Dietary accumulation and depuration of hydrophobic organochlorines: Bioaccumulation parameters and their relationship with the octanol/water partition coefficient
Dietary accumulation of 23 hydrophobic organochlorines (OCs) by juvenile rainbow trout (Oncorhynchus mykiss) was studied with the objective of obtaining relationships between bioaccumulation parameters and the octanol/water partition coefficient (Kow). A wide range of OCs were used including 16 poly...
Saved in:
Published in | Environmental toxicology and chemistry Vol. 17; no. 5; pp. 951 - 961 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Periodicals, Inc
01.05.1998
SETAC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dietary accumulation of 23 hydrophobic organochlorines (OCs) by juvenile rainbow trout (Oncorhynchus mykiss) was studied with the objective of obtaining relationships between bioaccumulation parameters and the octanol/water partition coefficient (Kow). A wide range of OCs were used including 16 polychlorinated biphenyls (PCBs 18, 28, 44, 52, 66, 101, 105, 118, 128, 138, 153, 187, 189, 195, 206, and 209), hexachlorobenzene, mirex, tris(4‐chlorophenyl)methane (TCPMe), tris(4‐chlorophenyl)methanol (TCPMeOH), and three toxaphene congeners (Cl7‐chlorobornane [CHB] [Hp‐sed], Cl8‐CHB [T2], and Cl9‐CHB [T12]). Tris(4‐chlorophenyl)methane (half‐life [t1/2] = 65 d) was more persistent than TCPMeOH (t1/2 = 20 d), and TCPMe was not biotransformed to TCPMeOH by rainbow trout. Cl7‐chlorobornane (t1/2 = 32 d) was more rapidly eliminated, and appears to be more readily metabolized, than Cl8‐CHB (t1/2 = 43 d) and Cl9‐CHB (t1/2 = 42 d). With the exception of TCPMeOH, Cl7‐CHB, and PCB 18, all of the OCs had biomagnification factors (BMFs) >1, implying a potential to biomagnify. Half‐lives had a significant curvilinear relationship with Kow (R2 = 0.85, p < 0.001), with a maximum t1/2 for OCs with log Kow ∼ 7.0. Decreasing t1/2 for OCs of log Kow > 7.0 may be related to slow kinetics of these super hydrophobic OCs and the short exposure phase, which results in insufficient time for the super hydrophobic OCs to reach slower clearing compartments of the rainbow trout. Assimilation efficiency was not as well described by Kow as by t1/2 and BMF, although a significant curvilinear relationship was observed (R2 = 0.53, p = 0.004). The BMF had a significant curvilinear relationship with log Kow (R2 = 0.84, p < 0.001). Recalcitrant OCs with a log Kow of ∼7.0 would appear to have the greatest potential for food chain biomagnification in fish. |
---|---|
AbstractList | Juvenile rainbow trout were exposed to dietary concentrations of 23 organochlorines, which are tabulated, to determine bioaccumulation parameters. The data were used to develop dietary accumulation parameter octanol/water partition coefficient relationships. Results are presented for PCBs, mirex, hexachlorobenzene, tris(4-chlorophenyl)methane, tris(4-chlorophenyl)methanol, and toxaphene congeners in terms of bioaccumulation parameter octanol/water partition coefficient relationships, depuration rate constant octanol/water partition coefficient relationships, assimilation efficiency octanol/water partition coefficient relationships, and biomagnification factor octanol/water partition relationships. The data show that organochlorine compounds with a log octanol/water partition coefficient of approximately 7, which are not biotransformed, have the greatest persistence and biomagnification in fish. Dietary accumulation of 23 hydrophobic organochlorines (OCs) by juvenile rainbow trout (Oncorhynchus mykiss) was studied with the objective of obtaining relationships between bioaccumulation parameters and the octanol/water partition coefficient (K sub(ow)). A wide range of OCs were used including 16 polychlorinated biphenyls (PCBs 18, 28, 44, 52, 66, 101, 105, 118, 128, 138, 153, 187, 189, 195, 206, and 209), hexachlorobenzene, mirex, tris(4-chlorophenyl)methane (TCPMe), tris(4-chlorophenyl)methanol (TCPMeOH), and three toxaphene congeners (Cl sub(7)-chlorobornane [CHB] [Hp-sed], Cl sub(8)-CHB [T2], and Cl sub(9)-CHB [Tl2]). Tris(4-chlorophenyl)methane (half-life [t sub(1/2)] = 65 d) was more persistent than TCPMeOH (t sub(1/2) = 20 d), and TCPMe was not biotransformed to TCPMeOH by rainbow trout. Cl sub(7)-chlorobornane (t sub(1/2) = 32 d) was more rapidly eliminated, and appears to be more readily metabolized, than Cl sub(8)-CHB (t sub(1/2) = 43 d) and Cl sub(9)-CHB (t sub(1/2) = 42 d). With the exception of TCPMeOH, Cl sub(7)-CHB, and PCB 18, all of the OCs had biomagnification factors (BMFs) > 1, implying a potential to biomagnify. Half-lives had a significant curvilinear relationship with K sub(ow) (R super(2) = 0.85, p < 0.001), with a maximum t sub(1/2) for OCs with log K sub(ow) similar to 7.0. Decreasing t sub(1/2) for OCs of log K sub(ow) > 7.0 may be related to slow kinetics of these super hydrophobic OCs and the short exposure phase, which results in insufficient time for the super hydrophobic OCs to reach slower clearing compartments of the rainbow trout. Assimilation efficiency was not as well described by K sub(ow) as by t sub(1/2) and BMF, although a significant curvilinear relationship was observed (R super(2) = 0.53, p = 0.004). The BMF had a significant curvilinear relationship with log K sub(ow) (R super(2) = 0.84, p < 0.001). Recalcitrant OCs with a log K sub(ow) of similar to 7.0 would appear to have the greatest potential for food chain biomagnification in fish. Dietary accumulation of 23 hydrophobic organochlorines (OCs) by juvenile rainbow trout ( Oncorhynchus mykiss ) was studied with the objective of obtaining relationships between bioaccumulation parameters and the octanol/water partition coefficient ( K ow ). A wide range of OCs were used including 16 polychlorinated biphenyls (PCBs 18, 28, 44, 52, 66, 101, 105, 118, 128, 138, 153, 187, 189, 195, 206, and 209), hexachlorobenzene, mirex, tris(4‐chlorophenyl)methane (TCPMe), tris(4‐chlorophenyl)methanol (TCPMeOH), and three toxaphene congeners (Cl 7 ‐chlorobornane [CHB] [Hp‐sed], Cl 8 ‐CHB [T2], and Cl 9 ‐CHB [T12]). Tris(4‐chlorophenyl)methane (half‐life [ t 1/2 ] = 65 d) was more persistent than TCPMeOH ( t 1/2 = 20 d), and TCPMe was not biotransformed to TCPMeOH by rainbow trout. Cl 7 ‐chlorobornane ( t 1/2 = 32 d) was more rapidly eliminated, and appears to be more readily metabolized, than Cl 8 ‐CHB ( t 1/2 = 43 d) and Cl 9 ‐CHB ( t 1/2 = 42 d). With the exception of TCPMeOH, Cl 7 ‐CHB, and PCB 18, all of the OCs had biomagnification factors (BMFs) >1, implying a potential to biomagnify. Half‐lives had a significant curvilinear relationship with K ow ( R 2 = 0.85, p < 0.001), with a maximum t 1/2 for OCs with log K ow ∼ 7.0. Decreasing t 1/2 for OCs of log K ow > 7.0 may be related to slow kinetics of these super hydrophobic OCs and the short exposure phase, which results in insufficient time for the super hydrophobic OCs to reach slower clearing compartments of the rainbow trout. Assimilation efficiency was not as well described by K ow as by t 1/2 and BMF, although a significant curvilinear relationship was observed ( R 2 = 0.53, p = 0.004). The BMF had a significant curvilinear relationship with log K ow ( R 2 = 0.84, p < 0.001). Recalcitrant OCs with a log K ow of ∼7.0 would appear to have the greatest potential for food chain biomagnification in fish. Dietary accumulation of 23 hydrophobic organochlorines (OCs) by juvenile rainbow trout (Oncorhynchus mykiss) was studied with the objective of obtaining relationships between bioaccumulation parameters and the octanol/water partition coefficient (Kow). A wide range of OCs were used including 16 polychlorinated biphenyls (PCBs 18, 28, 44, 52, 66, 101, 105, 118, 128, 138, 153, 187, 189, 195, 206, and 209), hexachlorobenzene, mirex, tris(4‐chlorophenyl)methane (TCPMe), tris(4‐chlorophenyl)methanol (TCPMeOH), and three toxaphene congeners (Cl7‐chlorobornane [CHB] [Hp‐sed], Cl8‐CHB [T2], and Cl9‐CHB [T12]). Tris(4‐chlorophenyl)methane (half‐life [t1/2] = 65 d) was more persistent than TCPMeOH (t1/2 = 20 d), and TCPMe was not biotransformed to TCPMeOH by rainbow trout. Cl7‐chlorobornane (t1/2 = 32 d) was more rapidly eliminated, and appears to be more readily metabolized, than Cl8‐CHB (t1/2 = 43 d) and Cl9‐CHB (t1/2 = 42 d). With the exception of TCPMeOH, Cl7‐CHB, and PCB 18, all of the OCs had biomagnification factors (BMFs) >1, implying a potential to biomagnify. Half‐lives had a significant curvilinear relationship with Kow (R2 = 0.85, p < 0.001), with a maximum t1/2 for OCs with log Kow ∼ 7.0. Decreasing t1/2 for OCs of log Kow > 7.0 may be related to slow kinetics of these super hydrophobic OCs and the short exposure phase, which results in insufficient time for the super hydrophobic OCs to reach slower clearing compartments of the rainbow trout. Assimilation efficiency was not as well described by Kow as by t1/2 and BMF, although a significant curvilinear relationship was observed (R2 = 0.53, p = 0.004). The BMF had a significant curvilinear relationship with log Kow (R2 = 0.84, p < 0.001). Recalcitrant OCs with a log Kow of ∼7.0 would appear to have the greatest potential for food chain biomagnification in fish. The dietary accumulation of 23 hydrophobic organochlorines (OC) by juvenile rainbow trout (Oncorhynchus mykiss) was studied to determine relationships between bioaccumulation parameters and the octanol/water partition coefficient (Kow). Three toxaphene congeners, Cl(7)-chlorobornane (CHB), Cl(8)-CHB and Cl(9)-CHB were tested, together with tris(4-chlorophenyl)methane (TCPMe) and TCP-methanol, giving half-life values of 32, 43, 42, 65 and 20 d, respectively. Cl(7)-CHB was more rapidly eliminated, and more readily metabolized than Cl(8)- or Cl(9)-CHB. All 16 polychlorinated biphenyls (PCB), except PCB-18, had biomagnification factors (BMF) greater than 1. Decreasing half-lives for OC with Kow greater than 7.0 were related to slow kinetics of the superhydrophobic compounds. Half-lives had a significant curvilinear relationship with Kow. The BMF had a similar relationship indicating that the internal kinetics of contaminants in fish play a significant role in their fate and the length of exposure of superhydrophobic OC effects the half-life. There are 57 references. |
Author | Fisk, Aaron T. Muir, Derek C.G. Cymbalisty, Chris D. Norstrom, Ross J. |
Author_xml | – sequence: 1 givenname: Aaron T. surname: Fisk fullname: Fisk, Aaron T. organization: Department of Soil Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada – sequence: 2 givenname: Ross J. surname: Norstrom fullname: Norstrom, Ross J. organization: National Wildlife Research Center, Environment Canada, 100 Gamelin Boulevard, Hull, Quebec K1A 0H3, Canada – sequence: 3 givenname: Chris D. surname: Cymbalisty fullname: Cymbalisty, Chris D. organization: Freshwater Institute, Department of Fisheries and Oceans, 501 University Crescent, Winnipeg, Manitoba R3T 2N6, Canada – sequence: 4 givenname: Derek C.G. surname: Muir fullname: Muir, Derek C.G. email: derek.muir@cciw.ca organization: Freshwater Institute, Department of Fisheries and Oceans, 501 University Crescent, Winnipeg, Manitoba R3T 2N6, Canada |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2302481$$DView record in Pascal Francis |
BookMark | eNqFkc1uEzEUhS1UJNLClvUsELtJ_RP_DDsIECpVRQgQ7CyPc80YJuPB9ijkdXhSnE5V1FVW1rW_71xZ5xydDWEAhJ4TvCQY00vIdskFxURiTsUjtCCc01oJos7QAkuGa0mFeoLOU_qJMRFN0yzQ37cesomHylg77abeZB-GygzbagvjFOcxuKo7bGMYu9B6W4X4wwzBdn2IfoD0qnrjwwN9NNHsIENMt0m5Ax-rCPNr6vxY7X3ujvdVsLlk9Zd7U_CjmP1thA3gnLcehvwUPXamT_Ds7rxAX9-_-7L-UF9_3FytX1_XdoW5qJlxijW24YCVNEZI7gBazOWWufJZqRrSWhBESOHKaFrZCAlUtkSCKiy7QC_n3DGG3xOkrHc-Weh7M0CYkiaCNZwoehpcrRQmlJ8GmSAcM1XA5QzaGFKK4PQY_a7UognWx3J1KVf_L7cIL-6STbKmd9EM1qd7izJMV4oUrJmxve_hcCJUF_LBinp2fcrw59418ZcWkkmuv91s9Hf1efOpLNJr9g_whsq4 |
CODEN | ETOCDK |
CitedBy_id | crossref_primary_10_1016_j_ecoenv_2017_07_062 crossref_primary_10_1016_S0003_2670_01_01208_9 crossref_primary_10_1016_j_envpol_2004_05_027 crossref_primary_10_1016_j_scitotenv_2007_04_026 crossref_primary_10_1021_es502886n crossref_primary_10_1016_j_envpol_2023_122355 crossref_primary_10_1002_etc_5620191114 crossref_primary_10_1897_08_240_1 crossref_primary_10_1021_es101247e crossref_primary_10_1080_10629360902726031 crossref_primary_10_1016_j_aquatox_2007_05_008 crossref_primary_10_1016_j_chemosphere_2008_09_033 crossref_primary_10_1002_etc_175 crossref_primary_10_1016_S0380_1330_04_70350_0 crossref_primary_10_1080_02652030601064821 crossref_primary_10_1016_j_marpolbul_2005_08_008 crossref_primary_10_1021_acs_est_6b01796 crossref_primary_10_1016_j_envpol_2014_10_007 crossref_primary_10_1021_es1038529 crossref_primary_10_1002_mcs_10007 crossref_primary_10_1016_j_envres_2024_119035 crossref_primary_10_1002_etc_2377 crossref_primary_10_1016_S0003_2670_01_01320_4 crossref_primary_10_1007_s00128_010_9978_z crossref_primary_10_1039_C5CP06611E crossref_primary_10_1002_etc_5620190826 crossref_primary_10_1016_j_chemosphere_2011_01_017 crossref_primary_10_1016_S0025_326X_03_00369_2 crossref_primary_10_1039_C7EN01139C crossref_primary_10_1021_acs_est_8b02497 crossref_primary_10_1021_acs_est_1c07932 crossref_primary_10_1016_S0045_6535_99_00157_5 crossref_primary_10_1021_es0011966 crossref_primary_10_1016_j_ecolmodel_2020_109224 crossref_primary_10_1016_j_envpol_2008_09_025 crossref_primary_10_1016_j_scitotenv_2004_10_034 crossref_primary_10_1016_j_chemosphere_2004_09_058 crossref_primary_10_1002_etc_2023 crossref_primary_10_1016_S0269_7491_01_00144_0 crossref_primary_10_1139_f00_045 crossref_primary_10_1111_1365_2664_13054 crossref_primary_10_1897_03_367 crossref_primary_10_1016_j_envpol_2010_09_001 crossref_primary_10_1186_s40064_016_3544_z crossref_primary_10_1016_j_envint_2011_06_005 crossref_primary_10_1897_IEAM_2008_089_1 crossref_primary_10_1007_s00244_007_9130_1 crossref_primary_10_1080_10659360500474623 crossref_primary_10_1007_s11356_013_2234_4 crossref_primary_10_1016_j_scitotenv_2018_08_409 crossref_primary_10_1126_science_1138275 crossref_primary_10_1016_S0269_7491_01_00132_4 crossref_primary_10_1021_acs_est_6b00201 crossref_primary_10_1016_j_aquatox_2007_10_006 crossref_primary_10_1016_j_aquatox_2012_01_024 crossref_primary_10_1016_j_chemosphere_2023_140221 crossref_primary_10_1002_etc_5620200822 crossref_primary_10_1007_s11356_018_2528_7 crossref_primary_10_1016_j_chemosphere_2017_07_009 crossref_primary_10_1002_etc_5620190606 crossref_primary_10_1016_j_ecolind_2015_06_026 crossref_primary_10_1021_acs_est_8b03922 crossref_primary_10_1016_j_chemosphere_2012_05_081 crossref_primary_10_1016_j_foodchem_2016_01_097 crossref_primary_10_1002_grl_50248 crossref_primary_10_1016_S0045_6535_02_00128_5 crossref_primary_10_1002_ieam_1599 crossref_primary_10_1016_j_aquatox_2007_06_016 crossref_primary_10_3390_ijerph2005020012 crossref_primary_10_1002_etc_4869 crossref_primary_10_1016_j_chemosphere_2011_12_036 crossref_primary_10_1007_s00244_006_0176_2 crossref_primary_10_1016_j_ecoenv_2014_05_013 crossref_primary_10_1002_etc_2561 crossref_primary_10_1002_etc_5620210316 crossref_primary_10_1007_s11356_020_11155_7 crossref_primary_10_1002_etc_3535 crossref_primary_10_1016_j_scitotenv_2015_05_049 crossref_primary_10_1016_j_scitotenv_2016_07_057 crossref_primary_10_1002_etc_5620220126 crossref_primary_10_1897_08_058_1 crossref_primary_10_1002_etc_5620220125 crossref_primary_10_1007_s11368_011_0448_y crossref_primary_10_1016_j_scitotenv_2019_02_351 crossref_primary_10_1002_ieam_1351 crossref_primary_10_1016_j_scitotenv_2016_12_116 crossref_primary_10_1897_08_582_1 crossref_primary_10_1016_j_scitotenv_2019_03_038 crossref_primary_10_1016_j_envint_2008_04_001 crossref_primary_10_1016_j_marpolbul_2015_09_020 crossref_primary_10_1002_etc_21 crossref_primary_10_1016_j_fct_2008_01_028 crossref_primary_10_1016_j_aquatox_2006_10_003 crossref_primary_10_1065_espr199910_010 crossref_primary_10_1016_j_scitotenv_2021_149448 crossref_primary_10_3389_fmars_2023_1244434 crossref_primary_10_1007_s10661_023_12033_8 crossref_primary_10_1007_s11356_015_4383_0 crossref_primary_10_1016_S0025_326X_01_00038_8 crossref_primary_10_1021_es903348z crossref_primary_10_1039_C5EM00028A crossref_primary_10_1016_j_chemosphere_2016_06_053 crossref_primary_10_1016_j_marenvres_2012_06_006 crossref_primary_10_1007_s11270_008_9803_z crossref_primary_10_1080_10807030701655897 crossref_primary_10_1002_etc_2229 crossref_primary_10_1016_j_marpolbul_2004_11_046 crossref_primary_10_1021_es9901967 crossref_primary_10_1007_s00244_011_9730_7 crossref_primary_10_1016_j_envpol_2016_12_060 crossref_primary_10_1016_S0269_7491_98_00068_2 crossref_primary_10_1002_etc_2227 crossref_primary_10_1897_06_122R_1 crossref_primary_10_1016_j_scitotenv_2020_141577 crossref_primary_10_1897_08_289_1 crossref_primary_10_1016_j_aquatox_2022_106343 crossref_primary_10_1016_j_envpol_2015_08_045 crossref_primary_10_1016_j_jhazmat_2014_03_058 crossref_primary_10_1080_15320383_2013_726297 crossref_primary_10_1007_s00244_010_9641_z crossref_primary_10_1016_j_scitotenv_2016_03_191 crossref_primary_10_1016_j_scitotenv_2022_160095 crossref_primary_10_1016_j_scitotenv_2013_11_137 crossref_primary_10_1002_etc_47 crossref_primary_10_1016_j_envpol_2016_06_061 crossref_primary_10_1016_j_envint_2010_03_010 crossref_primary_10_1016_j_marpolbul_2013_05_028 crossref_primary_10_1007_s10661_013_3249_5 crossref_primary_10_1080_02772240410001665445 crossref_primary_10_1016_j_envpol_2007_10_025 crossref_primary_10_1016_j_scitotenv_2017_10_288 crossref_primary_10_1016_S0269_7491_01_00278_0 crossref_primary_10_1016_j_marenvres_2011_10_006 crossref_primary_10_1093_chromsci_bmaa048 crossref_primary_10_1021_es103158s crossref_primary_10_1080_00032719_2021_1946554 crossref_primary_10_1080_10934529_2010_506114 crossref_primary_10_1016_j_fluid_2014_01_017 crossref_primary_10_1021_acs_est_6b05130 crossref_primary_10_1016_j_envpol_2008_11_001 crossref_primary_10_1080_00498254_2018_1463475 crossref_primary_10_1016_j_chemosphere_2007_05_080 crossref_primary_10_1007_s00128_013_1038_z crossref_primary_10_1002_etc_5620210231 crossref_primary_10_1016_j_jhazmat_2012_12_046 crossref_primary_10_1016_S0045_6535_02_00841_X crossref_primary_10_1016_S0300_483X_02_00142_7 crossref_primary_10_1897_IEAM_2009_004_1 crossref_primary_10_1007_s10646_012_0862_y crossref_primary_10_1002_etc_5233 crossref_primary_10_1897_03_545 crossref_primary_10_1002_qsar_200390022 crossref_primary_10_1016_S0300_483X_00_00374_7 crossref_primary_10_1007_s11368_015_1245_9 crossref_primary_10_7202_037482ar crossref_primary_10_1016_j_chemosphere_2005_09_031 crossref_primary_10_1021_acs_est_9b07888 crossref_primary_10_1016_S0045_6535_99_00478_6 crossref_primary_10_1021_es902911a crossref_primary_10_1155_2013_205621 crossref_primary_10_1007_BF02987503 crossref_primary_10_1016_j_envpol_2024_124421 crossref_primary_10_1007_s00128_008_9374_0 crossref_primary_10_1016_j_chemosphere_2013_07_031 crossref_primary_10_1002_etc_5620210919 crossref_primary_10_1016_j_scitotenv_2009_02_027 crossref_primary_10_1897_06_288R_1 crossref_primary_10_1897_07_462_1 crossref_primary_10_1007_s10661_015_4704_2 crossref_primary_10_1021_es302166p crossref_primary_10_1002_etc_3637 crossref_primary_10_1039_C4TA07097F crossref_primary_10_1016_j_chemosphere_2010_10_087 crossref_primary_10_1016_j_envpol_2024_123460 crossref_primary_10_1016_j_chemosphere_2004_04_034 crossref_primary_10_1016_j_chemosphere_2014_04_019 crossref_primary_10_1016_S0048_9697_99_00482_9 crossref_primary_10_1002_etc_2541 crossref_primary_10_1897_03_518 crossref_primary_10_1002_etc_349 crossref_primary_10_1016_j_scitotenv_2022_159068 crossref_primary_10_1016_S0045_6535_01_00278_8 crossref_primary_10_1897_05_329R_1 crossref_primary_10_1017_S0376892911000269 crossref_primary_10_1016_S0380_1330_02_70562_5 crossref_primary_10_1007_s00244_009_9376_x crossref_primary_10_3390_foods9091162 crossref_primary_10_1007_s00216_016_9887_z crossref_primary_10_1016_j_marpolbul_2016_02_016 crossref_primary_10_1016_j_chemosphere_2012_03_088 crossref_primary_10_1021_es503089c crossref_primary_10_1002_etc_5620190214 crossref_primary_10_1897_08_452_1 crossref_primary_10_1002_ieam_216 crossref_primary_10_1016_j_envres_2016_03_042 crossref_primary_10_1093_toxsci_kfr105 crossref_primary_10_1002_ieam_217 crossref_primary_10_1016_j_ecolmodel_2020_109196 crossref_primary_10_1016_j_cej_2012_12_030 crossref_primary_10_1007_s00244_017_0383_z crossref_primary_10_1002_etc_5620180412 crossref_primary_10_1039_C9EN01277J crossref_primary_10_1039_D2NJ03461A crossref_primary_10_1016_j_jconrel_2019_07_027 crossref_primary_10_1016_j_envpol_2018_08_067 crossref_primary_10_1016_j_jenvman_2011_12_037 crossref_primary_10_1021_acs_est_5b02500 crossref_primary_10_1139_f05_241 crossref_primary_10_1577_A03_028_1 crossref_primary_10_1016_j_chemosphere_2018_01_103 crossref_primary_10_1016_j_marpolbul_2012_11_006 crossref_primary_10_1002_etc_3932 crossref_primary_10_1016_j_aquaculture_2008_08_035 crossref_primary_10_1016_j_ntt_2013_07_001 crossref_primary_10_1897_03_221 crossref_primary_10_1016_j_chemosphere_2005_07_064 crossref_primary_10_1365_s10337_010_1666_y crossref_primary_10_1016_S0269_7491_99_00316_4 crossref_primary_10_1007_s00128_008_9605_4 crossref_primary_10_1016_j_jglr_2023_102252 crossref_primary_10_1016_j_aquatox_2011_06_021 crossref_primary_10_1897_03_462 crossref_primary_10_1021_es990871c crossref_primary_10_1897_02_501a crossref_primary_10_1897_IEAM_2007_057_1 crossref_primary_10_1002_etc_2734 crossref_primary_10_1016_j_ecolmodel_2004_05_009 crossref_primary_10_1016_j_envres_2019_108986 crossref_primary_10_1021_es803397x crossref_primary_10_1016_j_aquatox_2016_04_017 crossref_primary_10_1021_acs_jafc_9b03643 crossref_primary_10_1139_f07_088 crossref_primary_10_1002_etc_4599 crossref_primary_10_1002_etc_1761 crossref_primary_10_1016_j_envpol_2018_05_001 crossref_primary_10_1016_j_envres_2018_02_035 crossref_primary_10_1002_etc_3029 crossref_primary_10_1016_j_chemosphere_2019_05_199 crossref_primary_10_1039_B918327B crossref_primary_10_1002_etc_5620190903 crossref_primary_10_1007_s10646_019_02111_4 crossref_primary_10_1002_etc_5620190908 crossref_primary_10_1038_nnano_2008_110 crossref_primary_10_1086_657046 crossref_primary_10_1016_j_scitotenv_2018_09_074 crossref_primary_10_1021_es506251q crossref_primary_10_1016_j_jchromb_2019_02_003 crossref_primary_10_1021_acs_est_2c00310 crossref_primary_10_1002_etc_4368 crossref_primary_10_1897_03_438 crossref_primary_10_1002_etc_662 crossref_primary_10_1016_j_ecoenv_2007_12_003 crossref_primary_10_1021_acs_est_5b02727 crossref_primary_10_1897_08_015_1 crossref_primary_10_1016_S1382_6689_02_00126_6 crossref_primary_10_1016_S0166_445X_01_00246_6 crossref_primary_10_1016_j_envint_2020_105919 crossref_primary_10_1897_05_107R1_1 crossref_primary_10_1016_S0269_7491_00_00171_8 crossref_primary_10_1016_j_marpolbul_2019_04_024 crossref_primary_10_1021_es104328r crossref_primary_10_1016_j_marpolbul_2016_03_019 crossref_primary_10_1016_j_yrtph_2024_105651 crossref_primary_10_1016_S0380_1330_98_70872_X crossref_primary_10_1897_07_310R_1 crossref_primary_10_1002_etc_5620211114 crossref_primary_10_1016_j_chemosphere_2006_08_002 crossref_primary_10_1016_S0166_445X_97_00103_3 crossref_primary_10_1002_etc_5224 crossref_primary_10_1021_es0715849 crossref_primary_10_1021_es204533m crossref_primary_10_1016_j_scitotenv_2006_11_006 crossref_primary_10_1897_03_336 crossref_primary_10_1007_s00244_004_0064_6 crossref_primary_10_1016_j_chemosphere_2009_09_022 crossref_primary_10_1016_j_scitotenv_2018_04_077 crossref_primary_10_1007_s11356_021_15861_8 crossref_primary_10_1016_S0045_6535_02_00149_2 crossref_primary_10_1016_j_chemosphere_2019_06_217 |
Cites_doi | 10.1002/etc.5620120412 10.1139/f90-227 10.1139/f95-855 10.1002/etc.5620080306 10.1021/es00011a011 10.1021/es50002a608 10.1080/02772248409357024 10.1021/es00139a013 10.1002/etc.5620151019 10.1021/es00033a020 10.1021/es9601503 10.1002/etc.5620120316 10.1021/es00120a003 10.1016/S0166-445X(96)00817-X 10.1021/es00169a005 10.1016/0147-6513(92)90076-F 10.1016/0045-6535(85)90196-1 10.1002/etc.5620100912 10.1021/es00035a014 10.1006/eesa.1994.1038 10.1007/BF01065333 10.1021/es00169a004 10.1016/0269-7491(96)00006-1 10.1021/es00008a020 10.1016/S0048-9697(96)05306-5 10.1016/0147-6513(88)90054-1 10.1126/science.269.5221.240 10.1016/0045-6535(88)90066-5 10.1021/es00170a010 10.1016/0043-1354(85)90201-5 10.1021/es00099a008 10.1021/es950622y 10.1139/f79-146 10.1016/0045-6535(81)90082-5 10.1002/etc.5620150818 10.1021/es00033a009 10.1080/10629369308028814 10.1139/f88-026 10.1002/etc.5620050305 10.1007/978-1-4612-3850-8_1 10.1016/0045-6535(96)00246-9 10.1016/0269-7491(96)00017-6 10.1016/S0380-1330(94)71145-X 10.1021/es00131a005 10.1016/0045-6535(88)90207-X 10.1139/f83-160 10.1016/0045-6535(85)90129-8 10.1002/etc.5620110505 10.1016/0045-6535(88)90040-9 10.1021/es00166a011 |
ContentType | Journal Article |
Copyright | Copyright © 1998 SETAC 1998 INIST-CNRS |
Copyright_xml | – notice: Copyright © 1998 SETAC – notice: 1998 INIST-CNRS |
DBID | BSCLL IQODW AAYXX CITATION 7QH 7ST C1K SOI 7TN 7TV 7U7 7UA F1W H95 H97 L.G |
DOI | 10.1002/etc.5620170526 |
DatabaseName | Istex Pascal-Francis CrossRef Aqualine Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Oceanic Abstracts Pollution Abstracts Toxicology Abstracts Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aqualine Environment Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) Professional Oceanic Abstracts Toxicology Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Pollution Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts |
DatabaseTitleList | Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef Aqualine |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 1552-8618 |
EndPage | 961 |
ExternalDocumentID | 10_1002_etc_5620170526 2302481 ETC5620170526 ark_67375_WNG_X8SGQ813_C |
Genre | article |
GroupedDBID | --- --K -~X ..I .3N .GA .Y3 05W 0R~ 10A 1B1 1OB 1OC 29G 31~ 33P 36B 3SF 3V. 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X2 7X7 7XC 8-0 8-1 8-3 8-4 8-5 88E 88I 8C1 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAFWJ AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABEFU ABEJV ABJCF ABJNI ABPVW ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFZJQ AHBTC AHMBA AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BVXVI BY8 CAG CCPQU COF CS3 D-E D-F D0L D1I DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO EBS ECGQY EJD F00 F01 F04 F5P FEDTE FYUFA G-S G.N GNUQQ GODZA GUQSH GWYGA H.T H.X HCIFZ HF~ HGLYW HMCUK HVGLF HZ~ IHE IX1 J0M KB. L6V LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M0K M1P M2O M2P M41 M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB NQ- O66 O9- OHT P2P P2W P2X P4D PALCI PATMY PDBOC PQQKQ PROAC PSQYO PTHSS PYCSY Q.N Q11 Q2X QB0 R.K RIWAO RJQFR RNS ROL RPZ RWI RX1 SAMSI SUPJJ TWZ UB1 UKHRP VH1 W8V W99 WBKPD WH7 WIH WIK WOHZO WUPDE WXSBR WYISQ XG1 XIH XV2 YCJ ZZTAW ~02 ~IA ~KM ~WT AAPBV ABHUG ABPTK ACXME ADAWD ADDAD AFVGU AGJLS IQODW WRC 5WD AAYXX ACRPL ACYXJ ADIPN CITATION OBOKY OWPYF 7QH 7ST C1K SOI 7TN 7TV 7U7 7UA F1W H95 H97 L.G |
ID | FETCH-LOGICAL-c4056-3af839c95e087aa675feeb057d3f1697891bce61676f697ab7967e27b17e85fe3 |
IEDL.DBID | DR2 |
ISSN | 0730-7268 |
IngestDate | Wed Dec 04 00:32:27 EST 2024 Wed Dec 04 15:25:26 EST 2024 Wed Dec 04 11:48:41 EST 2024 Fri Dec 06 03:07:29 EST 2024 Sun Oct 29 17:07:38 EDT 2023 Sat Aug 24 01:00:20 EDT 2024 Wed Oct 30 09:55:34 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Salmonidae Water Insecticide Octanol Hydrophobic compound Partition coefficient Oncorhynchus mykiss Polychlorobiphenyl Vertebrata Organochlorine compounds Chlorocarbon Pisces Camphechlor Biological accumulation Biomagnification |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4056-3af839c95e087aa675feeb057d3f1697891bce61676f697ab7967e27b17e85fe3 |
Notes | ark:/67375/WNG-X8SGQ813-C ArticleID:ETC5620170526 istex:1FD48BF1482F78EFBDA34E81070E73BCE6A047EE ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 13615038 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_16395182 proquest_miscellaneous_14480125 proquest_miscellaneous_13615038 crossref_primary_10_1002_etc_5620170526 pascalfrancis_primary_2302481 wiley_primary_10_1002_etc_5620170526_ETC5620170526 istex_primary_ark_67375_WNG_X8SGQ813_C |
PublicationCentury | 1900 |
PublicationDate | May 1998 |
PublicationDateYYYYMMDD | 1998-05-01 |
PublicationDate_xml | – month: 05 year: 1998 text: May 1998 |
PublicationDecade | 1990 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Pensacola, FL |
PublicationTitle | Environmental toxicology and chemistry |
PublicationTitleAlternate | Environmental Toxicology and Chemistry |
PublicationYear | 1998 |
Publisher | Wiley Periodicals, Inc SETAC |
Publisher_xml | – name: Wiley Periodicals, Inc – name: SETAC |
References | Bremle G, Okla L, Larsson P. 1995. Uptake of PCBs in fish in a contaminated river system: Bioconcentration factors measured in the field. Environ Sci Technol 29: 2010-2015. Porte C, Albaiges J. 1993. Bioaccumulation patterns of hydrocarbons and polychlorinated biphenyls in bivalves, crustaceans, and fishes. Arch Environ Contam Toxicol 26: 273-281. Koslowski SE, Metcalfe CD, Lazar R, Haffner GD. 1994. The distribution of 42 PCBs, including three coplanar congeners, in the food web of the western basin of Lake Erie. J Great Lakes Res 20: 260-270. Swackhamer DL, Hites RA. 1988. Occurrence and bioaccumulation of organochlorine compounds in fishes from Siskiwit Lake, Isle Royale, Lake Superior. Environ Sci Technol 22: 543-548. Coristine S, Haffner GD, Ciborowski JJH, Lazar R, Nanni ME, Metcalfe CD. 1996. Elimination rates of selected di-ortho, mono-ortho, and non-ortho substituted polychlorinated biphenyls in rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 15: 1382-1387. Niimi AJ, Oliver BG. 1988. Influence of molecular weight and molecular volume on dietary adsorption and assimilation efficiency of chemicals by fishes. Can J Fish Aquat Sci 45: 222-227. Lyman WS, Reehl WF, Rosenblatt RH. 1982. Handbook of Chemical-Physical Property Estimation Methods. McGraw-Hill, New York, NY, USA. Sijm DTHM, Seinen W, Opperhuizen A. 1992. Life-cycle biomagnification study in fish. Environ Sci Technol 26: 2162-2174. Bintein S, Devillers J, Karcher W. 1993. Nonlinear dependence of fish bioconcentration on n-octanol/water partition coefficient. SAR QSAR Environ Res 1: 29-39. Evans MS, Noguchi GE, Rice CP. 1991. The biomagnification of polychlorinated biphenyls, toxaphene, and DDT compounds in a Lake Michigan offshore food web. Arch Environ Contam Toxicol 20: 87-93. de Wolf W, de Bruijn JHM, Seinen W, Hermens JLM. 1992. Influence of biotransformation on the relationship between bio-concentration factors and octanol-water partition coefficients. Environ Sci Technol 26: 1197-1201. Thomann RV, Connolly JP, Parkerton TF. 1992. An equilibrium model of organic chemical accumulation in aquatic food webs with sediment interaction. Environ Toxicol Chem 11: 615-629. Clark KE, Mackay D. 1991. Dietary uptake and biomagnification of four chlorinated hydrocarbons by guppies. Environ Toxicol Chem 10: 1205-1217. Thomann RV, Connolly JP. 1984. Model of PCB in the Lake Michigan lake trout food chain. Environ Sci Technol 18: 65-71. Bruggeman WA, Opperhuizen A, Wijbenga A, Hutzinger O. 1984. Bioaccumulation of super-lipophilic chemicals in fish. Toxicol Environ Chem 7: 173-189. Gobas FAPC, McCorquodale JR, Haffner GD. 1993. Intestinal absorption and biomagnification of organochlorines. Environ Toxicol Chem 12: 567-576. Fisk AT, Cymbalisty CD, Bergman A, Muir DCG. 1996. Dietary accumulation of C12 and C16 chlorinated alkanes by juvenile rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 15: 1775-1782. Neely WB. 1980. Chemicals in the Environment. Marcel Dekker, New York, NY, USA. Hawker DW, Connell DW. 1988. Octanol-water partition coefficients of polychlorinated biphenyl congeners. Environ Sci Technol 22: 382-387. Glassmeyer ST, de Vault DS, Myers TR, Hites RA. 1997. Toxaphene in Great Lakes fish: A temporal, spatial, and trophic study. Environ Sci Technol 31: 84-88. Niimi AJ. 1996. Evaluation of PCBs and PCDD/Fs retention by aquatic organisms. Sci Total Environ 192: 123-150. Opperhuizen A, van der Velde EW, Gobas FAPC, Liem DAK, van der Steen JMD. 1985. Relationship between bioconcentration in fish and steric factors of hydrophobic chemicals. Chemosphere 14: 1871-1896. Connell DW, Hawker DW. 1988. Use of polynomial expressions to describe the bioconcentration of hydrophobic chemicals by fish. Ecotoxicol Environ Saf 16: 242-257. Gobas FAPC, Clark KE, Shiu WY, Mackay D. 1989. Bioconcentration of polybrominated benzenes and biphenyls and related superhydrophobic chemicals in fish: Role of bioavailability and elimination into feces. Environ Toxicol Chem 8: 231-245. Muir DCG, Yarechewski AL, Knoll A, Webster GRB. 1986. Bioconcentration and disposition of 1,3,6,8-tetrachlorodibenzo-p-dioxin and octachlorodibenzo-p-dioxin by rainbow trout and fathead minnows. Environ Toxicol Chem 5: 261-272. Gobas FAPC, Muir DCG, Mackay D. 1988. Dynamics of dietary bioaccumulation and faecal elimination of hydrophobic organic chemicals in fish. Chemosphere 17: 943-962. Muir DCG, Ford CA, Rosenberg B, Norstrom RJ, Simon M, Beland P. 1996. Persistent organochlorines in beluga whale (Delphinapterus leucas) from the St Lawrence River estuary-I. Concentrations and patterns of specific PCBs, chlorinated pesticides and polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ Pollut 93: 219-234. Niimi AJ, Palazzo V. 1985. Temperature effect on the elimination of pentachlorophenol, hexachlorobenzene and mirex by rainbow trout (Salmo gairdneri). Water Res 19: 205-207. Sijm DTHM, van der Linde A. 1995. Size-dependent bioconcentration kinetics of hydrophobic organic chemicals in fish based on diffusive mass transfer and allometric relationships. Environ Sci Technol 29: 2769-2777. Kidd KA, Schindler DW, Muir DCG, Lockhart WL, Hesslein RH. 1995. High concentrations of toxaphene in fishes from a subarctic lake. Science 269: 240-242. Suntio LR, Shiu WY, Mackay D, Seiber JN, Glotfelty D. 1988. Critical review of Henry's law constants for pesticides. Rev Environ Contam Toxicol 103: 1-59. Chiou CT. 1985. Partition coefficients of organic compounds in lipid-water systems and correlations with fish bioconcentration factors. Environ Sci Technol 19: 57-62. Fisk AT, Yarechewski AL, Metner DA, Lockhart WL, Evans RE, Muir DCG. 1997. Accumulation, elimination and hepatic mixedfunction oxidase enzyme induction in juvenile rainbow trout and lake whitefish exposed to dietary 2,3,7,8-tetrachlorodibenzo-p-dioxin. Aquat Toxicol 37: 201-220. Mackay D. 1982. Correlation of bioconcentration factors. Environ Sci Technol 16: 274-278. Jarman WM, Simon M, Norstrom RJ, Burns SA, Bacon CA, Simonelt BRT, Risebrough RW. 1992. Global distribution of tris(4-chlorophenyl)methanol in high trophic level birds and mammals. Environ Sci Technol 26: 1770-1774. Bidleman TF, Walla MD, Muir DCG, Stern GA. 1993. Selective accumulation of polychlorocamphenes in aquatic biota from the Canadian Arctic. Environ Toxicol Chem 12: 701-709. Stern GA, Loewen MD, Miskimmin BM, Muir DCG, Westmore JB. 1996. Characterization of two major toxaphene components in treated lake sediment. Environ Sci Technol 30: 2251-2258. Chessells M, Hawker DW, Connell DW. 1992. Influence of solubility in lipid on bioconcentration of hydrophobic compounds. Ecotoxicol Environ Saf 23: 260-273. Rasmussen JB, Rowan DJ, Lean DRS, Carey JH. 1990. Food chain structure in Ontario lakes determines PCB levels in lake trout (Salvelinus namaycush) and other pelagic fish. Can J Fish Aquat Sci 47: 2030-2038. Connolly JP, Pedersen CJ. 1988. A thermodynamic-based evaluation of organic chemical accumulation in aquatic organisms. Environ Sci Technol 22: 99-103. Oliver BG, Niimi AJ. 1985. Bioconcentration factors of some halogenated organics for rainbow trout: Limitations in their use for prediction of environmental residues. Environ Sci Technol 19: 842-848. Veith GD, DeFoe DL, Bergstedt BV. 1979. Measuring and estimating the bioconcentration factor of chemicals in fish. J Fish Res Board Can 36: 1040-1048. Isnard P, Lambert S. 1988. Estimating bioconcentration factors from octanol-water coefficient and aqueous solubility. Chemosphere 17: 21-34. Bruggeman WA, Martron LBJM, Kooiman D, Hutzinger O. 1981. Accumulation and elimination of di-, tri- and tetra chlorobiphenyls by goldfish after dietary and aqueous exposure. Chemosphere 10: 811-832. Oliver BG, Niimi AJ. 1988. Trophodynamic analysis of polychlorinated biphenyl congeners and other chlorinated hydrocarbons in the Lake Ontario ecosystem. Environ Sci Technol 22: 388-397. Muir DCG, Marshall WK, Webster GRB. 1985. Bioconcentration of PCDDs by fish: Effects of molecular structure and water chemistry. Chemosphere 14: 829-833. Kiriluk RM, Servos MR, Whittle DM, Cabana G, Rasmussen JB. 1995. Using ratios of stable nitrogen and carbon isotopes to characterize the biomagnification of DDE, mirex, and PCB in a Lake Ontario pelagic food web. Can J Fish Aquat Sci 52: 2660-2674. Stern GA, Muir DCG, Ford CA, Grift NP, Dewailly E, Bidleman TF, Walla MD. 1992. Isolation and identification of two major recalcitrant toxaphene congeners in aquatic biota. Environ Sci Technol 26: 1838-1840. de Boer J, Wester PG, Evers EHG, Brinkman UAT. 1996. Determination of tris(4-chlorophenyl)methanol and tris(4-chlorophenyl)methane in fish, marine mammals and sediment. Environ Pollut 93: 39-47. Mackay D, Shiu WY, Ma KC. 1992. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, Vol 1. Lewis, Chelsea, MI, USA. Devillers J, Bintein S, Domine D. 1996. Comparison of BCF models based on log P. Chemosphere 33: 1047-1065. Niimi AJ, Oliver BG. 1983. Biological half-lives of polychlorinated biphenyl (PCB) congeners in whole fish and muscle of rainbow trout (Salmo gairdneri). Can J Fish Aquat Sci 40: 1388-1394. Fox K, Zauke G, Butte W. 1994. Kinetics of bioconcentration and clearance of 28 polychlorinated biphenyl congeners in zebrafish (Brachydanio rerio). Ecotoxicol Environ Saf 28: 99-109. Schüürmann G, Klein W. 1988. Advances in bioconcentration prediction. Chemosphere 17: 1551-1574. 1993; 26 1995; 52 1982; 16 1979; 36 1991; 10 1988; 16 1988; 17 1989; 8 1988; 103 1996; 93 1996; 30 1993 1992 1994; 28 1992; 11 1993; 1 1996; 15 1994; 20 1996; 33 1985; 19 1993; 12 1990; 47 1997; 31 1997; 37 1984; 7 1991; 20 1986; 5 1988; 22 1986 1983; 40 1988; 45 1995; 269 1996; 192 1984; 18 1982 1992; 26 1980 1995; 29 1992; 1 1992; 23 1981; 10 1985; 14 e_1_2_6_51_2 e_1_2_6_53_2 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_57_2 e_1_2_6_20_2 e_1_2_6_41_2 Lyman WS (e_1_2_6_35_2) 1982 Muir DCG (e_1_2_6_52_2) 1992 e_1_2_6_7_2 e_1_2_6_9_2 Gobas FAPC (e_1_2_6_46_2) 1986 e_1_2_6_3_2 Neely WB (e_1_2_6_36_2) 1980 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_50_2 e_1_2_6_31_2 Mackay D (e_1_2_6_33_2) 1992 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_58_2 e_1_2_6_10_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_42_2 Porte C (e_1_2_6_38_2) 1993; 26 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 |
References_xml | – volume: 18 start-page: 65 year: 1984 end-page: 71 article-title: Model of PCB in the Lake Michigan lake trout food chain publication-title: Environ Sci Technol – volume: 1 start-page: 29 year: 1993 end-page: 39 article-title: Nonlinear dependence of fish bioconcentration on ‐octanol/water partition coefficient publication-title: SAR QSAR Environ Res – volume: 15 start-page: 1382 year: 1996 end-page: 1387 article-title: Elimination rates of selected di‐ , mono‐ , and non‐ substituted polychlorinated biphenyls in rainbow trout ( ) publication-title: Environ Toxicol Chem – volume: 52 start-page: 2660 year: 1995 end-page: 2674 article-title: Using ratios of stable nitrogen and carbon isotopes to characterize the biomagnification of DDE, mirex, and PCB in a Lake Ontario pelagic food web publication-title: Can J Fish Aquat Sci – volume: 30 start-page: 2251 year: 1996 end-page: 2258 article-title: Characterization of two major toxaphene components in treated lake sediment publication-title: Environ Sci Technol – volume: 47 start-page: 2030 year: 1990 end-page: 2038 article-title: Food chain structure in Ontario lakes determines PCB levels in lake trout ( ) and other pelagic fish publication-title: Can J Fish Aquat Sci – volume: 16 start-page: 242 year: 1988 end-page: 257 article-title: Use of polynomial expressions to describe the bioconcentration of hydrophobic chemicals by fish publication-title: Ecotoxicol Environ Saf – volume: 22 start-page: 382 year: 1988 end-page: 387 article-title: Octanol–water partition coefficients of polychlorinated biphenyl congeners publication-title: Environ Sci Technol – volume: 11 start-page: 615 year: 1992 end-page: 629 article-title: An equilibrium model of organic chemical accumulation in aquatic food webs with sediment interaction publication-title: Environ Toxicol Chem – volume: 12 start-page: 701 year: 1993 end-page: 709 article-title: Selective accumulation of polychlorocamphenes in aquatic biota from the Canadian Arctic publication-title: Environ Toxicol Chem – volume: 5 start-page: 261 year: 1986 end-page: 272 article-title: Bioconcentration and disposition of 1,3,6,8‐tetrachlorodibenzo‐ ‐dioxin and octachlorodibenzo‐ ‐dioxin by rainbow trout and fathead minnows publication-title: Environ Toxicol Chem – volume: 19 start-page: 205 year: 1985 end-page: 207 article-title: Temperature effect on the elimination of pentachlorophenol, hexachlorobenzene and mirex by rainbow trout ( ) publication-title: Water Res – volume: 40 start-page: 1388 year: 1983 end-page: 1394 article-title: Biological half‐lives of polychlorinated biphenyl (PCB) congeners in whole fish and muscle of rainbow trout ( ) publication-title: Can J Fish Aquat Sci – volume: 26 start-page: 273 year: 1993 end-page: 281 article-title: Bioaccumulation patterns of hydrocarbons and polychlorinated biphenyls in bivalves, crustaceans, and fishes publication-title: Arch Environ Contam Toxicol – volume: 10 start-page: 811 year: 1981 end-page: 832 article-title: Accumulation and elimination of di‐, tri‐ and tetra chlorobiphenyls by goldfish after dietary and aqueous exposure publication-title: Chemosphere – year: 1982 – volume: 26 start-page: 1197 year: 1992 end-page: 1201 article-title: Influence of biotransformation on the relationship between bio‐concentration factors and octanol–water partition coefficients publication-title: Environ Sci Technol – volume: 36 start-page: 1040 year: 1979 end-page: 1048 article-title: Measuring and estimating the bioconcentration factor of chemicals in fish publication-title: J Fish Res Board Can – volume: 103 start-page: 1 year: 1988 end-page: 59 article-title: Critical review of Henry's law constants for pesticides publication-title: Rev Environ Contam Toxicol – volume: 1 year: 1992 – volume: 22 start-page: 99 year: 1988 end-page: 103 article-title: A thermodynamic‐based evaluation of organic chemical accumulation in aquatic organisms publication-title: Environ Sci Technol – volume: 23 start-page: 260 year: 1992 end-page: 273 article-title: Influence of solubility in lipid on bioconcentration of hydrophobic compounds publication-title: Ecotoxicol Environ Saf – volume: 28 start-page: 99 year: 1994 end-page: 109 article-title: Kinetics of bioconcentration and clearance of 28 polychlorinated biphenyl congeners in zebrafish ( ) publication-title: Ecotoxicol Environ Saf – volume: 14 start-page: 1871 year: 1985 end-page: 1896 article-title: Relationship between bioconcentration in fish and steric factors of hydrophobic chemicals publication-title: Chemosphere – volume: 16 start-page: 274 year: 1982 end-page: 278 article-title: Correlation of bioconcentration factors publication-title: Environ Sci Technol – volume: 26 start-page: 1838 year: 1992 end-page: 1840 article-title: Isolation and identification of two major recalcitrant toxaphene congeners in aquatic biota publication-title: Environ Sci Technol – year: 1993 – volume: 8 start-page: 231 year: 1989 end-page: 245 article-title: Bioconcentration of polybrominated benzenes and biphenyls and related superhydrophobic chemicals in fish: Role of bioavailability and elimination into feces publication-title: Environ Toxicol Chem – volume: 22 start-page: 543 year: 1988 end-page: 548 article-title: Occurrence and bioaccumulation of organochlorine compounds in fishes from Siskiwit Lake, Isle Royale, Lake Superior publication-title: Environ Sci Technol – volume: 192 start-page: 123 year: 1996 end-page: 150 article-title: Evaluation of PCBs and PCDD/Fs retention by aquatic organisms publication-title: Sci Total Environ – volume: 14 start-page: 829 year: 1985 end-page: 833 article-title: Bioconcentration of PCDDs by fish: Effects of molecular structure and water chemistry publication-title: Chemosphere – volume: 29 start-page: 2769 year: 1995 end-page: 2777 article-title: Size‐dependent bioconcentration kinetics of hydrophobic organic chemicals in fish based on diffusive mass transfer and allometric relationships publication-title: Environ Sci Technol – volume: 26 start-page: 2162 year: 1992 end-page: 2174 article-title: Life‐cycle biomagnification study in fish publication-title: Environ Sci Technol – volume: 269 start-page: 240 year: 1995 end-page: 242 article-title: High concentrations of toxaphene in fishes from a subarctic lake publication-title: Science – start-page: 185 year: 1992 end-page: 208 – start-page: 107 year: 1986 end-page: 124 – volume: 22 start-page: 388 year: 1988 end-page: 397 article-title: Trophodynamic analysis of polychlorinated biphenyl congeners and other chlorinated hydrocarbons in the Lake Ontario ecosystem publication-title: Environ Sci Technol – volume: 20 start-page: 260 year: 1994 end-page: 270 article-title: The distribution of 42 PCBs, including three coplanar congeners, in the food web of the western basin of Lake Erie publication-title: J Great Lakes Res – volume: 93 start-page: 39 year: 1996 end-page: 47 article-title: Determination of tris(4‐chlorophenyl)methanol and tris(4‐chlorophenyl)methane in fish, marine mammals and sediment publication-title: Environ Pollut – volume: 45 start-page: 222 year: 1988 end-page: 227 article-title: Influence of molecular weight and molecular volume on dietary adsorption and assimilation efficiency of chemicals by fishes publication-title: Can J Fish Aquat Sci – volume: 33 start-page: 1047 year: 1996 end-page: 1065 article-title: Comparison of BCF models based on log P publication-title: Chemosphere – volume: 10 start-page: 1205 year: 1991 end-page: 1217 article-title: Dietary uptake and biomagnification of four chlorinated hydrocarbons by guppies publication-title: Environ Toxicol Chem – volume: 19 start-page: 842 year: 1985 end-page: 848 article-title: Bioconcentration factors of some halogenated organics for rainbow trout: Limitations in their use for prediction of environmental residues publication-title: Environ Sci Technol – volume: 17 start-page: 1551 year: 1988 end-page: 1574 article-title: Advances in bioconcentration prediction publication-title: Chemosphere – year: 1980 – volume: 37 start-page: 201 year: 1997 end-page: 220 article-title: Accumulation, elimination and hepatic mixedfunction oxidase enzyme induction in juvenile rainbow trout and lake whitefish exposed to dietary 2,3,7,8‐tetrachlorodibenzo‐ ‐dioxin publication-title: Aquat Toxicol – volume: 17 start-page: 21 year: 1988 end-page: 34 article-title: Estimating bioconcentration factors from octanol–water coefficient and aqueous solubility publication-title: Chemosphere – volume: 20 start-page: 87 year: 1991 end-page: 93 article-title: The biomagnification of polychlorinated biphenyls, toxaphene, and DDT compounds in a Lake Michigan offshore food web publication-title: Arch Environ Contam Toxicol – volume: 15 start-page: 1775 year: 1996 end-page: 1782 article-title: Dietary accumulation of C and C chlorinated alkanes by juvenile rainbow trout ( ) publication-title: Environ Toxicol Chem – volume: 19 start-page: 57 year: 1985 end-page: 62 article-title: Partition coefficients of organic compounds in lipid–water systems and correlations with fish bioconcentration factors publication-title: Environ Sci Technol – volume: 26 start-page: 1770 year: 1992 end-page: 1774 article-title: Global distribution of tris(4‐chlorophenyl)methanol in high trophic level birds and mammals publication-title: Environ Sci Technol – volume: 7 start-page: 173 year: 1984 end-page: 189 article-title: Bioaccumulation of super‐lipophilic chemicals in fish publication-title: Toxicol Environ Chem – volume: 93 start-page: 219 year: 1996 end-page: 234 article-title: Persistent organochlorines in beluga whale ( ) from the St Lawrence River estuary—I. Concentrations and patterns of specific PCBs, chlorinated pesticides and polychlorinated dibenzo‐ ‐dioxins and dibenzofurans publication-title: Environ Pollut – volume: 17 start-page: 943 year: 1988 end-page: 962 article-title: Dynamics of dietary bioaccumulation and faecal elimination of hydrophobic organic chemicals in fish publication-title: Chemosphere – volume: 12 start-page: 567 year: 1993 end-page: 576 article-title: Intestinal absorption and biomagnification of organochlorines publication-title: Environ Toxicol Chem – volume: 31 start-page: 84 year: 1997 end-page: 88 article-title: Toxaphene in Great Lakes fish: A temporal, spatial, and trophic study publication-title: Environ Sci Technol – volume: 29 start-page: 2010 year: 1995 end-page: 2015 article-title: Uptake of PCBs in fish in a contaminated river system: Bioconcentration factors measured in the field publication-title: Environ Sci Technol – ident: e_1_2_6_24_2 doi: 10.1002/etc.5620120412 – ident: e_1_2_6_6_2 doi: 10.1139/f90-227 – volume-title: Illustrated Handbook of Physical–Chemical Properties and Environmental Fate for Organic Chemicals year: 1992 ident: e_1_2_6_33_2 contributor: fullname: Mackay D – ident: e_1_2_6_21_2 – volume: 26 start-page: 273 year: 1993 ident: e_1_2_6_38_2 article-title: Bioaccumulation patterns of hydrocarbons and polychlorinated biphenyls in bivalves, crustaceans, and fishes publication-title: Arch Environ Contam Toxicol contributor: fullname: Porte C – ident: e_1_2_6_45_2 doi: 10.1139/f95-855 – ident: e_1_2_6_50_2 doi: 10.1002/etc.5620080306 – ident: e_1_2_6_43_2 doi: 10.1021/es00011a011 – ident: e_1_2_6_47_2 doi: 10.1021/es50002a608 – volume-title: Chemicals in the Environment year: 1980 ident: e_1_2_6_36_2 contributor: fullname: Neely WB – ident: e_1_2_6_2_2 doi: 10.1080/02772248409357024 – ident: e_1_2_6_3_2 doi: 10.1021/es00139a013 – ident: e_1_2_6_48_2 doi: 10.1002/etc.5620151019 – ident: e_1_2_6_29_2 doi: 10.1021/es00033a020 – ident: e_1_2_6_26_2 doi: 10.1021/es9601503 – ident: e_1_2_6_40_2 doi: 10.1002/etc.5620120316 – ident: e_1_2_6_7_2 doi: 10.1021/es00120a003 – ident: e_1_2_6_49_2 doi: 10.1016/S0166-445X(96)00817-X – ident: e_1_2_6_5_2 doi: 10.1021/es00169a005 – ident: e_1_2_6_55_2 doi: 10.1016/0147-6513(92)90076-F – ident: e_1_2_6_56_2 doi: 10.1016/0045-6535(85)90196-1 – ident: e_1_2_6_22_2 doi: 10.1002/etc.5620100912 – ident: e_1_2_6_18_2 doi: 10.1021/es00035a014 – ident: e_1_2_6_15_2 doi: 10.1006/eesa.1994.1038 – ident: e_1_2_6_27_2 doi: 10.1007/BF01065333 – ident: e_1_2_6_32_2 doi: 10.1021/es00169a004 – ident: e_1_2_6_31_2 doi: 10.1016/0269-7491(96)00006-1 – ident: e_1_2_6_57_2 doi: 10.1021/es00008a020 – ident: e_1_2_6_39_2 doi: 10.1016/S0048-9697(96)05306-5 – ident: e_1_2_6_12_2 doi: 10.1016/0147-6513(88)90054-1 – ident: e_1_2_6_28_2 doi: 10.1126/science.269.5221.240 – ident: e_1_2_6_20_2 doi: 10.1016/0045-6535(88)90066-5 – volume-title: Handbook of Chemical–Physical Property Estimation Methods year: 1982 ident: e_1_2_6_35_2 contributor: fullname: Lyman WS – ident: e_1_2_6_17_2 doi: 10.1021/es00170a010 – ident: e_1_2_6_44_2 doi: 10.1016/0043-1354(85)90201-5 – ident: e_1_2_6_11_2 doi: 10.1021/es00099a008 – ident: e_1_2_6_30_2 doi: 10.1021/es950622y – ident: e_1_2_6_10_2 doi: 10.1139/f79-146 – ident: e_1_2_6_19_2 doi: 10.1016/0045-6535(81)90082-5 – ident: e_1_2_6_42_2 doi: 10.1002/etc.5620150818 – ident: e_1_2_6_23_2 doi: 10.1021/es00033a009 – ident: e_1_2_6_14_2 doi: 10.1080/10629369308028814 – ident: e_1_2_6_41_2 doi: 10.1139/f88-026 – ident: e_1_2_6_51_2 doi: 10.1002/etc.5620050305 – start-page: 107 volume-title: QSAR in Environmental Toxicology—II year: 1986 ident: e_1_2_6_46_2 contributor: fullname: Gobas FAPC – ident: e_1_2_6_34_2 doi: 10.1007/978-1-4612-3850-8_1 – ident: e_1_2_6_16_2 doi: 10.1016/0045-6535(96)00246-9 – ident: e_1_2_6_25_2 doi: 10.1016/0269-7491(96)00017-6 – ident: e_1_2_6_9_2 doi: 10.1016/S0380-1330(94)71145-X – ident: e_1_2_6_53_2 doi: 10.1021/es00131a005 – ident: e_1_2_6_54_2 doi: 10.1016/0045-6535(88)90207-X – ident: e_1_2_6_37_2 doi: 10.1139/f83-160 – ident: e_1_2_6_58_2 doi: 10.1016/0045-6535(85)90129-8 – ident: e_1_2_6_8_2 doi: 10.1002/etc.5620110505 – ident: e_1_2_6_13_2 doi: 10.1016/0045-6535(88)90040-9 – ident: e_1_2_6_4_2 doi: 10.1021/es00166a011 – start-page: 185 volume-title: Chemical Dynamics in Fresh Water Ecosystems year: 1992 ident: e_1_2_6_52_2 contributor: fullname: Muir DCG |
SSID | ssj0016999 |
Score | 2.1367857 |
Snippet | Dietary accumulation of 23 hydrophobic organochlorines (OCs) by juvenile rainbow trout (Oncorhynchus mykiss) was studied with the objective of obtaining... Dietary accumulation of 23 hydrophobic organochlorines (OCs) by juvenile rainbow trout ( Oncorhynchus mykiss ) was studied with the objective of obtaining... The dietary accumulation of 23 hydrophobic organochlorines (OC) by juvenile rainbow trout (Oncorhynchus mykiss) was studied to determine relationships between... Juvenile rainbow trout were exposed to dietary concentrations of 23 organochlorines, which are tabulated, to determine bioaccumulation parameters. The data... |
SourceID | proquest crossref pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 951 |
SubjectTerms | Agnatha. Pisces Animal, plant and microbial ecology Applied ecology Biological and medical sciences Dietary accumulation Ecotoxicology, biological effects of pollution Effects of pollution and side effects of pesticides on vertebrates Fundamental and applied biological sciences. Psychology Hydrophobic organochlorines Octanol/water partition coefficient Oncorhynchus mykiss Toxaphene congeners Tris(4-chlorophenyl)methane |
Title | Dietary accumulation and depuration of hydrophobic organochlorines: Bioaccumulation parameters and their relationship with the octanol/water partition coefficient |
URI | https://api.istex.fr/ark:/67375/WNG-X8SGQ813-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fetc.5620170526 https://search.proquest.com/docview/13615038 https://search.proquest.com/docview/14480125 https://search.proquest.com/docview/16395182 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQIiQuvBEBFnxAcErbOKntcIN9ComVeKzozfJTrXY3rpJGsPwcfiljp2k3HBYJjo48lmY8jr-xx98g9IoZasuS0JRlhUtDicJUGqtT6TRE2JzqQoW3wx9P6PFp8WE2nV15xd_xQ2wO3MLKiP_rsMClasZb0lDQagSbd-SDIYFzO8tZyOnb_7zhj8poGQtIBjdOGaG8Z22ckPFQfLAr3QwG_hGyJGUDhnJdhYsBBL0KZONOdHgXyV6HLgHlbNSu1Ej__IPe8X-UvIfurGEqftf51X10w1YP0K2DSHF9-RD92l_YFYyKpdbtxboCGJaVwcYu286psHd4fmlqv5x7tdA41o_yeh5T_mzzFr9f-IF4YCG_CNk5TRwpXmHguk_Wmy-WOBwah-_Ya8C0_nz8HZByHQQ7yiWsvY2UGLCTPkKnhwdf947TdbWHVANopGkuHYA1XU7thDMpIZBx1iqAkyZ3MJGMl5nSlmaUUQdNqVhJmSVMZcxy6Js_RjuVr-wThHMDIDDnThmnitzwclKYQlMtZWAHkiRBb_rZFsuO1EN09M1EgMXF1uIJeh2dYdNN1mchFY5NxbeTIzHjX44-8SwXewnaHXjLRgBCPFLwLEEve-8RsIDDrYysrG8bkeWBkz_n1_QoAscPmV7TA3DmFCLFBJHoTX_RSoD5t62n_yL0DN3uXmeG1M_naGdVt3YX4NlKvYhL8DeFHDaF |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgFYJL-RYplPqA4JTdjZPYDjfo1wLtSkArerNsx9GuSpNVdldQfg6_lBlns0s4FAmOjjyWPJmJn53nN4S8EDl3WcZ4KKKkCLFEYahzZ0NdWNhhS24Tg3eHT0Z8eJa8P09bNiHehWn0IVYHbpgZ_nuNCY4H0v21aihMqwertxeEYfwm2YScj5DVtf9ppSAV8cyXkMRADgXjstVtHLB-176zLm2ii78jT1LPwFVFU-OiA0J_h7J-LTq8S0w7i4aCctFbzE3P_vhD4PG_pnmPbC2RKn3ThNZ9csOVD8itA69yffWQ_NyfuDkMS7W1i8tlETCqy5zmbrpo4opWBR1f5XU1HVdmYqkvIVXZsWf9udlr-nZSdcxRiPwSCTozP5L_i0Hrlq83nkwpnhvjc1pZgLXV1_43AMs1GjaqS9RWzqtiwGL6iJwdHpzuDcNlwYfQAm7kYawLwGs2S91ACq1hL1M4ZwBR5nEBb1LILDLW8YgLXkBTG5Fx4ZgwkXAS-saPyUZZle4JoXEOODCWhckLk8S5zAZJnlhutUaBIM0C8qp93Wra6HqoRsGZKfC4Wns8IC99NKy66foC2XAiVV9GR-pcfj76KKNY7QVkpxMuKwPY5bFERgHZbcNHQQ7jjxldumoxU1GMsvyxvKZHgjI_LL2mB0DNFDaLAWE-nP4yKwXuX7e2_8Vol9wenp4cq-N3ow9PyZ3msiYyQZ-RjXm9cDuA1ubmuc_HX9kCOqY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagFYgL5VURoNQHBKfsbpzEdrhBt9vyWvGq2Jvl-KFdlSZRdiMoP6e_lLGz2e1yKBIcHXkszXgcf2OPv0HoGdPUZBmhIYsSG7oShaHURoXSKoiwOVVJ7t4OfxjT45Pk7SSdXHrF3_JDrA7c3Mrw_2u3wCtt-2vSUNCqB5u354Mh9DraTijJHHv-8POKQCqima8g6fw4ZITyjrZxQPqb8hvb0raz8E-XJinnYCnblrjYwKCXkazfikY7SHZKtBkop71mkffUrz_4Hf9Hyzvo9hKn4letY91F10xxD9049BzX5_fRxXBmFjAqlko1Z8sSYFgWGmtTNa1X4dLi6bmuy2pa5jOFfQGpUk19zp-Zv8SvZ-WGuKMhP3PpOXM_kr_DwHWXrTedVdidGrvvuFQAasvv_R8AlWsn2HIuYVUaz4kBW-kDdDI6_HpwHC7LPYQKUCMNY2kBraksNQPOpIRIxhqTA57UsYWJZDyLcmVoRBm10JQ5yygzhOURMxz6xrtoqygL8xDhWAMKjLnNtc2TWPNskOhEUSWloweSJEAvutkWVcvqIVr-ZiLA4mJt8QA9986w6ibrU5cLx1LxbXwkJvzL0ScexeIgQHsb3rISgBiPJDwK0H7nPQJWsLuWkYUpm7mIYkfKH_MreiSO5IekV_QAoJlCqBgg4r3pL1oJMP-69ehfhPbRzY_DkXj_ZvzuMbrVvtR0aaBP0NaibsweQLVF_tSvxt8CBTlV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dietary+Accumulation+and+Depuration+of+Hydrophobic+Organochlorines%3A+Bioaccumulation+Parameters+and+Their+Relationship+with+the+Octanol%2FWater+Partition+Coefficient&rft.jtitle=Environmental+toxicology+and+chemistry&rft.au=Fisk%2C+Aaron+T&rft.au=Norstrom%2C+Ross+J&rft.au=Cymbalisty%2C+Chris+D&rft.au=Muir%2C+Derek+CG&rft.date=1998-05-01&rft.issn=0730-7268&rft.volume=17&rft.issue=5&rft.spage=951&rft.epage=951&rft_id=info:doi/10.1002%2Fetc.5620170526&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-7268&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-7268&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-7268&client=summon |