Electrospinning of nanofibers: Potentials and perspectives for active food packaging
Electrospun nanofibers with structural and functional advantages have drawn much attention due to their potential applications for active food packaging. The traditional role of food packaging is just storage containers for food products. The changes of retailing practice and consumer demand promote...
Saved in:
Published in | Comprehensive reviews in food science and food safety Vol. 19; no. 2; pp. 479 - 502 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrospun nanofibers with structural and functional advantages have drawn much attention due to their potential applications for active food packaging. The traditional role of food packaging is just storage containers for food products. The changes of retailing practice and consumer demand promote the development of active packaging to improve the safety, quality, and shelf life of the packaged foods. To develop the technique of electrospinning for active food packaging, electrospun nanofibers have been covalently or non‐covalently functionalized for loading diverse bioactive compounds including antimicrobial agents, antioxidant agents, oxygen scavengers, carbon dioxide emitters, and ethylene scavengers. The aim of this review is to present a concise but comprehensive summary on the progress of electrospinning techniques for active food packaging. Emphasis is placed on the tunability of the electrospinning technique, which achieves the modification of fiber composition, orientation, and architecture. Efforts are also made to provide functionalized strategies of electrospun polymeric nanofibers for food packaging application. Furthermore, the existing limitations and prospects for developing electrospinning in food packaging area are discussed. |
---|---|
AbstractList | Electrospun nanofibers with structural and functional advantages have drawn much attention due to their potential applications for active food packaging. The traditional role of food packaging is just storage containers for food products. The changes of retailing practice and consumer demand promote the development of active packaging to improve the safety, quality, and shelf life of the packaged foods. To develop the technique of electrospinning for active food packaging, electrospun nanofibers have been covalently or non‐covalently functionalized for loading diverse bioactive compounds including antimicrobial agents, antioxidant agents, oxygen scavengers, carbon dioxide emitters, and ethylene scavengers. The aim of this review is to present a concise but comprehensive summary on the progress of electrospinning techniques for active food packaging. Emphasis is placed on the tunability of the electrospinning technique, which achieves the modification of fiber composition, orientation, and architecture. Efforts are also made to provide functionalized strategies of electrospun polymeric nanofibers for food packaging application. Furthermore, the existing limitations and prospects for developing electrospinning in food packaging area are discussed. Electrospun nanofibers with structural and functional advantages have drawn much attention due to their potential applications for active food packaging. The traditional role of food packaging is just storage containers for food products. The changes of retailing practice and consumer demand promote the development of active packaging to improve the safety, quality, and shelf life of the packaged foods. To develop the technique of electrospinning for active food packaging, electrospun nanofibers have been covalently or non-covalently functionalized for loading diverse bioactive compounds including antimicrobial agents, antioxidant agents, oxygen scavengers, carbon dioxide emitters, and ethylene scavengers. The aim of this review is to present a concise but comprehensive summary on the progress of electrospinning techniques for active food packaging. Emphasis is placed on the tunability of the electrospinning technique, which achieves the modification of fiber composition, orientation, and architecture. Efforts are also made to provide functionalized strategies of electrospun polymeric nanofibers for food packaging application. Furthermore, the existing limitations and prospects for developing electrospinning in food packaging area are discussed.Electrospun nanofibers with structural and functional advantages have drawn much attention due to their potential applications for active food packaging. The traditional role of food packaging is just storage containers for food products. The changes of retailing practice and consumer demand promote the development of active packaging to improve the safety, quality, and shelf life of the packaged foods. To develop the technique of electrospinning for active food packaging, electrospun nanofibers have been covalently or non-covalently functionalized for loading diverse bioactive compounds including antimicrobial agents, antioxidant agents, oxygen scavengers, carbon dioxide emitters, and ethylene scavengers. The aim of this review is to present a concise but comprehensive summary on the progress of electrospinning techniques for active food packaging. Emphasis is placed on the tunability of the electrospinning technique, which achieves the modification of fiber composition, orientation, and architecture. Efforts are also made to provide functionalized strategies of electrospun polymeric nanofibers for food packaging application. Furthermore, the existing limitations and prospects for developing electrospinning in food packaging area are discussed. |
Author | Zhang, Cen Wang, Peng Zhang, Hui Li, Yang |
Author_xml | – sequence: 1 givenname: Cen surname: Zhang fullname: Zhang, Cen organization: Zhejiang University – sequence: 2 givenname: Yang surname: Li fullname: Li, Yang organization: Zhejiang University – sequence: 3 givenname: Peng surname: Wang fullname: Wang, Peng organization: Zhejiang University – sequence: 4 givenname: Hui orcidid: 0000-0003-2613-2960 surname: Zhang fullname: Zhang, Hui email: hubert0513@zju.edu.cn organization: Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33325166$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtLAzEQgIMoatWzN1nw4qV2s3ls1puUVgVBkXoO2eysRLfJmmyV_nvTh0V6UHPJMPm-CTPTQ7vWWUDoFKeXOJ4BZhT3KSH5Jc4Y4TvocJPZ_REfoF4Ir2lKc5aLfXRACMkY5vwQTUYN6M670BprjX1JXJ1YZV1tSvDhKnl0HdjOqCYkylZJG5NtFMwHhKR2PlHLOIYuPir9pl5ikWO0V0cDTtb3EXoejybD2_79w83d8Pq-r2nKeL8ooKQpKSqeVVCCVoIIWggOuEhLBkrXhNWlqDWuaBQqwWhFYgta8FLQCpMjdLGq23r3PoPQyakJGppGWXCzIDOapzyjGf4PGqfDBMsX6PkW-upm3sZGZEZ4gQshSB6pszU1K6dQydabqfJz-T3aCAxWgI7TDR7qDYJTuVieXKxHLtYjl8uLBtsytOlUZ5ztvDLNLx5feZ-mgflf38jh05isxC-lOqp_ |
CitedBy_id | crossref_primary_10_3390_foods10102339 crossref_primary_10_3390_foods12142778 crossref_primary_10_3390_ma17215379 crossref_primary_10_1016_j_scitotenv_2024_172533 crossref_primary_10_1364_OE_523513 crossref_primary_10_1021_acsabm_4c01761 crossref_primary_10_1016_j_foodhyd_2020_106116 crossref_primary_10_1016_j_snb_2022_132450 crossref_primary_10_1016_j_foodhyd_2021_106992 crossref_primary_10_1016_j_foodchem_2024_138506 crossref_primary_10_1016_j_fpsl_2022_100970 crossref_primary_10_1007_s44174_023_00121_9 crossref_primary_10_3389_fmats_2022_919935 crossref_primary_10_1016_j_fbio_2024_104023 crossref_primary_10_3390_polym14224947 crossref_primary_10_1002_bkcs_12575 crossref_primary_10_1016_j_fbio_2021_101270 crossref_primary_10_1038_s41598_020_78706_3 crossref_primary_10_1080_10408398_2022_2113031 crossref_primary_10_1016_j_carbpol_2023_121636 crossref_primary_10_1016_j_fbp_2024_11_029 crossref_primary_10_1016_j_ijbiomac_2021_05_169 crossref_primary_10_3390_antiox10030426 crossref_primary_10_1016_j_inoche_2024_112337 crossref_primary_10_1016_j_tifs_2021_03_014 crossref_primary_10_1080_00405000_2023_2202113 crossref_primary_10_1016_j_ijbiomac_2024_134658 crossref_primary_10_1016_j_ijbiomac_2020_10_116 crossref_primary_10_1002_adem_202201183 crossref_primary_10_3390_polym13060941 crossref_primary_10_1016_j_fhfh_2025_100202 crossref_primary_10_1515_epoly_2020_0068 crossref_primary_10_1016_j_carbpol_2022_119959 crossref_primary_10_1016_j_cej_2024_152993 crossref_primary_10_1016_j_ijpharm_2022_121881 crossref_primary_10_1016_j_foodchem_2020_127850 crossref_primary_10_1016_j_fpsl_2024_101249 crossref_primary_10_1016_j_cej_2023_146462 crossref_primary_10_1016_j_plaphy_2024_108369 crossref_primary_10_1016_j_seppur_2024_126515 crossref_primary_10_1080_10408398_2022_2107612 crossref_primary_10_3390_polym13040662 crossref_primary_10_1016_j_ijbiomac_2022_08_070 crossref_primary_10_1016_j_fpsl_2023_101087 crossref_primary_10_1016_j_ijbiomac_2024_133438 crossref_primary_10_3390_polym15051181 crossref_primary_10_1016_j_ijbiomac_2024_138330 crossref_primary_10_1111_jfpp_16570 crossref_primary_10_1016_j_fpsl_2020_100508 crossref_primary_10_1016_j_ijbiomac_2025_140127 crossref_primary_10_1111_jfbc_14513 crossref_primary_10_3390_catal11101222 crossref_primary_10_3390_ma15051934 crossref_primary_10_1002_marc_202401152 crossref_primary_10_3390_pr9122244 crossref_primary_10_1016_j_jcis_2023_07_181 crossref_primary_10_1016_j_foodhyd_2020_106468 crossref_primary_10_1016_j_foodchem_2022_134954 crossref_primary_10_1016_j_foodcont_2023_109777 crossref_primary_10_1016_j_foodcont_2023_110089 crossref_primary_10_1016_j_ijbiomac_2024_130033 crossref_primary_10_1016_j_tifs_2022_05_009 crossref_primary_10_1016_j_cej_2022_136746 crossref_primary_10_1002_app_56787 crossref_primary_10_1016_j_afres_2024_100417 crossref_primary_10_1080_10408398_2020_1848790 crossref_primary_10_3390_ma16165720 crossref_primary_10_3390_md21040241 crossref_primary_10_1002_ceat_202100044 crossref_primary_10_1016_j_reactfunctpolym_2023_105568 crossref_primary_10_1007_s11947_022_02896_z crossref_primary_10_1111_jfpp_15814 crossref_primary_10_1016_j_ijbiomac_2022_04_155 crossref_primary_10_1016_j_foodhyd_2020_105980 crossref_primary_10_1016_j_fbio_2023_103372 crossref_primary_10_1016_j_jfoodeng_2022_111352 crossref_primary_10_32604_jrm_2021_015624 crossref_primary_10_3389_fnut_2023_1223638 crossref_primary_10_1016_j_foodhyd_2023_109031 crossref_primary_10_3390_coatings13020333 crossref_primary_10_1007_s11483_024_09832_y crossref_primary_10_3390_molecules29225452 crossref_primary_10_1007_s42823_021_00264_z crossref_primary_10_1016_j_ijbiomac_2021_08_209 crossref_primary_10_1016_j_ijbiomac_2025_141432 crossref_primary_10_1021_acs_jafc_1c00230 crossref_primary_10_1134_S2075113324700618 crossref_primary_10_1557_s43577_022_00461_9 crossref_primary_10_1016_j_tifs_2020_12_020 crossref_primary_10_1016_j_jconrel_2021_03_033 crossref_primary_10_3390_foods11131860 crossref_primary_10_1016_j_ijbiomac_2023_125245 crossref_primary_10_1016_j_fpsl_2023_101234 crossref_primary_10_3390_foods12030451 crossref_primary_10_3390_polym16213061 crossref_primary_10_1155_2022_2745416 crossref_primary_10_1016_j_ifset_2021_102804 crossref_primary_10_1016_j_ijbiomac_2023_125922 crossref_primary_10_3390_molecules28083592 crossref_primary_10_1002_smll_202400399 crossref_primary_10_1021_acs_jafc_2c02611 crossref_primary_10_1007_s11947_024_03517_7 crossref_primary_10_1039_D4MA00219A crossref_primary_10_1016_j_lwt_2020_109493 crossref_primary_10_1038_s41428_025_01024_w crossref_primary_10_1002_EXP_20210029 crossref_primary_10_1002_pts_2809 crossref_primary_10_1016_j_molliq_2021_116745 crossref_primary_10_3390_foods13010132 crossref_primary_10_1080_25740881_2023_2234459 crossref_primary_10_1016_j_eti_2023_103098 crossref_primary_10_1080_10408398_2022_2122924 crossref_primary_10_1080_10408398_2021_1886038 crossref_primary_10_1080_10942912_2022_2066121 crossref_primary_10_1016_j_ijbiomac_2023_123433 crossref_primary_10_1080_10408398_2023_2252904 crossref_primary_10_3390_nano11051331 crossref_primary_10_1016_j_matdes_2023_111663 crossref_primary_10_1016_j_foodhyd_2023_108638 crossref_primary_10_3390_encyclopedia1020030 crossref_primary_10_1007_s11694_023_01890_z crossref_primary_10_1016_j_jconrel_2022_11_048 crossref_primary_10_2174_2211550109999200422121834 crossref_primary_10_3389_fbioe_2022_847800 crossref_primary_10_2174_1389201024666230407094527 crossref_primary_10_1002_nano_202000284 crossref_primary_10_1515_ijfe_2024_0053 crossref_primary_10_3390_coatings13101686 crossref_primary_10_1007_s11947_022_02860_x crossref_primary_10_1016_j_lwt_2020_110812 crossref_primary_10_1007_s10570_021_04412_6 crossref_primary_10_1039_D1RA02575A crossref_primary_10_1016_j_carbpol_2021_118914 crossref_primary_10_1002_jsfa_11220 crossref_primary_10_3390_nano10122356 crossref_primary_10_1002_app_50118 crossref_primary_10_3390_foods13050700 crossref_primary_10_1016_j_foodchem_2022_134994 crossref_primary_10_1002_app_56342 crossref_primary_10_3390_biom12081110 crossref_primary_10_1016_j_cis_2022_102827 crossref_primary_10_3390_biom11050635 crossref_primary_10_3390_antiox13060707 crossref_primary_10_1016_j_jfoodeng_2025_112574 crossref_primary_10_1016_j_foodhyd_2024_110474 crossref_primary_10_1021_acs_jafc_1c05352 crossref_primary_10_1016_j_fbio_2022_101578 crossref_primary_10_1111_1750_3841_16206 crossref_primary_10_1007_s12393_021_09304_w crossref_primary_10_1016_j_colsurfb_2020_111554 crossref_primary_10_1016_j_fpsl_2022_100854 crossref_primary_10_1111_jfpp_16709 crossref_primary_10_1166_jbn_2023_3618 crossref_primary_10_1080_17458080_2021_2016712 crossref_primary_10_1016_j_foodchem_2022_132369 crossref_primary_10_3390_polym14214741 crossref_primary_10_3390_coatings15010079 crossref_primary_10_1002_pen_26195 crossref_primary_10_3390_antiox13121555 crossref_primary_10_1016_j_carbpol_2021_118616 crossref_primary_10_1016_j_carpta_2020_100024 crossref_primary_10_3390_foods13162630 crossref_primary_10_1016_j_ijbiomac_2022_09_187 crossref_primary_10_1016_j_carbpol_2020_116711 crossref_primary_10_1016_j_talanta_2021_122270 crossref_primary_10_1016_j_lwt_2022_114005 crossref_primary_10_1016_j_fbio_2023_102633 crossref_primary_10_1016_j_fpsl_2023_101154 crossref_primary_10_1134_S2075113323050465 crossref_primary_10_1016_j_eurpolymj_2023_111888 crossref_primary_10_3389_fbioe_2022_897010 crossref_primary_10_1016_j_ijbiomac_2024_133287 crossref_primary_10_1002_wnan_1829 crossref_primary_10_3390_nano12071077 crossref_primary_10_1080_00405000_2023_2268828 crossref_primary_10_1016_j_fbio_2025_106348 crossref_primary_10_1002_star_202300077 crossref_primary_10_1002_fsn3_3816 crossref_primary_10_1016_j_nanoen_2024_110212 crossref_primary_10_1016_j_memsci_2021_119935 crossref_primary_10_1016_j_carbpol_2025_123430 crossref_primary_10_1080_10408398_2021_1899128 crossref_primary_10_1016_j_carbpol_2021_118042 crossref_primary_10_1016_j_foodchem_2022_133239 crossref_primary_10_1016_j_scitotenv_2022_160720 crossref_primary_10_1016_j_fbp_2020_04_006 crossref_primary_10_1016_j_foodhyd_2023_109092 crossref_primary_10_1016_j_fbp_2025_02_002 crossref_primary_10_1016_j_foodhyd_2023_108683 crossref_primary_10_3390_polym13213771 crossref_primary_10_1016_j_foodhyd_2023_108682 crossref_primary_10_1021_acsfoodscitech_3c00012 crossref_primary_10_3390_nano13050823 crossref_primary_10_1016_j_ijbiomac_2024_129329 crossref_primary_10_1016_j_fpsl_2024_101310 crossref_primary_10_1016_j_jddst_2024_106323 crossref_primary_10_1016_j_carbpol_2024_122612 crossref_primary_10_1111_1541_4337_12827 crossref_primary_10_1016_j_ijbiomac_2020_12_205 crossref_primary_10_1007_s11947_024_03637_0 crossref_primary_10_1007_s12393_024_09384_4 crossref_primary_10_1080_09205063_2020_1851559 crossref_primary_10_1111_1541_4337_12941 crossref_primary_10_1016_j_lwt_2023_115176 crossref_primary_10_1080_15583724_2023_2234464 crossref_primary_10_1080_00914037_2021_1985493 crossref_primary_10_1016_j_cis_2020_102279 crossref_primary_10_1016_j_ijbiomac_2022_05_175 crossref_primary_10_1016_j_foodchem_2024_140629 crossref_primary_10_1016_j_fshw_2022_07_064 crossref_primary_10_1016_j_ijbiomac_2022_06_047 crossref_primary_10_1016_j_foodchem_2025_143739 crossref_primary_10_3390_technologies11050150 crossref_primary_10_1016_j_jconrel_2020_07_038 crossref_primary_10_1002_adem_202100153 crossref_primary_10_1016_j_foodres_2023_112970 crossref_primary_10_1016_j_foodres_2023_112851 crossref_primary_10_1021_acsomega_3c00798 crossref_primary_10_1149_2754_2734_ad86cc crossref_primary_10_1016_j_foodhyd_2024_109795 crossref_primary_10_1177_00405175241247340 crossref_primary_10_1002_app_55864 crossref_primary_10_1007_s13197_024_05980_8 crossref_primary_10_3390_foods12173194 crossref_primary_10_1002_app_53208 crossref_primary_10_1016_j_lwt_2023_115086 crossref_primary_10_1016_j_fpsl_2024_101332 crossref_primary_10_1021_acssuschemeng_3c00957 crossref_primary_10_1016_j_ijbiomac_2024_132834 crossref_primary_10_1016_j_matpr_2020_10_175 crossref_primary_10_1007_s10924_024_03209_5 crossref_primary_10_1007_s11705_022_2245_0 crossref_primary_10_1016_j_mser_2022_100702 crossref_primary_10_3390_foods11223727 crossref_primary_10_1016_j_pharma_2023_08_008 crossref_primary_10_1016_j_lwt_2020_109536 crossref_primary_10_1007_s11947_023_03251_6 crossref_primary_10_1002_app_55995 crossref_primary_10_3390_ma16175937 crossref_primary_10_1039_D4FB00147H crossref_primary_10_1016_j_foodhyd_2021_106854 crossref_primary_10_1016_j_ijbiomac_2024_129416 crossref_primary_10_1016_j_fbio_2024_104009 crossref_primary_10_1016_j_foodhyd_2022_107546 crossref_primary_10_1016_j_matt_2020_12_022 crossref_primary_10_1080_87559129_2022_2146135 crossref_primary_10_1016_j_biteb_2022_101088 crossref_primary_10_1016_j_ijbiomac_2022_12_056 crossref_primary_10_1016_j_jretconser_2024_103878 crossref_primary_10_1021_acsomega_2c05105 crossref_primary_10_22184_1993_8578_2022_15_2_118_127 crossref_primary_10_1016_j_ijbiomac_2020_06_023 crossref_primary_10_1016_j_foodchem_2023_137236 crossref_primary_10_1016_j_fpsl_2022_100904 crossref_primary_10_1111_ijfs_15130 crossref_primary_10_1007_s40242_021_0014_0 crossref_primary_10_3389_fnut_2022_924304 crossref_primary_10_3390_antiox11040742 crossref_primary_10_1021_acsfoodscitech_2c00080 crossref_primary_10_3390_polym12112558 crossref_primary_10_1080_10408398_2023_2214819 crossref_primary_10_1016_j_mtchem_2021_100543 crossref_primary_10_1111_ijfs_14843 crossref_primary_10_1016_j_tifs_2021_11_005 crossref_primary_10_1016_j_lwt_2022_114374 crossref_primary_10_70395_cunas_1566145 crossref_primary_10_1016_j_carbpol_2020_116705 crossref_primary_10_1016_j_ijbiomac_2023_125424 crossref_primary_10_1021_acs_jafc_4c11712 crossref_primary_10_1002_fsn3_1781 crossref_primary_10_1016_j_colsurfa_2021_126659 crossref_primary_10_1021_acsanm_3c04632 crossref_primary_10_1080_10408398_2022_2147900 crossref_primary_10_1007_s11356_024_32806_z crossref_primary_10_3390_foods10081728 crossref_primary_10_3390_mi14030529 crossref_primary_10_3390_macromol3010001 crossref_primary_10_1016_j_ijbiomac_2023_123932 crossref_primary_10_1093_fqsafe_fyac014 crossref_primary_10_3390_polym14091661 crossref_primary_10_3390_membranes13030298 |
Cites_doi | 10.1016/j.carbpol.2015.10.014 10.1016/j.jcis.2017.11.061 10.1002/adma.200700171 10.1021/bm0608840 10.1016/j.fbio.2017.12.001 10.1016/j.carbpol.2012.12.004 10.1080/17435390802504237 10.1016/j.carbpol.2018.06.050 10.1161/hc0402.104118 10.1021/ma0517998 10.1007/s10529-010-0279-8 10.1016/j.biomaterials.2004.08.019 10.1016/j.addr.2010.12.002 10.1002/pat.1031 10.1016/j.foodchem.2013.06.018 10.1016/j.jfoodeng.2016.07.012 10.1016/j.ijbiomac.2011.04.018 10.1016/j.foodhyd.2016.05.024 10.1002/mame.201000152 10.1016/j.tifs.2013.01.004 10.1021/bm015533u 10.1016/j.polymer.2016.09.080 10.1016/j.ifset.2013.09.004 10.1016/j.carbpol.2018.12.065 10.1002/app.28107 10.1016/j.foodcont.2015.06.005 10.3390/ma9070504 10.1007/s11947-014-1372-0 10.1088/0957-4484/17/10/034 10.1021/bp020042m 10.1016/j.fpsl.2018.12.005 10.1002/adma.200700896 10.1016/j.tifs.2008.09.011 10.1081/FRI-100104703 10.4315/0362-028X-67.4.833 10.1016/j.foodhyd.2018.08.056 10.1039/c3nr01832f 10.1002/fsn3.468 10.1016/j.progpolymsci.2013.05.008 10.1016/j.apsusc.2012.10.029 10.1016/j.polymer.2004.11.029 10.3389/fsufs.2018.00038 10.1016/j.carbpol.2014.06.075 10.1021/acs.jafc.7b02956 10.1016/j.ejpb.2007.10.016 10.1016/j.eurpolymj.2018.05.033 10.1021/acsbiomaterials.7b00681 10.1016/j.progpolymsci.2017.08.001 10.1002/pat.1883 10.1016/j.carbpol.2016.12.003 10.1021/cm052760k 10.1016/j.addr.2009.07.013 10.1016/j.foodhyd.2018.02.028 10.1021/nl0344256 10.1016/j.ijbiomac.2017.10.054 10.1007/s00289-008-0976-9 10.1016/j.polymer.2011.08.034 10.1007/s10856-012-4771-7 10.1016/j.polymer.2018.10.009 10.1016/j.biomaterials.2004.01.063 10.1080/09205063.2013.814096 10.1002/jbm.a.32136 10.1016/j.tifs.2014.09.009 10.1016/j.foodhyd.2019.03.013 10.1021/la304414j 10.1016/j.polymer.2004.01.026 10.1111/1541-4337.12322 10.1016/j.tifs.2013.08.001 10.1016/j.biortech.2010.07.027 10.1016/j.foodhyd.2005.11.008 10.1016/j.fct.2013.08.014 10.1016/j.colsurfb.2007.03.004 10.1134/S0965545X13050076 10.1002/adma.200306226 10.1039/C5FO00050E 10.1016/j.tifs.2017.10.009 10.1007/s10853-016-0518-z 10.1163/156856207780424997 10.1016/j.foodhyd.2018.12.010 10.1016/j.carbpol.2008.12.035 10.1002/star.201500154 10.1016/j.foodres.2012.12.036 10.1016/j.polymer.2010.07.046 10.1080/02652030110072722 10.1002/pen.24274 10.1016/j.foodhyd.2015.10.026 10.1016/j.tifs.2018.08.005 10.1021/acs.jafc.8b04270 10.1016/j.foodhyd.2017.09.011 10.1016/j.jcis.2008.07.003 10.1089/ten.2005.11.1149 10.1007/s11947-017-2026-9 10.1016/j.foodhyd.2013.12.022 10.1016/j.ijbiomac.2012.08.010 10.1016/j.biomaterials.2004.07.044 10.1016/j.tifs.2014.06.007 10.1073/pnas.202486099 10.1039/C6RA26606A 10.3390/nano8070469 10.1016/j.tifs.2018.08.006 10.1021/bm800551q 10.1002/app.30891 10.1016/j.foodhyd.2017.06.037 10.1016/j.ijbiomac.2018.01.124 10.1177/0883911519835569 10.1016/j.foodchem.2010.06.084 10.1016/j.foodcont.2012.01.022 10.1002/adfm.200500116 10.1016/j.tifs.2014.03.004 10.1080/09205063.2014.982241 10.1080/19440049.2017.1355115 10.1111/jam.12158 10.1016/j.jfoodeng.2016.03.015 10.1007/BF02902925 10.1002/adma.200903870 10.1016/j.foodchem.2017.04.095 10.1016/j.foodhyd.2013.07.023 10.3390/coatings5040771 |
ContentType | Journal Article |
Copyright | 2020 Institute of Food Technologists 2020 Institute of Food Technologists®. |
Copyright_xml | – notice: 2020 Institute of Food Technologists – notice: 2020 Institute of Food Technologists®. |
DBID | AAYXX CITATION NPM 7S9 L.6 7X8 |
DOI | 10.1111/1541-4337.12536 |
DatabaseName | CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1541-4337 |
EndPage | 502 |
ExternalDocumentID | 33325166 10_1111_1541_4337_12536 CRF312536 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars funderid: LR20C200001 – fundername: National Natural Science Foundation of China funderid: 31772013 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29F 2WC 3-9 31~ 33P 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 A8Z AAEVG AAHBH AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AAZKR ABCQN ABCUV ABEML ABJNI ABQWH ACCFJ ACCZN ACGFO ACGOF ACPOU ACPRK ACSCC ACXQS ADBBV ADBTR ADEOM ADIZJ ADMGS ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BNHUX BY8 C1A CAG COF CS3 D-E D-F DCZOG DR2 DU5 E3Z EBS ECGQY EJD EMOBN ESTFP F00 F01 F04 G-S GODZA H.T H.X HF~ HGLYW HOLLA HZ~ ITG ITH IX1 J0M K.9 LC2 LC3 LH4 LP6 LP7 LW6 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 RNS ROL RX1 SUPJJ TR2 UB1 W8V WIH WIK WIN WMRSR WOHZO WQJ WRC WSUWO WXSBR XG1 ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM AAMMB AEFGJ AGXDD AIDQK AIDYY 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c4056-99eb4039d62debeca8384986e190b5eacf35fb8fc1d4405d854d3475c86b84d13 |
IEDL.DBID | DR2 |
ISSN | 1541-4337 |
IngestDate | Fri Jul 11 05:20:19 EDT 2025 Fri Jul 11 18:23:54 EDT 2025 Fri Jul 25 12:09:33 EDT 2025 Wed Feb 19 02:30:02 EST 2025 Thu Apr 24 23:03:10 EDT 2025 Tue Jul 01 03:41:47 EDT 2025 Wed Jan 22 16:34:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | electrospinning design functionalized nanofibers active food packaging food-grade materials |
Language | English |
License | 2020 Institute of Food Technologists®. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4056-99eb4039d62debeca8384986e190b5eacf35fb8fc1d4405d854d3475c86b84d13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Review-3 |
ORCID | 0000-0003-2613-2960 |
PMID | 33325166 |
PQID | 2369198837 |
PQPubID | 946369 |
PageCount | 24 |
ParticipantIDs | proquest_miscellaneous_2470624211 proquest_miscellaneous_2400458571 proquest_journals_2369198837 pubmed_primary_33325166 crossref_primary_10_1111_1541_4337_12536 crossref_citationtrail_10_1111_1541_4337_12536 wiley_primary_10_1111_1541_4337_12536_CRF312536 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 2020-03-00 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Chicago |
PublicationTitle | Comprehensive reviews in food science and food safety |
PublicationTitleAlternate | Compr Rev Food Sci Food Saf |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 90 2002; 18 2002; 19 2019; 94 2013; 62 2006; 39 2010; 101 2002; 99 2008; 109 2011; 52 2019; 19 2004; 5 2019; 208 2013; 8 2013; 5 2017; 158 2009; 114 2017; 73 2010; 22 2011; 124 2018; 8 2006; 20 2018; 2 2017; 70 2013; 55 2013; 52 2007; 8 2011; 63 2013; 114 2012; 26 2007; 18 2010; 32 2007; 19 2018; 105 2009; 61 2018; 107 2017; 65 2019; 34 2004; 45 2002; 3 2013; 92 2014; 40 2018; 21 2009; 77 2018; 199 2018; 17 2018; 513 2009; 90A 2018; 112 2014; 38 2010; 295 2014; 35 2014; 39 2005; 15 2018; 11 2005; 11 2016; 9 2010; 51 2017; 5 2013; 29 2017; 7 2017; 3 2013; 24 2004; 67 2013; 20 2018; 81 2008; 9 2018; 80 2016; 103 2005; 26 2017; 233 2016; 183 2012; 51 2000; 54 2017; 34 2008; 69 2003; 3 2011; 22 2002; 105 2001; 17 2008; 61 2014; 7 2018; 76 2016; 191 2018; 75 2015; 6 2015; 5 2008; 19 2006; 17 2006; 18 2016; 52 2008; 326 2013; 141 2013; 264 2018; 66 2016; 59 2007; 58 2005; 46 2016; 56 2016; 55 2014; 113 2015; 26 2013; 38 2013; 33 2013; 32 2004; 16 2019; 87 2018; 156 2013; 31 2016; 61 2016; 136 2009; 3 2011; 49 2016; 68 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_109_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 Zamani M. (e_1_2_10_114_1) 2013; 8 e_1_2_10_120_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 Han J. H. (e_1_2_10_40_1) 2000; 54 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 Fuenmayor C. (e_1_2_10_35_1) 2013; 32 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 17 start-page: 2649 issue: 10 year: 2006 end-page: 2654 article-title: Effects of annealing on the structural and mechanical properties of electrospun polymeric nanofibres publication-title: Nanotechnology – volume: 24 start-page: 179 year: 2013 end-page: 187 article-title: Electrospun polycaprolactone scaffolds with tailored porosity using two approaches for enhanced cellular infiltration publication-title: Journal of Materials Science: Materials in Medicine – volume: 20 start-page: 1057 year: 2006 end-page: 1071 article-title: Water sorption and thermo‐mechanical properties of water/sorbitol‐plasticized composite biopolymer films: Caseinate–pullulan bilayers and blends publication-title: Food Hydrocolloids – volume: 38 start-page: 1629 year: 2013 end-page: 1652 article-title: Bio‐nanocomposites for food packaging applications publication-title: Progress in Polymer Science – volume: 68 start-page: 603 year: 2016 end-page: 610 article-title: Development of multilayer corn starch‐based food packaging structures containing β‐carotene by means of the electro‐hydrodynamic processing publication-title: Starch ‐ Stärke – volume: 183 start-page: 39 year: 2016 end-page: 49 article-title: Encapsulation of fish oil in nanofibers by emulsion electrospinning: Physical characterization and oxidative stability publication-title: Journal of Food Engineering – volume: 92 start-page: 2232 year: 2013 end-page: 2238 article-title: Poly(vinyl alcohol)/sodium alginate/layered silicate based nanofibrous mats for bacterial inhibition publication-title: Carbohydrate Polymers – volume: 5 start-page: 7041 year: 2013 end-page: 7045 article-title: Fabrication of curled conducting polymer microfibrous arrays via a novel electrospinning method for stretchable strain sensors publication-title: Nanoscale – volume: 52 start-page: 467 year: 2013 end-page: 472 article-title: Electrospun soy protein isolate‐based fiber fortified with anthocyanin‐rich red raspberry ( ) extracts publication-title: Food Research International – volume: 136 start-page: 1098 year: 2016 end-page: 1107 article-title: Potential of electrospun core–shell structured gelatin–chitosan nanofibers for biomedical applications publication-title: Carbohydrate Polymers – volume: 49 start-page: 223 year: 2011 end-page: 232 article-title: Electrospun poly (ɛ‐caprolactone)/silk fibroin core‐sheath nanofibers and their potential applications in tissue engineering and drug release publication-title: International Journal of Biological Macromolecules – volume: 19 start-page: 728 year: 2008 end-page: 733 article-title: Emulsion electrospinning: Composite fibers from drop breakup during electrospinning publication-title: Polymers for Advanced Technologies – volume: 87 start-page: 758 year: 2019 end-page: 771 article-title: Electrospun curcumin‐loaded protein nanofiber mats as active/bioactive coatings for food packaging applications publication-title: Food Hydrocolloids – volume: 8 start-page: 2997 year: 2013 end-page: 3017 article-title: Advances in drug delivery via electrospun and electrosprayed nanomaterials publication-title: International Journal of Nanomedicine – volume: 69 start-page: 106 year: 2008 end-page: 116 article-title: Release pattern and structural integrity of lysozyme encapsulated in core–sheath structured poly( ‐lactide) ultrafine fibers prepared by emulsion electrospinning publication-title: European Journal of Pharmaceutics and Biopharmaceutics – volume: 191 start-page: 115 year: 2016 end-page: 123 article-title: Encapsulation of rose hip seed oil into fibrous zein films for ambient and on demand food preservation via coaxial electrospinning publication-title: Journal of Food Engineering – volume: 55 start-page: 320 year: 2013 end-page: 326 article-title: Enhancement of nanofiber elasticity by using wheat glutenin as an addition publication-title: Polymer Science Series A – volume: 63 start-page: 209 year: 2011 end-page: 220 article-title: Electrospun cellular microenvironments: Understanding controlled release and scaffold structure publication-title: Advanced Drug Delivery Reviews – volume: 26 start-page: 188 year: 2012 end-page: 193 article-title: Immobilization of glucose oxidase in electrospun nanofibrous membranes for food preservation publication-title: Food Control – volume: 61 start-page: 1043 year: 2009 end-page: 1054 article-title: Electrohydrodynamics: A facile technique to fabricate drug delivery systems publication-title: Advanced Drug Delivery Reviews – volume: 52 start-page: 2254 year: 2016 end-page: 2262 article-title: Electrospun composite matrices from tenside‐free poly(ε‐caprolactone)‐grafted acrylic acid/hydroxyapatite oil‐in‐water emulsions publication-title: Journal of Materials Science – volume: 326 start-page: 96 year: 2008 end-page: 102 article-title: Structure and dynamical mechanical properties of suspensions of sodium caseinate publication-title: Journal of Colloid and Interface Science – volume: 39 start-page: 19 year: 2014 end-page: 26 article-title: Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers publication-title: Food Hydrocolloids – volume: 15 start-page: 1988 year: 2005 end-page: 1994 article-title: Nanofiber generation of gelatin–hydroxyapatite biomimetics for guided tissue regeneration publication-title: Advanced Functional Materials – volume: 6 start-page: 2876 year: 2015 end-page: 2889 article-title: Plant protein‐based delivery systems for bioactive ingredients in foods publication-title: Food & Function – volume: 80 start-page: 175 year: 2018 end-page: 186 article-title: Emulsion electrospinning: Fundamentals, food applications and prospects publication-title: Trends in Food Science & Technology – volume: 513 start-page: 566 year: 2018 end-page: 574 article-title: Polydopamine‐assisted immobilization of hierarchical zinc oxide nanostructures on electrospun nanofibrous membrane for photocatalysis and antimicrobial activity publication-title: Journal of Colloid and Interface Science – volume: 11 start-page: 427 year: 2018 end-page: 434 article-title: Encapsulation of orange essential oil using cross‐linked electrospun gelatin nanofibers publication-title: Food and Bioprocess Technology – volume: 3 start-page: 3563 year: 2017 end-page: 3575 article-title: Nano‐/microfibrous cotton‐wool‐like 3D scaffold with core‐shell architecture by emulsion electrospinning for skin tissue regeneration publication-title: ACS Biomaterials Science & Engineering – volume: 59 start-page: 366 year: 2016 end-page: 376 article-title: Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging publication-title: Food Control – volume: 9 start-page: 2523 year: 2008 end-page: 2529 article-title: Fabrication and characterization of electrospun chitosan nanofibers formed via templating with polyethylene oxide publication-title: Biomacromolecules – volume: 26 start-page: 57 year: 2015 end-page: 75 article-title: Emulsion electrospinning of polycaprolactone: Influence of surfactant type towards the scaffold properties publication-title: Journal of Biomaterials Science‐Polymer Edition – volume: 114 start-page: 3524 year: 2009 end-page: 3530 article-title: Needleless electrospinning. I. A comparison of cylinder and disk nozzles publication-title: Journal of Applied Polymer Science – volume: 156 start-page: 250 year: 2018 end-page: 260 article-title: Multilevel structural stereocomplex polylactic acid/collagen membranes by pattern electrospinning for tissue engineering publication-title: Polymer – volume: 17 start-page: 291 year: 2001 end-page: 346 article-title: Recycling of polymeric materials used for food packaging: Current status and perspectives publication-title: Food Reviews International – volume: 113 start-page: 561 year: 2014 end-page: 568 article-title: Electrospinning an essential oil: Cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly (ethylene oxide) nanofibers publication-title: Carbohydrate Polymers – volume: 24 start-page: 1952 year: 2013 end-page: 1968 article-title: Biocompatibility evaluation of emulsion electrospun nanofibers using osteoblasts for bone tissue engineering publication-title: Journal of Biomaterials Science, Polymer Edition – volume: 55 start-page: 11 year: 2016 end-page: 18 article-title: Use of the electrohydrodynamic process to develop active/bioactive bilayer films for food packaging applications publication-title: Food Hydrocolloids – volume: 46 start-page: 1625 year: 2005 end-page: 1634 article-title: Regeneration of bombyx mori silk by electrospinning. Part 3: Characterization of electrospun nonwoven mat publication-title: Polymer – volume: 26 start-page: 2775 year: 2005 end-page: 2785 article-title: Three‐dimensional aqueous‐derived biomaterial scaffolds from silk fibroin publication-title: Biomaterials – volume: 52 start-page: 4813 year: 2011 end-page: 4824 article-title: A fundamental study of chitosan/PEO electrospinning publication-title: Polymer – volume: 124 start-page: 615 year: 2011 end-page: 619 article-title: Development of oxygen scavenging system containing a natural free radical scavenger and a transition metal publication-title: Food Chemistry – volume: 90 start-page: 99 year: 2019 end-page: 104 article-title: Fabrication of food‐grade nanofibers of whey protein Isolate–Guar gum using the electrospinning method publication-title: Food Hydrocolloids – volume: 67 start-page: 833 year: 2004 end-page: 848 article-title: Antimicrobial edible films and coatings publication-title: Journal of Food Protection – volume: 45 start-page: 1895 year: 2004 end-page: 1902 article-title: Fabrication of blend biodegradable nanofibrous nonwoven mats via multi‐jet electrospinning publication-title: Polymer – volume: 26 start-page: 37 year: 2005 end-page: 46 article-title: Mesoscopic spatial designs of nano‐ and microfiber meshes for tissue‐engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques publication-title: Biomaterials – volume: 18 start-page: 2397 year: 2006 end-page: 2403 article-title: Polyelectrolyte functionalization of electrospun fibers publication-title: Chemistry of Materials – volume: 233 start-page: 117 year: 2017 end-page: 124 article-title: Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin‐inclusion complex for food packaging publication-title: Food Chemistry – volume: 99 start-page: 12531 year: 2002 end-page: 12535 article-title: Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers publication-title: Proceedings of the National Academy of Sciences – volume: 35 start-page: 36 year: 2014 end-page: 50 article-title: Electrospinning and heat treatment of whey protein nanofibers publication-title: Food Hydrocolloids – volume: 76 start-page: 151 year: 2018 end-page: 173 article-title: Graft modification of natural polysaccharides via reversible deactivation radical polymerization publication-title: Progress in Polymer Science – volume: 3 start-page: 232 year: 2002 end-page: 238 article-title: Electrospinning of collagen nanofibers publication-title: Biomacromolecules – volume: 114 start-page: 1425 year: 2013 end-page: 1434 article-title: Incorporation of T4 bacteriophage in electrospun fibres publication-title: Journal of Applied Microbiology – volume: 19 start-page: 86 year: 2019 end-page: 93 article-title: Moringa oil/chitosan nanoparticles embedded gelatin nanofibers for food packaging against and on cheese publication-title: Food Packaging and Shelf Life – volume: 94 start-page: 38 year: 2019 end-page: 47 article-title: Electrospinning of bilayer emulsions: The role of gum Arabic as a coating layer in the gelatin‐stabilized emulsions publication-title: Food Hydrocolloids – volume: 39 start-page: 1041 year: 2006 end-page: 1045 article-title: Nanofibrous membranes containing reactive groups: Electrospinning from poly(acrylonitrile‐co‐maleic acid) for lipase immobilization publication-title: Macromolecules – volume: 19 start-page: S103 year: 2008 end-page: S112 article-title: Active and intelligent food packaging: Legal aspects and safety concerns publication-title: Trends in Food Science & Technology – volume: 105 start-page: 411 year: 2002 end-page: 414 article-title: Passage of inhaled particles into the blood circulation in humans publication-title: Circulation – volume: 32 start-page: 1059 year: 2010 end-page: 1062 article-title: Immobilization of Pseudomonas cepacia lipase onto electrospun polyacrylonitrile fibers through physical adsorption and application to transesterification in nonaqueous solvent publication-title: Biotechnology Letters – volume: 51 start-page: 980 year: 2012 end-page: 986 article-title: Preparation of regenerated silk fibroin/silk sericin fibers by coaxial electrospinning publication-title: International Journal of Biological Macromolecules – volume: 7 start-page: 1215 year: 2017 end-page: 1228 article-title: Emulsion centrifugal spinning for production of 3D drug releasing nanofibres with core/shell structure publication-title: RSC Advances – volume: 73 start-page: 120 year: 2017 end-page: 128 article-title: Bioactive chitosan/ellagic acid films with UV‐light protection for active food packaging publication-title: Food Hydrocolloids – volume: 70 start-page: 56 year: 2017 end-page: 68 article-title: Electrospinning: A novel nano‐encapsulation approach for bioactive compounds publication-title: Trends in Food Science & Technology – volume: 107 start-page: 1908 year: 2018 end-page: 1914 article-title: Fabrication and characterization of tea polyphenols loaded pullulan‐CMC electrospun nanofiber for fruit preservation publication-title: International Journal of Biological Macromolecules – volume: 19 start-page: 3664 year: 2007 end-page: 3667 article-title: Patterning of electrospun fibers using electroconductive templates publication-title: Advanced Materials – volume: 38 start-page: 21 year: 2014 end-page: 33 article-title: Electrospinning and electrospraying techniques: Potential food based applications publication-title: Trends in Food Science & Technology – volume: 20 start-page: 269 year: 2013 end-page: 275 article-title: Food‐grade electrospinning of proteins publication-title: Innovative Food Science & Emerging Technologies – volume: 19 start-page: 144 year: 2002 end-page: 162 article-title: Active and intelligent packaging: Applications and regulatory aspects publication-title: Food Additives & Contaminants – volume: 7 start-page: 3569 year: 2014 end-page: 3578 article-title: Influence of homogenization conditions on physical properties and antioxidant activity of fully biodegradable pea proteinealpha‐tocopherol films publication-title: Food and Bioprocess Technology – volume: 5 start-page: 865 year: 2017 end-page: 874 article-title: Antibacterial electrospun chitosan‐based nanofibers: A bacterial membrane perforator publication-title: Food Science & Nutrition – volume: 77 start-page: 261 year: 2009 end-page: 266 article-title: Novel antimicrobial ultrathin structures of zein/chitosan blends obtained by electrospinning publication-title: Carbohydrate Polymers – volume: 264 start-page: 375 year: 2013 end-page: 382 article-title: Hydrothermal in situ preparation of TiO particles onto poly (lactic acid) electrospun nanofibres publication-title: Applied Surface Science – volume: 65 start-page: 9161 year: 2017 end-page: 9179 article-title: Encapsulation of bioactive compound in electrospun fibers and its potential application publication-title: Journal of Agricultural and Food Chemistry – volume: 61 start-page: 269 year: 2016 end-page: 276 article-title: Enhanced water resistance properties of bacterial cellulose multilayer films by incorporating interlayers of electrospun zein fibers publication-title: Food Hydrocolloids – volume: 11 start-page: 1149 year: 2005 end-page: 1158 article-title: Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation publication-title: Tissue Engineering – volume: 101 start-page: 8942 year: 2010 end-page: 8947 article-title: In situ encapsulation of laccase in microfibers by emulsion electrospinning: Preparation, characterization, and application publication-title: Bioresource Technology – volume: 33 start-page: 110 year: 2013 end-page: 123 article-title: Antimicrobial agents for food packaging applications publication-title: Trends in Food Science & Technology – volume: 16 start-page: 361 year: 2004 end-page: 366 article-title: Electrospinning nanofibers as uniaxially aligned arrays and layer‐by‐layer stacked films publication-title: Advanced Materials – volume: 109 start-page: 968 year: 2008 end-page: 975 article-title: Crosslinked, electrospun chitosan–poly(ethylene oxide) nanofiber mats publication-title: Journal of Applied Polymer Science – volume: 2 start-page: 1 year: 2018 end-page: 16 article-title: Preparation and characterization of electrospun food biopackaging films of poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) derived from fruit pulp biowaste publication-title: Frontiers in Sustainable Food Systems – volume: 112 start-page: 523 year: 2018 end-page: 529 article-title: Active packaging from chitosan‐titanium dioxide nanocomposite film for prolonging storage life of tomato fruit publication-title: International Journal of Biological Macromolecules – volume: 22 start-page: 2454 year: 2010 end-page: 2457 article-title: Magnetic‐field‐assisted electrospinning of aligned straight and wavy polymeric nanofibers publication-title: Advanced Materials – volume: 18 start-page: 1027 year: 2002 end-page: 1032 article-title: Enzyme‐carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts publication-title: Biotechnology Progress – volume: 34 start-page: 1817 issue: 10 year: 2017 end-page: 1830 article-title: Post‐processing optimization of electrospun submicron poly (3‐hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications publication-title: Food Additives & Contaminants: Part A – volume: 62 start-page: 16 year: 2013 end-page: 22 article-title: Nanoparticle release from nano‐silver antimicrobial food containers publication-title: Food and Chemical Toxicology – volume: 90A start-page: 671 year: 2009 end-page: 679 article-title: Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration publication-title: Journal of Biomedical Materials Research Part A – volume: 32 start-page: 1771 year: 2013 end-page: 1776 article-title: Encapsulation of r‐(+)‐limonene in edible electrospun nanofibers publication-title: Chemical Engineering Transactions – volume: 8 start-page: 638 year: 2007 end-page: 643 article-title: Novel protein fibers from wheat gluten publication-title: Biomacromolecules – volume: 61 start-page: 521 year: 2008 end-page: 528 article-title: In‐situ nanofabrication via electrohydrodynamic jetting of counterchargednozzles publication-title: Polymer Bulletin – volume: 17 start-page: 165 year: 2018 end-page: 199 article-title: Active packaging applications for food publication-title: Comprehensive Reviews in Food Science and Food Safety – volume: 56 start-page: 500 issue: 5 year: 2016 end-page: 527 article-title: A review on electrospun polymer nanostructures as advanced bioactive platforms publication-title: Polymer Engineering & Science – volume: 75 start-page: 72 year: 2018 end-page: 80 article-title: Characterization of gelatin/zein nanofibers by hybrid electrospinning publication-title: Food Hydrocolloids – volume: 26 start-page: 3353 year: 2005 end-page: 3361 article-title: Natural polyelectrolyte films based on layer‐by layer deposition of collagen and hyaluronic acid publication-title: Biomaterials – volume: 8 start-page: 469 year: 2018 end-page: 488 article-title: Electrospun oxygen scavenging films of poly (3‐hydroxybutyrate) containing palladium nanoparticles for active packaging applications publication-title: Nanomaterials – volume: 58 start-page: 172 year: 2007 end-page: 179 article-title: Fabrication of ultrathin polyelectrolyte fibers and their controlled release properties publication-title: Colloids and Surfaces B: Biointerfaces – volume: 31 start-page: 79 year: 2013 end-page: 87 article-title: Nanostructured biolayers in food packaging publication-title: Trends in Food Science & Technology – volume: 81 start-page: 48 year: 2018 end-page: 59 article-title: Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging publication-title: Food Hydrocolloids – volume: 5 start-page: 122 year: 2004 end-page: 127 article-title: The effect of molecular weight and the linear velocity of drum surface on the properties of electrospun poly(ethylene terephthalate) nonwovens publication-title: Fibers and Polymers – volume: 3 start-page: 1167 year: 2003 end-page: 1171 article-title: Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays publication-title: Nano Letters – volume: 9 start-page: 504 year: 2016 end-page: 511 article-title: Incorporation of rutin in electrospun pullulan/PVA nanofibers for novel UV‐resistant properties publication-title: Materials – volume: 66 start-page: 11681 year: 2018 end-page: 11690 article-title: Formation and stability of core–shell nanofibers by electrospinning of gel‐like corn oil‐in‐water emulsions stabilized by gelatin publication-title: Journal of Agricultural and Food Chemistry – volume: 103 start-page: 347 year: 2016 end-page: 352 article-title: Self‐reinforced poly (lactic acid) nanocomposites of high toughness publication-title: Polymer – volume: 5 start-page: 771 year: 2015 end-page: 791 article-title: Active packaging coatings publication-title: Coatings – volume: 105 start-page: 227 year: 2018 end-page: 249 article-title: Recent advances in post‐modification strategies of polymeric electrospun membranes publication-title: European Polymer Journal – volume: 34 start-page: 115 year: 2019 end-page: 130 article-title: Biocompatibility and biodegradation properties of polycaprolactone/polydioxanone composite scaffolds prepared by blend or co‐electrospinning publication-title: Journal of Bioactive and Compatible Polymers – volume: 29 start-page: 2311 year: 2013 end-page: 2318 article-title: Novel 3D electrospun scaffolds with fibers oriented randomly and evenly in three dimensions to closely mimic the unique architectures of extracellular matrices in soft tissues: Fabrication and mechanism study publication-title: Langmuir – volume: 21 start-page: 60 year: 2018 end-page: 71 article-title: Encapsulation of polyphenolic antioxidants obtained from Momordica charantia fruit within zein/gelatin shell core fibers via coaxial electrospinning publication-title: Food Bioscience – volume: 3 start-page: 10 year: 2009 end-page: 18 article-title: Emerging trends of nanoparticles application in food technology: Safety paradigms publication-title: Nanotoxicology – volume: 208 start-page: 241 year: 2019 end-page: 250 article-title: Fabrication of gallic acid loaded hydroxypropyl methylcellulose nanofibers by electrospinning technique as active packaging material publication-title: Carbohydrate Polymers – volume: 295 start-page: 990 year: 2010 end-page: 994 article-title: Micropatterning of electrospun polyurethane fibers through control of surface topography publication-title: Macromolecular Materials and Engineering – volume: 39 start-page: 18 year: 2014 end-page: 39 article-title: Nanoencapsulation of food ingredients using carbohydrate based delivery systems publication-title: Trends in Food Science & Technology – volume: 19 start-page: 3702 year: 2007 end-page: 3706 article-title: Fabrication of aligned fibrous arrays by magnetic electrospinning publication-title: Advanced Materials – volume: 199 start-page: 150 year: 2018 end-page: 160 article-title: Study on hydrophilicity and degradability of chitosan/polylactide‐co‐polycaprolactone nanofibre blend electrospun membrane publication-title: Carbohydrate Polymers – volume: 80 start-page: 212 year: 2018 end-page: 222 article-title: A concise guide to active agents for active food packaging publication-title: Trends in Food Science & Technology – volume: 22 start-page: 372 year: 2011 end-page: 378 article-title: On the way to clean and safe electrospinning‐green electrospinning: Emulsion and suspension electrospinning publication-title: Polymers for Advanced Technologies – volume: 40 start-page: 149 year: 2014 end-page: 167 article-title: Nanotechnology development in food packaging: A review publication-title: Trends in Food Science & Technology – volume: 141 start-page: 3192 year: 2013 end-page: 3200 article-title: Evaluation of gallic acid loaded zein sub‐micron electrospun fibre mats as novel active packaging materials publication-title: Food Chemistry – volume: 51 start-page: 4928 year: 2010 end-page: 4936 article-title: Unconfined fluid electrospun into high quality nanofibers from a plate edge publication-title: Polymer – volume: 18 start-page: 369 year: 2007 end-page: 382 article-title: Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts publication-title: Journal of Biomaterials Science, Polymer Edition – volume: 54 start-page: 56 year: 2000 end-page: 65 article-title: Antimicrobial food packaging publication-title: Food Technology – volume: 158 start-page: 68 year: 2017 end-page: 76 article-title: Design of starch‐formate compound fibers as encapsulation platform for biotherapeutics publication-title: Carbohydrate Polymers – ident: e_1_2_10_44_1 doi: 10.1016/j.carbpol.2015.10.014 – ident: e_1_2_10_50_1 doi: 10.1016/j.jcis.2017.11.061 – ident: e_1_2_10_109_1 doi: 10.1002/adma.200700171 – ident: e_1_2_10_82_1 doi: 10.1021/bm0608840 – ident: e_1_2_10_97_1 doi: 10.1016/j.fbio.2017.12.001 – ident: e_1_2_10_60_1 doi: 10.1016/j.carbpol.2012.12.004 – ident: e_1_2_10_24_1 doi: 10.1080/17435390802504237 – ident: e_1_2_10_28_1 doi: 10.1016/j.carbpol.2018.06.050 – ident: e_1_2_10_68_1 doi: 10.1161/hc0402.104118 – ident: e_1_2_10_112_1 doi: 10.1021/ma0517998 – ident: e_1_2_10_86_1 doi: 10.1007/s10529-010-0279-8 – ident: e_1_2_10_120_1 doi: 10.1016/j.biomaterials.2004.08.019 – ident: e_1_2_10_92_1 doi: 10.1016/j.addr.2010.12.002 – ident: e_1_2_10_6_1 doi: 10.1002/pat.1031 – ident: e_1_2_10_69_1 doi: 10.1016/j.foodchem.2013.06.018 – ident: e_1_2_10_111_1 doi: 10.1016/j.jfoodeng.2016.07.012 – ident: e_1_2_10_59_1 doi: 10.1016/j.ijbiomac.2011.04.018 – ident: e_1_2_10_104_1 doi: 10.1016/j.foodhyd.2016.05.024 – ident: e_1_2_10_25_1 doi: 10.1002/mame.201000152 – ident: e_1_2_10_30_1 doi: 10.1016/j.tifs.2013.01.004 – ident: e_1_2_10_65_1 doi: 10.1021/bm015533u – ident: e_1_2_10_88_1 doi: 10.1016/j.polymer.2016.09.080 – ident: e_1_2_10_70_1 doi: 10.1016/j.ifset.2013.09.004 – ident: e_1_2_10_10_1 doi: 10.1016/j.carbpol.2018.12.065 – ident: e_1_2_10_102_1 doi: 10.1002/app.28107 – ident: e_1_2_10_107_1 doi: 10.1016/j.foodcont.2015.06.005 – ident: e_1_2_10_81_1 doi: 10.3390/ma9070504 – ident: e_1_2_10_31_1 doi: 10.1007/s11947-014-1372-0 – ident: e_1_2_10_93_1 doi: 10.1088/0957-4484/17/10/034 – ident: e_1_2_10_45_1 doi: 10.1021/bp020042m – ident: e_1_2_10_61_1 doi: 10.1016/j.fpsl.2018.12.005 – ident: e_1_2_10_119_1 doi: 10.1002/adma.200700896 – ident: e_1_2_10_23_1 doi: 10.1016/j.tifs.2008.09.011 – ident: e_1_2_10_9_1 doi: 10.1081/FRI-100104703 – ident: e_1_2_10_16_1 doi: 10.4315/0362-028X-67.4.833 – ident: e_1_2_10_3_1 doi: 10.1016/j.foodhyd.2018.08.056 – ident: e_1_2_10_90_1 doi: 10.1039/c3nr01832f – ident: e_1_2_10_8_1 doi: 10.1002/fsn3.468 – ident: e_1_2_10_83_1 doi: 10.1016/j.progpolymsci.2013.05.008 – ident: e_1_2_10_39_1 doi: 10.1016/j.apsusc.2012.10.029 – ident: e_1_2_10_12_1 doi: 10.1016/j.polymer.2004.11.029 – ident: e_1_2_10_66_1 doi: 10.3389/fsufs.2018.00038 – ident: e_1_2_10_84_1 doi: 10.1016/j.carbpol.2014.06.075 – volume: 54 start-page: 56 year: 2000 ident: e_1_2_10_40_1 article-title: Antimicrobial food packaging publication-title: Food Technology – ident: e_1_2_10_106_1 doi: 10.1021/acs.jafc.7b02956 – ident: e_1_2_10_110_1 doi: 10.1016/j.ejpb.2007.10.016 – ident: e_1_2_10_85_1 doi: 10.1016/j.eurpolymj.2018.05.033 – volume: 8 start-page: 2997 year: 2013 ident: e_1_2_10_114_1 article-title: Advances in drug delivery via electrospun and electrosprayed nanomaterials publication-title: International Journal of Nanomedicine – ident: e_1_2_10_76_1 doi: 10.1021/acsbiomaterials.7b00681 – ident: e_1_2_10_37_1 doi: 10.1016/j.progpolymsci.2017.08.001 – ident: e_1_2_10_2_1 doi: 10.1002/pat.1883 – ident: e_1_2_10_56_1 doi: 10.1016/j.carbpol.2016.12.003 – ident: e_1_2_10_63_1 doi: 10.1021/cm052760k – ident: e_1_2_10_18_1 doi: 10.1016/j.addr.2009.07.013 – ident: e_1_2_10_4_1 doi: 10.1016/j.foodhyd.2018.02.028 – ident: e_1_2_10_57_1 doi: 10.1021/nl0344256 – ident: e_1_2_10_87_1 doi: 10.1016/j.ijbiomac.2017.10.054 – ident: e_1_2_10_77_1 doi: 10.1007/s00289-008-0976-9 – ident: e_1_2_10_74_1 doi: 10.1016/j.polymer.2011.08.034 – ident: e_1_2_10_115_1 doi: 10.1007/s10856-012-4771-7 – ident: e_1_2_10_47_1 doi: 10.1016/j.polymer.2018.10.009 – ident: e_1_2_10_48_1 doi: 10.1016/j.biomaterials.2004.01.063 – ident: e_1_2_10_96_1 doi: 10.1080/09205063.2013.814096 – ident: e_1_2_10_121_1 doi: 10.1002/jbm.a.32136 – ident: e_1_2_10_67_1 doi: 10.1016/j.tifs.2014.09.009 – ident: e_1_2_10_117_1 doi: 10.1016/j.foodhyd.2019.03.013 – ident: e_1_2_10_17_1 doi: 10.1021/la304414j – ident: e_1_2_10_27_1 doi: 10.1016/j.polymer.2004.01.026 – ident: e_1_2_10_113_1 doi: 10.1111/1541-4337.12322 – ident: e_1_2_10_91_1 doi: 10.1016/j.tifs.2013.08.001 – ident: e_1_2_10_22_1 doi: 10.1016/j.biortech.2010.07.027 – ident: e_1_2_10_54_1 doi: 10.1016/j.foodhyd.2005.11.008 – ident: e_1_2_10_29_1 doi: 10.1016/j.fct.2013.08.014 – ident: e_1_2_10_21_1 doi: 10.1016/j.colsurfb.2007.03.004 – ident: e_1_2_10_41_1 doi: 10.1134/S0965545X13050076 – ident: e_1_2_10_58_1 doi: 10.1002/adma.200306226 – ident: e_1_2_10_103_1 doi: 10.1039/C5FO00050E – ident: e_1_2_10_108_1 doi: 10.1016/j.tifs.2017.10.009 – ident: e_1_2_10_75_1 doi: 10.1007/s10853-016-0518-z – ident: e_1_2_10_78_1 doi: 10.1163/156856207780424997 – ident: e_1_2_10_5_1 doi: 10.1016/j.foodhyd.2018.12.010 – ident: e_1_2_10_98_1 doi: 10.1016/j.carbpol.2008.12.035 – ident: e_1_2_10_33_1 doi: 10.1002/star.201500154 – ident: e_1_2_10_105_1 doi: 10.1016/j.foodres.2012.12.036 – volume: 32 start-page: 1771 year: 2013 ident: e_1_2_10_35_1 article-title: Encapsulation of r‐(+)‐limonene in edible electrospun nanofibers publication-title: Chemical Engineering Transactions – ident: e_1_2_10_95_1 doi: 10.1016/j.polymer.2010.07.046 – ident: e_1_2_10_55_1 doi: 10.1080/02652030110072722 – ident: e_1_2_10_99_1 doi: 10.1002/pen.24274 – ident: e_1_2_10_32_1 doi: 10.1016/j.foodhyd.2015.10.026 – ident: e_1_2_10_116_1 doi: 10.1016/j.tifs.2018.08.005 – ident: e_1_2_10_118_1 doi: 10.1021/acs.jafc.8b04270 – ident: e_1_2_10_26_1 doi: 10.1016/j.foodhyd.2017.09.011 – ident: e_1_2_10_80_1 doi: 10.1016/j.jcis.2008.07.003 – ident: e_1_2_10_64_1 doi: 10.1089/ten.2005.11.1149 – ident: e_1_2_10_94_1 doi: 10.1007/s11947-017-2026-9 – ident: e_1_2_10_73_1 doi: 10.1016/j.foodhyd.2013.12.022 – ident: e_1_2_10_42_1 doi: 10.1016/j.ijbiomac.2012.08.010 – ident: e_1_2_10_52_1 doi: 10.1016/j.biomaterials.2004.07.044 – ident: e_1_2_10_34_1 doi: 10.1016/j.tifs.2014.06.007 – ident: e_1_2_10_79_1 doi: 10.1073/pnas.202486099 – ident: e_1_2_10_14_1 doi: 10.1039/C6RA26606A – ident: e_1_2_10_19_1 doi: 10.3390/nano8070469 – ident: e_1_2_10_100_1 doi: 10.1016/j.tifs.2018.08.006 – ident: e_1_2_10_72_1 doi: 10.1021/bm800551q – ident: e_1_2_10_71_1 doi: 10.1002/app.30891 – ident: e_1_2_10_101_1 doi: 10.1016/j.foodhyd.2017.06.037 – ident: e_1_2_10_46_1 doi: 10.1016/j.ijbiomac.2018.01.124 – ident: e_1_2_10_122_1 doi: 10.1177/0883911519835569 – ident: e_1_2_10_15_1 doi: 10.1016/j.foodchem.2010.06.084 – ident: e_1_2_10_38_1 doi: 10.1016/j.foodcont.2012.01.022 – ident: e_1_2_10_49_1 doi: 10.1002/adfm.200500116 – ident: e_1_2_10_7_1 doi: 10.1016/j.tifs.2014.03.004 – ident: e_1_2_10_43_1 doi: 10.1080/09205063.2014.982241 – ident: e_1_2_10_20_1 doi: 10.1080/19440049.2017.1355115 – ident: e_1_2_10_53_1 doi: 10.1111/jam.12158 – ident: e_1_2_10_36_1 doi: 10.1016/j.jfoodeng.2016.03.015 – ident: e_1_2_10_51_1 doi: 10.1007/BF02902925 – ident: e_1_2_10_62_1 doi: 10.1002/adma.200903870 – ident: e_1_2_10_11_1 doi: 10.1016/j.foodchem.2017.04.095 – ident: e_1_2_10_89_1 doi: 10.1016/j.foodhyd.2013.07.023 – ident: e_1_2_10_13_1 doi: 10.3390/coatings5040771 |
SSID | ssj0047578 |
Score | 2.6419938 |
SecondaryResourceType | review_article |
Snippet | Electrospun nanofibers with structural and functional advantages have drawn much attention due to their potential applications for active food packaging. The... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 479 |
SubjectTerms | active food packaging anti-infective agents Antimicrobial agents Antioxidants bins (containers) Bioactive compounds Carbon dioxide chemical bonding consumer demand electrospinning design ethylene Food Food packaging foods food‐grade materials free radical scavengers functionalized nanofibers nanofibers Packaged food polymers Shelf life Structure-function relationships |
Title | Electrospinning of nanofibers: Potentials and perspectives for active food packaging |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1541-4337.12536 https://www.ncbi.nlm.nih.gov/pubmed/33325166 https://www.proquest.com/docview/2369198837 https://www.proquest.com/docview/2400458571 https://www.proquest.com/docview/2470624211 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7iSQ--H9UqETx42brbZNOsN5EWERQpFrwteeyCVHaL3V789c5kH7YVFfEWyAxkk5nMl83kG0LOU8NTjiyfgL2Fx1UoPCWE8SBWdX2mfCPcRfv9g7gd8bvnsM4mxLcwJT9E88MNPcPt1-jgSk_nnBxif4DvfXodiNEMSbcxYwth0bAhkOLI1u4YUyvZitwHc3mW9Bfj0hewuYhdXfAZbBJdD7vMORl3ZoXumPclRsd_fdcW2aigKb0ubWmbrCTZDlmfIyzcJU_9smrOdPLiSh3RPKWZysBANcDIK_qYF5h9BCZNVWbp5PMl55QCOqbKtaGZQ6cyY1ciaY-MBv2nm1uvqsvgGYB3wouiRHOfRVZ0LdqAkkzySIoEwIUOYSdPWZhqmZrAclCwMuSWwVIYKbTkNmD7ZDXLs-SQUMf_F0rb08LniUH2e5-FFq9bbQLYpEU69arEpiItx9oZr3F9eMHpinG6YjddLXLRKExKvo7vRdv1MseV407jLhNREEk4trfIWdMNLof3KCpL8hnI4L4Hx6xe8JNMz8enNwHIHJQm1IyHMQaoUsAALp0h_DbQ-GY4YK519GeNY7LWxT8ELmuuTVaLt1lyAjCq0KfOUz4AuyYNAg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcoAeyhsWChgJJC5ZkthxHCQOqO1qSx9C1VbqLXVsR0KtkhW7q6r9WfwV_hAzzoO2CBCHHrhZih1N4nl8tsffALwujSgFsXwi9paB0IkMtJQmwFgVh1yHRvqD9t09OT4Qnw6TwyX41t2Fafgh-g03sgzvr8nAaUP6gpVj8I_owk86xCDNZZtYue3OTnHZNvuwtYFz_CaOR5uT9XHQVhYIDAIUGWSZK0TIMytjS1-hFVciU9JheCwS9EUlT8pClSayAgdYlQjLRZoYJQslbMTxvTfgJtURJ77-jf2eskoQP7znaG2Fa-mEKHvoisCXI-Ev8PYyWvbhbnQHvnc_qslyOR4u5sXQnF_hkPy__uRdWG3RN_vYmMs9WHLVfVi5wMn4ACabTWGg2fSLr-bE6pJVukIbLBApv2ef6zklWKHVMl1ZNv15WXXGcAHAtG9js8aH2hz7KlAP4eBaPusRLFd15Z4A8xSHibJpIUPhDBH8hzyxdKJsHcKvAQw7NchNy8tO5UFO8m59RtOT0_TkfnoG8LYfMG0oSX7fda3Tq7z1TbM85jKLMqV4OoBX_WP0KnRUpCtXL7APuXZcSabRn_qkId0uirDP40Zne3k45wicJQrwzmve3wTN1_dH3Lee_vOIl3BrPNndyXe29rafwe2YNkR8kuAaLM-_LtxzRI3z4oU3UwZH163NPwAmpGsa |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVkJwgPLslrYYCSQuWZLYcRwkDqjbVUuhqqpW6i04tiOhVsmK3RWi_4q_wi9ixnn0gQri0AM3S7GjSTyPz_b4G4CXpRGlIJZPxN4yEDqRgZbSBBir4pDr0Eh_0P5pT24fiQ_HyfEC_OjuwjT8EP2GG1mG99dk4BNbXjByjP0R3fdJhxijuWzzKnfd92-4apu-2xnhFL-K4_HW4eZ20BYWCAziExlkmStEyDMrY0sfoRVXIlPSYXQsEnRFJU_KQpUmsgIHWJUIy0WaGCULJWzE8b23YEnIMKNqEaODnrFKED28p2hthWvZhCh56IrAlwPhb-j2Mlj20W58H352_6lJcjkZzmfF0JxdoZD8r37kMtxrsTd73xjLA1hw1UO4e4GR8REcbjVlgaaTL76WE6tLVukKLbBAnPyW7dczSq9Cm2W6smxyflV1yhD-M-3b2KzxoTYnvgbUYzi6kc96AotVXbkVYJ7gMFE2LWQonCF6_5Anls6TrUPwNYBhpwW5aVnZqTjIad6tzmh6cpqe3E_PAF73AyYNIcn1Xdc6tcpbzzTNYy6zKFOKpwN40T9Gn0IHRbpy9Rz7kGPHdWQa_alPGtLdogj7PG1UtpeHc46wWaIAb7zi_U3QfPNgzH1r9Z9HPIfb-6Nx_nFnb_cZ3IlpN8RnCK7B4uzr3K0jZJwVG95IGXy-aWX-BUsLack |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrospinning+of+nanofibers%3A+Potentials+and+perspectives+for+active+food+packaging&rft.jtitle=Comprehensive+reviews+in+food+science+and+food+safety&rft.au=Zhang%2C+Cen&rft.au=Yang%2C+Li&rft.au=Wang%2C+Peng&rft.au=Zhang%2C+Hui&rft.date=2020-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1541-4337&rft.volume=19&rft.issue=2&rft.spage=479&rft.epage=502&rft_id=info:doi/10.1111%2F1541-4337.12536&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1541-4337&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1541-4337&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1541-4337&client=summon |