Comparison of PLS and SVM models for soil organic matter and particle size using vis-NIR spectral libraries

In this study a systematic comparison was carried out to assess differences on the accuracy between partial least squares (PLS) and support vector machine (SVM) regression algorithms in soil organic matter and particle size determinations using vis-NIR spectroscopy. The comparison consisted in inves...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Regional Vol. 27; p. e00436
Main Authors de Santana, Felipe B., Otani, Sandro K., de Souza, André M., Poppi, Ronei J.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study a systematic comparison was carried out to assess differences on the accuracy between partial least squares (PLS) and support vector machine (SVM) regression algorithms in soil organic matter and particle size determinations using vis-NIR spectroscopy. The comparison consisted in investigating the influence on the size of calibration set on the external validation set accuracy. For this purpose, three vis-NIR soil libraries containing 14,212, 15,330 and 42,471 soil samples were used to determine sand, clay, and SOM content, respectively. To increase the variability of the results obtained, each calibration subset was randomly generated 49 times and for each iteration a PLS, SVM-Linear and SVM-RBF (radial basis function) regression models were built. These calibration subsets were composed by 250, 1000, 2000, 5000 and 8000 or 10,000 samples. In all situations the SVM-Linear obtained the worst accuracy results. For sand and clay determinations, SVM-RBF models shows a significant improvement on the accuracy, compared to PLS, when the calibration model was built using at least 1000 samples, resulting in a reduction of ~14–29% on the RMSEP. For SOM determinations the difference in RMSEP values of SVM-RBF and PLS starts to be significant when 2000 or more samples were used in calibration set, presenting a reduction of ~8–22% on the RMSEP values. In addition, for all soil attributes investigated between 20 and 27% of the external validation set (1173–2241 samples) were considered outliers and excluded by the PLS regression models. This loss of PLS performance for large calibration sets, indicates the correlation between the vis-NIR spectra and clay, sand and SOM contents tends to be more complex by increasing the variability/number of samples. Requiring the use of machine learnings models with high generalization capacity, such as the SVM-RBF, which increased the performance as the number of samples that compose the calibration set increased. •SVM-RBF regression algorithm is recommended in large soil spectral libraries.•PLS algorithm could be not adequate to modelling the large soil variability in Brazil.•Vis-NIR combined with SVM-RBF was useful to predicted SOM, sand, and clay.•The SVM-RBF present superior accuracy than SVM using linear kernel.•The vis-NIR method can determine the soil texture and fertility.
AbstractList In this study a systematic comparison was carried out to assess differences on the accuracy between partial least squares (PLS) and support vector machine (SVM) regression algorithms in soil organic matter and particle size determinations using vis-NIR spectroscopy. The comparison consisted in investigating the influence on the size of calibration set on the external validation set accuracy. For this purpose, three vis-NIR soil libraries containing 14,212, 15,330 and 42,471 soil samples were used to determine sand, clay, and SOM content, respectively. To increase the variability of the results obtained, each calibration subset was randomly generated 49 times and for each iteration a PLS, SVM-Linear and SVM-RBF (radial basis function) regression models were built. These calibration subsets were composed by 250, 1000, 2000, 5000 and 8000 or 10,000 samples.In all situations the SVM-Linear obtained the worst accuracy results. For sand and clay determinations, SVM-RBF models shows a significant improvement on the accuracy, compared to PLS, when the calibration model was built using at least 1000 samples, resulting in a reduction of ~14–29% on the RMSEP. For SOM determinations the difference in RMSEP values of SVM-RBF and PLS starts to be significant when 2000 or more samples were used in calibration set, presenting a reduction of ~8–22% on the RMSEP values. In addition, for all soil attributes investigated between 20 and 27% of the external validation set (1173–2241 samples) were considered outliers and excluded by the PLS regression models.This loss of PLS performance for large calibration sets, indicates the correlation between the vis-NIR spectra and clay, sand and SOM contents tends to be more complex by increasing the variability/number of samples. Requiring the use of machine learnings models with high generalization capacity, such as the SVM-RBF, which increased the performance as the number of samples that compose the calibration set increased.
In this study a systematic comparison was carried out to assess differences on the accuracy between partial least squares (PLS) and support vector machine (SVM) regression algorithms in soil organic matter and particle size determinations using vis-NIR spectroscopy. The comparison consisted in investigating the influence on the size of calibration set on the external validation set accuracy. For this purpose, three vis-NIR soil libraries containing 14,212, 15,330 and 42,471 soil samples were used to determine sand, clay, and SOM content, respectively. To increase the variability of the results obtained, each calibration subset was randomly generated 49 times and for each iteration a PLS, SVM-Linear and SVM-RBF (radial basis function) regression models were built. These calibration subsets were composed by 250, 1000, 2000, 5000 and 8000 or 10,000 samples. In all situations the SVM-Linear obtained the worst accuracy results. For sand and clay determinations, SVM-RBF models shows a significant improvement on the accuracy, compared to PLS, when the calibration model was built using at least 1000 samples, resulting in a reduction of ~14–29% on the RMSEP. For SOM determinations the difference in RMSEP values of SVM-RBF and PLS starts to be significant when 2000 or more samples were used in calibration set, presenting a reduction of ~8–22% on the RMSEP values. In addition, for all soil attributes investigated between 20 and 27% of the external validation set (1173–2241 samples) were considered outliers and excluded by the PLS regression models. This loss of PLS performance for large calibration sets, indicates the correlation between the vis-NIR spectra and clay, sand and SOM contents tends to be more complex by increasing the variability/number of samples. Requiring the use of machine learnings models with high generalization capacity, such as the SVM-RBF, which increased the performance as the number of samples that compose the calibration set increased. •SVM-RBF regression algorithm is recommended in large soil spectral libraries.•PLS algorithm could be not adequate to modelling the large soil variability in Brazil.•Vis-NIR combined with SVM-RBF was useful to predicted SOM, sand, and clay.•The SVM-RBF present superior accuracy than SVM using linear kernel.•The vis-NIR method can determine the soil texture and fertility.
ArticleNumber e00436
Author de Santana, Felipe B.
de Souza, André M.
Otani, Sandro K.
Poppi, Ronei J.
Author_xml – sequence: 1
  givenname: Felipe B.
  surname: de Santana
  fullname: de Santana, Felipe B.
  email: felipe.bachiondesanta@teagasc.ie
  organization: Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13084-971 Campinas, SP, Brazil
– sequence: 2
  givenname: Sandro K.
  surname: Otani
  fullname: Otani, Sandro K.
  organization: Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13084-971 Campinas, SP, Brazil
– sequence: 3
  givenname: André M.
  surname: de Souza
  fullname: de Souza, André M.
  organization: Brazilian Agricultural Research Corporation (Embrapa Soils), 22460-000 Rio de Janeiro, RJ, Brazil
– sequence: 4
  givenname: Ronei J.
  surname: Poppi
  fullname: Poppi, Ronei J.
  organization: Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13084-971 Campinas, SP, Brazil
BookMark eNqFkE1v1DAQhi1UJErpP-DgI5cs_kpCOCChFYVKy4doxdVy7MlqFsdePNlK8OtxCQfEAU4zh_eZj-cxO0s5AWNPpdhIIbvnh80ecii0UULJDQhhdPeAnSvdqkaIwZz90T9il0QHIYQaWt136px93eb56ApSTjxP_NPuhrsU-M2X93zOASLxKRdOGSPPZe8Sej67ZYHyK1bJBX0ETvgD-Ikw7fkdUvPh-jOnI_iluMgjjqVuAHrCHk4uElz-rhfs9urN7fZds_v49nr7etd4I9qlkQJE6_shuEEMutPDpBWYrgtmqt_1yoFQBkY9Stea4EwYe6HatleDacf61wV7to49lvztBLTYGclDjC5BPpFVne5eaKmVrNGXa9SXTFRgsh4Xt2BO9XKMVgp779ge7OrY3ju2q-MKm7_gY8HZle__w16tWJULdwjFkkdIHgKWasyGjP8e8BPt_JoO
CitedBy_id crossref_primary_10_3390_bios13020203
crossref_primary_10_1007_s11368_024_03825_7
crossref_primary_10_3390_s22208013
crossref_primary_10_1016_j_infrared_2025_105713
crossref_primary_10_1016_j_geoderma_2023_116754
crossref_primary_10_1016_j_csite_2023_103086
crossref_primary_10_3389_fenrg_2022_878973
crossref_primary_10_12688_f1000research_130015_2
crossref_primary_10_1016_j_compag_2022_107153
crossref_primary_10_1016_j_geoderma_2023_116491
crossref_primary_10_3390_s24206738
crossref_primary_10_3390_su141911998
crossref_primary_10_1016_j_chemolab_2024_105308
crossref_primary_10_1016_j_foodchem_2023_135431
crossref_primary_10_1021_acs_analchem_3c05311
crossref_primary_10_1016_j_enconman_2021_115102
crossref_primary_10_1016_j_saa_2022_122247
crossref_primary_10_3390_agronomy12081964
crossref_primary_10_1515_hf_2024_0014
crossref_primary_10_1016_j_compag_2024_108643
crossref_primary_10_1016_j_resconrec_2023_107155
crossref_primary_10_1080_00380768_2022_2101864
crossref_primary_10_1134_S1064229322090071
crossref_primary_10_3390_s24113591
crossref_primary_10_1109_ACCESS_2023_3303020
crossref_primary_10_1016_j_isprsjprs_2022_01_018
crossref_primary_10_1002_vzj2_20217
crossref_primary_10_3390_agronomy14040784
crossref_primary_10_1002_ldr_4378
crossref_primary_10_1016_j_jfca_2025_107499
crossref_primary_10_1016_j_geoderma_2023_116723
crossref_primary_10_1080_00380768_2024_2320406
crossref_primary_10_1016_j_compag_2024_109004
crossref_primary_10_1016_j_cscee_2022_100268
crossref_primary_10_3390_s23125495
crossref_primary_10_1016_j_saa_2024_124856
crossref_primary_10_3390_app142411687
crossref_primary_10_5433_1679_0375_2024_v45_51475
crossref_primary_10_7717_peerj_cs_1020
crossref_primary_10_1016_j_ecolind_2023_111437
crossref_primary_10_1016_j_compag_2021_106657
Cites_doi 10.1016/j.geoderma.2018.09.010
10.1007/s11430-013-4808-x
10.1023/A:1010933404324
10.1016/j.chemolab.2019.103873
10.1016/j.geoderma.2015.04.017
10.1016/j.saa.2017.10.052
10.1016/j.geoderma.2019.07.010
10.1021/ac60214a047
10.1016/j.chroma.2010.08.040
10.1016/j.geoderma.2019.05.043
10.1016/j.geoderma.2018.09.049
10.1016/j.geoderma.2019.07.014
10.1039/C3AY41907J
10.1016/j.aca.2007.03.023
10.1016/0003-2670(86)80028-9
10.1016/j.talanta.2013.11.056
10.1016/j.arcontrol.2019.07.003
10.1007/BF00994018
10.1016/S0065-2113(10)07005-7
10.1016/j.earscirev.2016.01.012
10.1016/j.scitotenv.2018.12.263
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geodrs.2021.e00436
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
EISSN 2352-0094
ExternalDocumentID 10_1016_j_geodrs_2021_e00436
S235200942100081X
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATLK
AAXUO
ABGRD
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SSA
SSE
SSJ
SSZ
T5K
~G-
AAHBH
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c405t-10e05c79da9093639f32e466d4fe0072ae024eb3b1a54da4db7025572945b953
IEDL.DBID AIKHN
ISSN 2352-0094
IngestDate Fri Jul 11 07:28:11 EDT 2025
Tue Jul 01 02:07:19 EDT 2025
Thu Apr 24 23:07:32 EDT 2025
Fri Feb 23 02:44:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soil texture
Molecular spectroscopy
Soil spectral library
Soil organic carbon
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-10e05c79da9093639f32e466d4fe0072ae024eb3b1a54da4db7025572945b953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636831321
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636831321
crossref_citationtrail_10_1016_j_geodrs_2021_e00436
crossref_primary_10_1016_j_geodrs_2021_e00436
elsevier_sciencedirect_doi_10_1016_j_geodrs_2021_e00436
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Geoderma Regional
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Seidel (bb0100) 2019; 354
Dematte (bb0045) 2019; 337
Geladi, Kowalski (bb0060) 1986; 185
Breiman (bb0015) 2001; 45
Cortes, Vapnik (bb0030) 1995; 20
de Santana (bb0035) 2018; 191
Ward (bb0140) 2019; 353
Üstün (bb0130) 2007; 595
Poznyak (bb0080) 2019
de Santana (bb0040) 2019; 658
Demattê (bb0050) 2019; 354
Laursen (bb0065) 2010; 1217
Savitzky, Golay (bb0095) 1964; 36
Terra (bb0125) 2015; 255–256
Filgueiras (bb0055) 2014; 119
SpecSolo (bb0110) 2018
MathWorks (bb0070) 2017
Bertsch, Ostinelli (bb0010) 2019
Viscarra Rossel (bb0135) 2016; 155
Shi (bb0105) 2014; 57
ASTM E1655-17 (bb0005) 2017; 05
Recena (bb0085) 2019; 337
Brochu (bb0025) 2010
Padarian (bb0075) 2019; 16
Teixeira (bb0120) 2017
Reda (bb0090) 2019
Stenberg (bb0115) 2010; 107
Bro, Smilde (bb0020) 2014; 6
Dematte (10.1016/j.geodrs.2021.e00436_bb0045) 2019; 337
Poznyak (10.1016/j.geodrs.2021.e00436_bb0080) 2019
Terra (10.1016/j.geodrs.2021.e00436_bb0125) 2015; 255–256
Laursen (10.1016/j.geodrs.2021.e00436_bb0065) 2010; 1217
Bertsch (10.1016/j.geodrs.2021.e00436_bb0010) 2019
Brochu (10.1016/j.geodrs.2021.e00436_bb0025) 2010
Seidel (10.1016/j.geodrs.2021.e00436_bb0100) 2019; 354
Bro (10.1016/j.geodrs.2021.e00436_bb0020) 2014; 6
Cortes (10.1016/j.geodrs.2021.e00436_bb0030) 1995; 20
SpecSolo (10.1016/j.geodrs.2021.e00436_bb0110)
Viscarra Rossel (10.1016/j.geodrs.2021.e00436_bb0135) 2016; 155
de Santana (10.1016/j.geodrs.2021.e00436_bb0035) 2018; 191
Demattê (10.1016/j.geodrs.2021.e00436_bb0050) 2019; 354
Padarian (10.1016/j.geodrs.2021.e00436_bb0075) 2019; 16
de Santana (10.1016/j.geodrs.2021.e00436_bb0040) 2019; 658
Breiman (10.1016/j.geodrs.2021.e00436_bb0015) 2001; 45
Stenberg (10.1016/j.geodrs.2021.e00436_bb0115) 2010; 107
Savitzky (10.1016/j.geodrs.2021.e00436_bb0095) 1964; 36
Recena (10.1016/j.geodrs.2021.e00436_bb0085) 2019; 337
Ward (10.1016/j.geodrs.2021.e00436_bb0140) 2019; 353
Shi (10.1016/j.geodrs.2021.e00436_bb0105) 2014; 57
Reda (10.1016/j.geodrs.2021.e00436_bb0090) 2019
Üstün (10.1016/j.geodrs.2021.e00436_bb0130) 2007; 595
Geladi (10.1016/j.geodrs.2021.e00436_bb0060) 1986; 185
Filgueiras (10.1016/j.geodrs.2021.e00436_bb0055) 2014; 119
ASTM E1655-17 (10.1016/j.geodrs.2021.e00436_bb0005) 2017; 05
MathWorks (10.1016/j.geodrs.2021.e00436_bb0070) 2017
Teixeira (10.1016/j.geodrs.2021.e00436_bb0120)
References_xml – volume: 337
  start-page: 111
  year: 2019
  end-page: 121
  ident: bb0045
  article-title: Soil analytical quality control by traditional and spectroscopy techniques: constructing the future of a hybrid laboratory for low environmental impact
  publication-title: Geoderma
– year: 2018
  ident: bb0110
  article-title: Método de análise de fertilidade de solo utilizado pelo SpecSolo recebe acreditação do Inmetro e tecnologia é lançada comercialmente durante a Agrishow 2018
– year: 2019
  ident: bb0080
  article-title: A survey on artificial neural networks application for identification and control in environmental engineering: biological and chemical systems with uncertain models
  publication-title: Annu. Rev. Control.
– volume: 255–256
  start-page: 81
  year: 2015
  end-page: 93
  ident: bb0125
  article-title: Spectral libraries for quantitative analyses of tropical Brazilian soils: comparing Vis-NIR and mid-IR reflectance data
  publication-title: Geoderma
– volume: 57
  start-page: 1671
  year: 2014
  end-page: 1680
  ident: bb0105
  article-title: Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations
  publication-title: Sci. China Earth Sci.
– volume: 6
  start-page: 2812
  year: 2014
  end-page: 2831
  ident: bb0020
  article-title: Principal component analysis
  publication-title: Anal. Methods
– year: 2019
  ident: bb0090
  article-title: A comparative study between a new method and other machine learning algorithms for soil organic carbon and total nitrogen prediction using near infrared spectroscopy
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 05
  start-page: 30
  year: 2017
  ident: bb0005
  article-title: ASTM E1655-17 standard practices for infrared multivariate quantitative analysis
  publication-title: ASTM Int.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0015
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 337
  start-page: 368
  year: 2019
  end-page: 374
  ident: bb0085
  article-title: Soil fertility assessment by Vis-NIR spectroscopy: predicting soil functioning rather than availability indices
  publication-title: Geoderma
– volume: 353
  start-page: 297
  year: 2019
  end-page: 307
  ident: bb0140
  article-title: A remote sensing adapted approach for soil organic carbon prediction based on the spectrally clustered LUCAS soil database
  publication-title: Geoderma
– volume: 1217
  start-page: 6503
  year: 2010
  end-page: 6510
  ident: bb0065
  article-title: Chemometric quality control of chromatographic purity
  publication-title: J. Chromatogr. A
– volume: 107
  start-page: 163
  year: 2010
  end-page: 215
  ident: bb0115
  article-title: Visible and near infrared spectroscopy in soil science
  publication-title: Adv. Agron.
– volume: 658
  start-page: 895
  year: 2019
  end-page: 900
  ident: bb0040
  article-title: Green methodology for soil organic matter analysis using a national near infrared spectral library in tandem with learning machine
  publication-title: Sci. Total Environ.
– volume: 354
  start-page: 113856
  year: 2019
  ident: bb0100
  article-title: Strategies for the efficient estimation of soil organic carbon at the field scale with vis-NIR spectroscopy: Spectral libraries and spiking vs local calibrations
  publication-title: Geoderma
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bb0030
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 595
  start-page: 299
  year: 2007
  end-page: 309
  ident: bb0130
  article-title: Visualisation and interpretation of support vector regression models
  publication-title: Anal. Chim. Acta
– year: 2010
  ident: bb0025
  article-title: A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning
– volume: 185
  start-page: 1
  year: 1986
  end-page: 17
  ident: bb0060
  article-title: Partial least-squares regression: a tutorial
  publication-title: Anal. Chim. Acta
– volume: 119
  start-page: 582
  year: 2014
  end-page: 589
  ident: bb0055
  article-title: Quantification of animal fat biodiesel in soybean biodiesel and B20 diesel blends using near infrared spectroscopy and synergy interval support vector regression
  publication-title: Talanta
– year: 2017
  ident: bb0120
  article-title: Manual de métodos de analise de solo, Embrapa Solos. Brasília, DF
– year: 2017
  ident: bb0070
  article-title: Statistics and Machine Learning Toolbox TM User ’ s Guide R 2017a
– volume: 16
  year: 2019
  ident: bb0075
  article-title: Using deep learning to predict soil properties from regional spectral data
  publication-title: Geoderma Reg.
– volume: 155
  start-page: 198
  year: 2016
  end-page: 230
  ident: bb0135
  article-title: A global spectral library to characterize the world’s soil
  publication-title: Earth-Sci. Rev.
– volume: 354
  start-page: 113793
  year: 2019
  ident: bb0050
  article-title: The Brazilian soil spectral library (BSSL): a general view, application and challenges
  publication-title: Geoderma
– volume: 191
  start-page: 454
  year: 2018
  end-page: 462
  ident: bb0035
  article-title: Visible and near infrared spectroscopy coupled to random forest to quantify some soil quality parameters
  publication-title: Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.
– volume: 36
  start-page: 1627
  year: 1964
  end-page: 1639
  ident: bb0095
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
– year: 2019
  ident: bb0010
  article-title: Standard Operating Procedure for Soil Total Carbon: Dumas Dry Combustion Method
– volume: 337
  start-page: 111
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00436_bb0045
  article-title: Soil analytical quality control by traditional and spectroscopy techniques: constructing the future of a hybrid laboratory for low environmental impact
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.010
– volume: 57
  start-page: 1671
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00436_bb0105
  article-title: Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-013-4808-x
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.geodrs.2021.e00436_bb0015
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– year: 2019
  ident: 10.1016/j.geodrs.2021.e00436_bb0090
  article-title: A comparative study between a new method and other machine learning algorithms for soil organic carbon and total nitrogen prediction using near infrared spectroscopy
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2019.103873
– volume: 255–256
  start-page: 81
  year: 2015
  ident: 10.1016/j.geodrs.2021.e00436_bb0125
  article-title: Spectral libraries for quantitative analyses of tropical Brazilian soils: comparing Vis-NIR and mid-IR reflectance data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.04.017
– volume: 191
  start-page: 454
  year: 2018
  ident: 10.1016/j.geodrs.2021.e00436_bb0035
  article-title: Visible and near infrared spectroscopy coupled to random forest to quantify some soil quality parameters
  publication-title: Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2017.10.052
– volume: 353
  start-page: 297
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00436_bb0140
  article-title: A remote sensing adapted approach for soil organic carbon prediction based on the spectrally clustered LUCAS soil database
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.07.010
– year: 2019
  ident: 10.1016/j.geodrs.2021.e00436_bb0010
– volume: 36
  start-page: 1627
  year: 1964
  ident: 10.1016/j.geodrs.2021.e00436_bb0095
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
  doi: 10.1021/ac60214a047
– volume: 1217
  start-page: 6503
  year: 2010
  ident: 10.1016/j.geodrs.2021.e00436_bb0065
  article-title: Chemometric quality control of chromatographic purity
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2010.08.040
– volume: 16
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00436_bb0075
  article-title: Using deep learning to predict soil properties from regional spectral data
  publication-title: Geoderma Reg.
– volume: 354
  start-page: 113793
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00436_bb0050
  article-title: The Brazilian soil spectral library (BSSL): a general view, application and challenges
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.05.043
– volume: 337
  start-page: 368
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00436_bb0085
  article-title: Soil fertility assessment by Vis-NIR spectroscopy: predicting soil functioning rather than availability indices
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.049
– ident: 10.1016/j.geodrs.2021.e00436_bb0110
– volume: 354
  start-page: 113856
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00436_bb0100
  article-title: Strategies for the efficient estimation of soil organic carbon at the field scale with vis-NIR spectroscopy: Spectral libraries and spiking vs local calibrations
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.07.014
– volume: 6
  start-page: 2812
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00436_bb0020
  article-title: Principal component analysis
  publication-title: Anal. Methods
  doi: 10.1039/C3AY41907J
– volume: 05
  start-page: 30
  year: 2017
  ident: 10.1016/j.geodrs.2021.e00436_bb0005
  article-title: ASTM E1655-17 standard practices for infrared multivariate quantitative analysis
  publication-title: ASTM Int.
– volume: 595
  start-page: 299
  year: 2007
  ident: 10.1016/j.geodrs.2021.e00436_bb0130
  article-title: Visualisation and interpretation of support vector regression models
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2007.03.023
– year: 2017
  ident: 10.1016/j.geodrs.2021.e00436_bb0070
– ident: 10.1016/j.geodrs.2021.e00436_bb0120
– year: 2010
  ident: 10.1016/j.geodrs.2021.e00436_bb0025
– volume: 185
  start-page: 1
  year: 1986
  ident: 10.1016/j.geodrs.2021.e00436_bb0060
  article-title: Partial least-squares regression: a tutorial
  publication-title: Anal. Chim. Acta
  doi: 10.1016/0003-2670(86)80028-9
– volume: 119
  start-page: 582
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00436_bb0055
  article-title: Quantification of animal fat biodiesel in soybean biodiesel and B20 diesel blends using near infrared spectroscopy and synergy interval support vector regression
  publication-title: Talanta
  doi: 10.1016/j.talanta.2013.11.056
– year: 2019
  ident: 10.1016/j.geodrs.2021.e00436_bb0080
  article-title: A survey on artificial neural networks application for identification and control in environmental engineering: biological and chemical systems with uncertain models
  publication-title: Annu. Rev. Control.
  doi: 10.1016/j.arcontrol.2019.07.003
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.geodrs.2021.e00436_bb0030
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 107
  start-page: 163
  year: 2010
  ident: 10.1016/j.geodrs.2021.e00436_bb0115
  article-title: Visible and near infrared spectroscopy in soil science
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(10)07005-7
– volume: 155
  start-page: 198
  year: 2016
  ident: 10.1016/j.geodrs.2021.e00436_bb0135
  article-title: A global spectral library to characterize the world’s soil
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2016.01.012
– volume: 658
  start-page: 895
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00436_bb0040
  article-title: Green methodology for soil organic matter analysis using a national near infrared spectral library in tandem with learning machine
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.12.263
SSID ssj0002953762
Score 2.4212155
Snippet In this study a systematic comparison was carried out to assess differences on the accuracy between partial least squares (PLS) and support vector machine...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e00436
SubjectTerms calibration
clay
Machine learning
Molecular spectroscopy
particle size
sand
Soil organic carbon
soil organic matter
Soil spectral library
Soil texture
spectroscopy
support vector machines
Title Comparison of PLS and SVM models for soil organic matter and particle size using vis-NIR spectral libraries
URI https://dx.doi.org/10.1016/j.geodrs.2021.e00436
https://www.proquest.com/docview/2636831321
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG4QXnwxGjXiLTXxdbJ1XcceCZGACDGAytvSrR2Z4kYY-OCv97S7JJoYEp-WLe0uZ9053-lOvw-hW-JEATOFbcBo4gYVkO7wyJMGI9QOzCiy2qGahxyNWf-ZPsydeQ11y7Uwqqyy8P25T9feujjSKqzZWsVxa0psTRlEiaUD23wPNQhEV7OOGp3BsD-uplqIpzhLiJaZc4ih-pSL6HSl10KmYq2ou4l1JzUn-19B6pe71jGod4gOCvCIO_n9HaGaTI7Re7eSEsRphJ8ep5gnAk9fRljL3GQYcCnO0niJcwmnEH9oUk3dbFU8LM7iL4lVFfwCf8aZMR5MsF6FuYYLVjn1CZr17mfdvlFIKBghILENOFlpOqHrCe6Zng1oJLKJpIwJGklFGs4lxGjIpwOLO1RwKgJXJRmAuKkTgNlOUT1JE3mGsEcjYZrgppXakcMBmMu2K5gVAEYLuLSayC5N5ocFvbhSuVj6ZR3Zm58b2leG9nNDN5FR9Vrl9Bo72rvl2_B_DBMfIsCOnjfly_PhC1K_RXgi0y00YjZrKwZL6_zfZ79A-2ovr3O5RPXNeiuvAK1sgutiNKrtcPI6_Aaz-uo8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT4MwEG_m9qAvRqPGb2viKw5KgfG4LC7MbcS4afbWFFoWdMKyDx_8670WWKKJWeIrtHxcj7vflbvfIXRHnCRyTWEboE3coALCHZ740nAJtSMzSaxWrPYhh6EbvNDHiTOpoU5VC6PSKkvbX9h0ba3LI81Sms15mjZHxNaUQZRY2rFNdlBDsVOBmjfavX4QbrZaiK84S4huM-cQQ82piuh0ptdU5mKhqLuJdS81J_tfTuqXudY-qHuA9kvwiNvF8x2imsyO0Htn00oQ5wl-GowwzwQevQ6xbnOzxIBL8TJPZ7ho4RTjD02qqYfNy5fFy_RLYpUFP8Wf6dIIe89YV2Eu4IabmPoYjbsP405glC0UjBiQ2AqMrDSd2PMF903fBjSS2ERS1xU0kYo0nEvw0RBPRxZ3qOBURJ4KMgBxUycCsZ2gepZn8hRhnybCNMFMq25HDgdgLluecK0IMFrEpXWG7EpkLC7pxVWXixmr8sjeWCFopgTNCkGfIWMza17Qa2wZ71WrwX6oCQMPsGXmbbV4DL4g9VuEZzJfwyDXdluKwdI6__fVb9BuMB4O2KAX9i_QnjpT5LxcovpqsZZXgFxW0XWpmd9-jeuI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+PLS+and+SVM+models+for+soil+organic+matter+and+particle+size+using+vis-NIR+spectral+libraries&rft.jtitle=Geoderma+Regional&rft.au=de+Santana%2C+Felipe+B&rft.au=Otani%2C+Sandro+K&rft.au=de+Souza%2C+Andr%C3%A9+M&rft.au=Poppi%2C+Ronei+J&rft.date=2021-12-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=27+p.e00436-&rft_id=info:doi/10.1016%2Fj.geodrs.2021.e00436&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon