Comparison of PLS and SVM models for soil organic matter and particle size using vis-NIR spectral libraries
In this study a systematic comparison was carried out to assess differences on the accuracy between partial least squares (PLS) and support vector machine (SVM) regression algorithms in soil organic matter and particle size determinations using vis-NIR spectroscopy. The comparison consisted in inves...
Saved in:
Published in | Geoderma Regional Vol. 27; p. e00436 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study a systematic comparison was carried out to assess differences on the accuracy between partial least squares (PLS) and support vector machine (SVM) regression algorithms in soil organic matter and particle size determinations using vis-NIR spectroscopy. The comparison consisted in investigating the influence on the size of calibration set on the external validation set accuracy. For this purpose, three vis-NIR soil libraries containing 14,212, 15,330 and 42,471 soil samples were used to determine sand, clay, and SOM content, respectively. To increase the variability of the results obtained, each calibration subset was randomly generated 49 times and for each iteration a PLS, SVM-Linear and SVM-RBF (radial basis function) regression models were built. These calibration subsets were composed by 250, 1000, 2000, 5000 and 8000 or 10,000 samples.
In all situations the SVM-Linear obtained the worst accuracy results. For sand and clay determinations, SVM-RBF models shows a significant improvement on the accuracy, compared to PLS, when the calibration model was built using at least 1000 samples, resulting in a reduction of ~14–29% on the RMSEP. For SOM determinations the difference in RMSEP values of SVM-RBF and PLS starts to be significant when 2000 or more samples were used in calibration set, presenting a reduction of ~8–22% on the RMSEP values. In addition, for all soil attributes investigated between 20 and 27% of the external validation set (1173–2241 samples) were considered outliers and excluded by the PLS regression models.
This loss of PLS performance for large calibration sets, indicates the correlation between the vis-NIR spectra and clay, sand and SOM contents tends to be more complex by increasing the variability/number of samples. Requiring the use of machine learnings models with high generalization capacity, such as the SVM-RBF, which increased the performance as the number of samples that compose the calibration set increased.
•SVM-RBF regression algorithm is recommended in large soil spectral libraries.•PLS algorithm could be not adequate to modelling the large soil variability in Brazil.•Vis-NIR combined with SVM-RBF was useful to predicted SOM, sand, and clay.•The SVM-RBF present superior accuracy than SVM using linear kernel.•The vis-NIR method can determine the soil texture and fertility. |
---|---|
AbstractList | In this study a systematic comparison was carried out to assess differences on the accuracy between partial least squares (PLS) and support vector machine (SVM) regression algorithms in soil organic matter and particle size determinations using vis-NIR spectroscopy. The comparison consisted in investigating the influence on the size of calibration set on the external validation set accuracy. For this purpose, three vis-NIR soil libraries containing 14,212, 15,330 and 42,471 soil samples were used to determine sand, clay, and SOM content, respectively. To increase the variability of the results obtained, each calibration subset was randomly generated 49 times and for each iteration a PLS, SVM-Linear and SVM-RBF (radial basis function) regression models were built. These calibration subsets were composed by 250, 1000, 2000, 5000 and 8000 or 10,000 samples.In all situations the SVM-Linear obtained the worst accuracy results. For sand and clay determinations, SVM-RBF models shows a significant improvement on the accuracy, compared to PLS, when the calibration model was built using at least 1000 samples, resulting in a reduction of ~14–29% on the RMSEP. For SOM determinations the difference in RMSEP values of SVM-RBF and PLS starts to be significant when 2000 or more samples were used in calibration set, presenting a reduction of ~8–22% on the RMSEP values. In addition, for all soil attributes investigated between 20 and 27% of the external validation set (1173–2241 samples) were considered outliers and excluded by the PLS regression models.This loss of PLS performance for large calibration sets, indicates the correlation between the vis-NIR spectra and clay, sand and SOM contents tends to be more complex by increasing the variability/number of samples. Requiring the use of machine learnings models with high generalization capacity, such as the SVM-RBF, which increased the performance as the number of samples that compose the calibration set increased. In this study a systematic comparison was carried out to assess differences on the accuracy between partial least squares (PLS) and support vector machine (SVM) regression algorithms in soil organic matter and particle size determinations using vis-NIR spectroscopy. The comparison consisted in investigating the influence on the size of calibration set on the external validation set accuracy. For this purpose, three vis-NIR soil libraries containing 14,212, 15,330 and 42,471 soil samples were used to determine sand, clay, and SOM content, respectively. To increase the variability of the results obtained, each calibration subset was randomly generated 49 times and for each iteration a PLS, SVM-Linear and SVM-RBF (radial basis function) regression models were built. These calibration subsets were composed by 250, 1000, 2000, 5000 and 8000 or 10,000 samples. In all situations the SVM-Linear obtained the worst accuracy results. For sand and clay determinations, SVM-RBF models shows a significant improvement on the accuracy, compared to PLS, when the calibration model was built using at least 1000 samples, resulting in a reduction of ~14–29% on the RMSEP. For SOM determinations the difference in RMSEP values of SVM-RBF and PLS starts to be significant when 2000 or more samples were used in calibration set, presenting a reduction of ~8–22% on the RMSEP values. In addition, for all soil attributes investigated between 20 and 27% of the external validation set (1173–2241 samples) were considered outliers and excluded by the PLS regression models. This loss of PLS performance for large calibration sets, indicates the correlation between the vis-NIR spectra and clay, sand and SOM contents tends to be more complex by increasing the variability/number of samples. Requiring the use of machine learnings models with high generalization capacity, such as the SVM-RBF, which increased the performance as the number of samples that compose the calibration set increased. •SVM-RBF regression algorithm is recommended in large soil spectral libraries.•PLS algorithm could be not adequate to modelling the large soil variability in Brazil.•Vis-NIR combined with SVM-RBF was useful to predicted SOM, sand, and clay.•The SVM-RBF present superior accuracy than SVM using linear kernel.•The vis-NIR method can determine the soil texture and fertility. |
ArticleNumber | e00436 |
Author | de Santana, Felipe B. de Souza, André M. Otani, Sandro K. Poppi, Ronei J. |
Author_xml | – sequence: 1 givenname: Felipe B. surname: de Santana fullname: de Santana, Felipe B. email: felipe.bachiondesanta@teagasc.ie organization: Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13084-971 Campinas, SP, Brazil – sequence: 2 givenname: Sandro K. surname: Otani fullname: Otani, Sandro K. organization: Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13084-971 Campinas, SP, Brazil – sequence: 3 givenname: André M. surname: de Souza fullname: de Souza, André M. organization: Brazilian Agricultural Research Corporation (Embrapa Soils), 22460-000 Rio de Janeiro, RJ, Brazil – sequence: 4 givenname: Ronei J. surname: Poppi fullname: Poppi, Ronei J. organization: Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13084-971 Campinas, SP, Brazil |
BookMark | eNqFkE1v1DAQhi1UJErpP-DgI5cs_kpCOCChFYVKy4doxdVy7MlqFsdePNlK8OtxCQfEAU4zh_eZj-cxO0s5AWNPpdhIIbvnh80ecii0UULJDQhhdPeAnSvdqkaIwZz90T9il0QHIYQaWt136px93eb56ApSTjxP_NPuhrsU-M2X93zOASLxKRdOGSPPZe8Sej67ZYHyK1bJBX0ETvgD-Ikw7fkdUvPh-jOnI_iluMgjjqVuAHrCHk4uElz-rhfs9urN7fZds_v49nr7etd4I9qlkQJE6_shuEEMutPDpBWYrgtmqt_1yoFQBkY9Stea4EwYe6HatleDacf61wV7to49lvztBLTYGclDjC5BPpFVne5eaKmVrNGXa9SXTFRgsh4Xt2BO9XKMVgp779ge7OrY3ju2q-MKm7_gY8HZle__w16tWJULdwjFkkdIHgKWasyGjP8e8BPt_JoO |
CitedBy_id | crossref_primary_10_3390_bios13020203 crossref_primary_10_1007_s11368_024_03825_7 crossref_primary_10_3390_s22208013 crossref_primary_10_1016_j_infrared_2025_105713 crossref_primary_10_1016_j_geoderma_2023_116754 crossref_primary_10_1016_j_csite_2023_103086 crossref_primary_10_3389_fenrg_2022_878973 crossref_primary_10_12688_f1000research_130015_2 crossref_primary_10_1016_j_compag_2022_107153 crossref_primary_10_1016_j_geoderma_2023_116491 crossref_primary_10_3390_s24206738 crossref_primary_10_3390_su141911998 crossref_primary_10_1016_j_chemolab_2024_105308 crossref_primary_10_1016_j_foodchem_2023_135431 crossref_primary_10_1021_acs_analchem_3c05311 crossref_primary_10_1016_j_enconman_2021_115102 crossref_primary_10_1016_j_saa_2022_122247 crossref_primary_10_3390_agronomy12081964 crossref_primary_10_1515_hf_2024_0014 crossref_primary_10_1016_j_compag_2024_108643 crossref_primary_10_1016_j_resconrec_2023_107155 crossref_primary_10_1080_00380768_2022_2101864 crossref_primary_10_1134_S1064229322090071 crossref_primary_10_3390_s24113591 crossref_primary_10_1109_ACCESS_2023_3303020 crossref_primary_10_1016_j_isprsjprs_2022_01_018 crossref_primary_10_1002_vzj2_20217 crossref_primary_10_3390_agronomy14040784 crossref_primary_10_1002_ldr_4378 crossref_primary_10_1016_j_jfca_2025_107499 crossref_primary_10_1016_j_geoderma_2023_116723 crossref_primary_10_1080_00380768_2024_2320406 crossref_primary_10_1016_j_compag_2024_109004 crossref_primary_10_1016_j_cscee_2022_100268 crossref_primary_10_3390_s23125495 crossref_primary_10_1016_j_saa_2024_124856 crossref_primary_10_3390_app142411687 crossref_primary_10_5433_1679_0375_2024_v45_51475 crossref_primary_10_7717_peerj_cs_1020 crossref_primary_10_1016_j_ecolind_2023_111437 crossref_primary_10_1016_j_compag_2021_106657 |
Cites_doi | 10.1016/j.geoderma.2018.09.010 10.1007/s11430-013-4808-x 10.1023/A:1010933404324 10.1016/j.chemolab.2019.103873 10.1016/j.geoderma.2015.04.017 10.1016/j.saa.2017.10.052 10.1016/j.geoderma.2019.07.010 10.1021/ac60214a047 10.1016/j.chroma.2010.08.040 10.1016/j.geoderma.2019.05.043 10.1016/j.geoderma.2018.09.049 10.1016/j.geoderma.2019.07.014 10.1039/C3AY41907J 10.1016/j.aca.2007.03.023 10.1016/0003-2670(86)80028-9 10.1016/j.talanta.2013.11.056 10.1016/j.arcontrol.2019.07.003 10.1007/BF00994018 10.1016/S0065-2113(10)07005-7 10.1016/j.earscirev.2016.01.012 10.1016/j.scitotenv.2018.12.263 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geodrs.2021.e00436 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-0094 |
ExternalDocumentID | 10_1016_j_geodrs_2021_e00436 S235200942100081X |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATLK AAXUO ABGRD ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AFXIZ AGHFR AGUBO AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE RIG ROL SPC SPCBC SSA SSE SSJ SSZ T5K ~G- AAHBH AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c405t-10e05c79da9093639f32e466d4fe0072ae024eb3b1a54da4db7025572945b953 |
IEDL.DBID | AIKHN |
ISSN | 2352-0094 |
IngestDate | Fri Jul 11 07:28:11 EDT 2025 Tue Jul 01 02:07:19 EDT 2025 Thu Apr 24 23:07:32 EDT 2025 Fri Feb 23 02:44:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil texture Molecular spectroscopy Soil spectral library Soil organic carbon Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c405t-10e05c79da9093639f32e466d4fe0072ae024eb3b1a54da4db7025572945b953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2636831321 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2636831321 crossref_citationtrail_10_1016_j_geodrs_2021_e00436 crossref_primary_10_1016_j_geodrs_2021_e00436 elsevier_sciencedirect_doi_10_1016_j_geodrs_2021_e00436 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma Regional |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Seidel (bb0100) 2019; 354 Dematte (bb0045) 2019; 337 Geladi, Kowalski (bb0060) 1986; 185 Breiman (bb0015) 2001; 45 Cortes, Vapnik (bb0030) 1995; 20 de Santana (bb0035) 2018; 191 Ward (bb0140) 2019; 353 Üstün (bb0130) 2007; 595 Poznyak (bb0080) 2019 de Santana (bb0040) 2019; 658 Demattê (bb0050) 2019; 354 Laursen (bb0065) 2010; 1217 Savitzky, Golay (bb0095) 1964; 36 Terra (bb0125) 2015; 255–256 Filgueiras (bb0055) 2014; 119 SpecSolo (bb0110) 2018 MathWorks (bb0070) 2017 Bertsch, Ostinelli (bb0010) 2019 Viscarra Rossel (bb0135) 2016; 155 Shi (bb0105) 2014; 57 ASTM E1655-17 (bb0005) 2017; 05 Recena (bb0085) 2019; 337 Brochu (bb0025) 2010 Padarian (bb0075) 2019; 16 Teixeira (bb0120) 2017 Reda (bb0090) 2019 Stenberg (bb0115) 2010; 107 Bro, Smilde (bb0020) 2014; 6 Dematte (10.1016/j.geodrs.2021.e00436_bb0045) 2019; 337 Poznyak (10.1016/j.geodrs.2021.e00436_bb0080) 2019 Terra (10.1016/j.geodrs.2021.e00436_bb0125) 2015; 255–256 Laursen (10.1016/j.geodrs.2021.e00436_bb0065) 2010; 1217 Bertsch (10.1016/j.geodrs.2021.e00436_bb0010) 2019 Brochu (10.1016/j.geodrs.2021.e00436_bb0025) 2010 Seidel (10.1016/j.geodrs.2021.e00436_bb0100) 2019; 354 Bro (10.1016/j.geodrs.2021.e00436_bb0020) 2014; 6 Cortes (10.1016/j.geodrs.2021.e00436_bb0030) 1995; 20 SpecSolo (10.1016/j.geodrs.2021.e00436_bb0110) Viscarra Rossel (10.1016/j.geodrs.2021.e00436_bb0135) 2016; 155 de Santana (10.1016/j.geodrs.2021.e00436_bb0035) 2018; 191 Demattê (10.1016/j.geodrs.2021.e00436_bb0050) 2019; 354 Padarian (10.1016/j.geodrs.2021.e00436_bb0075) 2019; 16 de Santana (10.1016/j.geodrs.2021.e00436_bb0040) 2019; 658 Breiman (10.1016/j.geodrs.2021.e00436_bb0015) 2001; 45 Stenberg (10.1016/j.geodrs.2021.e00436_bb0115) 2010; 107 Savitzky (10.1016/j.geodrs.2021.e00436_bb0095) 1964; 36 Recena (10.1016/j.geodrs.2021.e00436_bb0085) 2019; 337 Ward (10.1016/j.geodrs.2021.e00436_bb0140) 2019; 353 Shi (10.1016/j.geodrs.2021.e00436_bb0105) 2014; 57 Reda (10.1016/j.geodrs.2021.e00436_bb0090) 2019 Üstün (10.1016/j.geodrs.2021.e00436_bb0130) 2007; 595 Geladi (10.1016/j.geodrs.2021.e00436_bb0060) 1986; 185 Filgueiras (10.1016/j.geodrs.2021.e00436_bb0055) 2014; 119 ASTM E1655-17 (10.1016/j.geodrs.2021.e00436_bb0005) 2017; 05 MathWorks (10.1016/j.geodrs.2021.e00436_bb0070) 2017 Teixeira (10.1016/j.geodrs.2021.e00436_bb0120) |
References_xml | – volume: 337 start-page: 111 year: 2019 end-page: 121 ident: bb0045 article-title: Soil analytical quality control by traditional and spectroscopy techniques: constructing the future of a hybrid laboratory for low environmental impact publication-title: Geoderma – year: 2018 ident: bb0110 article-title: Método de análise de fertilidade de solo utilizado pelo SpecSolo recebe acreditação do Inmetro e tecnologia é lançada comercialmente durante a Agrishow 2018 – year: 2019 ident: bb0080 article-title: A survey on artificial neural networks application for identification and control in environmental engineering: biological and chemical systems with uncertain models publication-title: Annu. Rev. Control. – volume: 255–256 start-page: 81 year: 2015 end-page: 93 ident: bb0125 article-title: Spectral libraries for quantitative analyses of tropical Brazilian soils: comparing Vis-NIR and mid-IR reflectance data publication-title: Geoderma – volume: 57 start-page: 1671 year: 2014 end-page: 1680 ident: bb0105 article-title: Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations publication-title: Sci. China Earth Sci. – volume: 6 start-page: 2812 year: 2014 end-page: 2831 ident: bb0020 article-title: Principal component analysis publication-title: Anal. Methods – year: 2019 ident: bb0090 article-title: A comparative study between a new method and other machine learning algorithms for soil organic carbon and total nitrogen prediction using near infrared spectroscopy publication-title: Chemom. Intell. Lab. Syst. – volume: 05 start-page: 30 year: 2017 ident: bb0005 article-title: ASTM E1655-17 standard practices for infrared multivariate quantitative analysis publication-title: ASTM Int. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0015 article-title: Random forests publication-title: Mach. Learn. – volume: 337 start-page: 368 year: 2019 end-page: 374 ident: bb0085 article-title: Soil fertility assessment by Vis-NIR spectroscopy: predicting soil functioning rather than availability indices publication-title: Geoderma – volume: 353 start-page: 297 year: 2019 end-page: 307 ident: bb0140 article-title: A remote sensing adapted approach for soil organic carbon prediction based on the spectrally clustered LUCAS soil database publication-title: Geoderma – volume: 1217 start-page: 6503 year: 2010 end-page: 6510 ident: bb0065 article-title: Chemometric quality control of chromatographic purity publication-title: J. Chromatogr. A – volume: 107 start-page: 163 year: 2010 end-page: 215 ident: bb0115 article-title: Visible and near infrared spectroscopy in soil science publication-title: Adv. Agron. – volume: 658 start-page: 895 year: 2019 end-page: 900 ident: bb0040 article-title: Green methodology for soil organic matter analysis using a national near infrared spectral library in tandem with learning machine publication-title: Sci. Total Environ. – volume: 354 start-page: 113856 year: 2019 ident: bb0100 article-title: Strategies for the efficient estimation of soil organic carbon at the field scale with vis-NIR spectroscopy: Spectral libraries and spiking vs local calibrations publication-title: Geoderma – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bb0030 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 595 start-page: 299 year: 2007 end-page: 309 ident: bb0130 article-title: Visualisation and interpretation of support vector regression models publication-title: Anal. Chim. Acta – year: 2010 ident: bb0025 article-title: A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning – volume: 185 start-page: 1 year: 1986 end-page: 17 ident: bb0060 article-title: Partial least-squares regression: a tutorial publication-title: Anal. Chim. Acta – volume: 119 start-page: 582 year: 2014 end-page: 589 ident: bb0055 article-title: Quantification of animal fat biodiesel in soybean biodiesel and B20 diesel blends using near infrared spectroscopy and synergy interval support vector regression publication-title: Talanta – year: 2017 ident: bb0120 article-title: Manual de métodos de analise de solo, Embrapa Solos. Brasília, DF – year: 2017 ident: bb0070 article-title: Statistics and Machine Learning Toolbox TM User ’ s Guide R 2017a – volume: 16 year: 2019 ident: bb0075 article-title: Using deep learning to predict soil properties from regional spectral data publication-title: Geoderma Reg. – volume: 155 start-page: 198 year: 2016 end-page: 230 ident: bb0135 article-title: A global spectral library to characterize the world’s soil publication-title: Earth-Sci. Rev. – volume: 354 start-page: 113793 year: 2019 ident: bb0050 article-title: The Brazilian soil spectral library (BSSL): a general view, application and challenges publication-title: Geoderma – volume: 191 start-page: 454 year: 2018 end-page: 462 ident: bb0035 article-title: Visible and near infrared spectroscopy coupled to random forest to quantify some soil quality parameters publication-title: Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. – volume: 36 start-page: 1627 year: 1964 end-page: 1639 ident: bb0095 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. – year: 2019 ident: bb0010 article-title: Standard Operating Procedure for Soil Total Carbon: Dumas Dry Combustion Method – volume: 337 start-page: 111 year: 2019 ident: 10.1016/j.geodrs.2021.e00436_bb0045 article-title: Soil analytical quality control by traditional and spectroscopy techniques: constructing the future of a hybrid laboratory for low environmental impact publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.010 – volume: 57 start-page: 1671 year: 2014 ident: 10.1016/j.geodrs.2021.e00436_bb0105 article-title: Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-013-4808-x – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.geodrs.2021.e00436_bb0015 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – year: 2019 ident: 10.1016/j.geodrs.2021.e00436_bb0090 article-title: A comparative study between a new method and other machine learning algorithms for soil organic carbon and total nitrogen prediction using near infrared spectroscopy publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2019.103873 – volume: 255–256 start-page: 81 year: 2015 ident: 10.1016/j.geodrs.2021.e00436_bb0125 article-title: Spectral libraries for quantitative analyses of tropical Brazilian soils: comparing Vis-NIR and mid-IR reflectance data publication-title: Geoderma doi: 10.1016/j.geoderma.2015.04.017 – volume: 191 start-page: 454 year: 2018 ident: 10.1016/j.geodrs.2021.e00436_bb0035 article-title: Visible and near infrared spectroscopy coupled to random forest to quantify some soil quality parameters publication-title: Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2017.10.052 – volume: 353 start-page: 297 year: 2019 ident: 10.1016/j.geodrs.2021.e00436_bb0140 article-title: A remote sensing adapted approach for soil organic carbon prediction based on the spectrally clustered LUCAS soil database publication-title: Geoderma doi: 10.1016/j.geoderma.2019.07.010 – year: 2019 ident: 10.1016/j.geodrs.2021.e00436_bb0010 – volume: 36 start-page: 1627 year: 1964 ident: 10.1016/j.geodrs.2021.e00436_bb0095 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. doi: 10.1021/ac60214a047 – volume: 1217 start-page: 6503 year: 2010 ident: 10.1016/j.geodrs.2021.e00436_bb0065 article-title: Chemometric quality control of chromatographic purity publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2010.08.040 – volume: 16 year: 2019 ident: 10.1016/j.geodrs.2021.e00436_bb0075 article-title: Using deep learning to predict soil properties from regional spectral data publication-title: Geoderma Reg. – volume: 354 start-page: 113793 year: 2019 ident: 10.1016/j.geodrs.2021.e00436_bb0050 article-title: The Brazilian soil spectral library (BSSL): a general view, application and challenges publication-title: Geoderma doi: 10.1016/j.geoderma.2019.05.043 – volume: 337 start-page: 368 year: 2019 ident: 10.1016/j.geodrs.2021.e00436_bb0085 article-title: Soil fertility assessment by Vis-NIR spectroscopy: predicting soil functioning rather than availability indices publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.049 – ident: 10.1016/j.geodrs.2021.e00436_bb0110 – volume: 354 start-page: 113856 year: 2019 ident: 10.1016/j.geodrs.2021.e00436_bb0100 article-title: Strategies for the efficient estimation of soil organic carbon at the field scale with vis-NIR spectroscopy: Spectral libraries and spiking vs local calibrations publication-title: Geoderma doi: 10.1016/j.geoderma.2019.07.014 – volume: 6 start-page: 2812 year: 2014 ident: 10.1016/j.geodrs.2021.e00436_bb0020 article-title: Principal component analysis publication-title: Anal. Methods doi: 10.1039/C3AY41907J – volume: 05 start-page: 30 year: 2017 ident: 10.1016/j.geodrs.2021.e00436_bb0005 article-title: ASTM E1655-17 standard practices for infrared multivariate quantitative analysis publication-title: ASTM Int. – volume: 595 start-page: 299 year: 2007 ident: 10.1016/j.geodrs.2021.e00436_bb0130 article-title: Visualisation and interpretation of support vector regression models publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2007.03.023 – year: 2017 ident: 10.1016/j.geodrs.2021.e00436_bb0070 – ident: 10.1016/j.geodrs.2021.e00436_bb0120 – year: 2010 ident: 10.1016/j.geodrs.2021.e00436_bb0025 – volume: 185 start-page: 1 year: 1986 ident: 10.1016/j.geodrs.2021.e00436_bb0060 article-title: Partial least-squares regression: a tutorial publication-title: Anal. Chim. Acta doi: 10.1016/0003-2670(86)80028-9 – volume: 119 start-page: 582 year: 2014 ident: 10.1016/j.geodrs.2021.e00436_bb0055 article-title: Quantification of animal fat biodiesel in soybean biodiesel and B20 diesel blends using near infrared spectroscopy and synergy interval support vector regression publication-title: Talanta doi: 10.1016/j.talanta.2013.11.056 – year: 2019 ident: 10.1016/j.geodrs.2021.e00436_bb0080 article-title: A survey on artificial neural networks application for identification and control in environmental engineering: biological and chemical systems with uncertain models publication-title: Annu. Rev. Control. doi: 10.1016/j.arcontrol.2019.07.003 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.geodrs.2021.e00436_bb0030 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 107 start-page: 163 year: 2010 ident: 10.1016/j.geodrs.2021.e00436_bb0115 article-title: Visible and near infrared spectroscopy in soil science publication-title: Adv. Agron. doi: 10.1016/S0065-2113(10)07005-7 – volume: 155 start-page: 198 year: 2016 ident: 10.1016/j.geodrs.2021.e00436_bb0135 article-title: A global spectral library to characterize the world’s soil publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2016.01.012 – volume: 658 start-page: 895 year: 2019 ident: 10.1016/j.geodrs.2021.e00436_bb0040 article-title: Green methodology for soil organic matter analysis using a national near infrared spectral library in tandem with learning machine publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.12.263 |
SSID | ssj0002953762 |
Score | 2.4212155 |
Snippet | In this study a systematic comparison was carried out to assess differences on the accuracy between partial least squares (PLS) and support vector machine... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e00436 |
SubjectTerms | calibration clay Machine learning Molecular spectroscopy particle size sand Soil organic carbon soil organic matter Soil spectral library Soil texture spectroscopy support vector machines |
Title | Comparison of PLS and SVM models for soil organic matter and particle size using vis-NIR spectral libraries |
URI | https://dx.doi.org/10.1016/j.geodrs.2021.e00436 https://www.proquest.com/docview/2636831321 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG4QXnwxGjXiLTXxdbJ1XcceCZGACDGAytvSrR2Z4kYY-OCv97S7JJoYEp-WLe0uZ9053-lOvw-hW-JEATOFbcBo4gYVkO7wyJMGI9QOzCiy2qGahxyNWf-ZPsydeQ11y7Uwqqyy8P25T9feujjSKqzZWsVxa0psTRlEiaUD23wPNQhEV7OOGp3BsD-uplqIpzhLiJaZc4ih-pSL6HSl10KmYq2ou4l1JzUn-19B6pe71jGod4gOCvCIO_n9HaGaTI7Re7eSEsRphJ8ep5gnAk9fRljL3GQYcCnO0niJcwmnEH9oUk3dbFU8LM7iL4lVFfwCf8aZMR5MsF6FuYYLVjn1CZr17mfdvlFIKBghILENOFlpOqHrCe6Zng1oJLKJpIwJGklFGs4lxGjIpwOLO1RwKgJXJRmAuKkTgNlOUT1JE3mGsEcjYZrgppXakcMBmMu2K5gVAEYLuLSayC5N5ocFvbhSuVj6ZR3Zm58b2leG9nNDN5FR9Vrl9Bo72rvl2_B_DBMfIsCOnjfly_PhC1K_RXgi0y00YjZrKwZL6_zfZ79A-2ovr3O5RPXNeiuvAK1sgutiNKrtcPI6_Aaz-uo8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT4MwEG_m9qAvRqPGb2viKw5KgfG4LC7MbcS4afbWFFoWdMKyDx_8670WWKKJWeIrtHxcj7vflbvfIXRHnCRyTWEboE3coALCHZ740nAJtSMzSaxWrPYhh6EbvNDHiTOpoU5VC6PSKkvbX9h0ba3LI81Sms15mjZHxNaUQZRY2rFNdlBDsVOBmjfavX4QbrZaiK84S4huM-cQQ82piuh0ptdU5mKhqLuJdS81J_tfTuqXudY-qHuA9kvwiNvF8x2imsyO0Htn00oQ5wl-GowwzwQevQ6xbnOzxIBL8TJPZ7ho4RTjD02qqYfNy5fFy_RLYpUFP8Wf6dIIe89YV2Eu4IabmPoYjbsP405glC0UjBiQ2AqMrDSd2PMF903fBjSS2ERS1xU0kYo0nEvw0RBPRxZ3qOBURJ4KMgBxUycCsZ2gepZn8hRhnybCNMFMq25HDgdgLluecK0IMFrEpXWG7EpkLC7pxVWXixmr8sjeWCFopgTNCkGfIWMza17Qa2wZ71WrwX6oCQMPsGXmbbV4DL4g9VuEZzJfwyDXdluKwdI6__fVb9BuMB4O2KAX9i_QnjpT5LxcovpqsZZXgFxW0XWpmd9-jeuI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+PLS+and+SVM+models+for+soil+organic+matter+and+particle+size+using+vis-NIR+spectral+libraries&rft.jtitle=Geoderma+Regional&rft.au=de+Santana%2C+Felipe+B&rft.au=Otani%2C+Sandro+K&rft.au=de+Souza%2C+Andr%C3%A9+M&rft.au=Poppi%2C+Ronei+J&rft.date=2021-12-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=27+p.e00436-&rft_id=info:doi/10.1016%2Fj.geodrs.2021.e00436&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon |