – sequence: 6 givenname: Petr surname: Heděnec fullname: Heděnec, Petr organization: Institute of Environmental Studies, Faculty of Science, Charles University in Prague, Benátska 2, 128 44 Prague 2, Czech Republic – sequence: 7 givenname: Junming surname: Wang fullname: Wang, Junming organization: Section of Climate Science, Illinois State Water Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61802, USA – sequence: 8 givenname: Shiheng surname: Zhang fullname: Zhang, Shiheng organization: Key Laboratory of Environmental and Applied Microbiology, CAS, Sichuan 610041, PR China – sequence: 9 givenname: Kequan surname: Pei fullname: Pei, Kequan organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China – sequence: 10 givenname: Chi surname: Liu fullname: Liu, Chi organization: Key Laboratory of Environmental and Applied Microbiology, CAS, Sichuan 610041, PR China – sequence: 11 givenname: Yanfen surname: Wang fullname: Wang, Yanfen organization: Graduate School, University of Chinese Academy of Sciences, Beijing 100049, PR China – sequence: 12 surname: Zhili He fullname: Zhili He organization: Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, CAS, Sichuan 610041, PR China – sequence: 13 givenname: Jan surname: Frouz fullname: Frouz, Jan organization: Institute of Environmental Studies, Faculty of Science, Charles University in Prague, Benátska 2, 128 44 Prague 2, Czech Republic – sequence: 14 givenname: Xiangzhen surname: Li fullname: Li, Xiangzhen email: lixz@cib.ac.cn organization: Key Laboratory of Environmental and Applied Microbiology, CAS, Sichuan 610041, PR China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28878125$$DView record in Pascal Francis |
BookMark | eNqFkU2LFDEQhhtZwdnVnyDkInjpttLd6Q88iCzrBwwIoueQTqrdGnuSNpVZmH9vhhk8eJlL5VDPU5D3vS1ufPBYFK8lVBJk925XcaBlolDVINsKxgpgfFZs5NCPZdPWw02xAWiGEnrZvyhumXcAUCvZbIr03SQseUVLM1kRkdfgGVmEWawx_DbxGFJeOHrCyJSOwngnOMWDTYeIIgXhKcXwC71wuIaMUPCCvEiPKLZ43B9Y2Efy6Jk4i7iu-LJ4PpuF8dXlvSt-fnr4cf-l3H77_PX-47a0LahUSoWA7TTZsVOTdXM71W2jhtm50cBknENsVd9ZkIObXdfK0SHMKg-DTW375q54e76bf_LngJz0ntjishiP4cBaDk3XtQDdeB3tGgVNXY9dRt9cUMPWLHM03hLrNdI-p6XrYegHWavMqTNnY2COOP9DJOhTcXqnL8XpU3EaRp2Ly977_zxLyZxiTdHQctX-cLYxB_tEGDVbQm_RUUSbtAt05cJfDwm9wg |
CODEN | SBIOAH |
CitedBy_id | crossref_primary_10_1007_s00248_016_0827_4 crossref_primary_10_1016_j_apsoil_2023_105243 crossref_primary_10_1111_1758_2229_13002 crossref_primary_10_3389_fmicb_2020_01996 crossref_primary_10_1016_j_catena_2024_107807 crossref_primary_10_1002_ecs2_1879 crossref_primary_10_1016_j_scitotenv_2019_06_211 crossref_primary_10_1016_j_catena_2019_104360 crossref_primary_10_1038_s41598_018_30769_z crossref_primary_10_1016_j_catena_2019_02_019 crossref_primary_10_1016_j_apsoil_2020_103853 crossref_primary_10_1016_j_soilbio_2021_108495 crossref_primary_10_1016_j_foreco_2023_121490 crossref_primary_10_1016_j_ecoleng_2025_107564 crossref_primary_10_1016_j_geoderma_2024_116886 crossref_primary_10_1186_s13213_022_01666_8 crossref_primary_10_1016_j_apsoil_2018_02_015 crossref_primary_10_1016_j_soilbio_2019_03_004 crossref_primary_10_1093_femsec_fiy027 crossref_primary_10_3389_fevo_2020_530135 crossref_primary_10_1029_2019JG005316 crossref_primary_10_11922_csdata_170_2015_0021 crossref_primary_10_1002_ece3_9016 crossref_primary_10_1016_j_catena_2018_02_006 crossref_primary_10_1016_j_geoderma_2018_10_017 crossref_primary_10_1139_cjm_2018_0683 crossref_primary_10_1128_AEM_00557_15 crossref_primary_10_1186_s13568_021_01331_4 crossref_primary_10_1128_mSystems_00566_19 crossref_primary_10_1002_ldr_4772 crossref_primary_10_1007_s40789_019_00270_7 crossref_primary_10_1002_ecy_3053 crossref_primary_10_1007_s11368_018_1969_4 crossref_primary_10_1016_j_envres_2022_115069 crossref_primary_10_1007_s11368_017_1672_x crossref_primary_10_3390_microorganisms13010056 crossref_primary_10_3389_fmicb_2022_948875 crossref_primary_10_1093_femsec_fix049 crossref_primary_10_1016_j_jece_2025_115504 crossref_primary_10_1016_j_jenvman_2024_123617 crossref_primary_10_1016_j_gecco_2019_e00877 crossref_primary_10_1016_j_envpol_2023_122529 crossref_primary_10_3390_ijerph19159405 crossref_primary_10_1016_j_apsoil_2021_103994 crossref_primary_10_3390_microorganisms12122550 crossref_primary_10_1016_j_catena_2017_05_006 crossref_primary_10_1016_j_scitotenv_2016_09_001 crossref_primary_10_1007_s42832_022_0160_4 crossref_primary_10_1016_j_catena_2020_104841 crossref_primary_10_1016_j_apsoil_2021_104160 crossref_primary_10_1016_j_scitotenv_2022_158939 crossref_primary_10_1007_s00203_021_02535_9 crossref_primary_10_1007_s10482_024_01933_5 crossref_primary_10_1071_SR22139 crossref_primary_10_1128_spectrum_02230_21 crossref_primary_10_3389_frmbi_2024_1381270 crossref_primary_10_1007_s11274_017_2394_3 crossref_primary_10_1007_s11104_024_06676_w crossref_primary_10_3390_plants13162337 crossref_primary_10_1016_j_ejsobi_2018_03_005 crossref_primary_10_1111_1462_2920_16095 crossref_primary_10_1080_03650340_2020_1752916 crossref_primary_10_1038_srep14360 crossref_primary_10_1016_j_scitotenv_2020_142449 crossref_primary_10_1016_j_apsoil_2017_08_016 crossref_primary_10_1016_j_scitotenv_2019_135848 crossref_primary_10_1111_1751_7915_13622 crossref_primary_10_3389_fpls_2022_829381 crossref_primary_10_1007_s42773_019_00034_1 crossref_primary_10_1016_j_scitotenv_2023_163631 crossref_primary_10_1016_j_soilbio_2016_05_005 crossref_primary_10_1007_s11104_020_04570_9 crossref_primary_10_1038_s41598_019_42911_6 crossref_primary_10_1111_geb_12430 crossref_primary_10_3390_microorganisms11082033 crossref_primary_10_1016_j_catena_2017_01_007 crossref_primary_10_3389_fmicb_2022_833711 crossref_primary_10_1016_j_soilbio_2015_08_030 crossref_primary_10_3390_ijms25073786 crossref_primary_10_1002_saj2_20069 crossref_primary_10_1016_j_apsoil_2024_105685 crossref_primary_10_1080_19420889_2022_2068110 crossref_primary_10_1016_j_scitotenv_2018_12_126 crossref_primary_10_1093_femsec_fix149 crossref_primary_10_1016_j_soilbio_2017_10_004 crossref_primary_10_1016_j_jenvman_2024_120407 crossref_primary_10_3389_fmicb_2019_02902 crossref_primary_10_1007_s00248_022_01997_8 crossref_primary_10_1038_s41598_019_48620_4 crossref_primary_10_1007_s11104_024_06847_9 crossref_primary_10_1016_j_soilbio_2024_109547 crossref_primary_10_3390_ijms231810785 crossref_primary_10_7717_peerj_8433 crossref_primary_10_1007_s11356_024_33108_0 crossref_primary_10_1007_s11104_023_06109_0 crossref_primary_10_1038_s41598_023_44266_5 crossref_primary_10_1016_j_apsoil_2021_104183 crossref_primary_10_1016_j_agwat_2023_108563 crossref_primary_10_1016_j_catena_2018_01_004 crossref_primary_10_1016_j_apsoil_2018_04_001 crossref_primary_10_1080_01904167_2021_2005801 crossref_primary_10_3390_agriculture14122306 crossref_primary_10_1016_j_soilbio_2018_06_019 crossref_primary_10_1016_j_jenvman_2023_120012 crossref_primary_10_1016_j_envres_2023_116424 crossref_primary_10_1016_j_jenvman_2024_122653 crossref_primary_10_1016_j_apsoil_2024_105856 crossref_primary_10_1007_s00343_018_7029_5 crossref_primary_10_1186_s13068_015_0339_3 crossref_primary_10_1016_j_soilbio_2018_10_018 crossref_primary_10_3390_f12040505 crossref_primary_10_1016_j_catena_2024_107961 crossref_primary_10_1016_j_scitotenv_2017_07_102 crossref_primary_10_1002_ece3_7715 crossref_primary_10_1007_s13213_018_1421_4 crossref_primary_10_1016_j_ecoenv_2017_07_019 crossref_primary_10_1016_j_ijhydene_2015_07_106 crossref_primary_10_1007_s42832_022_0132_8 crossref_primary_10_1007_s42832_023_0205_3 crossref_primary_10_1016_j_envpol_2023_121207 crossref_primary_10_1016_j_soilbio_2017_04_005 crossref_primary_10_1016_j_geoderma_2017_01_014 crossref_primary_10_1038_s41598_017_17736_w crossref_primary_10_1016_j_watres_2019_03_010 crossref_primary_10_1080_15324982_2018_1501621 crossref_primary_10_1111_gcb_16211 crossref_primary_10_1007_s00374_020_01435_2 crossref_primary_10_1016_j_apsoil_2016_01_011 crossref_primary_10_1016_j_geoderma_2017_01_013 crossref_primary_10_3389_fmicb_2021_797817 crossref_primary_10_7717_peerj_3777 crossref_primary_10_1088_1748_9326_ac444f crossref_primary_10_1016_j_scitotenv_2017_12_142 crossref_primary_10_1080_03650340_2018_1563685 crossref_primary_10_1016_j_apsoil_2017_10_009 crossref_primary_10_3389_fmicb_2016_01446 crossref_primary_10_1016_j_geoderma_2021_115086 crossref_primary_10_3389_fpls_2023_1159823 crossref_primary_10_1016_j_catena_2018_10_024 crossref_primary_10_1016_j_scitotenv_2022_158572 crossref_primary_10_3390_f15081473 crossref_primary_10_1007_s00374_017_1259_0 crossref_primary_10_3389_fmicb_2023_1115449 crossref_primary_10_1007_s00248_022_02076_8 crossref_primary_10_1016_j_fm_2019_103295 crossref_primary_10_1016_j_ecoleng_2020_105941 crossref_primary_10_1111_1751_7915_12729 crossref_primary_10_1016_j_gecco_2021_e01622 crossref_primary_10_1007_s11368_015_1320_2 crossref_primary_10_1016_j_catena_2020_104883 crossref_primary_10_3390_agronomy10081175 crossref_primary_10_3389_fmicb_2023_1106739 crossref_primary_10_1016_j_apsoil_2024_105391 crossref_primary_10_1371_journal_pone_0186501 crossref_primary_10_3389_fmicb_2018_00569 crossref_primary_10_1007_s42832_020_0046_2 crossref_primary_10_1016_j_envres_2023_117977 crossref_primary_10_1016_j_jenvman_2022_116376 crossref_primary_10_1016_j_ecolind_2021_108484 crossref_primary_10_1080_10495398_2020_1812618 crossref_primary_10_1016_j_agee_2021_107521 crossref_primary_10_1016_j_catena_2022_106290 crossref_primary_10_1016_j_geoderma_2017_08_034 crossref_primary_10_1007_s11104_019_04089_8 crossref_primary_10_1016_j_envres_2025_121119 crossref_primary_10_1093_femsec_fiw026 crossref_primary_10_3390_agronomy13102593 crossref_primary_10_1016_j_soilbio_2018_08_022 crossref_primary_10_3390_agronomy12102357 crossref_primary_10_1128_AEM_03075_20 crossref_primary_10_1016_j_scitotenv_2018_07_305 crossref_primary_10_1038_s41598_021_04623_8 crossref_primary_10_1016_j_scitotenv_2020_142134 crossref_primary_10_1016_j_soilbio_2016_02_013 crossref_primary_10_1007_s11104_024_06930_1 crossref_primary_10_1093_jpe_rtx035 crossref_primary_10_3390_microorganisms8060883 crossref_primary_10_1038_srep41230 |
Cites_doi | 10.1073/pnas.1310880110 10.1098/rstb.2011.0352 10.1098/rstb.2011.0063 10.1890/08-1140.1 10.1890/10-0426.1 10.1128/AEM.00335-09 10.1038/ismej.2012.8 10.1038/nmeth.2212 10.1016/0167-7012(91)90040-W 10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2 10.1111/j.1365-2664.2012.02205.x 10.1111/j.1365-2486.2012.02639.x 10.1038/nature02850 10.1111/j.1365-2486.2009.01882.x 10.1073/pnas.1000080107 10.3389/fmicb.2011.00094 10.1126/science.1165893 10.1111/j.1365-2486.2009.01950.x 10.1111/j.1462-2920.2010.02189.x 10.1073/pnas.0704350104 10.1093/bioinformatics/btr381 10.1046/j.1462-2920.2003.00535.x 10.1038/nature11917 10.1111/j.1461-0248.2008.01230.x 10.1579/0044-7447-31.2.97 10.1126/science.1136674 10.1186/1471-2105-13-113 10.1038/ismej.2008.58 10.1111/j.1461-0248.2010.01482.x 10.1073/pnas.0507535103 10.1111/j.1365-2745.2009.01609.x 10.1016/S0929-1393(96)00123-0 10.1128/AEM.00062-07 10.1073/pnas.1215210110 10.1038/ismej.2008.127 10.1016/j.soilbio.2014.01.022 10.1111/gcb.12348 10.1016/j.soilbio.2011.03.012 10.1371/journal.pcbi.0020161 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SN 7UA C1K F1W H95 L.G 7S9 L.6 |
DOI | 10.1016/j.soilbio.2014.09.009 |
DatabaseName | CrossRef Pascal-Francis Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Agriculture |
EISSN | 1879-3428 |
EndPage | 90 |
ExternalDocumentID | 28878125 10_1016_j_soilbio_2014_09_009 S0038071714003083 |
GeographicLocations | China, People's Rep., Inner Mongolia China, People's Rep China |
GeographicLocations_xml | – name: China, People's Rep., Inner Mongolia – name: China, People's Rep – name: China |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HMA HMC HMG HVGLF HZ~ IHE J1W K-O KCYFY KOM LW9 LX3 LY3 LY9 M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCU SDF SDG SDP SEN SEP SES SEW SIN SPCBC SSA SSJ SSU SSZ T5K TN5 TWZ WUQ XPP Y6R ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 7SN 7UA C1K F1W H95 L.G 7S9 L.6 |
ID | FETCH-LOGICAL-c405t-15e0e4bbc965bcdf4b24358fdd9a0baddee4576c018dfd6419de0f5de0ae32c73 |
IEDL.DBID | .~1 |
ISSN | 0038-0717 |
IngestDate | Thu Jul 10 18:48:37 EDT 2025 Fri Jul 11 09:10:45 EDT 2025 Wed Apr 02 07:26:29 EDT 2025 Thu Apr 24 22:55:10 EDT 2025 Tue Jul 01 03:19:52 EDT 2025 Fri Feb 23 02:23:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Community structure Copiotrophic bacteria Oligotrophic bacteria N deposition Steppe ecosystem Diversity Monocotyledones Perennial plant Nitrogen Gramineae Steppe Ecosystem Angiospermae Bacteria Prokaryote Herbaceous plant Spermatophyta Soil science Fodder crop Oligotrophy Deposition |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-15e0e4bbc965bcdf4b24358fdd9a0baddee4576c018dfd6419de0f5de0ae32c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1635032296 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1836640069 proquest_miscellaneous_1635032296 pascalfrancis_primary_28878125 crossref_primary_10_1016_j_soilbio_2014_09_009 crossref_citationtrail_10_1016_j_soilbio_2014_09_009 elsevier_sciencedirect_doi_10_1016_j_soilbio_2014_09_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-01 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Soil biology & biochemistry |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Lueders, Wagner, Claus, Friedrich (bib29) 2003; 6 Smith, Yu, Smulders, Hartemink, Jarvis (bib36) 2006; 2 Bobbink, Hicks, Galloway, Spranger, Alkemade, Ashmore, Bustamante, Cinderby, Davidson, Dentener, Emmett, Erisman, Fenn, Gilliam, Nordin, Pardo, De Vries (bib8) 2010; 20 Liu, Jiang, Hu, Li, Liu, Wan (bib27) 2014; 72 Bai, Han, Wu, Chen, Li (bib1) 2004; 431 Bergmann, Bates, Eilers, Lauber, Caporaso, Walters, Knight, Fierer (bib7) 2011; 43 Meyer, Joergensen, Meyer (bib30) 1996; 5 Bárcenas-Moreno, Gómez-Brandón, Rousk, Bååth (bib4) 2009; 15 Deng, Jiang, Yang, He, Luo, Zhou (bib14) 2012; 13 Bai, Wu, Clark, Pan, Zhang, Chen, Wang, Han (bib3) 2012; 49 Galloway, Aber, Erisman, Seitzinger, Howarth, Cowling, Cosby (bib18) 2003; 53 Liu, Zhang, Han, Tang, Shen, Cui, Vitousek, Erisman, Goulding, Christie, Fangmeier, Zhang (bib28) 2013; 494 Caporaso, Lauber, Walters, Berg-Lyons, Lozupone, Turnbaugh, Fierer, Knight (bib11) 2011; 108 Bai, Wu, Clark, Naeem, Pan, Huang, Zhang, Han (bib2) 2010; 16 Vitousek, Hattenschwiler, Olander, Allison (bib38) 2002; 31 Jones, Robeson, Lauber, Hamady, Knight, Fierer (bib22) 2009; 3 Fierer, Jackson (bib16) 2006; 103 Edgar, Haas, Clemente, Quince, Knight (bib15) 2011; 27 Ramirez, Lauber, Knight, Bradford, Fierer (bib32) 2010; 91 Chase (bib12) 2007; 104 Wang, Garrity, Tiedje, Cole (bib39) 2007; 73 Bauer, Pennerstorfer, Holubar, Plas, Braun (bib6) 1991; 14 Fierer, Leff, Adams, Nielsen, Bates, Lauber, Owens, Gilbert, Wall, Caporaso (bib17) 2012; 109 Weaver, Angle, Bottomley (bib40) 1994 Wei, Yu, Bai, Lü, Li, Xia, Kardol, Liang, Wang, Han (bib41) 2013; 19 Treseder (bib37) 2008; 11 Bardgett, Freeman, Ostle (bib5) 2008; 2 Galloway, Townsend, Erisman, Bekunda, Cai, Freney, Martinelli, Seitzinger, Sutton (bib19) 2008; 320 Ramirez, Craine, Fierer (bib31) 2012; 18 Chase, Myers (bib13) 2011; 366 Campbell, Polson, Hanson, Mack, Schuur (bib9) 2010; 12 Goldfarb, Karaoz, Hanson, Santee, Bradford, Treseder, Wallenstein, Brodie (bib20) 2011; 2 Lauber, Hamady, Knight, Fierer (bib24) 2009; 75 Liu, Greaver (bib26) 2010; 13 Isbell, Reich, Tilman, Hobbie, Polasky, Binder (bib21) 2013; 110 Lauber, Hamady, Knight, Fierer (bib25) 2009; 75 Robson, Baptist, Clement, Lavorel (bib33) 2010; 98 Lan, Bai (bib23) 2012; 367 Schmidt, Lipson (bib35) 2009; 324 Saito, Smoot, Ono, Ruscheinski, Wang, Lotia, Pico, Bader, Ideker (bib34) 2012; 9 Caporaso, Lauber, Walters, Berg-Lyons, Huntley, Fierer, Owens, Betley, Fraser, Bauer, Gormley, Gilbert, Smith, Knight (bib10) 2012; 6 Bai (10.1016/j.soilbio.2014.09.009_bib3) 2012; 49 Lan (10.1016/j.soilbio.2014.09.009_bib23) 2012; 367 Robson (10.1016/j.soilbio.2014.09.009_bib33) 2010; 98 Liu (10.1016/j.soilbio.2014.09.009_bib27) 2014; 72 Fierer (10.1016/j.soilbio.2014.09.009_bib17) 2012; 109 Wang (10.1016/j.soilbio.2014.09.009_bib39) 2007; 73 Galloway (10.1016/j.soilbio.2014.09.009_bib19) 2008; 320 Lueders (10.1016/j.soilbio.2014.09.009_bib29) 2003; 6 Wei (10.1016/j.soilbio.2014.09.009_bib41) 2013; 19 Meyer (10.1016/j.soilbio.2014.09.009_bib30) 1996; 5 Bai (10.1016/j.soilbio.2014.09.009_bib1) 2004; 431 Bárcenas-Moreno (10.1016/j.soilbio.2014.09.009_bib4) 2009; 15 Saito (10.1016/j.soilbio.2014.09.009_bib34) 2012; 9 Chase (10.1016/j.soilbio.2014.09.009_bib13) 2011; 366 Jones (10.1016/j.soilbio.2014.09.009_bib22) 2009; 3 Weaver (10.1016/j.soilbio.2014.09.009_bib40) 1994 Smith (10.1016/j.soilbio.2014.09.009_bib36) 2006; 2 Treseder (10.1016/j.soilbio.2014.09.009_bib37) 2008; 11 Caporaso (10.1016/j.soilbio.2014.09.009_bib11) 2011; 108 Bauer (10.1016/j.soilbio.2014.09.009_bib6) 1991; 14 Bardgett (10.1016/j.soilbio.2014.09.009_bib5) 2008; 2 Edgar (10.1016/j.soilbio.2014.09.009_bib15) 2011; 27 Chase (10.1016/j.soilbio.2014.09.009_bib12) 2007; 104 Bergmann (10.1016/j.soilbio.2014.09.009_bib7) 2011; 43 Galloway (10.1016/j.soilbio.2014.09.009_bib18) 2003; 53 Lauber (10.1016/j.soilbio.2014.09.009_bib24) 2009; 75 Campbell (10.1016/j.soilbio.2014.09.009_bib9) 2010; 12 Liu (10.1016/j.soilbio.2014.09.009_bib26) 2010; 13 Caporaso (10.1016/j.soilbio.2014.09.009_bib10) 2012; 6 Fierer (10.1016/j.soilbio.2014.09.009_bib16) 2006; 103 Bobbink (10.1016/j.soilbio.2014.09.009_bib8) 2010; 20 Bai (10.1016/j.soilbio.2014.09.009_bib2) 2010; 16 Vitousek (10.1016/j.soilbio.2014.09.009_bib38) 2002; 31 Liu (10.1016/j.soilbio.2014.09.009_bib28) 2013; 494 Ramirez (10.1016/j.soilbio.2014.09.009_bib32) 2010; 91 Isbell (10.1016/j.soilbio.2014.09.009_bib21) 2013; 110 Deng (10.1016/j.soilbio.2014.09.009_bib14) 2012; 13 Schmidt (10.1016/j.soilbio.2014.09.009_bib35) 2009; 324 Ramirez (10.1016/j.soilbio.2014.09.009_bib31) 2012; 18 Goldfarb (10.1016/j.soilbio.2014.09.009_bib20) 2011; 2 Lauber (10.1016/j.soilbio.2014.09.009_bib25) 2009; 75 |
References_xml | – volume: 75 start-page: 5111 year: 2009 end-page: 5120 ident: bib24 article-title: Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale publication-title: Applied and Environmental Microbiology – volume: 73 start-page: 5261 year: 2007 end-page: 5267 ident: bib39 article-title: Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy publication-title: Applied and Environmental Microbiology – volume: 12 start-page: 1842 year: 2010 end-page: 1854 ident: bib9 article-title: The effect of nutrient deposition on bacterial communities in Arctic tundra soil publication-title: Environmental Microbiology – volume: 366 start-page: 2351 year: 2011 end-page: 2363 ident: bib13 article-title: Disentangling the importance of ecological niches from stochastic processes across scales publication-title: Philosophical Transactions of the Royal Society of London Series B – Biological Sciences – volume: 75 start-page: 5111 year: 2009 end-page: 5120 ident: bib25 article-title: Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale publication-title: Applied and Environmental Microbiology – year: 1994 ident: bib40 article-title: Methods of Soil Analysis, Part 2: Microbiological and Biochemical Properties – volume: 98 start-page: 62 year: 2010 end-page: 73 ident: bib33 article-title: Land use in subalpine grasslands affects nitrogen cycling via changes in plant community and soil microbial uptake dynamics publication-title: Journal of Ecology – volume: 91 start-page: 3463 year: 2010 end-page: 3470 ident: bib32 article-title: Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems publication-title: Ecology – volume: 9 start-page: 1069 year: 2012 end-page: 1076 ident: bib34 article-title: A travel guide to Cytoscape plugins publication-title: Nature Methods – volume: 72 start-page: 116 year: 2014 end-page: 122 ident: bib27 article-title: Decoupling of soil microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe publication-title: Soil Biology and Biochemistry – volume: 53 start-page: 341 year: 2003 end-page: 356 ident: bib18 article-title: The nitrogen cascade publication-title: BioScience – volume: 11 start-page: 1111 year: 2008 end-page: 1120 ident: bib37 article-title: Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies publication-title: Ecology Letters – volume: 18 start-page: 1918 year: 2012 end-page: 1927 ident: bib31 article-title: Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes publication-title: Global Change Biology – volume: 367 start-page: 3125 year: 2012 end-page: 3134 ident: bib23 article-title: Testing mechanisms of N-enrichment-induced species loss in a semiarid Inner Mongolia grassland: critical thresholds and implications for long-term ecosystem responses publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 103 start-page: 626 year: 2006 end-page: 631 ident: bib16 article-title: The diversity and biogeography of soil bacterial communities publication-title: Proceedings of the National Academy of Sciences United States of America – volume: 13 start-page: 113 year: 2012 ident: bib14 article-title: Molecular ecological network analyses publication-title: BMC Bioinformatics – volume: 431 start-page: 181 year: 2004 end-page: 184 ident: bib1 article-title: Ecosystem stability and compensatory effects in the Inner Mongolia grassland publication-title: Nature – volume: 14 start-page: 109 year: 1991 end-page: 117 ident: bib6 article-title: Microbial activity measurement in soil-a comparison of methods publication-title: Journal of Microbiological Methods – volume: 110 start-page: 11911 year: 2013 end-page: 11916 ident: bib21 article-title: Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity publication-title: Proceedings of the National Academy of Sciences United States of America – volume: 3 start-page: 442 year: 2009 end-page: 453 ident: bib22 article-title: A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses publication-title: The ISME Journal – volume: 49 start-page: 1204 year: 2012 end-page: 1215 ident: bib3 article-title: Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient publication-title: Journal of Applied Ecology – volume: 13 start-page: 819 year: 2010 end-page: 828 ident: bib26 article-title: A global perspective on belowground carbon dynamics under nitrogen enrichment publication-title: Ecology Letters – volume: 2 start-page: 94 year: 2011 ident: bib20 article-title: Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance publication-title: Frontiers in Microbiology – volume: 2 start-page: e161 year: 2006 ident: bib36 article-title: Computational inference of neural information flow networks publication-title: PLoS Computational Biology – volume: 20 start-page: 30 year: 2010 end-page: 59 ident: bib8 article-title: Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis publication-title: Ecological Applications – volume: 43 start-page: 1450 year: 2011 end-page: 1455 ident: bib7 article-title: The under-recognized dominance of Verrucomicrobia in soil bacterial communities publication-title: Soil Biology & Biochemistry – volume: 5 start-page: 71 year: 1996 end-page: 79 ident: bib30 article-title: The effects of reduced tillage on microbial biomass C and P in sandy loess soils publication-title: Applied Soil Ecology – volume: 104 start-page: 17430 year: 2007 end-page: 17434 ident: bib12 article-title: Drought mediates the importance of stochastic community assembly publication-title: Proceedings of the National Academy of Sciences United States of America – volume: 320 start-page: 889 year: 2008 end-page: 892 ident: bib19 article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions publication-title: Science – volume: 494 start-page: 459 year: 2013 end-page: 462 ident: bib28 article-title: Enhanced nitrogen deposition over China publication-title: Nature – volume: 2 start-page: 805 year: 2008 end-page: 814 ident: bib5 article-title: Microbial contributions to climate change through carbon cycle feedbacks publication-title: The ISME Journal – volume: 109 start-page: 21390 year: 2012 end-page: 21395 ident: bib17 article-title: Cross-biome metagenomic analyses of soil microbial communities and their functional attributes publication-title: Proceedings of the National Academy of Sciences United States of America – volume: 31 start-page: 97 year: 2002 end-page: 101 ident: bib38 article-title: Nitrogen and nature publication-title: Ambio – volume: 27 start-page: 2194 year: 2011 end-page: 2200 ident: bib15 article-title: UCHIME improves sensitivity and speed of chimera detection publication-title: Bioinformatics – volume: 6 start-page: 1621 year: 2012 end-page: 1624 ident: bib10 article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms publication-title: The ISME Journal – volume: 108 start-page: 4516 year: 2011 end-page: 4522 ident: bib11 article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample publication-title: Proceedings of the National Academy of Sciences United States of America – volume: 324 start-page: 81 year: 2009 end-page: 85 ident: bib35 article-title: Distilling free-form natural laws from experimental data publication-title: Science – volume: 16 start-page: 358 year: 2010 end-page: 372 ident: bib2 article-title: Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands publication-title: Global Change Biology – volume: 15 start-page: 2950 year: 2009 end-page: 2957 ident: bib4 article-title: Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment publication-title: Global Change Biology – volume: 19 start-page: 3688 year: 2013 end-page: 3697 ident: bib41 article-title: Nitrogen deposition weakens plant–microbe interactions in grassland ecosystems publication-title: Global Change Biology – volume: 6 start-page: 60 year: 2003 end-page: 72 ident: bib29 article-title: Stable isotope probing of rRNA and DNA reveals a dynamic methylotroph community and trophic interactions with fungi and protozoa in oxic rice field soil publication-title: Environmental Microbiology – volume: 110 start-page: 11911 year: 2013 ident: 10.1016/j.soilbio.2014.09.009_bib21 article-title: Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity publication-title: Proceedings of the National Academy of Sciences United States of America doi: 10.1073/pnas.1310880110 – volume: 367 start-page: 3125 year: 2012 ident: 10.1016/j.soilbio.2014.09.009_bib23 article-title: Testing mechanisms of N-enrichment-induced species loss in a semiarid Inner Mongolia grassland: critical thresholds and implications for long-term ecosystem responses publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences doi: 10.1098/rstb.2011.0352 – volume: 366 start-page: 2351 year: 2011 ident: 10.1016/j.soilbio.2014.09.009_bib13 article-title: Disentangling the importance of ecological niches from stochastic processes across scales publication-title: Philosophical Transactions of the Royal Society of London Series B – Biological Sciences doi: 10.1098/rstb.2011.0063 – volume: 20 start-page: 30 year: 2010 ident: 10.1016/j.soilbio.2014.09.009_bib8 article-title: Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis publication-title: Ecological Applications doi: 10.1890/08-1140.1 – volume: 91 start-page: 3463 year: 2010 ident: 10.1016/j.soilbio.2014.09.009_bib32 article-title: Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems publication-title: Ecology doi: 10.1890/10-0426.1 – volume: 75 start-page: 5111 year: 2009 ident: 10.1016/j.soilbio.2014.09.009_bib24 article-title: Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.00335-09 – volume: 6 start-page: 1621 year: 2012 ident: 10.1016/j.soilbio.2014.09.009_bib10 article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms publication-title: The ISME Journal doi: 10.1038/ismej.2012.8 – volume: 9 start-page: 1069 year: 2012 ident: 10.1016/j.soilbio.2014.09.009_bib34 article-title: A travel guide to Cytoscape plugins publication-title: Nature Methods doi: 10.1038/nmeth.2212 – volume: 14 start-page: 109 year: 1991 ident: 10.1016/j.soilbio.2014.09.009_bib6 article-title: Microbial activity measurement in soil-a comparison of methods publication-title: Journal of Microbiological Methods doi: 10.1016/0167-7012(91)90040-W – volume: 53 start-page: 341 year: 2003 ident: 10.1016/j.soilbio.2014.09.009_bib18 article-title: The nitrogen cascade publication-title: BioScience doi: 10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2 – volume: 49 start-page: 1204 year: 2012 ident: 10.1016/j.soilbio.2014.09.009_bib3 article-title: Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient publication-title: Journal of Applied Ecology doi: 10.1111/j.1365-2664.2012.02205.x – volume: 18 start-page: 1918 year: 2012 ident: 10.1016/j.soilbio.2014.09.009_bib31 article-title: Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2012.02639.x – volume: 431 start-page: 181 year: 2004 ident: 10.1016/j.soilbio.2014.09.009_bib1 article-title: Ecosystem stability and compensatory effects in the Inner Mongolia grassland publication-title: Nature doi: 10.1038/nature02850 – volume: 15 start-page: 2950 year: 2009 ident: 10.1016/j.soilbio.2014.09.009_bib4 article-title: Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2009.01882.x – volume: 108 start-page: 4516 year: 2011 ident: 10.1016/j.soilbio.2014.09.009_bib11 article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample publication-title: Proceedings of the National Academy of Sciences United States of America doi: 10.1073/pnas.1000080107 – volume: 2 start-page: 94 year: 2011 ident: 10.1016/j.soilbio.2014.09.009_bib20 article-title: Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2011.00094 – volume: 324 start-page: 81 year: 2009 ident: 10.1016/j.soilbio.2014.09.009_bib35 article-title: Distilling free-form natural laws from experimental data publication-title: Science doi: 10.1126/science.1165893 – volume: 75 start-page: 5111 year: 2009 ident: 10.1016/j.soilbio.2014.09.009_bib25 article-title: Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.00335-09 – volume: 16 start-page: 358 year: 2010 ident: 10.1016/j.soilbio.2014.09.009_bib2 article-title: Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2009.01950.x – volume: 12 start-page: 1842 year: 2010 ident: 10.1016/j.soilbio.2014.09.009_bib9 article-title: The effect of nutrient deposition on bacterial communities in Arctic tundra soil publication-title: Environmental Microbiology doi: 10.1111/j.1462-2920.2010.02189.x – volume: 104 start-page: 17430 year: 2007 ident: 10.1016/j.soilbio.2014.09.009_bib12 article-title: Drought mediates the importance of stochastic community assembly publication-title: Proceedings of the National Academy of Sciences United States of America doi: 10.1073/pnas.0704350104 – volume: 27 start-page: 2194 year: 2011 ident: 10.1016/j.soilbio.2014.09.009_bib15 article-title: UCHIME improves sensitivity and speed of chimera detection publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr381 – volume: 6 start-page: 60 year: 2003 ident: 10.1016/j.soilbio.2014.09.009_bib29 article-title: Stable isotope probing of rRNA and DNA reveals a dynamic methylotroph community and trophic interactions with fungi and protozoa in oxic rice field soil publication-title: Environmental Microbiology doi: 10.1046/j.1462-2920.2003.00535.x – volume: 494 start-page: 459 year: 2013 ident: 10.1016/j.soilbio.2014.09.009_bib28 article-title: Enhanced nitrogen deposition over China publication-title: Nature doi: 10.1038/nature11917 – volume: 11 start-page: 1111 year: 2008 ident: 10.1016/j.soilbio.2014.09.009_bib37 article-title: Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies publication-title: Ecology Letters doi: 10.1111/j.1461-0248.2008.01230.x – volume: 31 start-page: 97 year: 2002 ident: 10.1016/j.soilbio.2014.09.009_bib38 article-title: Nitrogen and nature publication-title: Ambio doi: 10.1579/0044-7447-31.2.97 – volume: 320 start-page: 889 year: 2008 ident: 10.1016/j.soilbio.2014.09.009_bib19 article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions publication-title: Science doi: 10.1126/science.1136674 – volume: 13 start-page: 113 year: 2012 ident: 10.1016/j.soilbio.2014.09.009_bib14 article-title: Molecular ecological network analyses publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-113 – volume: 2 start-page: 805 year: 2008 ident: 10.1016/j.soilbio.2014.09.009_bib5 article-title: Microbial contributions to climate change through carbon cycle feedbacks publication-title: The ISME Journal doi: 10.1038/ismej.2008.58 – volume: 13 start-page: 819 year: 2010 ident: 10.1016/j.soilbio.2014.09.009_bib26 article-title: A global perspective on belowground carbon dynamics under nitrogen enrichment publication-title: Ecology Letters doi: 10.1111/j.1461-0248.2010.01482.x – volume: 103 start-page: 626 year: 2006 ident: 10.1016/j.soilbio.2014.09.009_bib16 article-title: The diversity and biogeography of soil bacterial communities publication-title: Proceedings of the National Academy of Sciences United States of America doi: 10.1073/pnas.0507535103 – year: 1994 ident: 10.1016/j.soilbio.2014.09.009_bib40 – volume: 98 start-page: 62 year: 2010 ident: 10.1016/j.soilbio.2014.09.009_bib33 article-title: Land use in subalpine grasslands affects nitrogen cycling via changes in plant community and soil microbial uptake dynamics publication-title: Journal of Ecology doi: 10.1111/j.1365-2745.2009.01609.x – volume: 5 start-page: 71 year: 1996 ident: 10.1016/j.soilbio.2014.09.009_bib30 article-title: The effects of reduced tillage on microbial biomass C and P in sandy loess soils publication-title: Applied Soil Ecology doi: 10.1016/S0929-1393(96)00123-0 – volume: 73 start-page: 5261 year: 2007 ident: 10.1016/j.soilbio.2014.09.009_bib39 article-title: Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.00062-07 – volume: 109 start-page: 21390 year: 2012 ident: 10.1016/j.soilbio.2014.09.009_bib17 article-title: Cross-biome metagenomic analyses of soil microbial communities and their functional attributes publication-title: Proceedings of the National Academy of Sciences United States of America doi: 10.1073/pnas.1215210110 – volume: 3 start-page: 442 year: 2009 ident: 10.1016/j.soilbio.2014.09.009_bib22 article-title: A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses publication-title: The ISME Journal doi: 10.1038/ismej.2008.127 – volume: 72 start-page: 116 year: 2014 ident: 10.1016/j.soilbio.2014.09.009_bib27 article-title: Decoupling of soil microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2014.01.022 – volume: 19 start-page: 3688 year: 2013 ident: 10.1016/j.soilbio.2014.09.009_bib41 article-title: Nitrogen deposition weakens plant–microbe interactions in grassland ecosystems publication-title: Global Change Biology doi: 10.1111/gcb.12348 – volume: 43 start-page: 1450 year: 2011 ident: 10.1016/j.soilbio.2014.09.009_bib7 article-title: The under-recognized dominance of Verrucomicrobia in soil bacterial communities publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2011.03.012 – volume: 2 start-page: e161 year: 2006 ident: 10.1016/j.soilbio.2014.09.009_bib36 article-title: Computational inference of neural information flow networks publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.0020161 |
SSID | ssj0002513 |
Score | 2.5455997 |
Snippet | Serious nitrogen (N) deposition in terrestrial ecosystems causes soil acidification and changes the structure and function of the microbial community. However,... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 81 |
SubjectTerms | Acidobacteria Agronomy. Soil science and plant productions bacteria bacterial communities Biochemistry and biology Biological and medical sciences Chemical, physicochemical, biochemical and biological properties China Community structure Copiotrophic bacteria Diversity eutrophication Fundamental and applied biological sciences. Psychology Leymus chinensis N deposition nitrogen Oligotrophic bacteria Physics, chemistry, biochemistry and biology of agricultural and forest soils Proteobacteria respiratory quotient soil acidification soil pH Soil science species diversity Steppe ecosystem steppes terrestrial ecosystems Verrucomicrobia Verrucomicrobium |
Title | Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe |
URI | https://dx.doi.org/10.1016/j.soilbio.2014.09.009 https://www.proquest.com/docview/1635032296 https://www.proquest.com/docview/1836640069 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KfVAR0ap4Wo8VfE1vc9l87ONxWK5-9EEs9G3ZT7m2JuFyfeiLf7szyaalWCz0JZCQ3YSd2d9MyG9-A_Ap5T004kcOd1UiZNCJroRLtJWi5FZmrpdd_H5crE7El9P8dAeWYy0M0Soj9g-Y3qN1vDKLqzlr12uq8SWxdGrg3YuukOKnECV5-cGfG5oHxu8ovFtRsU55U8UzOyO93AuzphrAdJA7JV7i3fHpWas7XLUwtLv4B7n7cHT4Ap7HPJIthld9CTu-3oOni1-bqKXh9-Dxcmzm9gq2PzCnTKiskqhBbDMwY33HmsDwEed6c9XgTMyNNA2ma8cGcVmcjG0bhnt_06C7MedHphdb1wwTSPbNX_2-7BjRMokP3-FA37b-NZwcfv65XCWx4UJiMW_bJmnuuRfGWFnkxrogzByzqSo4JzU3hIRe4PeJ5WnlgitEKp3nIceD9tncltkb2K2b2r8FJjEGIJgEbdIgMlMaU2gdSGywcKKyZgJiXGZloxo5NcW4UCPt7ExF6yiyjuJSoXUmcHA9rB3kOO4bUI02VLf8SmHIuG_o9JbNrx84R2DGvCifwMfRCRSak_606No3l53CJDfnCJWy-M89VVYUgpSi3z38Hd_DEzob-DX7sItu4T9glrQ1034bTOHR4ujr6vgvMB8W3Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB2V9FAQQlBABGhZJK4mdrx2vMcookrbNAfUSr2t9hOlLbYVp4f-e2bsdVAFaqVefLC969XO7ptZ-c0bgG9J3EIjHnJiW0RceBWpgttIGcEnsRGpbWUXz5b5_IKfXGaXOzDrc2GIVhmwv8P0Fq3DnVGYzVG9WlGOL4mlUwHvVnQlfQa7pE6VDWB3enw6X24BGV140N4tKF9n8jeRZ3RFkrk3ekVpgEmneErUxP-7qJe1anDifFfx4h_wbj3S0Wt4FUJJNu1G-wZ2XLkPL6a_1kFOw-3D3qyv5_YWNj8xrIwos5LYQWzdkWNdwyrP8BPXan1XYU_M9kwNpkrLOn1Z7IxtKobbf13himPW9WQvtioZxpBs4e5-3zaMmJlEiW-woatr9w4ujn6cz-ZRqLkQGQzdNlGSudhxrY3IM22s53qMAVXhrRUq1gSGjuMRxcRJYb3NeSKsi32GF-XSsZmk72FQVqX7AEygG0A88Uonnqd6onWulCe9wdzywugh8H6apQmC5FQX40b2zLMrGawjyToyFhKtM4Tv22Z1p8jxWIOit6G8t7Qkeo3Hmh7es_n2g2PEZgyNsiF87ReBRHPSzxZVuuq2kRjnZjGipcgfeKdI85yTWPTHp4_xC-zNz88WcnG8PP0Ez-lJR7f5DANcIu4Ag6aNPgyb4g-gLhmO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rate-specific+responses+of+prokaryotic+diversity+and+structure+to+nitrogen+deposition+in+the+Leymus+chinensis+steppe&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Yao%2C+Minjie&rft.au=Rui%2C+Junpeng&rft.au=Li%2C+Jiabao&rft.au=Dai%2C+Yumei&rft.date=2014-12-01&rft.issn=0038-0717&rft.volume=79+p.81-90&rft.spage=81&rft.epage=90&rft_id=info:doi/10.1016%2Fj.soilbio.2014.09.009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon |