Identification and characterization of the peptides with calcium‐binding capacity from tilapia (Oreochromis niloticus) skin gelatin enzymatic hydrolysates

The aim of this study was to isolate and identify the peptides with calcium‐binding capacity from the different tilapia skin gelatin enzymatic hydrolysates. The complex protease was selected and its hydrolysates were further separated using gel filtration chromatography (Sephadex G‐25) and reverse p...

Full description

Saved in:
Bibliographic Details
Published inJournal of food science Vol. 85; no. 1; pp. 114 - 122
Main Authors Bingtong, Liu, Yongliang, Zhuang, Liping, Sun
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aim of this study was to isolate and identify the peptides with calcium‐binding capacity from the different tilapia skin gelatin enzymatic hydrolysates. The complex protease was selected and its hydrolysates were further separated using gel filtration chromatography (Sephadex G‐25) and reverse phase high‐performance liquid chromatography. Two purified peptides with strong calcium‐binding capacity were identified as Tyr‐Gly‐Thr‐Gly‐Leu (YGTGL, 509.25 Da) and Leu‐Val‐Phe‐Leu (LVFL, 490.32 Da). The calcium‐binding capacities of YGTGL and LVFL reached 76.03 and 79.50 µg/mg, respectively. The structures of the complex of purified peptides and calcium (YGTGL‐Ca and LVFL‐Ca) were characterized by ultraviolet‐visible spectroscopy (UV‐VIS), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and mass spectrometry (LC‐MS/MS). The results of UV‐VIS, SEM, and XRD indicated that YGTGL‐Ca and LVFL‐Ca were formed as new compounds. The results of FTIR and LC‐MS/MS indicated the nitrogen atom of the amino group and the oxygen atom of the carboxyl group in terminates of the peptides provided primary binding sites. Moreover, the hydrophobic amino acids in purified peptides could provide more chelating spaces. This study was of great significance for the development of calcium supplement foods. Practical Application Compared with inorganic calcium and organic calcium, the bioactive gelatin peptide chelated calcium has the characteristics of high utilization rate, high solubility, and high absorption rate. The raw materials are extracted from the tilapia processed waste, which reduce the cost, make full use of resources, and improve the bioavailability. The tilapia skin gelatin peptide calcium chelate can be directly absorbed by the human body, and the absorption efficiency is high, further improving the resource utilization rate and having high economic benefits, which is a comprehensive supplement that can also be used as a functional food.
AbstractList The aim of this study was to isolate and identify the peptides with calcium‐binding capacity from the different tilapia skin gelatin enzymatic hydrolysates. The complex protease was selected and its hydrolysates were further separated using gel filtration chromatography (Sephadex G‐25) and reverse phase high‐performance liquid chromatography. Two purified peptides with strong calcium‐binding capacity were identified as Tyr‐Gly‐Thr‐Gly‐Leu (YGTGL, 509.25 Da) and Leu‐Val‐Phe‐Leu (LVFL, 490.32 Da). The calcium‐binding capacities of YGTGL and LVFL reached 76.03 and 79.50 µg/mg, respectively. The structures of the complex of purified peptides and calcium (YGTGL‐Ca and LVFL‐Ca) were characterized by ultraviolet‐visible spectroscopy (UV‐VIS), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and mass spectrometry (LC‐MS/MS). The results of UV‐VIS, SEM, and XRD indicated that YGTGL‐Ca and LVFL‐Ca were formed as new compounds. The results of FTIR and LC‐MS/MS indicated the nitrogen atom of the amino group and the oxygen atom of the carboxyl group in terminates of the peptides provided primary binding sites. Moreover, the hydrophobic amino acids in purified peptides could provide more chelating spaces. This study was of great significance for the development of calcium supplement foods. Practical Application Compared with inorganic calcium and organic calcium, the bioactive gelatin peptide chelated calcium has the characteristics of high utilization rate, high solubility, and high absorption rate. The raw materials are extracted from the tilapia processed waste, which reduce the cost, make full use of resources, and improve the bioavailability. The tilapia skin gelatin peptide calcium chelate can be directly absorbed by the human body, and the absorption efficiency is high, further improving the resource utilization rate and having high economic benefits, which is a comprehensive supplement that can also be used as a functional food.
The aim of this study was to isolate and identify the peptides with calcium-binding capacity from the different tilapia skin gelatin enzymatic hydrolysates. The complex protease was selected and its hydrolysates were further separated using gel filtration chromatography (Sephadex G-25) and reverse phase high-performance liquid chromatography. Two purified peptides with strong calcium-binding capacity were identified as Tyr-Gly-Thr-Gly-Leu (YGTGL, 509.25 Da) and Leu-Val-Phe-Leu (LVFL, 490.32 Da). The calcium-binding capacities of YGTGL and LVFL reached 76.03 and 79.50 µg/mg, respectively. The structures of the complex of purified peptides and calcium (YGTGL-Ca and LVFL-Ca) were characterized by ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and mass spectrometry (LC-MS/MS). The results of UV-VIS, SEM, and XRD indicated that YGTGL-Ca and LVFL-Ca were formed as new compounds. The results of FTIR and LC-MS/MS indicated the nitrogen atom of the amino group and the oxygen atom of the carboxyl group in terminates of the peptides provided primary binding sites. Moreover, the hydrophobic amino acids in purified peptides could provide more chelating spaces. This study was of great significance for the development of calcium supplement foods. PRACTICAL APPLICATION: Compared with inorganic calcium and organic calcium, the bioactive gelatin peptide chelated calcium has the characteristics of high utilization rate, high solubility, and high absorption rate. The raw materials are extracted from the tilapia processed waste, which reduce the cost, make full use of resources, and improve the bioavailability. The tilapia skin gelatin peptide calcium chelate can be directly absorbed by the human body, and the absorption efficiency is high, further improving the resource utilization rate and having high economic benefits, which is a comprehensive supplement that can also be used as a functional food.
The aim of this study was to isolate and identify the peptides with calcium‐binding capacity from the different tilapia skin gelatin enzymatic hydrolysates. The complex protease was selected and its hydrolysates were further separated using gel filtration chromatography (Sephadex G‐25) and reverse phase high‐performance liquid chromatography. Two purified peptides with strong calcium‐binding capacity were identified as Tyr‐Gly‐Thr‐Gly‐Leu (YGTGL, 509.25 Da) and Leu‐Val‐Phe‐Leu (LVFL, 490.32 Da). The calcium‐binding capacities of YGTGL and LVFL reached 76.03 and 79.50 µg/mg, respectively. The structures of the complex of purified peptides and calcium (YGTGL‐Ca and LVFL‐Ca) were characterized by ultraviolet‐visible spectroscopy (UV‐VIS), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and mass spectrometry (LC‐MS/MS). The results of UV‐VIS, SEM, and XRD indicated that YGTGL‐Ca and LVFL‐Ca were formed as new compounds. The results of FTIR and LC‐MS/MS indicated the nitrogen atom of the amino group and the oxygen atom of the carboxyl group in terminates of the peptides provided primary binding sites. Moreover, the hydrophobic amino acids in purified peptides could provide more chelating spaces. This study was of great significance for the development of calcium supplement foods.Practical ApplicationCompared with inorganic calcium and organic calcium, the bioactive gelatin peptide chelated calcium has the characteristics of high utilization rate, high solubility, and high absorption rate. The raw materials are extracted from the tilapia processed waste, which reduce the cost, make full use of resources, and improve the bioavailability. The tilapia skin gelatin peptide calcium chelate can be directly absorbed by the human body, and the absorption efficiency is high, further improving the resource utilization rate and having high economic benefits, which is a comprehensive supplement that can also be used as a functional food.
The aim of this study was to isolate and identify the peptides with calcium-binding capacity from the different tilapia skin gelatin enzymatic hydrolysates. The complex protease was selected and its hydrolysates were further separated using gel filtration chromatography (Sephadex G-25) and reverse phase high-performance liquid chromatography. Two purified peptides with strong calcium-binding capacity were identified as Tyr-Gly-Thr-Gly-Leu (YGTGL, 509.25 Da) and Leu-Val-Phe-Leu (LVFL, 490.32 Da). The calcium-binding capacities of YGTGL and LVFL reached 76.03 and 79.50 µg/mg, respectively. The structures of the complex of purified peptides and calcium (YGTGL-Ca and LVFL-Ca) were characterized by ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and mass spectrometry (LC-MS/MS). The results of UV-VIS, SEM, and XRD indicated that YGTGL-Ca and LVFL-Ca were formed as new compounds. The results of FTIR and LC-MS/MS indicated the nitrogen atom of the amino group and the oxygen atom of the carboxyl group in terminates of the peptides provided primary binding sites. Moreover, the hydrophobic amino acids in purified peptides could provide more chelating spaces. This study was of great significance for the development of calcium supplement foods. PRACTICAL APPLICATION: Compared with inorganic calcium and organic calcium, the bioactive gelatin peptide chelated calcium has the characteristics of high utilization rate, high solubility, and high absorption rate. The raw materials are extracted from the tilapia processed waste, which reduce the cost, make full use of resources, and improve the bioavailability. The tilapia skin gelatin peptide calcium chelate can be directly absorbed by the human body, and the absorption efficiency is high, further improving the resource utilization rate and having high economic benefits, which is a comprehensive supplement that can also be used as a functional food.The aim of this study was to isolate and identify the peptides with calcium-binding capacity from the different tilapia skin gelatin enzymatic hydrolysates. The complex protease was selected and its hydrolysates were further separated using gel filtration chromatography (Sephadex G-25) and reverse phase high-performance liquid chromatography. Two purified peptides with strong calcium-binding capacity were identified as Tyr-Gly-Thr-Gly-Leu (YGTGL, 509.25 Da) and Leu-Val-Phe-Leu (LVFL, 490.32 Da). The calcium-binding capacities of YGTGL and LVFL reached 76.03 and 79.50 µg/mg, respectively. The structures of the complex of purified peptides and calcium (YGTGL-Ca and LVFL-Ca) were characterized by ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and mass spectrometry (LC-MS/MS). The results of UV-VIS, SEM, and XRD indicated that YGTGL-Ca and LVFL-Ca were formed as new compounds. The results of FTIR and LC-MS/MS indicated the nitrogen atom of the amino group and the oxygen atom of the carboxyl group in terminates of the peptides provided primary binding sites. Moreover, the hydrophobic amino acids in purified peptides could provide more chelating spaces. This study was of great significance for the development of calcium supplement foods. PRACTICAL APPLICATION: Compared with inorganic calcium and organic calcium, the bioactive gelatin peptide chelated calcium has the characteristics of high utilization rate, high solubility, and high absorption rate. The raw materials are extracted from the tilapia processed waste, which reduce the cost, make full use of resources, and improve the bioavailability. The tilapia skin gelatin peptide calcium chelate can be directly absorbed by the human body, and the absorption efficiency is high, further improving the resource utilization rate and having high economic benefits, which is a comprehensive supplement that can also be used as a functional food.
Author Liping, Sun
Bingtong, Liu
Yongliang, Zhuang
Author_xml – sequence: 1
  givenname: Liu
  surname: Bingtong
  fullname: Bingtong, Liu
  organization: Kunming Univ. of Science and Technology
– sequence: 2
  givenname: Zhuang
  orcidid: 0000-0001-7771-2610
  surname: Yongliang
  fullname: Yongliang, Zhuang
  organization: Kunming Univ. of Science and Technology
– sequence: 3
  givenname: Sun
  orcidid: 0000-0002-4449-6146
  surname: Liping
  fullname: Liping, Sun
  email: kmlpsun@163.com
  organization: Kunming Univ. of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31869867$$D View this record in MEDLINE/PubMed
BookMark eNqFkrFO3jAQx62KqnzQzt0qS13oELBjJ07GCkpLhcRQ9sifcyamiZ3ajlCY-gg8AE_XJ6lDKAND8WL79Pvfnf2_PbRjnQWE3lNySNM6oqIgGas4PaS8FsUrtHmK7KANIXmeUcrFLtoL4Zosd1a-QbuMVmVdlWKD7s9asNFoo2Q0zmJpW6w66aWK4M3tGnQaxw7wCGM0LQR8Y2KHleyVmYY_v--2xrbGXqXIKJWJM9beDTiaXo5G4oMLD051KWQCtqZ30agpfMLhp7H4CvpUwmKwt_OQTgp3c-tdPwcZIbxFr7XsA7x73PfR5emXy-Nv2fnF17Pjz-eZ4qQoMq6E5LzmoFVJCW9rUVWa5YwIvhWibUFIrUsAqDjTvJKkEKWUuuAiEUDYPjpY047e_ZogxCa1qqDvpQU3hSbnhPCyXj7vRZQxwpigYsn68Rl67SZv0zsWqk6N5jVL1IdHatoO0DajN4P0c_PPoQQcrYDyLgQP-gmhpFlmoFkcbxbHm4cZSIrimSKZ8mBk9NL0_9GVq-7G9DC_VKb5fnryYxX-Ba_2xvQ
CitedBy_id crossref_primary_10_1016_j_ultsonch_2021_105546
crossref_primary_10_1016_j_ejps_2024_106978
crossref_primary_10_1039_D3FO04627C
crossref_primary_10_1080_10408398_2021_2001786
crossref_primary_10_1002_mnfr_202100182
crossref_primary_10_1080_10408398_2023_2286623
crossref_primary_10_1080_10408398_2023_2168250
crossref_primary_10_1007_s12649_024_02638_6
crossref_primary_10_3390_foods9101402
crossref_primary_10_1016_j_lwt_2021_112978
crossref_primary_10_37503_jbb_2023_11_26
crossref_primary_10_3390_foods11182762
crossref_primary_10_1021_acs_jafc_3c03256
crossref_primary_10_3390_nu14183738
crossref_primary_10_1039_D0FO01708F
crossref_primary_10_1016_j_ijbiomac_2024_135661
crossref_primary_10_1016_j_foodchem_2024_141253
crossref_primary_10_1016_j_lwt_2020_110018
crossref_primary_10_1111_1750_3841_16132
crossref_primary_10_1016_j_fbio_2025_106013
crossref_primary_10_1016_j_foodchem_2021_130249
crossref_primary_10_1016_j_ultsonch_2024_107102
crossref_primary_10_1007_s11696_024_03698_7
crossref_primary_10_1016_j_fbio_2022_102138
crossref_primary_10_1007_s11694_023_02345_1
crossref_primary_10_1111_1750_3841_15744
crossref_primary_10_1016_j_tifs_2024_104595
crossref_primary_10_1002_jsfa_11445
crossref_primary_10_1016_j_foodchem_2022_134137
crossref_primary_10_1016_j_foodchem_2023_136678
crossref_primary_10_3390_foods12244470
crossref_primary_10_1039_D1FO01094H
crossref_primary_10_3390_foods13152368
crossref_primary_10_1007_s10068_022_01128_6
crossref_primary_10_1016_j_foodres_2024_114589
crossref_primary_10_3390_md21110579
crossref_primary_10_1016_j_foodchem_2022_135190
crossref_primary_10_3389_fnut_2023_1198456
crossref_primary_10_3390_nu16162585
crossref_primary_10_1590_0103_8478cr20230523
crossref_primary_10_1016_j_foodchem_2024_140975
crossref_primary_10_1016_j_tifs_2024_104364
crossref_primary_10_1016_j_fochx_2024_101352
crossref_primary_10_1111_1750_3841_15834
Cites_doi 10.1016/j.procbio.2008.12.001
10.1039/C8FO00569A
10.1021/jf502412f
10.1021/jf401868z
10.1111/1750-3841.12912
10.1016/j.jff.2013.12.024
10.1017/S0022029914000715
10.3390/md15010003
10.1016/j.jfoodeng.2017.01.024
10.1016/j.msec.2005.07.019
10.1016/j.jff.2014.05.013
10.1016/j.ijbiomac.2018.04.138
10.1016/j.anifeedsci.2018.05.013
10.3839/jksabc.2009.051
10.1021/jf302161m
10.1016/0076-6879(90)93460-3
10.1111/ijfs.13502
10.1111/j.1750-3841.2011.02108.x
10.1016/j.foodchem.2016.10.078
10.1016/j.peptides.2012.08.014
10.1002/ejoc.201700181
10.1111/1750-3841.12728
10.1016/j.foodchem.2017.06.090
10.1016/j.foodchem.2017.09.152
10.1080/10498850.2018.1449153
10.1007/s11802-013-2180-2
10.1080/10942912.2011.576361
10.3390/nu10040420
ContentType Journal Article
Copyright 2019 Institute of Food Technologists
2019 Institute of Food Technologists®.
2020 Institute of Food Technologists
Copyright_xml – notice: 2019 Institute of Food Technologists
– notice: 2019 Institute of Food Technologists®.
– notice: 2020 Institute of Food Technologists
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QR
7ST
7T7
7U7
8FD
C1K
F28
FR3
K9.
NAPCQ
P64
RC3
SOI
7X8
7S9
L.6
DOI 10.1111/1750-3841.14975
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Chemoreception Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Nursing & Allied Health Premium
Genetics Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
AGRICOLA
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 1750-3841
EndPage 122
ExternalDocumentID 31869867
10_1111_1750_3841_14975
JFDS14975
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31360381
– fundername: National Natural Science Foundation of China
  grantid: 31360381
GroupedDBID ---
-~X
.3N
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29K
3-9
31~
33P
3EH
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABJNI
ABPVW
ACAHQ
ACBNA
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFDN
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
D-I
DC6
DCZOG
DPXWK
DR2
DRFUL
DROCM
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
P-O
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RXW
SAMSI
SJN
SUPJJ
TAE
TN5
UB1
UBH
UHB
UKR
V8K
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
Y6R
YQJ
ZCA
ZCG
ZGI
ZT4
ZXP
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7QO
7QR
7ST
7T7
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F28
FR3
K9.
NAPCQ
P64
RC3
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c4055-4c7a4494efc6104d9788f323074b77dde7aff6eee843f48a0576aaf547074e03
IEDL.DBID DR2
ISSN 0022-1147
1750-3841
IngestDate Fri Jul 11 18:30:53 EDT 2025
Fri Jul 11 15:49:33 EDT 2025
Fri Jul 25 09:51:32 EDT 2025
Wed Feb 19 02:31:07 EST 2025
Tue Jul 01 02:39:38 EDT 2025
Thu Apr 24 23:08:30 EDT 2025
Wed Jan 22 16:37:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords tilapia skin gelatin
mass spectrometry
peptide
structural characteristics
calcium-binding capacity
Language English
License 2019 Institute of Food Technologists®.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4055-4c7a4494efc6104d9788f323074b77dde7aff6eee843f48a0576aaf547074e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7771-2610
0000-0002-4449-6146
PMID 31869867
PQID 2339104293
PQPubID 40513
PageCount 9
ParticipantIDs proquest_miscellaneous_2400469022
proquest_miscellaneous_2330337170
proquest_journals_2339104293
pubmed_primary_31869867
crossref_primary_10_1111_1750_3841_14975
crossref_citationtrail_10_1111_1750_3841_14975
wiley_primary_10_1111_1750_3841_14975_JFDS14975
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
2020-Jan
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Chicago
PublicationTitle Journal of food science
PublicationTitleAlternate J Food Sci
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 34
2012; 60
2017; 20
2018; 242
2017; 41
2009a; 44
2013; 61
2011; 10
2011; 76
2015; 80
2012; 38
2009b; 52
2014; 62
2016; 15
2018; 27
2017a; 202
2018; 9
2017; 52
2019; 40
2013; 16
2013; 38
2015; 82
2017; 38
2013; 12
2008; 29
2018; 115
2006; 26
2017b; 239
2017; 243
2017; 221
2014; 9
2018; 10
2014; 7
1990; 93
2014; 10
e_1_2_8_28_1
e_1_2_8_29_1
Zhao N. N. (e_1_2_8_34_1) 2014; 9
Jin Y. G. (e_1_2_8_12_1) 2011; 10
Liu B. T. (e_1_2_8_16_1) 2019; 40
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
Zhou J. Q. (e_1_2_8_35_1) 2008; 29
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
Xia G. H. (e_1_2_8_27_1) 2013; 38
e_1_2_8_17_1
Feng T. (e_1_2_8_6_1) 2017; 41
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
Jens A. N. (e_1_2_8_11_1) 2010; 34
e_1_2_8_15_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 239
  start-page: 416
  year: 2017b
  end-page: 426
  article-title: Isolation of a novel calcium‐binding peptide from wheat germ protein hydrolysates and the prediction for its mechanism of combination
  publication-title: Food Chemistry
– volume: 82
  start-page: 29
  issue: 1
  year: 2015
  end-page: 35
  article-title: Purification and characterisation of a glutamic acid‐containing peptide with calcium‐binding capacity from whey protein hydrolysate
  publication-title: Journal of Dairy Research
– volume: 10
  start-page: 420
  issue: 4
  year: 2018
  article-title: Protective effects of LSGYGP from fish skin gelatin hydrolysates on UVB‐induced MEFs by regulation of oxidative stress and matrix metalloproteinase activity
  publication-title: Nutrients
– volume: 76
  start-page: 483
  issue: 3
  year: 2011
  end-page: 489
  article-title: Preparation of reactive oxygen scavenging peptides from tilapia ( ) skin gelatin: Optimization using response surface methodology
  publication-title: Journal of Food Science
– volume: 202
  start-page: 9
  year: 2017a
  end-page: 17
  article-title: Effect of electron beam on the functional properties and structure of defatted wheat germ proteins
  publication-title: Journal of Food Engineering
– volume: 93
  start-page: 886
  year: 1990
  end-page: 887
  article-title: Appendix 5. Nomenclature for peptide fragment ions (positive ions)
  publication-title: Methods in Enzymology
– volume: 61
  start-page: 7537
  issue: 31
  year: 2013
  end-page: 7544
  article-title: Calcium‐binding capacity of wheat germ protein hydrolysate and characterization of peptide‐calcium complex
  publication-title: Journal of Agricultural & Food Chemistry
– volume: 16
  start-page: 1127
  issue: 5
  year: 2013
  end-page: 1134
  article-title: A newly isolated Ca binding peptide from whey protein
  publication-title: International Journal of Food Properties
– volume: 15
  start-page: 3
  issue: 1
  year: 2016
  article-title: Novel peptide with specific calcium‐binding capacity from sp. protein hydrolysates and calcium bioavailability in Caco‐2 cells
  publication-title: Marine Drugs
– volume: 60
  start-page: 9112
  issue: 36
  year: 2012
  end-page: 9119
  article-title: Peptide isolated from Japanese flounder skin gelatin protects against cellular oxidative damage
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 27
  start-page: 518
  issue: 4
  year: 2018
  end-page: 530
  article-title: Purification of algal calcium‐chelating peptide and its physical chemical properties
  publication-title: Journal of Aquatic Food Product Technology
– volume: 10
  start-page: 46
  issue: 3
  year: 2014
  end-page: 53
  article-title: A specific peptide with calcium chelating capacity isolated from whey protein hydrolysate
  publication-title: Journal of Functional Foods
– volume: 44
  start-page: 378
  issue: 3
  year: 2009a
  end-page: 381
  article-title: Purification of an iron‐binding nona‐peptide from hydrolysates of porcine blood plasma protein
  publication-title: Process Biochemistry
– volume: 9
  start-page: 5251
  year: 2018
  end-page: 5259
  article-title: Preparation and identification of novel inhibitory angiotensin‐I‐converting enzyme peptides from tilapia skin gelatin hydrolysates: Inhibition kinetics and molecular docking
  publication-title: Food Function
– volume: 26
  start-page: 635
  issue: 4
  year: 2006
  end-page: 638
  article-title: Investigations of the initial stage of recombinant human‐like collagen mineralization
  publication-title: Materials Science & Engineering C
– volume: 34
  start-page: 215
  issue: 3
  year: 2010
  end-page: 222
  article-title: Control of proteolytic reaction and of the level of bitterness in protein hydrolysis process
  publication-title: Journal of Chemical Technology & Biotechnology
– volume: 9
  start-page: 181
  year: 2014
  end-page: 186
  article-title: Preparation and deamination of calcium absorption‐promoting peptides from desalted duck egg white
  publication-title: Food Science
– volume: 243
  start-page: 389
  year: 2017
  end-page: 395
  article-title: A novel calcium‐binding peptide from Antarctic krill protein hydrolysates and identification of binding sites of calcium‐peptide complex
  publication-title: Food Chemistry
– volume: 115
  start-page: 900
  year: 2018
  end-page: 906
  article-title: Characterization of bare and tannase‐loaded calcium alginate beads by microscopic, thermogravimetric, FTIR and XRD analyses
  publication-title: International Journal of Biological Macromolecules
– volume: 12
  start-page: 484
  issue: 3
  year: 2013
  end-page: 490
  article-title: Purification of antimicrobial peptide from Antarctic Krill ( ) and its function mechanism
  publication-title: Journal of Ocean University of China
– volume: 20
  start-page: 2944
  year: 2017
  end-page: 2949
  article-title: Structural insights into the hydrogen‐bonding and folding pattern in Ant‐Ant‐Pro‐Gly tetrapeptides
  publication-title: European Journal of Organic Chemistry
– volume: 80
  start-page: 1595
  issue: 7
  year: 2015
  end-page: 1601
  article-title: Core‐shell collagen peptide chelated calcium/calcium alginate nanoparticles from fish scales for calcium supplementation
  publication-title: Journal of Food Science
– volume: 29
  start-page: 196
  issue: 1
  year: 2008
  end-page: 201
  article-title: Study on milk protein hydrolysis by proteases in pH naturally changed conditions
  publication-title: Food Science
– volume: 52
  start-page: 290
  issue: 3
  year: 2009b
  end-page: 294
  article-title: Article isolation of a calcium‐binding peptide from enzymatic hydrolysates of porcine blood plasma protein
  publication-title: Journal of the Korean Society for Applied Biological Chemistry
– volume: 38
  start-page: 242
  issue: 6
  year: 2013
  end-page: 246
  article-title: Preparation, identification and antioxidant activity of tilapia fish skin collagen polypeptide chelated calcium
  publication-title: Food Science &Technology
– volume: 221
  start-page: 373
  year: 2017
  end-page: 378
  article-title: Effect of calcium‐binding peptide from Pacific cod ( ) bone on calcium bioavailability in rats
  publication-title: Food Chemistry
– volume: 52
  start-page: 2230
  issue: 10
  year: 2017
  end-page: 2237
  article-title: Preparation and characterisation of isoflavone aglycone‐rich calcium‐binding soy protein hydrolysates
  publication-title: International Journal of Food Science & Technology
– volume: 242
  start-page: 95
  issue: 13
  year: 2018
  end-page: 110
  article-title: Effect of phytase dose and reduction in dietarycalcium on performance, nutrient digestibility, bone ash and mineralization in broilers fed corn‐soybean meal‐based diets with reduced nutrient density
  publication-title: Animal Feed Science and Technology
– volume: 10
  start-page: 11204
  issue: 50
  year: 2011
  end-page: 10211
  article-title: Preparation and structure characterization of soluble bone collagen peptide chelating calcium
  publication-title: African Journal of Biotechnology
– volume: 41
  start-page: 817
  issue: 6
  year: 2017
  end-page: 826
  article-title: Kinetics of lipopeptides production of tilapia processing byproduct fermentation by NT‐6 in solid state
  publication-title: Journal of Fisheries of China
– volume: 40
  start-page: 1643
  issue: 8
  year: 2019
  end-page: 1648
  article-title: Structural characterization of peptide calcium chelate VGLPNSR‐Ca and its calcium absorption ability in Caco‐2 cell monolayer
  publication-title: Chemical Journal of Chinese Universities
– volume: 62
  start-page: 10274
  issue: 42
  year: 2014
  end-page: 10282
  article-title: Novel peptide with a specific calcium‐binding capacity from whey protein hydrolysate and the possible chelating mode
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 38
  start-page: 13
  issue: 1
  year: 2012
  end-page: 21
  article-title: Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia ( ) skin gelatin
  publication-title: Peptides
– volume: 38
  start-page: 116
  issue: 1
  year: 2017
  end-page: 120
  article-title: Using FTIR and 1H‐NMR to explore the structure of antioxidant peptide KWFH treated by pulsed electric field (PEF)
  publication-title: Food Science
– volume: 7
  start-page: 609
  year: 2014
  end-page: 620
  article-title: Antioxidant and cryoprotective effects of a tetrapeptide isolated from Amur sturgeon skin gelatin
  publication-title: Journal of Functional Foods
– volume: 10
  start-page: 11204
  issue: 50
  year: 2011
  ident: e_1_2_8_12_1
  article-title: Preparation and structure characterization of soluble bone collagen peptide chelating calcium
  publication-title: African Journal of Biotechnology
– ident: e_1_2_8_14_1
  doi: 10.1016/j.procbio.2008.12.001
– ident: e_1_2_8_28_1
  doi: 10.1039/C8FO00569A
– ident: e_1_2_8_32_1
  doi: 10.1021/jf502412f
– volume: 29
  start-page: 196
  issue: 1
  year: 2008
  ident: e_1_2_8_35_1
  article-title: Study on milk protein hydrolysis by proteases in pH naturally changed conditions
  publication-title: Food Science
– ident: e_1_2_8_17_1
  doi: 10.1021/jf401868z
– volume: 34
  start-page: 215
  issue: 3
  year: 2010
  ident: e_1_2_8_11_1
  article-title: Control of proteolytic reaction and of the level of bitterness in protein hydrolysis process
  publication-title: Journal of Chemical Technology & Biotechnology
– ident: e_1_2_8_7_1
  doi: 10.1111/1750-3841.12912
– ident: e_1_2_8_19_1
  doi: 10.1016/j.jff.2013.12.024
– ident: e_1_2_8_10_1
  doi: 10.1017/S0022029914000715
– ident: e_1_2_8_4_1
  doi: 10.3390/md15010003
– volume: 40
  start-page: 1643
  issue: 8
  year: 2019
  ident: e_1_2_8_16_1
  article-title: Structural characterization of peptide calcium chelate VGLPNSR‐Ca and its calcium absorption ability in Caco‐2 cell monolayer
  publication-title: Chemical Journal of Chinese Universities
– ident: e_1_2_8_22_1
  doi: 10.1016/j.jfoodeng.2017.01.024
– ident: e_1_2_8_25_1
  doi: 10.1016/j.msec.2005.07.019
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jff.2014.05.013
– volume: 9
  start-page: 181
  year: 2014
  ident: e_1_2_8_34_1
  article-title: Preparation and deamination of calcium absorption‐promoting peptides from desalted duck egg white
  publication-title: Food Science
– ident: e_1_2_8_13_1
  doi: 10.1016/j.ijbiomac.2018.04.138
– ident: e_1_2_8_5_1
  doi: 10.1016/j.anifeedsci.2018.05.013
– ident: e_1_2_8_15_1
  doi: 10.3839/jksabc.2009.051
– ident: e_1_2_8_8_1
  doi: 10.1021/jf302161m
– ident: e_1_2_8_3_1
  doi: 10.1016/0076-6879(90)93460-3
– ident: e_1_2_8_24_1
  doi: 10.1111/ijfs.13502
– ident: e_1_2_8_36_1
  doi: 10.1111/j.1750-3841.2011.02108.x
– ident: e_1_2_8_21_1
  doi: 10.1016/j.foodchem.2016.10.078
– ident: e_1_2_8_30_1
  doi: 10.1016/j.peptides.2012.08.014
– ident: e_1_2_8_2_1
  doi: 10.1002/ejoc.201700181
– ident: e_1_2_8_26_1
  doi: 10.1111/1750-3841.12728
– ident: e_1_2_8_23_1
  doi: 10.1016/j.foodchem.2017.06.090
– ident: e_1_2_8_9_1
  doi: 10.1016/j.foodchem.2017.09.152
– volume: 41
  start-page: 817
  issue: 6
  year: 2017
  ident: e_1_2_8_6_1
  article-title: Kinetics of lipopeptides production of tilapia processing byproduct fermentation by NT‐6 in solid state
  publication-title: Journal of Fisheries of China
– ident: e_1_2_8_29_1
  doi: 10.1080/10498850.2018.1449153
– ident: e_1_2_8_31_1
  doi: 10.1007/s11802-013-2180-2
– ident: e_1_2_8_20_1
  doi: 10.1080/10942912.2011.576361
– ident: e_1_2_8_18_1
  doi: 10.3390/nu10040420
– volume: 38
  start-page: 242
  issue: 6
  year: 2013
  ident: e_1_2_8_27_1
  article-title: Preparation, identification and antioxidant activity of tilapia fish skin collagen polypeptide chelated calcium
  publication-title: Food Science &Technology
SSID ssj0002236
Score 2.497007
Snippet The aim of this study was to isolate and identify the peptides with calcium‐binding capacity from the different tilapia skin gelatin enzymatic hydrolysates....
The aim of this study was to isolate and identify the peptides with calcium-binding capacity from the different tilapia skin gelatin enzymatic hydrolysates....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 114
SubjectTerms Absorption
Amino Acid Sequence
Amino acids
Animals
Binding sites
Bioavailability
Biocatalysis
Biological Availability
Calcium
Calcium - chemistry
calcium‐binding capacity
Carboxyl group
Chelates
Chelation
Chromatography
Chromatography, High Pressure Liquid
Chromatography, Reverse-Phase
Cichlids
Dietary Supplements - analysis
financial economics
Fish Proteins - chemistry
Fourier transform infrared spectroscopy
Fourier transforms
functional foods
Functional foods & nutraceuticals
gel chromatography
Gel filtration
Gelatin
Gelatin - chemistry
Humans
Hydrolysates
Hydrophobicity
Infrared spectroscopy
Liquid chromatography
Mass spectrometry
Mass spectroscopy
moieties
nitrogen
Oreochromis niloticus
oxygen
peptide
Peptide Hydrolases - chemistry
Peptides
Peptides - chemistry
Protein Binding
Protein Hydrolysates - chemistry
proteinases
Raw materials
Resource utilization
reversed-phase high performance liquid chromatography
Scanning electron microscopy
Skin
Skin - chemistry
solubility
structural characteristics
Tandem Mass Spectrometry
Tilapia
tilapia skin gelatin
ultraviolet-visible spectroscopy
wastes
X-ray diffraction
Title Identification and characterization of the peptides with calcium‐binding capacity from tilapia (Oreochromis niloticus) skin gelatin enzymatic hydrolysates
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1750-3841.14975
https://www.ncbi.nlm.nih.gov/pubmed/31869867
https://www.proquest.com/docview/2339104293
https://www.proquest.com/docview/2330337170
https://www.proquest.com/docview/2400469022
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqXuiFv_ITKMiVOJRDlux6EmePVWFVVWqRoEjcItuxadStU212D9sTj8AD8HQ8CTPOD7QIEOIWObbkTGYy30xmPjP2YoqB7FjKaZxaCRiggIm1ydJYGsS7RoOw4bCJ45Ps8AMcfUz7akLqhWn5IYaEG1lG-F6TgSvd_GTk6PeIGRbGaOxTSW3mVLFFsOjdDwIpdH5ZzxeOyF925D5Uy3Nj_XW_9AvYvI5dg_OZ3WG633Zbc3I-Wi31yFzdYHT8r-e6y2530JTvt7p0j21Yf5_d6juXm232te3qdV2ajytfcjMQPrf9nLx2HDElv6RqmdI2nBK9HBXBVKuLb5-_6Cq00eAIBusYAXDqb-HLiprqFN97u7C1OcOhquG-mtdEDdK85M155fmnULfnufVX60A0y8_W5aKerxvCyw_Y6ezN6cFh3J3uEBsEiWkMRiqAKVhnEMJBieFs7gTVpYOWEr-6UjmXWWtzEA5yhcAyU8qlIHGGTcRDtulrbx8znmQu0Qalp3MAZzDmRpAyllaYpLQitxEb9a-2MB3zOR3AMS_6CIhkXpDMiyDziO0NCy5b0o_fT93pdaXorL8pJkIgCkNPLyK2O9xGydHPGOVtvQpzEiEwmE7-MAfa9MVkErFHrR4O-xF0llieyYi9Ctr0t40WR7PX78PVk39e8ZRtTSjNEDJPO2xzuVjZZ4jFlvp5MLfvACgpfg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5BOZQLUH6KoZSt1EM5OHWya69zREAUSn8kCFJvlr3eba2GdRUnh_TEI_AAPB1Pwsz6h7YIEOotctbWZjyz881k5huA7SEGsn0ph36opcAARSg_U1HoS4V4V2WCazds4uAwGn8We8fh8aVemJofoku4kWW485oMnBLSl6wcHR9Rw4o-WvtQhrfhDs31dmHVx18UUuj-opYxHLG_bOh9qJrn2gOueqbf4OZV9Orcz-g-qHbjddXJWW8xz3rq4hqn481-2QO416BT9rpWpzW4pe1DWG2bl6tH8L1u7DVNpo-lNmeq43yuWzpZaRjCSnZOBTO5rhjlehnqgioWX358_ZYVrpMGr2C8jkEAoxYXNi-ory5lO0czXapTvFRUzBbTkthBqlesOissO3Gle5Zpe7F0XLPsdJnPyumyIsj8GCajd5M3Y78Z8OArxImhL5RMhRgKbRSiOJFjRBsbTqXpIpMSD16ZGhNprWPBjYhTxJZRmppQSFyhA_4EVmxp9VNgQWSCTKH0slgIozDsRpzSl5qrINc81h702nebqIb8nGZwTJM2CCKZJyTzxMncg53uhvOa9-PPSzdaZUmaA6BKBpwjEENnzz3Y6r5GydH_ManV5cKtCTjHeDr4yxpRZzAGAw_Wa0Xs9sNpnFgcSQ92nTr9a6PJ3ujtJ_fp2X_f8RJWx5OD_WT__eGH53B3QFkHl4jagJX5bKFfIDSbZ5vO9n4CiWotmQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkYAL_9BAASNxKIdss2snzh4Ry6oUKAiKxC2KHZtG3Tqrze5he-IReACejidhxvmBFgFC3KLEjpzJTOabycxngMdjDGSHUo7D2EiBAYrQodJJHEqNeFcrwY3fbOL1frL7Qex9jLtqQuqFafgh-oQbWYb_XpOBzwv7k5Gj3yNmWDFEYx_L-DxcEEmUkmJP3v1gkELvl3SE4Qj9ZcvuQ8U8Z25w2jH9gjZPg1fvfaZXQXXrbopOjgarpRrokzOUjv_1YNfgSotN2dNGma7DOeNuwKWudbm-CV-btl7b5vlY7gqme8bnpqGTVZYhqGRzKpcpTM0o08tQE3S5Ov72-YsqfR8NnsFoHUMARg0ubFlSV13Ott8sTKUP8VRZM1fOKuIGqZ-w-qh07JMv3HPMuJO1Z5plh-tiUc3WNQHmW3AwfX7wbDdst3cINaLEOBRa5kKMhbEaMZwoMJ5NLafCdKGkxM-uzK1NjDGp4FakOSLLJM9tLCSOMBG_DRuucmYTWJTYSGmUnkqFsBqDbkQpQ2m4jgrDUxPAoHu1mW6pz2kHjlnWhUAk84xknnmZB7DdT5g3rB-_H7rV6UrWmn-djThHGIaungfwqL-MkqO_Mbkz1cqPiTjHaDr6wxjR5C9GowDuNHrYr4fTZmJpIgPY8dr0t4Vme9PJe390959nPISLbyfT7NWL_Zf34PKIUg4-C7UFG8vFytxHXLZUD7zlfQfy9yxR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+and+characterization+of+the+peptides+with+calcium%E2%80%90binding+capacity+from+tilapia+%28+Oreochromis+niloticus+%29+skin+gelatin+enzymatic+hydrolysates&rft.jtitle=Journal+of+food+science&rft.au=Bingtong%2C+Liu&rft.au=Yongliang%2C+Zhuang&rft.au=Liping%2C+Sun&rft.date=2020-01-01&rft.issn=0022-1147&rft.eissn=1750-3841&rft.volume=85&rft.issue=1&rft.spage=114&rft.epage=122&rft_id=info:doi/10.1111%2F1750-3841.14975&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1750_3841_14975
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1147&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1147&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1147&client=summon