Dietary accumulation and depuration of hydrophobic organochlorines: Bioaccumulation parameters and their relationship with the octanol/water partition coefficient

Dietary accumulation of 23 hydrophobic organochlorines (OCs) by juvenile rainbow trout (Oncorhynchus mykiss) was studied with the objective of obtaining relationships between bioaccumulation parameters and the octanol/water partition coefficient (Kow). A wide range of OCs were used including 16 poly...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental toxicology and chemistry Vol. 17; no. 5; pp. 951 - 961
Main Authors Fisk, Aaron T., Norstrom, Ross J., Cymbalisty, Chris D., Muir, Derek C.G.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Periodicals, Inc 01.05.1998
SETAC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dietary accumulation of 23 hydrophobic organochlorines (OCs) by juvenile rainbow trout (Oncorhynchus mykiss) was studied with the objective of obtaining relationships between bioaccumulation parameters and the octanol/water partition coefficient (Kow). A wide range of OCs were used including 16 polychlorinated biphenyls (PCBs 18, 28, 44, 52, 66, 101, 105, 118, 128, 138, 153, 187, 189, 195, 206, and 209), hexachlorobenzene, mirex, tris(4‐chlorophenyl)methane (TCPMe), tris(4‐chlorophenyl)methanol (TCPMeOH), and three toxaphene congeners (Cl7‐chlorobornane [CHB] [Hp‐sed], Cl8‐CHB [T2], and Cl9‐CHB [T12]). Tris(4‐chlorophenyl)methane (half‐life [t1/2] = 65 d) was more persistent than TCPMeOH (t1/2 = 20 d), and TCPMe was not biotransformed to TCPMeOH by rainbow trout. Cl7‐chlorobornane (t1/2 = 32 d) was more rapidly eliminated, and appears to be more readily metabolized, than Cl8‐CHB (t1/2 = 43 d) and Cl9‐CHB (t1/2 = 42 d). With the exception of TCPMeOH, Cl7‐CHB, and PCB 18, all of the OCs had biomagnification factors (BMFs) >1, implying a potential to biomagnify. Half‐lives had a significant curvilinear relationship with Kow (R2 = 0.85, p < 0.001), with a maximum t1/2 for OCs with log Kow ∼ 7.0. Decreasing t1/2 for OCs of log Kow > 7.0 may be related to slow kinetics of these super hydrophobic OCs and the short exposure phase, which results in insufficient time for the super hydrophobic OCs to reach slower clearing compartments of the rainbow trout. Assimilation efficiency was not as well described by Kow as by t1/2 and BMF, although a significant curvilinear relationship was observed (R2 = 0.53, p = 0.004). The BMF had a significant curvilinear relationship with log Kow (R2 = 0.84, p < 0.001). Recalcitrant OCs with a log Kow of ∼7.0 would appear to have the greatest potential for food chain biomagnification in fish.
AbstractList Juvenile rainbow trout were exposed to dietary concentrations of 23 organochlorines, which are tabulated, to determine bioaccumulation parameters. The data were used to develop dietary accumulation parameter octanol/water partition coefficient relationships. Results are presented for PCBs, mirex, hexachlorobenzene, tris(4-chlorophenyl)methane, tris(4-chlorophenyl)methanol, and toxaphene congeners in terms of bioaccumulation parameter octanol/water partition coefficient relationships, depuration rate constant octanol/water partition coefficient relationships, assimilation efficiency octanol/water partition coefficient relationships, and biomagnification factor octanol/water partition relationships. The data show that organochlorine compounds with a log octanol/water partition coefficient of approximately 7, which are not biotransformed, have the greatest persistence and biomagnification in fish.
Dietary accumulation of 23 hydrophobic organochlorines (OCs) by juvenile rainbow trout (Oncorhynchus mykiss) was studied with the objective of obtaining relationships between bioaccumulation parameters and the octanol/water partition coefficient (K sub(ow)). A wide range of OCs were used including 16 polychlorinated biphenyls (PCBs 18, 28, 44, 52, 66, 101, 105, 118, 128, 138, 153, 187, 189, 195, 206, and 209), hexachlorobenzene, mirex, tris(4-chlorophenyl)methane (TCPMe), tris(4-chlorophenyl)methanol (TCPMeOH), and three toxaphene congeners (Cl sub(7)-chlorobornane [CHB] [Hp-sed], Cl sub(8)-CHB [T2], and Cl sub(9)-CHB [Tl2]). Tris(4-chlorophenyl)methane (half-life [t sub(1/2)] = 65 d) was more persistent than TCPMeOH (t sub(1/2) = 20 d), and TCPMe was not biotransformed to TCPMeOH by rainbow trout. Cl sub(7)-chlorobornane (t sub(1/2) = 32 d) was more rapidly eliminated, and appears to be more readily metabolized, than Cl sub(8)-CHB (t sub(1/2) = 43 d) and Cl sub(9)-CHB (t sub(1/2) = 42 d). With the exception of TCPMeOH, Cl sub(7)-CHB, and PCB 18, all of the OCs had biomagnification factors (BMFs) > 1, implying a potential to biomagnify. Half-lives had a significant curvilinear relationship with K sub(ow) (R super(2) = 0.85, p < 0.001), with a maximum t sub(1/2) for OCs with log K sub(ow) similar to 7.0. Decreasing t sub(1/2) for OCs of log K sub(ow) > 7.0 may be related to slow kinetics of these super hydrophobic OCs and the short exposure phase, which results in insufficient time for the super hydrophobic OCs to reach slower clearing compartments of the rainbow trout. Assimilation efficiency was not as well described by K sub(ow) as by t sub(1/2) and BMF, although a significant curvilinear relationship was observed (R super(2) = 0.53, p = 0.004). The BMF had a significant curvilinear relationship with log K sub(ow) (R super(2) = 0.84, p < 0.001). Recalcitrant OCs with a log K sub(ow) of similar to 7.0 would appear to have the greatest potential for food chain biomagnification in fish.
Dietary accumulation of 23 hydrophobic organochlorines (OCs) by juvenile rainbow trout ( Oncorhynchus mykiss ) was studied with the objective of obtaining relationships between bioaccumulation parameters and the octanol/water partition coefficient ( K ow ). A wide range of OCs were used including 16 polychlorinated biphenyls (PCBs 18, 28, 44, 52, 66, 101, 105, 118, 128, 138, 153, 187, 189, 195, 206, and 209), hexachlorobenzene, mirex, tris(4‐chlorophenyl)methane (TCPMe), tris(4‐chlorophenyl)methanol (TCPMeOH), and three toxaphene congeners (Cl 7 ‐chlorobornane [CHB] [Hp‐sed], Cl 8 ‐CHB [T2], and Cl 9 ‐CHB [T12]). Tris(4‐chlorophenyl)methane (half‐life [ t 1/2 ] = 65 d) was more persistent than TCPMeOH ( t 1/2 = 20 d), and TCPMe was not biotransformed to TCPMeOH by rainbow trout. Cl 7 ‐chlorobornane ( t 1/2 = 32 d) was more rapidly eliminated, and appears to be more readily metabolized, than Cl 8 ‐CHB ( t 1/2 = 43 d) and Cl 9 ‐CHB ( t 1/2 = 42 d). With the exception of TCPMeOH, Cl 7 ‐CHB, and PCB 18, all of the OCs had biomagnification factors (BMFs) >1, implying a potential to biomagnify. Half‐lives had a significant curvilinear relationship with K ow ( R 2 = 0.85, p < 0.001), with a maximum t 1/2 for OCs with log K ow ∼ 7.0. Decreasing t 1/2 for OCs of log K ow > 7.0 may be related to slow kinetics of these super hydrophobic OCs and the short exposure phase, which results in insufficient time for the super hydrophobic OCs to reach slower clearing compartments of the rainbow trout. Assimilation efficiency was not as well described by K ow as by t 1/2 and BMF, although a significant curvilinear relationship was observed ( R 2 = 0.53, p = 0.004). The BMF had a significant curvilinear relationship with log K ow ( R 2 = 0.84, p < 0.001). Recalcitrant OCs with a log K ow of ∼7.0 would appear to have the greatest potential for food chain biomagnification in fish.
Dietary accumulation of 23 hydrophobic organochlorines (OCs) by juvenile rainbow trout (Oncorhynchus mykiss) was studied with the objective of obtaining relationships between bioaccumulation parameters and the octanol/water partition coefficient (Kow). A wide range of OCs were used including 16 polychlorinated biphenyls (PCBs 18, 28, 44, 52, 66, 101, 105, 118, 128, 138, 153, 187, 189, 195, 206, and 209), hexachlorobenzene, mirex, tris(4‐chlorophenyl)methane (TCPMe), tris(4‐chlorophenyl)methanol (TCPMeOH), and three toxaphene congeners (Cl7‐chlorobornane [CHB] [Hp‐sed], Cl8‐CHB [T2], and Cl9‐CHB [T12]). Tris(4‐chlorophenyl)methane (half‐life [t1/2] = 65 d) was more persistent than TCPMeOH (t1/2 = 20 d), and TCPMe was not biotransformed to TCPMeOH by rainbow trout. Cl7‐chlorobornane (t1/2 = 32 d) was more rapidly eliminated, and appears to be more readily metabolized, than Cl8‐CHB (t1/2 = 43 d) and Cl9‐CHB (t1/2 = 42 d). With the exception of TCPMeOH, Cl7‐CHB, and PCB 18, all of the OCs had biomagnification factors (BMFs) >1, implying a potential to biomagnify. Half‐lives had a significant curvilinear relationship with Kow (R2 = 0.85, p < 0.001), with a maximum t1/2 for OCs with log Kow ∼ 7.0. Decreasing t1/2 for OCs of log Kow > 7.0 may be related to slow kinetics of these super hydrophobic OCs and the short exposure phase, which results in insufficient time for the super hydrophobic OCs to reach slower clearing compartments of the rainbow trout. Assimilation efficiency was not as well described by Kow as by t1/2 and BMF, although a significant curvilinear relationship was observed (R2 = 0.53, p = 0.004). The BMF had a significant curvilinear relationship with log Kow (R2 = 0.84, p < 0.001). Recalcitrant OCs with a log Kow of ∼7.0 would appear to have the greatest potential for food chain biomagnification in fish.
The dietary accumulation of 23 hydrophobic organochlorines (OC) by juvenile rainbow trout (Oncorhynchus mykiss) was studied to determine relationships between bioaccumulation parameters and the octanol/water partition coefficient (Kow). Three toxaphene congeners, Cl(7)-chlorobornane (CHB), Cl(8)-CHB and Cl(9)-CHB were tested, together with tris(4-chlorophenyl)methane (TCPMe) and TCP-methanol, giving half-life values of 32, 43, 42, 65 and 20 d, respectively. Cl(7)-CHB was more rapidly eliminated, and more readily metabolized than Cl(8)- or Cl(9)-CHB. All 16 polychlorinated biphenyls (PCB), except PCB-18, had biomagnification factors (BMF) greater than 1. Decreasing half-lives for OC with Kow greater than 7.0 were related to slow kinetics of the superhydrophobic compounds. Half-lives had a significant curvilinear relationship with Kow. The BMF had a similar relationship indicating that the internal kinetics of contaminants in fish play a significant role in their fate and the length of exposure of superhydrophobic OC effects the half-life. There are 57 references.
Author Fisk, Aaron T.
Muir, Derek C.G.
Cymbalisty, Chris D.
Norstrom, Ross J.
Author_xml – sequence: 1
  givenname: Aaron T.
  surname: Fisk
  fullname: Fisk, Aaron T.
  organization: Department of Soil Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
– sequence: 2
  givenname: Ross J.
  surname: Norstrom
  fullname: Norstrom, Ross J.
  organization: National Wildlife Research Center, Environment Canada, 100 Gamelin Boulevard, Hull, Quebec K1A 0H3, Canada
– sequence: 3
  givenname: Chris D.
  surname: Cymbalisty
  fullname: Cymbalisty, Chris D.
  organization: Freshwater Institute, Department of Fisheries and Oceans, 501 University Crescent, Winnipeg, Manitoba R3T 2N6, Canada
– sequence: 4
  givenname: Derek C.G.
  surname: Muir
  fullname: Muir, Derek C.G.
  email: derek.muir@cciw.ca
  organization: Freshwater Institute, Department of Fisheries and Oceans, 501 University Crescent, Winnipeg, Manitoba R3T 2N6, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2302481$$DView record in Pascal Francis
BookMark eNqFkc1uEzEUhS1UJNLClvUsELtJ_RP_DDsIECpVRQgQ7CyPc80YJuPB9ijkdXhSnE5V1FVW1rW_71xZ5xydDWEAhJ4TvCQY00vIdskFxURiTsUjtCCc01oJos7QAkuGa0mFeoLOU_qJMRFN0yzQ37cesomHylg77abeZB-GygzbagvjFOcxuKo7bGMYu9B6W4X4wwzBdn2IfoD0qnrjwwN9NNHsIENMt0m5Ax-rCPNr6vxY7X3ujvdVsLlk9Zd7U_CjmP1thA3gnLcehvwUPXamT_Ds7rxAX9-_-7L-UF9_3FytX1_XdoW5qJlxijW24YCVNEZI7gBazOWWufJZqRrSWhBESOHKaFrZCAlUtkSCKiy7QC_n3DGG3xOkrHc-Weh7M0CYkiaCNZwoehpcrRQmlJ8GmSAcM1XA5QzaGFKK4PQY_a7UognWx3J1KVf_L7cIL-6STbKmd9EM1qd7izJMV4oUrJmxve_hcCJUF_LBinp2fcrw59418ZcWkkmuv91s9Hf1efOpLNJr9g_whsq4
CODEN ETOCDK
CitedBy_id crossref_primary_10_1016_j_ecoenv_2017_07_062
crossref_primary_10_1016_S0003_2670_01_01208_9
crossref_primary_10_1016_j_envpol_2004_05_027
crossref_primary_10_1016_j_scitotenv_2007_04_026
crossref_primary_10_1021_es502886n
crossref_primary_10_1016_j_envpol_2023_122355
crossref_primary_10_1002_etc_5620191114
crossref_primary_10_1897_08_240_1
crossref_primary_10_1021_es101247e
crossref_primary_10_1080_10629360902726031
crossref_primary_10_1016_j_aquatox_2007_05_008
crossref_primary_10_1016_j_chemosphere_2008_09_033
crossref_primary_10_1002_etc_175
crossref_primary_10_1016_S0380_1330_04_70350_0
crossref_primary_10_1080_02652030601064821
crossref_primary_10_1016_j_marpolbul_2005_08_008
crossref_primary_10_1021_acs_est_6b01796
crossref_primary_10_1016_j_envpol_2014_10_007
crossref_primary_10_1021_es1038529
crossref_primary_10_1002_mcs_10007
crossref_primary_10_1016_j_envres_2024_119035
crossref_primary_10_1002_etc_2377
crossref_primary_10_1016_S0003_2670_01_01320_4
crossref_primary_10_1007_s00128_010_9978_z
crossref_primary_10_1039_C5CP06611E
crossref_primary_10_1002_etc_5620190826
crossref_primary_10_1016_j_chemosphere_2011_01_017
crossref_primary_10_1016_S0025_326X_03_00369_2
crossref_primary_10_1039_C7EN01139C
crossref_primary_10_1021_acs_est_8b02497
crossref_primary_10_1021_acs_est_1c07932
crossref_primary_10_1016_S0045_6535_99_00157_5
crossref_primary_10_1021_es0011966
crossref_primary_10_1016_j_ecolmodel_2020_109224
crossref_primary_10_1016_j_envpol_2008_09_025
crossref_primary_10_1016_j_scitotenv_2004_10_034
crossref_primary_10_1016_j_chemosphere_2004_09_058
crossref_primary_10_1002_etc_2023
crossref_primary_10_1016_S0269_7491_01_00144_0
crossref_primary_10_1139_f00_045
crossref_primary_10_1111_1365_2664_13054
crossref_primary_10_1897_03_367
crossref_primary_10_1016_j_envpol_2010_09_001
crossref_primary_10_1186_s40064_016_3544_z
crossref_primary_10_1016_j_envint_2011_06_005
crossref_primary_10_1897_IEAM_2008_089_1
crossref_primary_10_1007_s00244_007_9130_1
crossref_primary_10_1080_10659360500474623
crossref_primary_10_1007_s11356_013_2234_4
crossref_primary_10_1016_j_scitotenv_2018_08_409
crossref_primary_10_1126_science_1138275
crossref_primary_10_1016_S0269_7491_01_00132_4
crossref_primary_10_1021_acs_est_6b00201
crossref_primary_10_1016_j_aquatox_2007_10_006
crossref_primary_10_1016_j_aquatox_2012_01_024
crossref_primary_10_1016_j_chemosphere_2023_140221
crossref_primary_10_1002_etc_5620200822
crossref_primary_10_1007_s11356_018_2528_7
crossref_primary_10_1016_j_chemosphere_2017_07_009
crossref_primary_10_1002_etc_5620190606
crossref_primary_10_1016_j_ecolind_2015_06_026
crossref_primary_10_1021_acs_est_8b03922
crossref_primary_10_1016_j_chemosphere_2012_05_081
crossref_primary_10_1016_j_foodchem_2016_01_097
crossref_primary_10_1002_grl_50248
crossref_primary_10_1016_S0045_6535_02_00128_5
crossref_primary_10_1002_ieam_1599
crossref_primary_10_1016_j_aquatox_2007_06_016
crossref_primary_10_3390_ijerph2005020012
crossref_primary_10_1002_etc_4869
crossref_primary_10_1016_j_chemosphere_2011_12_036
crossref_primary_10_1007_s00244_006_0176_2
crossref_primary_10_1016_j_ecoenv_2014_05_013
crossref_primary_10_1002_etc_2561
crossref_primary_10_1002_etc_5620210316
crossref_primary_10_1007_s11356_020_11155_7
crossref_primary_10_1002_etc_3535
crossref_primary_10_1016_j_scitotenv_2015_05_049
crossref_primary_10_1016_j_scitotenv_2016_07_057
crossref_primary_10_1002_etc_5620220126
crossref_primary_10_1897_08_058_1
crossref_primary_10_1002_etc_5620220125
crossref_primary_10_1007_s11368_011_0448_y
crossref_primary_10_1016_j_scitotenv_2019_02_351
crossref_primary_10_1002_ieam_1351
crossref_primary_10_1016_j_scitotenv_2016_12_116
crossref_primary_10_1897_08_582_1
crossref_primary_10_1016_j_scitotenv_2019_03_038
crossref_primary_10_1016_j_envint_2008_04_001
crossref_primary_10_1016_j_marpolbul_2015_09_020
crossref_primary_10_1002_etc_21
crossref_primary_10_1016_j_fct_2008_01_028
crossref_primary_10_1016_j_aquatox_2006_10_003
crossref_primary_10_1065_espr199910_010
crossref_primary_10_1016_j_scitotenv_2021_149448
crossref_primary_10_3389_fmars_2023_1244434
crossref_primary_10_1007_s10661_023_12033_8
crossref_primary_10_1007_s11356_015_4383_0
crossref_primary_10_1016_S0025_326X_01_00038_8
crossref_primary_10_1021_es903348z
crossref_primary_10_1039_C5EM00028A
crossref_primary_10_1016_j_chemosphere_2016_06_053
crossref_primary_10_1016_j_marenvres_2012_06_006
crossref_primary_10_1007_s11270_008_9803_z
crossref_primary_10_1080_10807030701655897
crossref_primary_10_1002_etc_2229
crossref_primary_10_1016_j_marpolbul_2004_11_046
crossref_primary_10_1021_es9901967
crossref_primary_10_1007_s00244_011_9730_7
crossref_primary_10_1016_j_envpol_2016_12_060
crossref_primary_10_1016_S0269_7491_98_00068_2
crossref_primary_10_1002_etc_2227
crossref_primary_10_1897_06_122R_1
crossref_primary_10_1016_j_scitotenv_2020_141577
crossref_primary_10_1897_08_289_1
crossref_primary_10_1016_j_aquatox_2022_106343
crossref_primary_10_1016_j_envpol_2015_08_045
crossref_primary_10_1016_j_jhazmat_2014_03_058
crossref_primary_10_1080_15320383_2013_726297
crossref_primary_10_1007_s00244_010_9641_z
crossref_primary_10_1016_j_scitotenv_2016_03_191
crossref_primary_10_1016_j_scitotenv_2022_160095
crossref_primary_10_1016_j_scitotenv_2013_11_137
crossref_primary_10_1002_etc_47
crossref_primary_10_1016_j_envpol_2016_06_061
crossref_primary_10_1016_j_envint_2010_03_010
crossref_primary_10_1016_j_marpolbul_2013_05_028
crossref_primary_10_1007_s10661_013_3249_5
crossref_primary_10_1080_02772240410001665445
crossref_primary_10_1016_j_envpol_2007_10_025
crossref_primary_10_1016_j_scitotenv_2017_10_288
crossref_primary_10_1016_S0269_7491_01_00278_0
crossref_primary_10_1016_j_marenvres_2011_10_006
crossref_primary_10_1093_chromsci_bmaa048
crossref_primary_10_1021_es103158s
crossref_primary_10_1080_00032719_2021_1946554
crossref_primary_10_1080_10934529_2010_506114
crossref_primary_10_1016_j_fluid_2014_01_017
crossref_primary_10_1021_acs_est_6b05130
crossref_primary_10_1016_j_envpol_2008_11_001
crossref_primary_10_1080_00498254_2018_1463475
crossref_primary_10_1016_j_chemosphere_2007_05_080
crossref_primary_10_1007_s00128_013_1038_z
crossref_primary_10_1002_etc_5620210231
crossref_primary_10_1016_j_jhazmat_2012_12_046
crossref_primary_10_1016_S0045_6535_02_00841_X
crossref_primary_10_1016_S0300_483X_02_00142_7
crossref_primary_10_1897_IEAM_2009_004_1
crossref_primary_10_1007_s10646_012_0862_y
crossref_primary_10_1002_etc_5233
crossref_primary_10_1897_03_545
crossref_primary_10_1002_qsar_200390022
crossref_primary_10_1016_S0300_483X_00_00374_7
crossref_primary_10_1007_s11368_015_1245_9
crossref_primary_10_7202_037482ar
crossref_primary_10_1016_j_chemosphere_2005_09_031
crossref_primary_10_1021_acs_est_9b07888
crossref_primary_10_1016_S0045_6535_99_00478_6
crossref_primary_10_1021_es902911a
crossref_primary_10_1155_2013_205621
crossref_primary_10_1007_BF02987503
crossref_primary_10_1016_j_envpol_2024_124421
crossref_primary_10_1007_s00128_008_9374_0
crossref_primary_10_1016_j_chemosphere_2013_07_031
crossref_primary_10_1002_etc_5620210919
crossref_primary_10_1016_j_scitotenv_2009_02_027
crossref_primary_10_1897_06_288R_1
crossref_primary_10_1897_07_462_1
crossref_primary_10_1007_s10661_015_4704_2
crossref_primary_10_1021_es302166p
crossref_primary_10_1002_etc_3637
crossref_primary_10_1039_C4TA07097F
crossref_primary_10_1016_j_chemosphere_2010_10_087
crossref_primary_10_1016_j_envpol_2024_123460
crossref_primary_10_1016_j_chemosphere_2004_04_034
crossref_primary_10_1016_j_chemosphere_2014_04_019
crossref_primary_10_1016_S0048_9697_99_00482_9
crossref_primary_10_1002_etc_2541
crossref_primary_10_1897_03_518
crossref_primary_10_1002_etc_349
crossref_primary_10_1016_j_scitotenv_2022_159068
crossref_primary_10_1016_S0045_6535_01_00278_8
crossref_primary_10_1897_05_329R_1
crossref_primary_10_1017_S0376892911000269
crossref_primary_10_1016_S0380_1330_02_70562_5
crossref_primary_10_1007_s00244_009_9376_x
crossref_primary_10_3390_foods9091162
crossref_primary_10_1007_s00216_016_9887_z
crossref_primary_10_1016_j_marpolbul_2016_02_016
crossref_primary_10_1016_j_chemosphere_2012_03_088
crossref_primary_10_1021_es503089c
crossref_primary_10_1002_etc_5620190214
crossref_primary_10_1897_08_452_1
crossref_primary_10_1002_ieam_216
crossref_primary_10_1016_j_envres_2016_03_042
crossref_primary_10_1093_toxsci_kfr105
crossref_primary_10_1002_ieam_217
crossref_primary_10_1016_j_ecolmodel_2020_109196
crossref_primary_10_1016_j_cej_2012_12_030
crossref_primary_10_1007_s00244_017_0383_z
crossref_primary_10_1002_etc_5620180412
crossref_primary_10_1039_C9EN01277J
crossref_primary_10_1039_D2NJ03461A
crossref_primary_10_1016_j_jconrel_2019_07_027
crossref_primary_10_1016_j_envpol_2018_08_067
crossref_primary_10_1016_j_jenvman_2011_12_037
crossref_primary_10_1021_acs_est_5b02500
crossref_primary_10_1139_f05_241
crossref_primary_10_1577_A03_028_1
crossref_primary_10_1016_j_chemosphere_2018_01_103
crossref_primary_10_1016_j_marpolbul_2012_11_006
crossref_primary_10_1002_etc_3932
crossref_primary_10_1016_j_aquaculture_2008_08_035
crossref_primary_10_1016_j_ntt_2013_07_001
crossref_primary_10_1897_03_221
crossref_primary_10_1016_j_chemosphere_2005_07_064
crossref_primary_10_1365_s10337_010_1666_y
crossref_primary_10_1016_S0269_7491_99_00316_4
crossref_primary_10_1007_s00128_008_9605_4
crossref_primary_10_1016_j_jglr_2023_102252
crossref_primary_10_1016_j_aquatox_2011_06_021
crossref_primary_10_1897_03_462
crossref_primary_10_1021_es990871c
crossref_primary_10_1897_02_501a
crossref_primary_10_1897_IEAM_2007_057_1
crossref_primary_10_1002_etc_2734
crossref_primary_10_1016_j_ecolmodel_2004_05_009
crossref_primary_10_1016_j_envres_2019_108986
crossref_primary_10_1021_es803397x
crossref_primary_10_1016_j_aquatox_2016_04_017
crossref_primary_10_1021_acs_jafc_9b03643
crossref_primary_10_1139_f07_088
crossref_primary_10_1002_etc_4599
crossref_primary_10_1002_etc_1761
crossref_primary_10_1016_j_envpol_2018_05_001
crossref_primary_10_1016_j_envres_2018_02_035
crossref_primary_10_1002_etc_3029
crossref_primary_10_1016_j_chemosphere_2019_05_199
crossref_primary_10_1039_B918327B
crossref_primary_10_1002_etc_5620190903
crossref_primary_10_1007_s10646_019_02111_4
crossref_primary_10_1002_etc_5620190908
crossref_primary_10_1038_nnano_2008_110
crossref_primary_10_1086_657046
crossref_primary_10_1016_j_scitotenv_2018_09_074
crossref_primary_10_1021_es506251q
crossref_primary_10_1016_j_jchromb_2019_02_003
crossref_primary_10_1021_acs_est_2c00310
crossref_primary_10_1002_etc_4368
crossref_primary_10_1897_03_438
crossref_primary_10_1002_etc_662
crossref_primary_10_1016_j_ecoenv_2007_12_003
crossref_primary_10_1021_acs_est_5b02727
crossref_primary_10_1897_08_015_1
crossref_primary_10_1016_S1382_6689_02_00126_6
crossref_primary_10_1016_S0166_445X_01_00246_6
crossref_primary_10_1016_j_envint_2020_105919
crossref_primary_10_1897_05_107R1_1
crossref_primary_10_1016_S0269_7491_00_00171_8
crossref_primary_10_1016_j_marpolbul_2019_04_024
crossref_primary_10_1021_es104328r
crossref_primary_10_1016_j_marpolbul_2016_03_019
crossref_primary_10_1016_j_yrtph_2024_105651
crossref_primary_10_1016_S0380_1330_98_70872_X
crossref_primary_10_1897_07_310R_1
crossref_primary_10_1002_etc_5620211114
crossref_primary_10_1016_j_chemosphere_2006_08_002
crossref_primary_10_1016_S0166_445X_97_00103_3
crossref_primary_10_1002_etc_5224
crossref_primary_10_1021_es0715849
crossref_primary_10_1021_es204533m
crossref_primary_10_1016_j_scitotenv_2006_11_006
crossref_primary_10_1897_03_336
crossref_primary_10_1007_s00244_004_0064_6
crossref_primary_10_1016_j_chemosphere_2009_09_022
crossref_primary_10_1016_j_scitotenv_2018_04_077
crossref_primary_10_1007_s11356_021_15861_8
crossref_primary_10_1016_S0045_6535_02_00149_2
crossref_primary_10_1016_j_chemosphere_2019_06_217
Cites_doi 10.1002/etc.5620120412
10.1139/f90-227
10.1139/f95-855
10.1002/etc.5620080306
10.1021/es00011a011
10.1021/es50002a608
10.1080/02772248409357024
10.1021/es00139a013
10.1002/etc.5620151019
10.1021/es00033a020
10.1021/es9601503
10.1002/etc.5620120316
10.1021/es00120a003
10.1016/S0166-445X(96)00817-X
10.1021/es00169a005
10.1016/0147-6513(92)90076-F
10.1016/0045-6535(85)90196-1
10.1002/etc.5620100912
10.1021/es00035a014
10.1006/eesa.1994.1038
10.1007/BF01065333
10.1021/es00169a004
10.1016/0269-7491(96)00006-1
10.1021/es00008a020
10.1016/S0048-9697(96)05306-5
10.1016/0147-6513(88)90054-1
10.1126/science.269.5221.240
10.1016/0045-6535(88)90066-5
10.1021/es00170a010
10.1016/0043-1354(85)90201-5
10.1021/es00099a008
10.1021/es950622y
10.1139/f79-146
10.1016/0045-6535(81)90082-5
10.1002/etc.5620150818
10.1021/es00033a009
10.1080/10629369308028814
10.1139/f88-026
10.1002/etc.5620050305
10.1007/978-1-4612-3850-8_1
10.1016/0045-6535(96)00246-9
10.1016/0269-7491(96)00017-6
10.1016/S0380-1330(94)71145-X
10.1021/es00131a005
10.1016/0045-6535(88)90207-X
10.1139/f83-160
10.1016/0045-6535(85)90129-8
10.1002/etc.5620110505
10.1016/0045-6535(88)90040-9
10.1021/es00166a011
ContentType Journal Article
Copyright Copyright © 1998 SETAC
1998 INIST-CNRS
Copyright_xml – notice: Copyright © 1998 SETAC
– notice: 1998 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
7QH
7ST
C1K
SOI
7TN
7TV
7U7
7UA
F1W
H95
H97
L.G
DOI 10.1002/etc.5620170526
DatabaseName Istex
Pascal-Francis
CrossRef
Aqualine
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Oceanic Abstracts
Pollution Abstracts
Toxicology Abstracts
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aqualine
Environment Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Oceanic Abstracts
Toxicology Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Pollution Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
DatabaseTitleList Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

Aqualine
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 1552-8618
EndPage 961
ExternalDocumentID 10_1002_etc_5620170526
2302481
ETC5620170526
ark_67375_WNG_X8SGQ813_C
Genre article
GroupedDBID ---
--K
-~X
..I
.3N
.GA
.Y3
05W
0R~
10A
1B1
1OB
1OC
29G
31~
33P
36B
3SF
3V.
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X2
7X7
7XC
8-0
8-1
8-3
8-4
8-5
88E
88I
8C1
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAFWJ
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABEJV
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
D0L
D1I
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GNUQQ
GODZA
GUQSH
GWYGA
H.T
H.X
HCIFZ
HF~
HGLYW
HMCUK
HVGLF
HZ~
IHE
IX1
J0M
KB.
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0K
M1P
M2O
M2P
M41
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
NQ-
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
R.K
RIWAO
RJQFR
RNS
ROL
RPZ
RWI
RX1
SAMSI
SUPJJ
TWZ
UB1
UKHRP
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WUPDE
WXSBR
WYISQ
XG1
XIH
XV2
YCJ
ZZTAW
~02
~IA
~KM
~WT
AAPBV
ABHUG
ABPTK
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IQODW
WRC
5WD
AAYXX
ACRPL
ACYXJ
ADIPN
CITATION
OBOKY
OWPYF
7QH
7ST
C1K
SOI
7TN
7TV
7U7
7UA
F1W
H95
H97
L.G
ID FETCH-LOGICAL-c4056-3af839c95e087aa675feeb057d3f1697891bce61676f697ab7967e27b17e85fe3
IEDL.DBID DR2
ISSN 0730-7268
IngestDate Wed Dec 04 00:32:27 EST 2024
Wed Dec 04 15:25:26 EST 2024
Wed Dec 04 11:48:41 EST 2024
Fri Dec 06 03:07:29 EST 2024
Sun Oct 29 17:07:38 EDT 2023
Sat Aug 24 01:00:20 EDT 2024
Wed Oct 30 09:55:34 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Salmonidae
Water
Insecticide
Octanol
Hydrophobic compound
Partition coefficient
Oncorhynchus mykiss
Polychlorobiphenyl
Vertebrata
Organochlorine compounds
Chlorocarbon
Pisces
Camphechlor
Biological accumulation
Biomagnification
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4056-3af839c95e087aa675feeb057d3f1697891bce61676f697ab7967e27b17e85fe3
Notes ark:/67375/WNG-X8SGQ813-C
ArticleID:ETC5620170526
istex:1FD48BF1482F78EFBDA34E81070E73BCE6A047EE
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 13615038
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_16395182
proquest_miscellaneous_14480125
proquest_miscellaneous_13615038
crossref_primary_10_1002_etc_5620170526
pascalfrancis_primary_2302481
wiley_primary_10_1002_etc_5620170526_ETC5620170526
istex_primary_ark_67375_WNG_X8SGQ813_C
PublicationCentury 1900
PublicationDate May 1998
PublicationDateYYYYMMDD 1998-05-01
PublicationDate_xml – month: 05
  year: 1998
  text: May 1998
PublicationDecade 1990
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Pensacola, FL
PublicationTitle Environmental toxicology and chemistry
PublicationTitleAlternate Environmental Toxicology and Chemistry
PublicationYear 1998
Publisher Wiley Periodicals, Inc
SETAC
Publisher_xml – name: Wiley Periodicals, Inc
– name: SETAC
References Bremle G, Okla L, Larsson P. 1995. Uptake of PCBs in fish in a contaminated river system: Bioconcentration factors measured in the field. Environ Sci Technol 29: 2010-2015.
Porte C, Albaiges J. 1993. Bioaccumulation patterns of hydrocarbons and polychlorinated biphenyls in bivalves, crustaceans, and fishes. Arch Environ Contam Toxicol 26: 273-281.
Koslowski SE, Metcalfe CD, Lazar R, Haffner GD. 1994. The distribution of 42 PCBs, including three coplanar congeners, in the food web of the western basin of Lake Erie. J Great Lakes Res 20: 260-270.
Swackhamer DL, Hites RA. 1988. Occurrence and bioaccumulation of organochlorine compounds in fishes from Siskiwit Lake, Isle Royale, Lake Superior. Environ Sci Technol 22: 543-548.
Coristine S, Haffner GD, Ciborowski JJH, Lazar R, Nanni ME, Metcalfe CD. 1996. Elimination rates of selected di-ortho, mono-ortho, and non-ortho substituted polychlorinated biphenyls in rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 15: 1382-1387.
Niimi AJ, Oliver BG. 1988. Influence of molecular weight and molecular volume on dietary adsorption and assimilation efficiency of chemicals by fishes. Can J Fish Aquat Sci 45: 222-227.
Lyman WS, Reehl WF, Rosenblatt RH. 1982. Handbook of Chemical-Physical Property Estimation Methods. McGraw-Hill, New York, NY, USA.
Sijm DTHM, Seinen W, Opperhuizen A. 1992. Life-cycle biomagnification study in fish. Environ Sci Technol 26: 2162-2174.
Bintein S, Devillers J, Karcher W. 1993. Nonlinear dependence of fish bioconcentration on n-octanol/water partition coefficient. SAR QSAR Environ Res 1: 29-39.
Evans MS, Noguchi GE, Rice CP. 1991. The biomagnification of polychlorinated biphenyls, toxaphene, and DDT compounds in a Lake Michigan offshore food web. Arch Environ Contam Toxicol 20: 87-93.
de Wolf W, de Bruijn JHM, Seinen W, Hermens JLM. 1992. Influence of biotransformation on the relationship between bio-concentration factors and octanol-water partition coefficients. Environ Sci Technol 26: 1197-1201.
Thomann RV, Connolly JP, Parkerton TF. 1992. An equilibrium model of organic chemical accumulation in aquatic food webs with sediment interaction. Environ Toxicol Chem 11: 615-629.
Clark KE, Mackay D. 1991. Dietary uptake and biomagnification of four chlorinated hydrocarbons by guppies. Environ Toxicol Chem 10: 1205-1217.
Thomann RV, Connolly JP. 1984. Model of PCB in the Lake Michigan lake trout food chain. Environ Sci Technol 18: 65-71.
Bruggeman WA, Opperhuizen A, Wijbenga A, Hutzinger O. 1984. Bioaccumulation of super-lipophilic chemicals in fish. Toxicol Environ Chem 7: 173-189.
Gobas FAPC, McCorquodale JR, Haffner GD. 1993. Intestinal absorption and biomagnification of organochlorines. Environ Toxicol Chem 12: 567-576.
Fisk AT, Cymbalisty CD, Bergman A, Muir DCG. 1996. Dietary accumulation of C12 and C16 chlorinated alkanes by juvenile rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 15: 1775-1782.
Neely WB. 1980. Chemicals in the Environment. Marcel Dekker, New York, NY, USA.
Hawker DW, Connell DW. 1988. Octanol-water partition coefficients of polychlorinated biphenyl congeners. Environ Sci Technol 22: 382-387.
Glassmeyer ST, de Vault DS, Myers TR, Hites RA. 1997. Toxaphene in Great Lakes fish: A temporal, spatial, and trophic study. Environ Sci Technol 31: 84-88.
Niimi AJ. 1996. Evaluation of PCBs and PCDD/Fs retention by aquatic organisms. Sci Total Environ 192: 123-150.
Opperhuizen A, van der Velde EW, Gobas FAPC, Liem DAK, van der Steen JMD. 1985. Relationship between bioconcentration in fish and steric factors of hydrophobic chemicals. Chemosphere 14: 1871-1896.
Connell DW, Hawker DW. 1988. Use of polynomial expressions to describe the bioconcentration of hydrophobic chemicals by fish. Ecotoxicol Environ Saf 16: 242-257.
Gobas FAPC, Clark KE, Shiu WY, Mackay D. 1989. Bioconcentration of polybrominated benzenes and biphenyls and related superhydrophobic chemicals in fish: Role of bioavailability and elimination into feces. Environ Toxicol Chem 8: 231-245.
Muir DCG, Yarechewski AL, Knoll A, Webster GRB. 1986. Bioconcentration and disposition of 1,3,6,8-tetrachlorodibenzo-p-dioxin and octachlorodibenzo-p-dioxin by rainbow trout and fathead minnows. Environ Toxicol Chem 5: 261-272.
Gobas FAPC, Muir DCG, Mackay D. 1988. Dynamics of dietary bioaccumulation and faecal elimination of hydrophobic organic chemicals in fish. Chemosphere 17: 943-962.
Muir DCG, Ford CA, Rosenberg B, Norstrom RJ, Simon M, Beland P. 1996. Persistent organochlorines in beluga whale (Delphinapterus leucas) from the St Lawrence River estuary-I. Concentrations and patterns of specific PCBs, chlorinated pesticides and polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ Pollut 93: 219-234.
Niimi AJ, Palazzo V. 1985. Temperature effect on the elimination of pentachlorophenol, hexachlorobenzene and mirex by rainbow trout (Salmo gairdneri). Water Res 19: 205-207.
Sijm DTHM, van der Linde A. 1995. Size-dependent bioconcentration kinetics of hydrophobic organic chemicals in fish based on diffusive mass transfer and allometric relationships. Environ Sci Technol 29: 2769-2777.
Kidd KA, Schindler DW, Muir DCG, Lockhart WL, Hesslein RH. 1995. High concentrations of toxaphene in fishes from a subarctic lake. Science 269: 240-242.
Suntio LR, Shiu WY, Mackay D, Seiber JN, Glotfelty D. 1988. Critical review of Henry's law constants for pesticides. Rev Environ Contam Toxicol 103: 1-59.
Chiou CT. 1985. Partition coefficients of organic compounds in lipid-water systems and correlations with fish bioconcentration factors. Environ Sci Technol 19: 57-62.
Fisk AT, Yarechewski AL, Metner DA, Lockhart WL, Evans RE, Muir DCG. 1997. Accumulation, elimination and hepatic mixedfunction oxidase enzyme induction in juvenile rainbow trout and lake whitefish exposed to dietary 2,3,7,8-tetrachlorodibenzo-p-dioxin. Aquat Toxicol 37: 201-220.
Mackay D. 1982. Correlation of bioconcentration factors. Environ Sci Technol 16: 274-278.
Jarman WM, Simon M, Norstrom RJ, Burns SA, Bacon CA, Simonelt BRT, Risebrough RW. 1992. Global distribution of tris(4-chlorophenyl)methanol in high trophic level birds and mammals. Environ Sci Technol 26: 1770-1774.
Bidleman TF, Walla MD, Muir DCG, Stern GA. 1993. Selective accumulation of polychlorocamphenes in aquatic biota from the Canadian Arctic. Environ Toxicol Chem 12: 701-709.
Stern GA, Loewen MD, Miskimmin BM, Muir DCG, Westmore JB. 1996. Characterization of two major toxaphene components in treated lake sediment. Environ Sci Technol 30: 2251-2258.
Chessells M, Hawker DW, Connell DW. 1992. Influence of solubility in lipid on bioconcentration of hydrophobic compounds. Ecotoxicol Environ Saf 23: 260-273.
Rasmussen JB, Rowan DJ, Lean DRS, Carey JH. 1990. Food chain structure in Ontario lakes determines PCB levels in lake trout (Salvelinus namaycush) and other pelagic fish. Can J Fish Aquat Sci 47: 2030-2038.
Connolly JP, Pedersen CJ. 1988. A thermodynamic-based evaluation of organic chemical accumulation in aquatic organisms. Environ Sci Technol 22: 99-103.
Oliver BG, Niimi AJ. 1985. Bioconcentration factors of some halogenated organics for rainbow trout: Limitations in their use for prediction of environmental residues. Environ Sci Technol 19: 842-848.
Veith GD, DeFoe DL, Bergstedt BV. 1979. Measuring and estimating the bioconcentration factor of chemicals in fish. J Fish Res Board Can 36: 1040-1048.
Isnard P, Lambert S. 1988. Estimating bioconcentration factors from octanol-water coefficient and aqueous solubility. Chemosphere 17: 21-34.
Bruggeman WA, Martron LBJM, Kooiman D, Hutzinger O. 1981. Accumulation and elimination of di-, tri- and tetra chlorobiphenyls by goldfish after dietary and aqueous exposure. Chemosphere 10: 811-832.
Oliver BG, Niimi AJ. 1988. Trophodynamic analysis of polychlorinated biphenyl congeners and other chlorinated hydrocarbons in the Lake Ontario ecosystem. Environ Sci Technol 22: 388-397.
Muir DCG, Marshall WK, Webster GRB. 1985. Bioconcentration of PCDDs by fish: Effects of molecular structure and water chemistry. Chemosphere 14: 829-833.
Kiriluk RM, Servos MR, Whittle DM, Cabana G, Rasmussen JB. 1995. Using ratios of stable nitrogen and carbon isotopes to characterize the biomagnification of DDE, mirex, and PCB in a Lake Ontario pelagic food web. Can J Fish Aquat Sci 52: 2660-2674.
Stern GA, Muir DCG, Ford CA, Grift NP, Dewailly E, Bidleman TF, Walla MD. 1992. Isolation and identification of two major recalcitrant toxaphene congeners in aquatic biota. Environ Sci Technol 26: 1838-1840.
de Boer J, Wester PG, Evers EHG, Brinkman UAT. 1996. Determination of tris(4-chlorophenyl)methanol and tris(4-chlorophenyl)methane in fish, marine mammals and sediment. Environ Pollut 93: 39-47.
Mackay D, Shiu WY, Ma KC. 1992. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, Vol 1. Lewis, Chelsea, MI, USA.
Devillers J, Bintein S, Domine D. 1996. Comparison of BCF models based on log P. Chemosphere 33: 1047-1065.
Niimi AJ, Oliver BG. 1983. Biological half-lives of polychlorinated biphenyl (PCB) congeners in whole fish and muscle of rainbow trout (Salmo gairdneri). Can J Fish Aquat Sci 40: 1388-1394.
Fox K, Zauke G, Butte W. 1994. Kinetics of bioconcentration and clearance of 28 polychlorinated biphenyl congeners in zebrafish (Brachydanio rerio). Ecotoxicol Environ Saf 28: 99-109.
Schüürmann G, Klein W. 1988. Advances in bioconcentration prediction. Chemosphere 17: 1551-1574.
1993; 26
1995; 52
1982; 16
1979; 36
1991; 10
1988; 16
1988; 17
1989; 8
1988; 103
1996; 93
1996; 30
1993
1992
1994; 28
1992; 11
1993; 1
1996; 15
1994; 20
1996; 33
1985; 19
1993; 12
1990; 47
1997; 31
1997; 37
1984; 7
1991; 20
1986; 5
1988; 22
1986
1983; 40
1988; 45
1995; 269
1996; 192
1984; 18
1982
1992; 26
1980
1995; 29
1992; 1
1992; 23
1981; 10
1985; 14
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_57_2
e_1_2_6_20_2
e_1_2_6_41_2
Lyman WS (e_1_2_6_35_2) 1982
Muir DCG (e_1_2_6_52_2) 1992
e_1_2_6_7_2
e_1_2_6_9_2
Gobas FAPC (e_1_2_6_46_2) 1986
e_1_2_6_3_2
Neely WB (e_1_2_6_36_2) 1980
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_50_2
e_1_2_6_31_2
Mackay D (e_1_2_6_33_2) 1992
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_58_2
e_1_2_6_10_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_42_2
Porte C (e_1_2_6_38_2) 1993; 26
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
References_xml – volume: 18
  start-page: 65
  year: 1984
  end-page: 71
  article-title: Model of PCB in the Lake Michigan lake trout food chain
  publication-title: Environ Sci Technol
– volume: 1
  start-page: 29
  year: 1993
  end-page: 39
  article-title: Nonlinear dependence of fish bioconcentration on ‐octanol/water partition coefficient
  publication-title: SAR QSAR Environ Res
– volume: 15
  start-page: 1382
  year: 1996
  end-page: 1387
  article-title: Elimination rates of selected di‐ , mono‐ , and non‐ substituted polychlorinated biphenyls in rainbow trout ( )
  publication-title: Environ Toxicol Chem
– volume: 52
  start-page: 2660
  year: 1995
  end-page: 2674
  article-title: Using ratios of stable nitrogen and carbon isotopes to characterize the biomagnification of DDE, mirex, and PCB in a Lake Ontario pelagic food web
  publication-title: Can J Fish Aquat Sci
– volume: 30
  start-page: 2251
  year: 1996
  end-page: 2258
  article-title: Characterization of two major toxaphene components in treated lake sediment
  publication-title: Environ Sci Technol
– volume: 47
  start-page: 2030
  year: 1990
  end-page: 2038
  article-title: Food chain structure in Ontario lakes determines PCB levels in lake trout ( ) and other pelagic fish
  publication-title: Can J Fish Aquat Sci
– volume: 16
  start-page: 242
  year: 1988
  end-page: 257
  article-title: Use of polynomial expressions to describe the bioconcentration of hydrophobic chemicals by fish
  publication-title: Ecotoxicol Environ Saf
– volume: 22
  start-page: 382
  year: 1988
  end-page: 387
  article-title: Octanol–water partition coefficients of polychlorinated biphenyl congeners
  publication-title: Environ Sci Technol
– volume: 11
  start-page: 615
  year: 1992
  end-page: 629
  article-title: An equilibrium model of organic chemical accumulation in aquatic food webs with sediment interaction
  publication-title: Environ Toxicol Chem
– volume: 12
  start-page: 701
  year: 1993
  end-page: 709
  article-title: Selective accumulation of polychlorocamphenes in aquatic biota from the Canadian Arctic
  publication-title: Environ Toxicol Chem
– volume: 5
  start-page: 261
  year: 1986
  end-page: 272
  article-title: Bioconcentration and disposition of 1,3,6,8‐tetrachlorodibenzo‐ ‐dioxin and octachlorodibenzo‐ ‐dioxin by rainbow trout and fathead minnows
  publication-title: Environ Toxicol Chem
– volume: 19
  start-page: 205
  year: 1985
  end-page: 207
  article-title: Temperature effect on the elimination of pentachlorophenol, hexachlorobenzene and mirex by rainbow trout ( )
  publication-title: Water Res
– volume: 40
  start-page: 1388
  year: 1983
  end-page: 1394
  article-title: Biological half‐lives of polychlorinated biphenyl (PCB) congeners in whole fish and muscle of rainbow trout ( )
  publication-title: Can J Fish Aquat Sci
– volume: 26
  start-page: 273
  year: 1993
  end-page: 281
  article-title: Bioaccumulation patterns of hydrocarbons and polychlorinated biphenyls in bivalves, crustaceans, and fishes
  publication-title: Arch Environ Contam Toxicol
– volume: 10
  start-page: 811
  year: 1981
  end-page: 832
  article-title: Accumulation and elimination of di‐, tri‐ and tetra chlorobiphenyls by goldfish after dietary and aqueous exposure
  publication-title: Chemosphere
– year: 1982
– volume: 26
  start-page: 1197
  year: 1992
  end-page: 1201
  article-title: Influence of biotransformation on the relationship between bio‐concentration factors and octanol–water partition coefficients
  publication-title: Environ Sci Technol
– volume: 36
  start-page: 1040
  year: 1979
  end-page: 1048
  article-title: Measuring and estimating the bioconcentration factor of chemicals in fish
  publication-title: J Fish Res Board Can
– volume: 103
  start-page: 1
  year: 1988
  end-page: 59
  article-title: Critical review of Henry's law constants for pesticides
  publication-title: Rev Environ Contam Toxicol
– volume: 1
  year: 1992
– volume: 22
  start-page: 99
  year: 1988
  end-page: 103
  article-title: A thermodynamic‐based evaluation of organic chemical accumulation in aquatic organisms
  publication-title: Environ Sci Technol
– volume: 23
  start-page: 260
  year: 1992
  end-page: 273
  article-title: Influence of solubility in lipid on bioconcentration of hydrophobic compounds
  publication-title: Ecotoxicol Environ Saf
– volume: 28
  start-page: 99
  year: 1994
  end-page: 109
  article-title: Kinetics of bioconcentration and clearance of 28 polychlorinated biphenyl congeners in zebrafish ( )
  publication-title: Ecotoxicol Environ Saf
– volume: 14
  start-page: 1871
  year: 1985
  end-page: 1896
  article-title: Relationship between bioconcentration in fish and steric factors of hydrophobic chemicals
  publication-title: Chemosphere
– volume: 16
  start-page: 274
  year: 1982
  end-page: 278
  article-title: Correlation of bioconcentration factors
  publication-title: Environ Sci Technol
– volume: 26
  start-page: 1838
  year: 1992
  end-page: 1840
  article-title: Isolation and identification of two major recalcitrant toxaphene congeners in aquatic biota
  publication-title: Environ Sci Technol
– year: 1993
– volume: 8
  start-page: 231
  year: 1989
  end-page: 245
  article-title: Bioconcentration of polybrominated benzenes and biphenyls and related superhydrophobic chemicals in fish: Role of bioavailability and elimination into feces
  publication-title: Environ Toxicol Chem
– volume: 22
  start-page: 543
  year: 1988
  end-page: 548
  article-title: Occurrence and bioaccumulation of organochlorine compounds in fishes from Siskiwit Lake, Isle Royale, Lake Superior
  publication-title: Environ Sci Technol
– volume: 192
  start-page: 123
  year: 1996
  end-page: 150
  article-title: Evaluation of PCBs and PCDD/Fs retention by aquatic organisms
  publication-title: Sci Total Environ
– volume: 14
  start-page: 829
  year: 1985
  end-page: 833
  article-title: Bioconcentration of PCDDs by fish: Effects of molecular structure and water chemistry
  publication-title: Chemosphere
– volume: 29
  start-page: 2769
  year: 1995
  end-page: 2777
  article-title: Size‐dependent bioconcentration kinetics of hydrophobic organic chemicals in fish based on diffusive mass transfer and allometric relationships
  publication-title: Environ Sci Technol
– volume: 26
  start-page: 2162
  year: 1992
  end-page: 2174
  article-title: Life‐cycle biomagnification study in fish
  publication-title: Environ Sci Technol
– volume: 269
  start-page: 240
  year: 1995
  end-page: 242
  article-title: High concentrations of toxaphene in fishes from a subarctic lake
  publication-title: Science
– start-page: 185
  year: 1992
  end-page: 208
– start-page: 107
  year: 1986
  end-page: 124
– volume: 22
  start-page: 388
  year: 1988
  end-page: 397
  article-title: Trophodynamic analysis of polychlorinated biphenyl congeners and other chlorinated hydrocarbons in the Lake Ontario ecosystem
  publication-title: Environ Sci Technol
– volume: 20
  start-page: 260
  year: 1994
  end-page: 270
  article-title: The distribution of 42 PCBs, including three coplanar congeners, in the food web of the western basin of Lake Erie
  publication-title: J Great Lakes Res
– volume: 93
  start-page: 39
  year: 1996
  end-page: 47
  article-title: Determination of tris(4‐chlorophenyl)methanol and tris(4‐chlorophenyl)methane in fish, marine mammals and sediment
  publication-title: Environ Pollut
– volume: 45
  start-page: 222
  year: 1988
  end-page: 227
  article-title: Influence of molecular weight and molecular volume on dietary adsorption and assimilation efficiency of chemicals by fishes
  publication-title: Can J Fish Aquat Sci
– volume: 33
  start-page: 1047
  year: 1996
  end-page: 1065
  article-title: Comparison of BCF models based on log P
  publication-title: Chemosphere
– volume: 10
  start-page: 1205
  year: 1991
  end-page: 1217
  article-title: Dietary uptake and biomagnification of four chlorinated hydrocarbons by guppies
  publication-title: Environ Toxicol Chem
– volume: 19
  start-page: 842
  year: 1985
  end-page: 848
  article-title: Bioconcentration factors of some halogenated organics for rainbow trout: Limitations in their use for prediction of environmental residues
  publication-title: Environ Sci Technol
– volume: 17
  start-page: 1551
  year: 1988
  end-page: 1574
  article-title: Advances in bioconcentration prediction
  publication-title: Chemosphere
– year: 1980
– volume: 37
  start-page: 201
  year: 1997
  end-page: 220
  article-title: Accumulation, elimination and hepatic mixedfunction oxidase enzyme induction in juvenile rainbow trout and lake whitefish exposed to dietary 2,3,7,8‐tetrachlorodibenzo‐ ‐dioxin
  publication-title: Aquat Toxicol
– volume: 17
  start-page: 21
  year: 1988
  end-page: 34
  article-title: Estimating bioconcentration factors from octanol–water coefficient and aqueous solubility
  publication-title: Chemosphere
– volume: 20
  start-page: 87
  year: 1991
  end-page: 93
  article-title: The biomagnification of polychlorinated biphenyls, toxaphene, and DDT compounds in a Lake Michigan offshore food web
  publication-title: Arch Environ Contam Toxicol
– volume: 15
  start-page: 1775
  year: 1996
  end-page: 1782
  article-title: Dietary accumulation of C and C chlorinated alkanes by juvenile rainbow trout ( )
  publication-title: Environ Toxicol Chem
– volume: 19
  start-page: 57
  year: 1985
  end-page: 62
  article-title: Partition coefficients of organic compounds in lipid–water systems and correlations with fish bioconcentration factors
  publication-title: Environ Sci Technol
– volume: 26
  start-page: 1770
  year: 1992
  end-page: 1774
  article-title: Global distribution of tris(4‐chlorophenyl)methanol in high trophic level birds and mammals
  publication-title: Environ Sci Technol
– volume: 7
  start-page: 173
  year: 1984
  end-page: 189
  article-title: Bioaccumulation of super‐lipophilic chemicals in fish
  publication-title: Toxicol Environ Chem
– volume: 93
  start-page: 219
  year: 1996
  end-page: 234
  article-title: Persistent organochlorines in beluga whale ( ) from the St Lawrence River estuary—I. Concentrations and patterns of specific PCBs, chlorinated pesticides and polychlorinated dibenzo‐ ‐dioxins and dibenzofurans
  publication-title: Environ Pollut
– volume: 17
  start-page: 943
  year: 1988
  end-page: 962
  article-title: Dynamics of dietary bioaccumulation and faecal elimination of hydrophobic organic chemicals in fish
  publication-title: Chemosphere
– volume: 12
  start-page: 567
  year: 1993
  end-page: 576
  article-title: Intestinal absorption and biomagnification of organochlorines
  publication-title: Environ Toxicol Chem
– volume: 31
  start-page: 84
  year: 1997
  end-page: 88
  article-title: Toxaphene in Great Lakes fish: A temporal, spatial, and trophic study
  publication-title: Environ Sci Technol
– volume: 29
  start-page: 2010
  year: 1995
  end-page: 2015
  article-title: Uptake of PCBs in fish in a contaminated river system: Bioconcentration factors measured in the field
  publication-title: Environ Sci Technol
– ident: e_1_2_6_24_2
  doi: 10.1002/etc.5620120412
– ident: e_1_2_6_6_2
  doi: 10.1139/f90-227
– volume-title: Illustrated Handbook of Physical–Chemical Properties and Environmental Fate for Organic Chemicals
  year: 1992
  ident: e_1_2_6_33_2
  contributor:
    fullname: Mackay D
– ident: e_1_2_6_21_2
– volume: 26
  start-page: 273
  year: 1993
  ident: e_1_2_6_38_2
  article-title: Bioaccumulation patterns of hydrocarbons and polychlorinated biphenyls in bivalves, crustaceans, and fishes
  publication-title: Arch Environ Contam Toxicol
  contributor:
    fullname: Porte C
– ident: e_1_2_6_45_2
  doi: 10.1139/f95-855
– ident: e_1_2_6_50_2
  doi: 10.1002/etc.5620080306
– ident: e_1_2_6_43_2
  doi: 10.1021/es00011a011
– ident: e_1_2_6_47_2
  doi: 10.1021/es50002a608
– volume-title: Chemicals in the Environment
  year: 1980
  ident: e_1_2_6_36_2
  contributor:
    fullname: Neely WB
– ident: e_1_2_6_2_2
  doi: 10.1080/02772248409357024
– ident: e_1_2_6_3_2
  doi: 10.1021/es00139a013
– ident: e_1_2_6_48_2
  doi: 10.1002/etc.5620151019
– ident: e_1_2_6_29_2
  doi: 10.1021/es00033a020
– ident: e_1_2_6_26_2
  doi: 10.1021/es9601503
– ident: e_1_2_6_40_2
  doi: 10.1002/etc.5620120316
– ident: e_1_2_6_7_2
  doi: 10.1021/es00120a003
– ident: e_1_2_6_49_2
  doi: 10.1016/S0166-445X(96)00817-X
– ident: e_1_2_6_5_2
  doi: 10.1021/es00169a005
– ident: e_1_2_6_55_2
  doi: 10.1016/0147-6513(92)90076-F
– ident: e_1_2_6_56_2
  doi: 10.1016/0045-6535(85)90196-1
– ident: e_1_2_6_22_2
  doi: 10.1002/etc.5620100912
– ident: e_1_2_6_18_2
  doi: 10.1021/es00035a014
– ident: e_1_2_6_15_2
  doi: 10.1006/eesa.1994.1038
– ident: e_1_2_6_27_2
  doi: 10.1007/BF01065333
– ident: e_1_2_6_32_2
  doi: 10.1021/es00169a004
– ident: e_1_2_6_31_2
  doi: 10.1016/0269-7491(96)00006-1
– ident: e_1_2_6_57_2
  doi: 10.1021/es00008a020
– ident: e_1_2_6_39_2
  doi: 10.1016/S0048-9697(96)05306-5
– ident: e_1_2_6_12_2
  doi: 10.1016/0147-6513(88)90054-1
– ident: e_1_2_6_28_2
  doi: 10.1126/science.269.5221.240
– ident: e_1_2_6_20_2
  doi: 10.1016/0045-6535(88)90066-5
– volume-title: Handbook of Chemical–Physical Property Estimation Methods
  year: 1982
  ident: e_1_2_6_35_2
  contributor:
    fullname: Lyman WS
– ident: e_1_2_6_17_2
  doi: 10.1021/es00170a010
– ident: e_1_2_6_44_2
  doi: 10.1016/0043-1354(85)90201-5
– ident: e_1_2_6_11_2
  doi: 10.1021/es00099a008
– ident: e_1_2_6_30_2
  doi: 10.1021/es950622y
– ident: e_1_2_6_10_2
  doi: 10.1139/f79-146
– ident: e_1_2_6_19_2
  doi: 10.1016/0045-6535(81)90082-5
– ident: e_1_2_6_42_2
  doi: 10.1002/etc.5620150818
– ident: e_1_2_6_23_2
  doi: 10.1021/es00033a009
– ident: e_1_2_6_14_2
  doi: 10.1080/10629369308028814
– ident: e_1_2_6_41_2
  doi: 10.1139/f88-026
– ident: e_1_2_6_51_2
  doi: 10.1002/etc.5620050305
– start-page: 107
  volume-title: QSAR in Environmental Toxicology—II
  year: 1986
  ident: e_1_2_6_46_2
  contributor:
    fullname: Gobas FAPC
– ident: e_1_2_6_34_2
  doi: 10.1007/978-1-4612-3850-8_1
– ident: e_1_2_6_16_2
  doi: 10.1016/0045-6535(96)00246-9
– ident: e_1_2_6_25_2
  doi: 10.1016/0269-7491(96)00017-6
– ident: e_1_2_6_9_2
  doi: 10.1016/S0380-1330(94)71145-X
– ident: e_1_2_6_53_2
  doi: 10.1021/es00131a005
– ident: e_1_2_6_54_2
  doi: 10.1016/0045-6535(88)90207-X
– ident: e_1_2_6_37_2
  doi: 10.1139/f83-160
– ident: e_1_2_6_58_2
  doi: 10.1016/0045-6535(85)90129-8
– ident: e_1_2_6_8_2
  doi: 10.1002/etc.5620110505
– ident: e_1_2_6_13_2
  doi: 10.1016/0045-6535(88)90040-9
– ident: e_1_2_6_4_2
  doi: 10.1021/es00166a011
– start-page: 185
  volume-title: Chemical Dynamics in Fresh Water Ecosystems
  year: 1992
  ident: e_1_2_6_52_2
  contributor:
    fullname: Muir DCG
SSID ssj0016999
Score 2.1367857
Snippet Dietary accumulation of 23 hydrophobic organochlorines (OCs) by juvenile rainbow trout (Oncorhynchus mykiss) was studied with the objective of obtaining...
Dietary accumulation of 23 hydrophobic organochlorines (OCs) by juvenile rainbow trout ( Oncorhynchus mykiss ) was studied with the objective of obtaining...
The dietary accumulation of 23 hydrophobic organochlorines (OC) by juvenile rainbow trout (Oncorhynchus mykiss) was studied to determine relationships between...
Juvenile rainbow trout were exposed to dietary concentrations of 23 organochlorines, which are tabulated, to determine bioaccumulation parameters. The data...
SourceID proquest
crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 951
SubjectTerms Agnatha. Pisces
Animal, plant and microbial ecology
Applied ecology
Biological and medical sciences
Dietary accumulation
Ecotoxicology, biological effects of pollution
Effects of pollution and side effects of pesticides on vertebrates
Fundamental and applied biological sciences. Psychology
Hydrophobic organochlorines
Octanol/water partition coefficient
Oncorhynchus mykiss
Toxaphene congeners
Tris(4-chlorophenyl)methane
Title Dietary accumulation and depuration of hydrophobic organochlorines: Bioaccumulation parameters and their relationship with the octanol/water partition coefficient
URI https://api.istex.fr/ark:/67375/WNG-X8SGQ813-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fetc.5620170526
https://search.proquest.com/docview/13615038
https://search.proquest.com/docview/14480125
https://search.proquest.com/docview/16395182
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQIiQuvBEBFnxAcErbOKntcIN9ComVeKzozfJTrXY3rpJGsPwcfiljp2k3HBYJjo48lmY8jr-xx98g9IoZasuS0JRlhUtDicJUGqtT6TRE2JzqQoW3wx9P6PFp8WE2nV15xd_xQ2wO3MLKiP_rsMClasZb0lDQagSbd-SDIYFzO8tZyOnb_7zhj8poGQtIBjdOGaG8Z22ckPFQfLAr3QwG_hGyJGUDhnJdhYsBBL0KZONOdHgXyV6HLgHlbNSu1Ej__IPe8X-UvIfurGEqftf51X10w1YP0K2DSHF9-RD92l_YFYyKpdbtxboCGJaVwcYu286psHd4fmlqv5x7tdA41o_yeh5T_mzzFr9f-IF4YCG_CNk5TRwpXmHguk_Wmy-WOBwah-_Ya8C0_nz8HZByHQQ7yiWsvY2UGLCTPkKnhwdf947TdbWHVANopGkuHYA1XU7thDMpIZBx1iqAkyZ3MJGMl5nSlmaUUQdNqVhJmSVMZcxy6Js_RjuVr-wThHMDIDDnThmnitzwclKYQlMtZWAHkiRBb_rZFsuO1EN09M1EgMXF1uIJeh2dYdNN1mchFY5NxbeTIzHjX44-8SwXewnaHXjLRgBCPFLwLEEve-8RsIDDrYysrG8bkeWBkz_n1_QoAscPmV7TA3DmFCLFBJHoTX_RSoD5t62n_yL0DN3uXmeG1M_naGdVt3YX4NlKvYhL8DeFHDaF
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgFYJL-RYplPqA4JTdjZPYDjfo1wLtSkArerNsx9GuSpNVdldQfg6_lBlns0s4FAmOjjyWPJmJn53nN4S8EDl3WcZ4KKKkCLFEYahzZ0NdWNhhS24Tg3eHT0Z8eJa8P09bNiHehWn0IVYHbpgZ_nuNCY4H0v21aihMqwertxeEYfwm2YScj5DVtf9ppSAV8cyXkMRADgXjstVtHLB-176zLm2ii78jT1LPwFVFU-OiA0J_h7J-LTq8S0w7i4aCctFbzE3P_vhD4PG_pnmPbC2RKn3ThNZ9csOVD8itA69yffWQ_NyfuDkMS7W1i8tlETCqy5zmbrpo4opWBR1f5XU1HVdmYqkvIVXZsWf9udlr-nZSdcxRiPwSCTozP5L_i0Hrlq83nkwpnhvjc1pZgLXV1_43AMs1GjaqS9RWzqtiwGL6iJwdHpzuDcNlwYfQAm7kYawLwGs2S91ACq1hL1M4ZwBR5nEBb1LILDLW8YgLXkBTG5Fx4ZgwkXAS-saPyUZZle4JoXEOODCWhckLk8S5zAZJnlhutUaBIM0C8qp93Wra6HqoRsGZKfC4Wns8IC99NKy66foC2XAiVV9GR-pcfj76KKNY7QVkpxMuKwPY5bFERgHZbcNHQQ7jjxldumoxU1GMsvyxvKZHgjI_LL2mB0DNFDaLAWE-nP4yKwXuX7e2_8Vol9wenp4cq-N3ow9PyZ3msiYyQZ-RjXm9cDuA1ubmuc_HX9kCOqY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagFYgL5VURoNQHBKfsbpzEdrhBt9vyWvGq2Jvl-KFdlSZRdiMoP6e_lLGz2e1yKBIcHXkszXgcf2OPv0HoGdPUZBmhIYsSG7oShaHURoXSKoiwOVVJ7t4OfxjT45Pk7SSdXHrF3_JDrA7c3Mrw_2u3wCtt-2vSUNCqB5u354Mh9DraTijJHHv-8POKQCqima8g6fw4ZITyjrZxQPqb8hvb0raz8E-XJinnYCnblrjYwKCXkazfikY7SHZKtBkop71mkffUrz_4Hf9Hyzvo9hKn4letY91F10xxD9049BzX5_fRxXBmFjAqlko1Z8sSYFgWGmtTNa1X4dLi6bmuy2pa5jOFfQGpUk19zp-Zv8SvZ-WGuKMhP3PpOXM_kr_DwHWXrTedVdidGrvvuFQAasvv_R8AlWsn2HIuYVUaz4kBW-kDdDI6_HpwHC7LPYQKUCMNY2kBraksNQPOpIRIxhqTA57UsYWJZDyLcmVoRBm10JQ5yygzhOURMxz6xrtoqygL8xDhWAMKjLnNtc2TWPNskOhEUSWloweSJEAvutkWVcvqIVr-ZiLA4mJt8QA9986w6ibrU5cLx1LxbXwkJvzL0ScexeIgQHsb3rISgBiPJDwK0H7nPQJWsLuWkYUpm7mIYkfKH_MreiSO5IekV_QAoJlCqBgg4r3pL1oJMP-69ehfhPbRzY_DkXj_ZvzuMbrVvtR0aaBP0NaibsweQLVF_tSvxt8CBTlV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dietary+Accumulation+and+Depuration+of+Hydrophobic+Organochlorines%3A+Bioaccumulation+Parameters+and+Their+Relationship+with+the+Octanol%2FWater+Partition+Coefficient&rft.jtitle=Environmental+toxicology+and+chemistry&rft.au=Fisk%2C+Aaron+T&rft.au=Norstrom%2C+Ross+J&rft.au=Cymbalisty%2C+Chris+D&rft.au=Muir%2C+Derek+CG&rft.date=1998-05-01&rft.issn=0730-7268&rft.volume=17&rft.issue=5&rft.spage=951&rft.epage=951&rft_id=info:doi/10.1002%2Fetc.5620170526&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-7268&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-7268&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-7268&client=summon