Microvascular Endothelial Dysfunction in Sedentary, Obese Humans Is Mediated by NADPH Oxidase: Influence of Exercise Training
OBJECTIVE—The objectives of this study were to determine the impact of in vivo reactive oxygen species (ROS) on microvascular endothelial function in obese human subjects and the efficacy of an aerobic exercise intervention on alleviating obesity-associated dysfunctionality. APPROACH AND RESULTS—You...
Saved in:
Published in | Arteriosclerosis, thrombosis, and vascular biology Vol. 36; no. 12; pp. 2412 - 2420 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Heart Association, Inc
01.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | OBJECTIVE—The objectives of this study were to determine the impact of in vivo reactive oxygen species (ROS) on microvascular endothelial function in obese human subjects and the efficacy of an aerobic exercise intervention on alleviating obesity-associated dysfunctionality.
APPROACH AND RESULTS—Young, sedentary men and women were divided into lean (body mass index 18–25; n=14), intermediate (body mass index 28–32.5; n=13), and obese (body mass index 33–40; n=15) groups. A novel microdialysis technique was utilized to detect elevated interstitial hydrogen peroxide (H2O2) and superoxide levels in the vastus lateralis of obese compared with both lean and intermediate subjects. Nutritive blood flow was monitored in the vastus lateralis via the microdialysis-ethanol technique. A decrement in acetylcholine-stimulated blood flow revealed impaired microvascular endothelial function in the obese subjects. Perfusion of apocynin, an NADPH oxidase inhibitor, lowered (normalized) H2O2 and superoxide levels, and reversed microvascular endothelial dysfunction in obese subjects. After 8 weeks of exercise, H2O2 levels were decreased in the obese subjects and microvascular endothelial function in these subjects was restored to levels similar to lean subjects. Skeletal muscle protein expression of the NADPH oxidase subunits p22, p47, and p67 was increased in obese relative to lean subjects, where p22 and p67 expression was attenuated by exercise training in obese subjects.
CONCLUSIONS—This study implicates NADPH oxidase as a source of excessive ROS production in skeletal muscle of obese individuals and links excessive NADPH oxidase–derived ROS to microvascular endothelial dysfunction in obesity. Furthermore, aerobic exercise training proved to be an effective strategy for alleviating these maladies. |
---|---|
AbstractList | OBJECTIVE—The objectives of this study were to determine the impact of in vivo reactive oxygen species (ROS) on microvascular endothelial function in obese human subjects and the efficacy of an aerobic exercise intervention on alleviating obesity-associated dysfunctionality.
APPROACH AND RESULTS—Young, sedentary men and women were divided into lean (body mass index 18–25; n=14), intermediate (body mass index 28–32.5; n=13), and obese (body mass index 33–40; n=15) groups. A novel microdialysis technique was utilized to detect elevated interstitial hydrogen peroxide (H2O2) and superoxide levels in the vastus lateralis of obese compared with both lean and intermediate subjects. Nutritive blood flow was monitored in the vastus lateralis via the microdialysis-ethanol technique. A decrement in acetylcholine-stimulated blood flow revealed impaired microvascular endothelial function in the obese subjects. Perfusion of apocynin, an NADPH oxidase inhibitor, lowered (normalized) H2O2 and superoxide levels, and reversed microvascular endothelial dysfunction in obese subjects. After 8 weeks of exercise, H2O2 levels were decreased in the obese subjects and microvascular endothelial function in these subjects was restored to levels similar to lean subjects. Skeletal muscle protein expression of the NADPH oxidase subunits p22, p47, and p67 was increased in obese relative to lean subjects, where p22 and p67 expression was attenuated by exercise training in obese subjects.
CONCLUSIONS—This study implicates NADPH oxidase as a source of excessive ROS production in skeletal muscle of obese individuals and links excessive NADPH oxidase–derived ROS to microvascular endothelial dysfunction in obesity. Furthermore, aerobic exercise training proved to be an effective strategy for alleviating these maladies. The objectives of this study were to determine the impact of in vivo reactive oxygen species (ROS) on microvascular endothelial function in obese human subjects and the efficacy of an aerobic exercise intervention on alleviating obesity-associated dysfunctionality. Young, sedentary men and women were divided into lean (body mass index 18-25; n=14), intermediate (body mass index 28-32.5; n=13), and obese (body mass index 33-40; n=15) groups. A novel microdialysis technique was utilized to detect elevated interstitial hydrogen peroxide (H O ) and superoxide levels in the vastus lateralis of obese compared with both lean and intermediate subjects. Nutritive blood flow was monitored in the vastus lateralis via the microdialysis-ethanol technique. A decrement in acetylcholine-stimulated blood flow revealed impaired microvascular endothelial function in the obese subjects. Perfusion of apocynin, an NADPH oxidase inhibitor, lowered (normalized) H O and superoxide levels, and reversed microvascular endothelial dysfunction in obese subjects. After 8 weeks of exercise, H O levels were decreased in the obese subjects and microvascular endothelial function in these subjects was restored to levels similar to lean subjects. Skeletal muscle protein expression of the NADPH oxidase subunits p22 , p47 , and p67 was increased in obese relative to lean subjects, where p22 and p67 expression was attenuated by exercise training in obese subjects. This study implicates NADPH oxidase as a source of excessive ROS production in skeletal muscle of obese individuals and links excessive NADPH oxidase-derived ROS to microvascular endothelial dysfunction in obesity. Furthermore, aerobic exercise training proved to be an effective strategy for alleviating these maladies. |
Author | Anderson, Ethan J. White, Joseph D. Yan, Huimin La Favor, Justin D. Dubis, Gabriel S. Hickner, Robert C. Nelson, Margaret A.M. |
AuthorAffiliation | From the Human Performance Laboratory, Departments of Kinesiology (J.D.L.F., G.S.D., H.Y., J.D.W., R.C.H.), Pharmacology and Toxicology (M.A.M.N., E.J.A.), Physiology (R.C.H.), East Carolina Diabetes and Obesity Institute (J.D.L.F., M.A.M.N., E.J.A., R.C.H.), Center for Health Disparities (R.C.H.), East Carolina University, Greenville, NC; Department of Urology, The James Buchannan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD (J.D.L.F.); Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City (E.J.A.); and Department of Biokinetics, Exercise and Leisure Science, University of KwaZulu-Natal, Durban, South Africa (R.C.H.) |
AuthorAffiliation_xml | – name: From the Human Performance Laboratory, Departments of Kinesiology (J.D.L.F., G.S.D., H.Y., J.D.W., R.C.H.), Pharmacology and Toxicology (M.A.M.N., E.J.A.), Physiology (R.C.H.), East Carolina Diabetes and Obesity Institute (J.D.L.F., M.A.M.N., E.J.A., R.C.H.), Center for Health Disparities (R.C.H.), East Carolina University, Greenville, NC; Department of Urology, The James Buchannan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD (J.D.L.F.); Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City (E.J.A.); and Department of Biokinetics, Exercise and Leisure Science, University of KwaZulu-Natal, Durban, South Africa (R.C.H.) – name: 6 The James Buchannan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland – name: 5 Center for Health Disparities, East Carolina University, Greenville, North Carolina – name: 2 Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina – name: 8 Department of Biokinetics, Exercise and Leisure Science, University of KwaZulu-Natal, Durban, South Africa – name: 7 Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa – name: 4 East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina – name: 1 Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, North Carolina – name: 3 Department of Physiology, East Carolina University, Greenville, North Carolina |
Author_xml | – sequence: 1 givenname: Justin surname: La Favor middlename: D. fullname: La Favor, Justin D. organization: From the Human Performance Laboratory, Departments of Kinesiology (J.D.L.F., G.S.D., H.Y., J.D.W., R.C.H.), Pharmacology and Toxicology (M.A.M.N., E.J.A.), Physiology (R.C.H.), East Carolina Diabetes and Obesity Institute (J.D.L.F., M.A.M.N., E.J.A., R.C.H.), Center for Health Disparities (R.C.H.), East Carolina University, Greenville, NC; Department of Urology, The James Buchannan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD (J.D.L.F.); Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City (E.J.A.); and Department of Biokinetics, Exercise and Leisure Science, University of KwaZulu-Natal, Durban, South Africa (R.C.H.) – sequence: 2 givenname: Gabriel surname: Dubis middlename: S. fullname: Dubis, Gabriel S. – sequence: 3 givenname: Huimin surname: Yan fullname: Yan, Huimin – sequence: 4 givenname: Joseph surname: White middlename: D. fullname: White, Joseph D. – sequence: 5 givenname: Margaret surname: Nelson middlename: A.M. fullname: Nelson, Margaret A.M. – sequence: 6 givenname: Ethan surname: Anderson middlename: J. fullname: Anderson, Ethan J. – sequence: 7 givenname: Robert surname: Hickner middlename: C. fullname: Hickner, Robert C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27765769$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhS1URP94ARbID0CK49hOwgIpbQdmpLZTqQNby7GvOwaPU9lJ21nw7iSaUgGLruwrn-_I95xDtBe6AAi9y8lJnov8Y7P6ftrMm2k4KUhVFPUrdJBzyjImCrE33klZZ1wwuo8OU_pBCGGUkjdon5al4KWoD9CvS6djd6-SHryKeBZM16_BO-Xx-TbZIejedQG7gG_AQOhV3H7AyxYS4PmwUSHhRcKXYJzqweB2i6-a8-s5Xj46oxJ8wotg_QBBA-4snj1C1G5EV1G54MLtMXptlU_w9uk8Qt--zFZn8-xi-XVx1lxkmhFeZ1ULoA1RltUtASZyq20O1HJe1q0yigkOmlBe2lYQogUzFVHUlsIUVWs1K47Q553v3dBuwOhxkai8vItuMy4kO-Xkvy_BreVtdy95TouSTwbv_zZ4Jv8EOQroTjCmmVIE-yzJiZzakk9tTYPctTVC1X-Qdr2aAh8_4fzLqNihD53vIaaffniAKNegfL9-CfwNdruuUQ |
CitedBy_id | crossref_primary_10_1249_JES_0000000000000312 crossref_primary_10_1186_s11658_023_00423_2 crossref_primary_10_1016_j_scispo_2019_12_005 crossref_primary_10_1113_JP278062 crossref_primary_10_1139_apnm_2019_0416 crossref_primary_10_3390_biomedicines10112884 crossref_primary_10_1093_function_zqab035 crossref_primary_10_1152_japplphysiol_00657_2023 crossref_primary_10_1016_j_tice_2019_01_005 crossref_primary_10_1161_ATVBAHA_118_312054 crossref_primary_10_5472_marumj_1479796 crossref_primary_10_1089_ars_2020_8040 crossref_primary_10_3390_brainsci11020164 crossref_primary_10_3389_fphar_2021_636134 crossref_primary_10_1007_s40279_018_0996_z crossref_primary_10_1007_s11357_022_00567_7 crossref_primary_10_3390_ijms20153775 crossref_primary_10_3389_fphys_2022_913645 crossref_primary_10_1016_j_numecd_2019_10_008 crossref_primary_10_1113_JP278794 crossref_primary_10_3389_fmed_2020_542567 crossref_primary_10_1007_s40292_022_00506_9 crossref_primary_10_1113_JP287187 crossref_primary_10_1097_WCO_0000000000001185 crossref_primary_10_1111_micc_12669 crossref_primary_10_1161_ATVBAHA_118_310367 crossref_primary_10_1016_j_atherosclerosis_2018_01_041 crossref_primary_10_2147_DMSO_S225160 crossref_primary_10_1007_s12265_021_10171_3 crossref_primary_10_3390_antiox10081247 crossref_primary_10_3390_antiox11030543 crossref_primary_10_1016_j_bmcl_2020_127277 crossref_primary_10_1161_ATVBAHA_117_309813 crossref_primary_10_1097_HJH_0000000000003503 crossref_primary_10_3389_fphys_2021_645109 crossref_primary_10_1152_ajpheart_00645_2021 crossref_primary_10_1093_cvr_cvx093 crossref_primary_10_1111_sms_13348 crossref_primary_10_14814_phy2_13825 crossref_primary_10_1152_ajpendo_00156_2018 crossref_primary_10_2147_JIR_S282710 crossref_primary_10_3390_ijms19082406 crossref_primary_10_1016_j_jshs_2019_04_002 crossref_primary_10_1186_s12014_024_09480_x crossref_primary_10_3389_fcvm_2024_1388528 crossref_primary_10_1016_j_pcad_2017_05_005 crossref_primary_10_1016_j_mvr_2019_103886 crossref_primary_10_1161_ATVBAHA_117_309945 crossref_primary_10_1210_clinem_dgz018 crossref_primary_10_1186_s13104_018_3758_y crossref_primary_10_1038_s41366_018_0309_5 crossref_primary_10_3390_biomedicines10010068 crossref_primary_10_3390_biom12060823 crossref_primary_10_1113_JP278934 |
Cites_doi | 10.33549/physiolres.932587 10.1016/j.freeradbiomed.2011.06.033 10.1097/00004872-199403000-00011 10.1136/bjsm.2006.029314 10.1007/s11906-010-0103-9 10.1161/CIRCRESAHA.110.237636 10.1161/ATVBAHA.114.304591 10.2337/db13-0719 10.2337/diabetes.50.1.159 10.1113/jphysiol.2013.254193 10.1056/NEJMoa055643 10.1161/HYPERTENSIONAHA.112.191874 10.1161/CIRCULATIONAHA.110.984047 10.1161/CIRCULATIONAHA.108.772822 10.1161/hc3101.091158 10.1161/01.cir.0000131515.03336.f8 10.1161/01.RES.0000163631.07205.fb 10.1152/jappl.1995.79.2.648 10.1161/CIRCIMAGING.110.961557 10.1161/CIRCRESAHA.107.162800 10.1016/j.yjmcc.2006.11.011 10.1113/jphysiol.2009.169771 10.1165/ajrcmb.11.1.8018341 10.1152/ajpregu.00049.2013 10.1016/j.redox.2013.07.006 10.1161/01.cir.0000012748.58444.08 10.1161/CIRCULATIONAHA.106.657486 10.1056/NEJM199910073411501 10.1161/01.ATV.0000233334.24805.62 10.1152/ajprenal.00058.2014 10.1113/jphysiol.2012.234856 10.1113/jphysiol.2013.268680 10.1152/ajpheart.00291.2013 10.1161/01.CIR.0000154560.88933.7E 10.1089/ars.2008.2220 10.1016/S0140-6736(14)60460-8 10.1161/HYPERTENSIONAHA.107.100214 10.1210/jc.2006-1103 10.1113/JP270211 10.3389/fphys.2014.00358 10.1515/CCLM.2008.166 10.1016/j.freeradbiomed.2007.02.029 10.1007/s11010-014-2236-7 10.1161/01.ATV.0000196651.64776.51 10.1001/archinte.163.16.1889 10.1152/japplphysiol.00354.2014 10.1161/01.ATV.0000158311.24443.af 10.1016/j.freeradbiomed.2010.03.010 10.1152/ajpheart.00247.2014 10.1152/japplphysiol.01448.2010 10.1152/ajpendo.00408.2002 10.1152/physiol.00019.2013 |
ContentType | Journal Article |
Copyright | 2016 American Heart Association, Inc. |
Copyright_xml | – notice: 2016 American Heart Association, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 5PM |
DOI | 10.1161/ATVBAHA.116.308339 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4636 |
EndPage | 2420 |
ExternalDocumentID | PMC5123754 27765769 10_1161_ATVBAHA_116_308339 10.1161/ATVBAHA.116.308339 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL122863 – fundername: NHLBI NIH HHS grantid: R15 HL113854 – fundername: NIDDK NIH HHS grantid: F32 DK100082 |
GroupedDBID | --- .3C .55 .GJ .Z2 01R 0R~ 1J1 23N 2WC 3O- 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAMTA AAQKA AARTV AASCR AASOK AAXQO ABASU ABBUW ABDIG ABJNI ABPXF ABQRW ABVCZ ABXVJ ABZAD ABZZY ACCJW ACDDN ACEWG ACGFS ACGOD ACILI ACLDA ACPRK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEETU AENEX AFBFQ AFDTB AFFNX AFUWQ AGINI AHJKT AHMBA AHOMT AHQNM AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC AYCSE BAWUL BOYCO BQLVK BS7 C1A C45 CS3 DIK DIWNM DUNZO E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FRP FW0 GNXGY GQDEL GX1 H0~ H13 HLJTE HZ~ IKREB IKYAY IN~ IPNFZ J5H JF9 JG8 JK3 JK8 K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B N~M O9- OAG OAH OB2 OCUKA ODA OL1 OLG OLH OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PQQKQ PZZ RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW V2I VVN W3M W8F WOQ WOW X3V X3W X7M XXN XYM YFH ZGI ZZMQN AAYXX ADGHP CITATION CGR CUY CVF ECM EIF NPM 5PM ADSXY |
ID | FETCH-LOGICAL-c4059-8beecd0af49b0e461fcf1e2f5579bada465ec0257fb600c64d80a2f76d38bfc43 |
ISSN | 1079-5642 |
IngestDate | Thu Aug 21 17:54:05 EDT 2025 Mon Jul 21 05:57:27 EDT 2025 Thu Apr 24 23:01:48 EDT 2025 Tue Jul 01 02:21:57 EDT 2025 Fri May 16 03:43:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | acetylcholine microdialysis superoxide obesity hydrogen peroxide |
Language | English |
License | 2016 American Heart Association, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4059-8beecd0af49b0e461fcf1e2f5579bada465ec0257fb600c64d80a2f76d38bfc43 |
PMID | 27765769 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5123754 pubmed_primary_27765769 crossref_primary_10_1161_ATVBAHA_116_308339 crossref_citationtrail_10_1161_ATVBAHA_116_308339 wolterskluwer_health_10_1161_ATVBAHA_116_308339 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-December |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-December |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Arteriosclerosis, thrombosis, and vascular biology |
PublicationTitleAlternate | Arterioscler Thromb Vasc Biol |
PublicationYear | 2016 |
Publisher | American Heart Association, Inc |
Publisher_xml | – name: American Heart Association, Inc |
References | e_1_3_4_3_2 e_1_3_4_9_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_32_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_28_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_18_2 e_1_3_4_39_2 15860762 - Circ Res. 2005 Apr 29;96(8):818-22 21444885 - Circulation. 2011 Apr 12;123(14 ):1545-51 18096818 - Circ Res. 2008 Feb 29;102(4):488-96 18601599 - Clin Chem Lab Med. 2008;46(6):785-90 8018341 - Am J Respir Cell Mol Biol. 1994 Jul;11(1):95-102 23997192 - Physiology (Bethesda). 2013 Sep;28(5):330-58 17602951 - Free Radic Biol Med. 2007 Aug 1;43(3):353-61 15198963 - Circulation. 2004 Jun 15;109 (23 Suppl 1):III27-32 17504785 - Br J Sports Med. 2008 Jan;42(1):11-5 25312902 - Mol Cell Biochem. 2015 Jan;399(1-2):95-103 8021483 - J Hypertens. 1994 Mar;12 (3):291-301 16926275 - N Engl J Med. 2006 Aug 24;355(8):763-78 24550188 - Diabetes. 2014 Jul;63(7):2344-55 24951753 - Am J Physiol Heart Circ Physiol. 2014 Aug 15;307(4):H524-32 11940543 - Circulation. 2002 Apr 9;105(14):1656-62 22689741 - Hypertension. 2012 Aug;60(2):288-95 26096818 - J Physiol. 2015 Sep 1;593(17):4011-27 16293794 - Arterioscler Thromb Vasc Biol. 2006 Feb;26(2):333-9 21551420 - Circ Cardiovasc Imaging. 2011 Jul;4(4):371-80 11489784 - Circulation. 2001 Aug 7;104(6):735-40 23761637 - Am J Physiol Regul Integr Comp Physiol. 2013 Aug 15;305(4):R423-34 15699275 - Circulation. 2005 Feb 8;111(5):555-62 25657309 - Arterioscler Thromb Vasc Biol. 2015 Apr;35(4):1022-9 7592230 - J Appl Physiol (1985). 1995 Aug;79(2):648-59 24947027 - J Appl Physiol (1985). 2014 Aug 15;117(4):345-52 12531739 - Am J Physiol Endocrinol Metab. 2003 Feb;284(2):E241-58 21777669 - Free Radic Biol Med. 2011 Oct 1;51(7):1289-301 17242275 - Circulation. 2007 Feb 6;115(5):627-37 12963561 - Arch Intern Med. 2003 Sep 8;163(16):1889-95 24564604 - Physiol Res. 2014;63(3):387-92 18086956 - Hypertension. 2008 Feb;51(2):211-7 21436462 - J Appl Physiol (1985). 2011 Jul;111(1):20-6 17217956 - J Mol Cell Cardiol. 2007 Feb;42(2):326-32 19417091 - J Physiol. 2009 Jul 1;587(Pt 13):3271-85 24251116 - Redox Biol. 2013 Oct 08;1:483-91 24665093 - J Physiol. 2014 Jun 15;592(12):2549-61 17003093 - J Clin Endocrinol Metab. 2006 Dec;91(12):5100-6 18783313 - Antioxid Redox Signal. 2009 Apr;11(4):791-810 11147782 - Diabetes. 2001 Jan;50(1):159-65 20424954 - Curr Hypertens Rep. 2010 Jun;12(3):154-61 15692095 - Arterioscler Thromb Vasc Biol. 2005 Apr;25(4):809-14 22674721 - J Physiol. 2012 Sep 1;590(17):4255-68 23613536 - J Physiol. 2013 Jul 15;591(14):3471-86 18606913 - Circulation. 2008 Jul 22;118(4):346-54 16794224 - Arterioscler Thromb Vasc Biol. 2006 Sep;26(9):2035-42 24880830 - Lancet. 2014 Aug 30;384(9945):766-81 23934859 - Am J Physiol Heart Circ Physiol. 2013 Oct 15;305(8):H1230-7 25278906 - Front Physiol. 2014 Sep 18;5:358 21233456 - Circ Res. 2011 Mar 4;108(5):566-73 10511607 - N Engl J Med. 1999 Oct 7;341(15):1097-105 24761000 - Am J Physiol Renal Physiol. 2014 Jun 15;306(12):F1499-506 20304045 - Free Radic Biol Med. 2010 Jun 15;48(12):1636-43 |
References_xml | – ident: e_1_3_4_12_2 doi: 10.33549/physiolres.932587 – ident: e_1_3_4_43_2 doi: 10.1016/j.freeradbiomed.2011.06.033 – ident: e_1_3_4_51_2 doi: 10.1097/00004872-199403000-00011 – ident: e_1_3_4_53_2 doi: 10.1136/bjsm.2006.029314 – ident: e_1_3_4_10_2 doi: 10.1007/s11906-010-0103-9 – ident: e_1_3_4_34_2 doi: 10.1161/CIRCRESAHA.110.237636 – ident: e_1_3_4_24_2 doi: 10.1161/ATVBAHA.114.304591 – ident: e_1_3_4_44_2 doi: 10.2337/db13-0719 – ident: e_1_3_4_7_2 doi: 10.2337/diabetes.50.1.159 – ident: e_1_3_4_40_2 doi: 10.1113/jphysiol.2013.254193 – ident: e_1_3_4_3_2 doi: 10.1056/NEJMoa055643 – ident: e_1_3_4_27_2 doi: 10.1161/HYPERTENSIONAHA.112.191874 – ident: e_1_3_4_25_2 doi: 10.1161/CIRCULATIONAHA.110.984047 – ident: e_1_3_4_16_2 doi: 10.1161/CIRCULATIONAHA.108.772822 – ident: e_1_3_4_8_2 doi: 10.1161/hc3101.091158 – ident: e_1_3_4_5_2 doi: 10.1161/01.cir.0000131515.03336.f8 – ident: e_1_3_4_21_2 doi: 10.1161/01.RES.0000163631.07205.fb – ident: e_1_3_4_20_2 doi: 10.1152/jappl.1995.79.2.648 – ident: e_1_3_4_26_2 doi: 10.1161/CIRCIMAGING.110.961557 – ident: e_1_3_4_41_2 doi: 10.1161/CIRCRESAHA.107.162800 – ident: e_1_3_4_45_2 doi: 10.1016/j.yjmcc.2006.11.011 – ident: e_1_3_4_36_2 doi: 10.1113/jphysiol.2009.169771 – ident: e_1_3_4_48_2 doi: 10.1165/ajrcmb.11.1.8018341 – ident: e_1_3_4_37_2 doi: 10.1152/ajpregu.00049.2013 – ident: e_1_3_4_13_2 doi: 10.1016/j.redox.2013.07.006 – ident: e_1_3_4_30_2 doi: 10.1161/01.cir.0000012748.58444.08 – ident: e_1_3_4_29_2 doi: 10.1161/CIRCULATIONAHA.106.657486 – ident: e_1_3_4_4_2 doi: 10.1056/NEJM199910073411501 – ident: e_1_3_4_22_2 doi: 10.1161/01.ATV.0000233334.24805.62 – ident: e_1_3_4_33_2 doi: 10.1152/ajprenal.00058.2014 – ident: e_1_3_4_38_2 doi: 10.1113/jphysiol.2012.234856 – ident: e_1_3_4_42_2 doi: 10.1113/jphysiol.2013.268680 – ident: e_1_3_4_28_2 doi: 10.1152/ajpheart.00291.2013 – ident: e_1_3_4_17_2 doi: 10.1161/01.CIR.0000154560.88933.7E – ident: e_1_3_4_11_2 doi: 10.1089/ars.2008.2220 – ident: e_1_3_4_2_2 doi: 10.1016/S0140-6736(14)60460-8 – ident: e_1_3_4_49_2 doi: 10.1161/HYPERTENSIONAHA.107.100214 – ident: e_1_3_4_6_2 doi: 10.1210/jc.2006-1103 – ident: e_1_3_4_14_2 doi: 10.1113/JP270211 – ident: e_1_3_4_39_2 doi: 10.3389/fphys.2014.00358 – ident: e_1_3_4_46_2 doi: 10.1515/CCLM.2008.166 – ident: e_1_3_4_23_2 doi: 10.1016/j.freeradbiomed.2007.02.029 – ident: e_1_3_4_47_2 doi: 10.1007/s11010-014-2236-7 – ident: e_1_3_4_31_2 doi: 10.1161/01.ATV.0000196651.64776.51 – ident: e_1_3_4_52_2 doi: 10.1001/archinte.163.16.1889 – ident: e_1_3_4_35_2 doi: 10.1152/japplphysiol.00354.2014 – ident: e_1_3_4_18_2 doi: 10.1161/01.ATV.0000158311.24443.af – ident: e_1_3_4_50_2 doi: 10.1016/j.freeradbiomed.2010.03.010 – ident: e_1_3_4_19_2 doi: 10.1152/ajpheart.00247.2014 – ident: e_1_3_4_32_2 doi: 10.1152/japplphysiol.01448.2010 – ident: e_1_3_4_9_2 doi: 10.1152/ajpendo.00408.2002 – ident: e_1_3_4_15_2 doi: 10.1152/physiol.00019.2013 – reference: 17504785 - Br J Sports Med. 2008 Jan;42(1):11-5 – reference: 25278906 - Front Physiol. 2014 Sep 18;5:358 – reference: 19417091 - J Physiol. 2009 Jul 1;587(Pt 13):3271-85 – reference: 18086956 - Hypertension. 2008 Feb;51(2):211-7 – reference: 23934859 - Am J Physiol Heart Circ Physiol. 2013 Oct 15;305(8):H1230-7 – reference: 18783313 - Antioxid Redox Signal. 2009 Apr;11(4):791-810 – reference: 23761637 - Am J Physiol Regul Integr Comp Physiol. 2013 Aug 15;305(4):R423-34 – reference: 12963561 - Arch Intern Med. 2003 Sep 8;163(16):1889-95 – reference: 12531739 - Am J Physiol Endocrinol Metab. 2003 Feb;284(2):E241-58 – reference: 18601599 - Clin Chem Lab Med. 2008;46(6):785-90 – reference: 8018341 - Am J Respir Cell Mol Biol. 1994 Jul;11(1):95-102 – reference: 23997192 - Physiology (Bethesda). 2013 Sep;28(5):330-58 – reference: 24951753 - Am J Physiol Heart Circ Physiol. 2014 Aug 15;307(4):H524-32 – reference: 24761000 - Am J Physiol Renal Physiol. 2014 Jun 15;306(12):F1499-506 – reference: 10511607 - N Engl J Med. 1999 Oct 7;341(15):1097-105 – reference: 18606913 - Circulation. 2008 Jul 22;118(4):346-54 – reference: 15860762 - Circ Res. 2005 Apr 29;96(8):818-22 – reference: 15699275 - Circulation. 2005 Feb 8;111(5):555-62 – reference: 24665093 - J Physiol. 2014 Jun 15;592(12):2549-61 – reference: 11940543 - Circulation. 2002 Apr 9;105(14):1656-62 – reference: 7592230 - J Appl Physiol (1985). 1995 Aug;79(2):648-59 – reference: 24251116 - Redox Biol. 2013 Oct 08;1:483-91 – reference: 21551420 - Circ Cardiovasc Imaging. 2011 Jul;4(4):371-80 – reference: 26096818 - J Physiol. 2015 Sep 1;593(17):4011-27 – reference: 16794224 - Arterioscler Thromb Vasc Biol. 2006 Sep;26(9):2035-42 – reference: 24947027 - J Appl Physiol (1985). 2014 Aug 15;117(4):345-52 – reference: 21777669 - Free Radic Biol Med. 2011 Oct 1;51(7):1289-301 – reference: 18096818 - Circ Res. 2008 Feb 29;102(4):488-96 – reference: 23613536 - J Physiol. 2013 Jul 15;591(14):3471-86 – reference: 17003093 - J Clin Endocrinol Metab. 2006 Dec;91(12):5100-6 – reference: 22689741 - Hypertension. 2012 Aug;60(2):288-95 – reference: 17242275 - Circulation. 2007 Feb 6;115(5):627-37 – reference: 17217956 - J Mol Cell Cardiol. 2007 Feb;42(2):326-32 – reference: 15692095 - Arterioscler Thromb Vasc Biol. 2005 Apr;25(4):809-14 – reference: 21444885 - Circulation. 2011 Apr 12;123(14 ):1545-51 – reference: 21436462 - J Appl Physiol (1985). 2011 Jul;111(1):20-6 – reference: 16293794 - Arterioscler Thromb Vasc Biol. 2006 Feb;26(2):333-9 – reference: 22674721 - J Physiol. 2012 Sep 1;590(17):4255-68 – reference: 11147782 - Diabetes. 2001 Jan;50(1):159-65 – reference: 11489784 - Circulation. 2001 Aug 7;104(6):735-40 – reference: 15198963 - Circulation. 2004 Jun 15;109 (23 Suppl 1):III27-32 – reference: 24564604 - Physiol Res. 2014;63(3):387-92 – reference: 8021483 - J Hypertens. 1994 Mar;12 (3):291-301 – reference: 21233456 - Circ Res. 2011 Mar 4;108(5):566-73 – reference: 16926275 - N Engl J Med. 2006 Aug 24;355(8):763-78 – reference: 25312902 - Mol Cell Biochem. 2015 Jan;399(1-2):95-103 – reference: 24880830 - Lancet. 2014 Aug 30;384(9945):766-81 – reference: 17602951 - Free Radic Biol Med. 2007 Aug 1;43(3):353-61 – reference: 24550188 - Diabetes. 2014 Jul;63(7):2344-55 – reference: 20304045 - Free Radic Biol Med. 2010 Jun 15;48(12):1636-43 – reference: 25657309 - Arterioscler Thromb Vasc Biol. 2015 Apr;35(4):1022-9 – reference: 20424954 - Curr Hypertens Rep. 2010 Jun;12(3):154-61 |
SSID | ssj0004220 |
Score | 2.4550242 |
Snippet | OBJECTIVE—The objectives of this study were to determine the impact of in vivo reactive oxygen species (ROS) on microvascular endothelial function in obese... The objectives of this study were to determine the impact of in vivo reactive oxygen species (ROS) on microvascular endothelial function in obese human... |
SourceID | pubmedcentral pubmed crossref wolterskluwer |
SourceType | Open Access Repository Index Database Enrichment Source Publisher |
StartPage | 2412 |
SubjectTerms | Adolescent Adult Body Mass Index Endothelium, Vascular - drug effects Endothelium, Vascular - enzymology Endothelium, Vascular - physiopathology Enzyme Inhibitors - administration & dosage Exercise Female Humans Hydrogen Peroxide - metabolism Male Microdialysis Microvessels - drug effects Microvessels - enzymology Microvessels - physiopathology NADPH Oxidases - antagonists & inhibitors NADPH Oxidases - metabolism Obesity - diagnosis Obesity - enzymology Obesity - physiopathology Oxidative Stress - drug effects Phosphoproteins - metabolism Quadriceps Muscle - blood supply Quadriceps Muscle - drug effects Quadriceps Muscle - enzymology Regional Blood Flow Sedentary Lifestyle Superoxides - metabolism Time Factors Vasodilation - drug effects Vasodilator Agents - administration & dosage Young Adult |
Title | Microvascular Endothelial Dysfunction in Sedentary, Obese Humans Is Mediated by NADPH Oxidase: Influence of Exercise Training |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27765769 https://pubmed.ncbi.nlm.nih.gov/PMC5123754 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBASQnyO8iU_8FayJY7jNLwFutGCOkB0aDxVtmOLii6dSAsMiX-JvxGf7aQpgwl4ieLEcazer7nz-Xd3CD3iCY1THhcBI4oFVPMi4ITrgLA-qCel-yEEJ48P2PCQvjhKjjqdHy3W0mopduS338aV_I9UzTUjV4iS_QfJNoOaC-bcyNccjYTN8a9kPAY2XcMl3SsLCKeagw98cFqBxqqZjG8VxONyt2UOtQCU895XvVFl92r40lmiB_ng9bD36uus4C5qfVQXMbEURF-fCVKi28ISbdM2B3LobFGZORrN61IXQBGGY1G3wEffzNZnf2oIQby3zz8734GtMFauuciDlXADPOfCrOzna3fte-e-Ha6gNtlav_iaf253w4_jPRsRa7FElP8aExpARrP259q3PCxJ--NLXfOsVmCgFfLJu6f5MIfmTmwsT5dEqQWTk2OLE5KmzKzCsrWGbHiL9a0L6KI5tQb5yzet7PSEhHVgFot2z74QUk_7ITbsoMb4-ZWYe-XLAkgT1UcbM9GyfCbX0FW_ZMG5w9911FHlDXRp7EkZN9H3DRjiFgxxC4Z4VuIGho-xBSF2IMSjCtcgxOIUWxBiD8InuIEgXmhcQxDXELyFDvf3Js-Gga_qEUizOMiCvlBKFiHXNBOhoizSUkeK6CRJM8ELTlmipLHEUy2MMS4ZLfohJzplRdwXWtL4NtoqF6W6g3Aos4zw2DwYJ1RnUrBYJsaC1iIUmmraRVH9G0-lT3kPlVfmU7v0ZdHUiwgaUyeiLuo1z5y4hC_n9t52Emv61vLtonRDlk0HyOe-eaecfbB53Y3tDQWpu2h3Q-pTFxF9zizu_nEW99Dl9T_rPtpaflqpB8aKXoqHFro_ATOyyNA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microvascular+Endothelial+Dysfunction+in+Sedentary%2C+Obese+Humans+Is+Mediated+by+NADPH+Oxidase%3A+Influence+of+Exercise+Training&rft.jtitle=Arteriosclerosis%2C+thrombosis%2C+and+vascular+biology&rft.au=La+Favor%2C+Justin+D&rft.au=Dubis%2C+Gabriel+S&rft.au=Yan%2C+Huimin&rft.au=White%2C+Joseph+D&rft.date=2016-12-01&rft.eissn=1524-4636&rft.volume=36&rft.issue=12&rft.spage=2412&rft_id=info:doi/10.1161%2FATVBAHA.116.308339&rft_id=info%3Apmid%2F27765769&rft.externalDocID=27765769 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1079-5642&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1079-5642&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1079-5642&client=summon |