Dominance of soil moisture over aridity in explaining vegetation greenness across global drylands

Drylands are one of the most sensitive areas to climate change. Despite being characterized by water scarcity and low precipitation, drylands support a wide range of green biodiversity and nearly 40 % of the global population. However, the climate change impacts on dryland characteristics and vegeta...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 917; p. 170482
Main Authors Tripathi, Indra Mani, Mahto, Shanti Shwarup, Kushwaha, Anuj Prakash, Kumar, Rahul, Tiwari, Amar Deep, Sahu, Bidhan Kumar, Jain, Vikrant, Mohapatra, Pranab Kumar
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 20.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Drylands are one of the most sensitive areas to climate change. Despite being characterized by water scarcity and low precipitation, drylands support a wide range of green biodiversity and nearly 40 % of the global population. However, the climate change impacts on dryland characteristics and vegetation dynamics are debatable as the reasons remain poorly understood. Here, we use hydro-meteorological variables from ERA5 reanalysis and GIMMS-NDVI to analyze the changes in dryland aridity and vegetation greenness in the eight selected global dryland regions. The total dryland area (excluding hyperarid) has increased by 12 %, while arid, semiarid, and dry sub-humid areas have increased by 10.5 %, 8 %, and 25 %, respectively. We find a significant increase in aridity in drylands across the globe, except for South Asia. A decrease (increase) in precipitation is the major driver for a significant increase (decrease) in dryland aridity, with a notable contribution from climate warming. Despite decreasing trends in precipitation, vegetation greenness has significantly increased in most dryland regions due to increased soil moisture. Cropland expansion in Europe, Asia, and Australia resulted in the maximum increase in NDVI (Normalized Difference Vegetation Index) in dryland regions. The highest increase, with a ΔNDVI of 0.075, was observed in South Asia. The enhanced vegetation greenness observed is attributed to the expansion of croplands in recent decades, which has increased soil moisture. Overall, we show that monitoring soil moisture variability can provide a more robust explanation for vegetation greenness in the global drylands than aridity change. Moreover, human interventions of climatic alteration through land use change practices, such as cropland expansion, cannot be ignored while explaining the ecosystem dynamics of the drylands. [Display omitted] •A significant increase in aridity across global drylands was observed, except for South Asia.•The expansion of drylands in arid, semiarid, and dry sub-humid regions highlights escalating influence of climate change.•Vegetation greenness rises significantly despite decreased precipitation trends in most dryland regions.•The enhanced soil moisture in most of the drylands results from cropland expansion.
AbstractList Drylands are one of the most sensitive areas to climate change. Despite being characterized by water scarcity and low precipitation, drylands support a wide range of green biodiversity and nearly 40 % of the global population. However, the climate change impacts on dryland characteristics and vegetation dynamics are debatable as the reasons remain poorly understood. Here, we use hydro-meteorological variables from ERA5 reanalysis and GIMMS-NDVI to analyze the changes in dryland aridity and vegetation greenness in the eight selected global dryland regions. The total dryland area (excluding hyperarid) has increased by 12 %, while arid, semiarid, and dry sub-humid areas have increased by 10.5 %, 8 %, and 25 %, respectively. We find a significant increase in aridity in drylands across the globe, except for South Asia. A decrease (increase) in precipitation is the major driver for a significant increase (decrease) in dryland aridity, with a notable contribution from climate warming. Despite decreasing trends in precipitation, vegetation greenness has significantly increased in most dryland regions due to increased soil moisture. Cropland expansion in Europe, Asia, and Australia resulted in the maximum increase in NDVI (Normalized Difference Vegetation Index) in dryland regions. The highest increase, with a ΔNDVI of 0.075, was observed in South Asia. The enhanced vegetation greenness observed is attributed to the expansion of croplands in recent decades, which has increased soil moisture. Overall, we show that monitoring soil moisture variability can provide a more robust explanation for vegetation greenness in the global drylands than aridity change. Moreover, human interventions of climatic alteration through land use change practices, such as cropland expansion, cannot be ignored while explaining the ecosystem dynamics of the drylands.
Drylands are one of the most sensitive areas to climate change. Despite being characterized by water scarcity and low precipitation, drylands support a wide range of green biodiversity and nearly 40 % of the global population. However, the climate change impacts on dryland characteristics and vegetation dynamics are debatable as the reasons remain poorly understood. Here, we use hydro-meteorological variables from ERA5 reanalysis and GIMMS-NDVI to analyze the changes in dryland aridity and vegetation greenness in the eight selected global dryland regions. The total dryland area (excluding hyperarid) has increased by 12 %, while arid, semiarid, and dry sub-humid areas have increased by 10.5 %, 8 %, and 25 %, respectively. We find a significant increase in aridity in drylands across the globe, except for South Asia. A decrease (increase) in precipitation is the major driver for a significant increase (decrease) in dryland aridity, with a notable contribution from climate warming. Despite decreasing trends in precipitation, vegetation greenness has significantly increased in most dryland regions due to increased soil moisture. Cropland expansion in Europe, Asia, and Australia resulted in the maximum increase in NDVI (Normalized Difference Vegetation Index) in dryland regions. The highest increase, with a ΔNDVI of 0.075, was observed in South Asia. The enhanced vegetation greenness observed is attributed to the expansion of croplands in recent decades, which has increased soil moisture. Overall, we show that monitoring soil moisture variability can provide a more robust explanation for vegetation greenness in the global drylands than aridity change. Moreover, human interventions of climatic alteration through land use change practices, such as cropland expansion, cannot be ignored while explaining the ecosystem dynamics of the drylands.Drylands are one of the most sensitive areas to climate change. Despite being characterized by water scarcity and low precipitation, drylands support a wide range of green biodiversity and nearly 40 % of the global population. However, the climate change impacts on dryland characteristics and vegetation dynamics are debatable as the reasons remain poorly understood. Here, we use hydro-meteorological variables from ERA5 reanalysis and GIMMS-NDVI to analyze the changes in dryland aridity and vegetation greenness in the eight selected global dryland regions. The total dryland area (excluding hyperarid) has increased by 12 %, while arid, semiarid, and dry sub-humid areas have increased by 10.5 %, 8 %, and 25 %, respectively. We find a significant increase in aridity in drylands across the globe, except for South Asia. A decrease (increase) in precipitation is the major driver for a significant increase (decrease) in dryland aridity, with a notable contribution from climate warming. Despite decreasing trends in precipitation, vegetation greenness has significantly increased in most dryland regions due to increased soil moisture. Cropland expansion in Europe, Asia, and Australia resulted in the maximum increase in NDVI (Normalized Difference Vegetation Index) in dryland regions. The highest increase, with a ΔNDVI of 0.075, was observed in South Asia. The enhanced vegetation greenness observed is attributed to the expansion of croplands in recent decades, which has increased soil moisture. Overall, we show that monitoring soil moisture variability can provide a more robust explanation for vegetation greenness in the global drylands than aridity change. Moreover, human interventions of climatic alteration through land use change practices, such as cropland expansion, cannot be ignored while explaining the ecosystem dynamics of the drylands.
Drylands are one of the most sensitive areas to climate change. Despite being characterized by water scarcity and low precipitation, drylands support a wide range of green biodiversity and nearly 40 % of the global population. However, the climate change impacts on dryland characteristics and vegetation dynamics are debatable as the reasons remain poorly understood. Here, we use hydro-meteorological variables from ERA5 reanalysis and GIMMS-NDVI to analyze the changes in dryland aridity and vegetation greenness in the eight selected global dryland regions. The total dryland area (excluding hyperarid) has increased by 12 %, while arid, semiarid, and dry sub-humid areas have increased by 10.5 %, 8 %, and 25 %, respectively. We find a significant increase in aridity in drylands across the globe, except for South Asia. A decrease (increase) in precipitation is the major driver for a significant increase (decrease) in dryland aridity, with a notable contribution from climate warming. Despite decreasing trends in precipitation, vegetation greenness has significantly increased in most dryland regions due to increased soil moisture. Cropland expansion in Europe, Asia, and Australia resulted in the maximum increase in NDVI (Normalized Difference Vegetation Index) in dryland regions. The highest increase, with a ΔNDVI of 0.075, was observed in South Asia. The enhanced vegetation greenness observed is attributed to the expansion of croplands in recent decades, which has increased soil moisture. Overall, we show that monitoring soil moisture variability can provide a more robust explanation for vegetation greenness in the global drylands than aridity change. Moreover, human interventions of climatic alteration through land use change practices, such as cropland expansion, cannot be ignored while explaining the ecosystem dynamics of the drylands.
Drylands are one of the most sensitive areas to climate change. Despite being characterized by water scarcity and low precipitation, drylands support a wide range of green biodiversity and nearly 40 % of the global population. However, the climate change impacts on dryland characteristics and vegetation dynamics are debatable as the reasons remain poorly understood. Here, we use hydro-meteorological variables from ERA5 reanalysis and GIMMS-NDVI to analyze the changes in dryland aridity and vegetation greenness in the eight selected global dryland regions. The total dryland area (excluding hyperarid) has increased by 12 %, while arid, semiarid, and dry sub-humid areas have increased by 10.5 %, 8 %, and 25 %, respectively. We find a significant increase in aridity in drylands across the globe, except for South Asia. A decrease (increase) in precipitation is the major driver for a significant increase (decrease) in dryland aridity, with a notable contribution from climate warming. Despite decreasing trends in precipitation, vegetation greenness has significantly increased in most dryland regions due to increased soil moisture. Cropland expansion in Europe, Asia, and Australia resulted in the maximum increase in NDVI (Normalized Difference Vegetation Index) in dryland regions. The highest increase, with a ΔNDVI of 0.075, was observed in South Asia. The enhanced vegetation greenness observed is attributed to the expansion of croplands in recent decades, which has increased soil moisture. Overall, we show that monitoring soil moisture variability can provide a more robust explanation for vegetation greenness in the global drylands than aridity change. Moreover, human interventions of climatic alteration through land use change practices, such as cropland expansion, cannot be ignored while explaining the ecosystem dynamics of the drylands. [Display omitted] •A significant increase in aridity across global drylands was observed, except for South Asia.•The expansion of drylands in arid, semiarid, and dry sub-humid regions highlights escalating influence of climate change.•Vegetation greenness rises significantly despite decreased precipitation trends in most dryland regions.•The enhanced soil moisture in most of the drylands results from cropland expansion.
ArticleNumber 170482
Author Kumar, Rahul
Kushwaha, Anuj Prakash
Mahto, Shanti Shwarup
Mohapatra, Pranab Kumar
Tripathi, Indra Mani
Tiwari, Amar Deep
Sahu, Bidhan Kumar
Jain, Vikrant
Author_xml – sequence: 1
  givenname: Indra Mani
  surname: Tripathi
  fullname: Tripathi, Indra Mani
  email: indra.tripathi@iitgn.ac.in
  organization: Department of Earth Sciences, Indian Institute of Technology (IIT) Gandhinagar, India
– sequence: 2
  givenname: Shanti Shwarup
  surname: Mahto
  fullname: Mahto, Shanti Shwarup
  organization: Department of Earth Sciences, Indian Institute of Technology (IIT) Gandhinagar, India
– sequence: 3
  givenname: Anuj Prakash
  surname: Kushwaha
  fullname: Kushwaha, Anuj Prakash
  organization: Department of Earth Sciences, Indian Institute of Technology (IIT) Gandhinagar, India
– sequence: 4
  givenname: Rahul
  surname: Kumar
  fullname: Kumar, Rahul
  organization: Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, USA
– sequence: 5
  givenname: Amar Deep
  surname: Tiwari
  fullname: Tiwari, Amar Deep
  organization: Department of Civil and Environmental Engineering, Michigan State University, USA
– sequence: 6
  givenname: Bidhan Kumar
  surname: Sahu
  fullname: Sahu, Bidhan Kumar
  organization: Department of Civil Engineering, Indian Institute of Technology (IIT) Gandhinagar, India
– sequence: 7
  givenname: Vikrant
  surname: Jain
  fullname: Jain, Vikrant
  organization: Department of Earth Sciences, Indian Institute of Technology (IIT) Gandhinagar, India
– sequence: 8
  givenname: Pranab Kumar
  surname: Mohapatra
  fullname: Mohapatra, Pranab Kumar
  organization: Department of Civil Engineering, Indian Institute of Technology (IIT) Gandhinagar, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38296067$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvEzEUha2qqE0LfwG8ZDPBr4zHCxZVaQGpEhtYW37ciRzN2MF2IvLvcZqWBZt4c62rc-61z3eDLmOKgNAHSpaU0P7TZllcqKlC3C8ZYWJJJREDu0ALOkjVUcL6S7QgrdepXslrdFPKhrQjB3qFrvnAVE96uUDmS5pDNNEBTiMuKUx4TqHUXW6NPWRscvChHnCIGP5sJxNiiGu8hzVUU0OKeJ0BYoRSsHE5tbKekjUT9vkwmejLW_RmNFOBdy_1Fv16fPh5_617-vH1-_3dU-cEEbUbrRoZgFNeWrqi1IDqOZNg_EisdOAJVU7xdvV2AME5gBDUcuMsKDFafos-nuZuc_q9g1L1HIqDqT0C0q5oTld8NfRKDGelTDFF2bCSpEnfv0h3dgavtznMJh_0a4JN8PkkeP58hlE3MM_J1GzCpCnRR2J6o_8R00di-kSs-eV__tcV5513Jye0VPcB8lEHjaQPGVzVPoWzM_4CUQ24oQ
CitedBy_id crossref_primary_10_1016_j_agwat_2024_109262
crossref_primary_10_1007_s00442_024_05643_7
crossref_primary_10_1007_s12145_025_01706_2
crossref_primary_10_3390_agriculture14091453
crossref_primary_10_1007_s40333_024_0064_5
crossref_primary_10_1016_j_geoderma_2024_117022
Cites_doi 10.2307/1907187
10.1002/grl.50563
10.1016/j.agee.2021.107584
10.1038/nclimate3004
10.3390/rs6086929
10.1016/j.rse.2012.01.017
10.1007/s11027-010-9263-9
10.5194/essd-12-1217-2020
10.1111/gcb.15729
10.5194/acp-13-10081-2013
10.1126/science.aaa1668
10.1016/j.rse.2013.09.011
10.1007/s10531-016-1095-9
10.1038/s41598-017-07058-2
10.1038/ncomms14196
10.1175/JHM-386.1
10.1038/nature13376
10.1080/01621459.1968.10480934
10.1175/JCLI-D-22-0103.1
10.1126/science.1078972
10.1038/s41467-020-15515-2
10.1029/2019GL082781
10.1038/s41467-022-32631-3
10.1002/qj.3803
10.1029/2019JD031155
10.1038/nclimate3275
10.1016/j.jaridenv.2005.03.008
10.3390/geosciences9070289
10.1016/j.scitotenv.2022.156860
10.1002/joc.7301
10.1038/s41893-017-0004-x
10.1002/joc.4124
10.1111/nph.17395
10.1007/s00382-015-2636-8
10.3390/atmos12020217
10.1098/rstb.2012.0016
10.3390/atmos11090996
10.1007/s00376-015-4267-8
10.1146/annurev-ecolsys-121415-032311
10.1038/s41467-020-17710-7
10.1080/01431160500168686
10.1088/1748-9326/acc8ed
10.1016/j.rse.2019.111401
10.1038/s43017-021-00144-0
10.1111/gcb.15658
10.5194/hess-16-2585-2012
10.5194/hess-22-3515-2018
10.1111/gcb.12512
10.1038/srep20716
10.1038/s41893-019-0220-7
10.1002/eco.2420
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright © 2024 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Copyright © 2024 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2024.170482
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 38296067
10_1016_j_scitotenv_2024_170482
S0048969724006193
Genre Journal Article
GeographicLocations Australia
Europe
South Asia
GeographicLocations_xml – name: South Asia
– name: Europe
– name: Australia
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SEW
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAQXK
AATTM
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SSH
WUQ
XPP
ZXP
ZY4
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c404t-fb9f2eec9d7b1511ae96327eadf0b7ced019c93b7cdb8e433ee441b3acbe94fb3
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Fri Aug 22 20:23:03 EDT 2025
Tue Aug 05 10:39:49 EDT 2025
Thu Apr 03 07:08:39 EDT 2025
Tue Jul 01 02:09:33 EDT 2025
Thu Apr 24 23:05:44 EDT 2025
Sat Feb 01 16:04:40 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Climate change
Cropland expansion
Soil moisture
Dryland area
Vegetation greenness
Aridity
Language English
License Copyright © 2024 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-fb9f2eec9d7b1511ae96327eadf0b7ced019c93b7cdb8e433ee441b3acbe94fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 38296067
PQID 2929128570
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153586948
proquest_miscellaneous_2929128570
pubmed_primary_38296067
crossref_citationtrail_10_1016_j_scitotenv_2024_170482
crossref_primary_10_1016_j_scitotenv_2024_170482
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2024_170482
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-20
PublicationDateYYYYMMDD 2024-03-20
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-20
  day: 20
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Smith, Dannenberg, Yan, Herrmann, Barnes, Barron-Gafford, Biederman, Ferrenberg, Fox, Hudson (bb0245) 2019; 233
Dardel, Kergoat, Hiernaux, Mougin, Grippa, Tucker (bb0055) 2014; 140
Mahto, Mishra (bb0180) 2023
Zhu, Xie, Qin, Wang, Xu, Wang (bb0320) 2021; 12
Tong, Brandt, Yue, Horion, Wang, De, Tian, Schurgers, Xiao, Luo (bb0265) 2018; 1
Spinoni, Vogt, Naumann, Carrao, Barbosa (bb0250) 2015; 35
Ji, Huang, Xie, Liu (bb0130) 2015; 32
Zhang, Gentine, Luo, Lian, Liu, Zhou, Michalak, Sun, Fisher, Piao (bb0310) 2022; 13
Wang, d’Odorico, Evans, Eldridge, McCabe, Caylor, King (bb0295) 2012; 16
Ukkola, De Kauwe, Roderick, Burrell, Lehmann, Pitman (bb0280) 2021; 27
D’Odorico, Bhattachan (bb0060) 2012; 367
Donohue, Roderick, McVicar, Farquhar (bb0065) 2013; 40
Hickler, Eklundh, Seaquist, Smith, Ardö, Olsson, Sykes, Sjöström (bb0115) 2005
Ohmura, Wild (bb0200) 2002; 298
Hersbach, Bell, Berrisford, Hirahara, Horányi, Muñoz-Sabater, Nicolas, Peubey, Radu, Schepers, Simmons, Soci, Abdalla, Abellan, Balsamo, Bechtold, Biavati, Bidlot, Bonavita, De, Dahlgren, Dee, Diamantakis, Dragani, Flemming, Forbes, Fuentes, Geer, Haimberger, Healy, Hogan, Hólm, Janisková, Keeley, Laloyaux, Lopez, Lupu, Radnoti, Rosnay, Rozum, Vamborg, Villaume, Thépaut (bb0110) 2020; 146
Olsson, Eklundh, Ardö (bb0205) 2005; 63
Feng, Gu, Luo, Liu, Gulakhmadov, Slater, Li, Zhang, Kong (bb0080) 2022; 35
Tao, Liu, Small, Chen, Wang, Sun (bb0255) 2021; 320
Tucker, Pinzon, Brown, Slayback, Pak, Mahoney, Vermote, El Saleous (bb0275) 2005; 26
Fensholt, Langanke, Rasmussen, Reenberg, Prince, Tucker, Scholes, Le, Bondeau, Eastman (bb0085) 2012; 121
Gonsamo, Ciais, Miralles, Sitch, Dorigo, Lombardozzi, Friedlingstein, Nabel, Goll, O’Sullivan (bb0100) 2021; 27
Tetzner, Thomas, Allen (bb0260) 2019; 9
Maestre, Eldridge, Soliveres, Kéfi, Delgado-Baquerizo, Bowker, García-Palacios, Gaitán, Gallardo, Lázaro (bb0165) 2016; 47
Mahto, Mishra (bb0175) 2019; 124
Feng, Fu (bb0075) 2013; 13
Qiao, Wang (bb0220) 2022; 15
Albergel, Dutra, Munier, Calvet, Munoz-Sabater, de Rosnay, Balsamo (bb0010) 2018; 22
Liu, Gong, Wang, Clinton, Bai, Liang (bb0155) 2020; 12
Anon (bb0015) 2019
Huang, Yu, Dai, Wei, Kang (bb0125) 2017; 7
Sen (bb0240) 1968; 63
Dai, Trenberth, Qian (bb0045) 2004; 5
Lu, Wang, McCabe (bb0160) 2016; 6
Graham, Hudson, Maturilli (bb0105) 2019; 46
Yao, Liu, Huang, Gao, Wang, Li, Yu, Chen (bb0305) 2020; 11
Burrell, Evans, De Kauwe (bb0030) 2020; 11
Armah, Odoi, Yengoh, Obiri, Yawson, Afrifa (bb0020) 2011; 16
White, Nackoney (bb0300) 2003
Leng, Huete, Cleverly, Lu, Ma, Gao, Yu (bb0140) 2022; 842
Kendall (bb0135) 1975; Vol 2
Pinzon, Tucker (bb0210) 2014; 6
Huang, Ji, Xie, Wang, He, Ran (bb0120) 2016; 46
Gleixner, Demissie, Diro (bb0095) 2020; 11
Middleton, Thomas (bb0195) 1997
Reynolds, Smith, Lambin, Turner, Mortimore (bb0225) 2007
Schmeller, Bridgewater (bb0235) 2016; 25
UNEP (bb0285) 1992
Fang, Guo, Hu, Kato, Muraoka, Son (bb0070) 2014; 20
Trees (bb0270) 2016
Chen, Park, Wang, Piao, Xu, Chaturvedi, Fuchs, Brovkin, Ciais, Fensholt (bb0035) 2019; 2
Mahto, Mishra (bb0185) 2023; 18
UNESCO (bb0290) 1979
Cherlet, Hutchinson, Reynolds, Hill, Sommer, Von Maltitz (bb0040) 2018
Schlaepfer, Bradford, Lauenroth, Munson, Tietjen, Hall, Wilson, Duniway, Jia, Pyke (bb0230) 2017; 8
Zotarelli, Dukes, Romero, Migliaccio, Morgan (bb0325) 2010; 1
Daramola, Xu (bb0050) 2022; 42
Ahlström, Raupach, Schurgers, Smith, Arneth, Jung, Reichstein, Canadell, Friedlingstein, Jain (bb0005) 2015; 348
Zhu, Piao, Myneni, Huang, Zeng, Canadell, Ciais, Sitch, Friedlingstein, Arneth (bb0315) 2016; 6
Li, Wang, Kaseke, Li, Seely (bb0145) 2016; 11
Bhanja, Mukherjee, Rodell, Wada, Chattopadhyay, Velicogna, Pangaluru, Famiglietti (bb0025) 2017; 7
Mann (bb0190) 1945; 13
for Atmospheric Research T N C (bb0090) 2018
Poulter, Frank, Ciais, Myneni, Andela, Bi, Broquet, Canadell, Chevallier, Liu (bb0215) 2014; 509
Lian, Piao, Chen, Huntingford, Fu, Li, Huang, Sheffield, Berg, Keenan (bb0150) 2021; 2
Maestre, Benito, Berdugo, Concostrina-Zubiri, Delgado-Baquerizo, Eldridge, Guirado, Gross, Kéfi, Le Bagousse-Pinguet (bb0170) 2021; 231
Tong (10.1016/j.scitotenv.2024.170482_bb0265) 2018; 1
Gonsamo (10.1016/j.scitotenv.2024.170482_bb0100) 2021; 27
Reynolds (10.1016/j.scitotenv.2024.170482_bb0225) 2007
Mann (10.1016/j.scitotenv.2024.170482_bb0190) 1945; 13
Anon (10.1016/j.scitotenv.2024.170482_bb0015) 2019
Mahto (10.1016/j.scitotenv.2024.170482_bb0185) 2023; 18
Ukkola (10.1016/j.scitotenv.2024.170482_bb0280) 2021; 27
White (10.1016/j.scitotenv.2024.170482_bb0300) 2003
Schlaepfer (10.1016/j.scitotenv.2024.170482_bb0230) 2017; 8
Dai (10.1016/j.scitotenv.2024.170482_bb0045) 2004; 5
Kendall (10.1016/j.scitotenv.2024.170482_bb0135) 1975; Vol 2
for Atmospheric Research T N C (10.1016/j.scitotenv.2024.170482_bb0090) 2018
Qiao (10.1016/j.scitotenv.2024.170482_bb0220) 2022; 15
Spinoni (10.1016/j.scitotenv.2024.170482_bb0250) 2015; 35
UNESCO (10.1016/j.scitotenv.2024.170482_bb0290) 1979
Yao (10.1016/j.scitotenv.2024.170482_bb0305) 2020; 11
Ahlström (10.1016/j.scitotenv.2024.170482_bb0005) 2015; 348
Hickler (10.1016/j.scitotenv.2024.170482_bb0115) 2005
Tao (10.1016/j.scitotenv.2024.170482_bb0255) 2021; 320
Liu (10.1016/j.scitotenv.2024.170482_bb0155) 2020; 12
Middleton (10.1016/j.scitotenv.2024.170482_bb0195) 1997
Fensholt (10.1016/j.scitotenv.2024.170482_bb0085) 2012; 121
Tetzner (10.1016/j.scitotenv.2024.170482_bb0260) 2019; 9
Burrell (10.1016/j.scitotenv.2024.170482_bb0030) 2020; 11
UNEP (10.1016/j.scitotenv.2024.170482_bb0285) 1992
Olsson (10.1016/j.scitotenv.2024.170482_bb0205) 2005; 63
Maestre (10.1016/j.scitotenv.2024.170482_bb0165) 2016; 47
Huang (10.1016/j.scitotenv.2024.170482_bb0120) 2016; 46
Poulter (10.1016/j.scitotenv.2024.170482_bb0215) 2014; 509
Zotarelli (10.1016/j.scitotenv.2024.170482_bb0325) 2010; 1
Feng (10.1016/j.scitotenv.2024.170482_bb0080) 2022; 35
Bhanja (10.1016/j.scitotenv.2024.170482_bb0025) 2017; 7
Smith (10.1016/j.scitotenv.2024.170482_bb0245) 2019; 233
Albergel (10.1016/j.scitotenv.2024.170482_bb0010) 2018; 22
Gleixner (10.1016/j.scitotenv.2024.170482_bb0095) 2020; 11
Huang (10.1016/j.scitotenv.2024.170482_bb0125) 2017; 7
Leng (10.1016/j.scitotenv.2024.170482_bb0140) 2022; 842
Dardel (10.1016/j.scitotenv.2024.170482_bb0055) 2014; 140
Lian (10.1016/j.scitotenv.2024.170482_bb0150) 2021; 2
Mahto (10.1016/j.scitotenv.2024.170482_bb0180) 2023
Graham (10.1016/j.scitotenv.2024.170482_bb0105) 2019; 46
Ohmura (10.1016/j.scitotenv.2024.170482_bb0200) 2002; 298
Donohue (10.1016/j.scitotenv.2024.170482_bb0065) 2013; 40
Pinzon (10.1016/j.scitotenv.2024.170482_bb0210) 2014; 6
Zhu (10.1016/j.scitotenv.2024.170482_bb0315) 2016; 6
Fang (10.1016/j.scitotenv.2024.170482_bb0070) 2014; 20
Feng (10.1016/j.scitotenv.2024.170482_bb0075) 2013; 13
Zhu (10.1016/j.scitotenv.2024.170482_bb0320) 2021; 12
Schmeller (10.1016/j.scitotenv.2024.170482_bb0235) 2016; 25
Mahto (10.1016/j.scitotenv.2024.170482_bb0175) 2019; 124
Sen (10.1016/j.scitotenv.2024.170482_bb0240) 1968; 63
Lu (10.1016/j.scitotenv.2024.170482_bb0160) 2016; 6
Cherlet (10.1016/j.scitotenv.2024.170482_bb0040) 2018
Trees (10.1016/j.scitotenv.2024.170482_bb0270) 2016
Armah (10.1016/j.scitotenv.2024.170482_bb0020) 2011; 16
Hersbach (10.1016/j.scitotenv.2024.170482_bb0110) 2020; 146
Ji (10.1016/j.scitotenv.2024.170482_bb0130) 2015; 32
Daramola (10.1016/j.scitotenv.2024.170482_bb0050) 2022; 42
Chen (10.1016/j.scitotenv.2024.170482_bb0035) 2019; 2
D’Odorico (10.1016/j.scitotenv.2024.170482_bb0060) 2012; 367
Maestre (10.1016/j.scitotenv.2024.170482_bb0170) 2021; 231
Tucker (10.1016/j.scitotenv.2024.170482_bb0275) 2005; 26
Zhang (10.1016/j.scitotenv.2024.170482_bb0310) 2022; 13
Li (10.1016/j.scitotenv.2024.170482_bb0145) 2016; 11
Wang (10.1016/j.scitotenv.2024.170482_bb0295) 2012; 16
References_xml – volume: Vol 2
  year: 1975
  ident: bb0135
  article-title: Multivariate Analysis
– volume: 233
  year: 2019
  ident: bb0245
  article-title: Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities
  publication-title: Remote Sens. Environ.
– start-page: 54
  year: 1979
  ident: bb0290
  article-title: Map of the world distribution of arid regions: explanatory note
  publication-title: MAP Technical Notes 7
– volume: 40
  start-page: 3031
  year: 2013
  end-page: 3035
  ident: bb0065
  article-title: Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments
  publication-title: Geophys. Res. Lett.
– volume: 13
  start-page: 245
  year: 1945
  ident: bb0190
  article-title: Nonparametric tests against trend
  publication-title: Econometrica
– volume: 46
  start-page: 1131
  year: 2016
  end-page: 1150
  ident: bb0120
  article-title: Global semi-arid climate change over last 60 years
  publication-title: Clim. Dyn.
– start-page: 32
  year: 2005
  ident: bb0115
  article-title: Precipitation controls Sahel greening trend
  publication-title: Geophys. Res. Lett.
– volume: 47
  start-page: 215
  year: 2016
  end-page: 237
  ident: bb0165
  article-title: Structure and functioning of dryland ecosystems in a changing world
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– year: 2003
  ident: bb0300
  article-title: Drylands, People, and Ecosystem Goods and Services: A Web-based Geospatial Analysis (PDF Version)
– volume: 20
  start-page: 2019
  year: 2014
  end-page: 2030
  ident: bb0070
  article-title: Forest biomass carbon sinks in E ast Asia, with special reference to the relative contributions of forest expansion and forest growth
  publication-title: Glob. Chang. Biol.
– volume: 63
  start-page: 556
  year: 2005
  end-page: 566
  ident: bb0205
  article-title: Greening of the Sahel—trends, patterns and hypotheses
  publication-title: J. Arid Environ.
– year: 1992
  ident: bb0285
  article-title: World Atlas of Desertification
– volume: 35
  start-page: 2210
  year: 2015
  end-page: 2222
  ident: bb0250
  article-title: Towards identifying areas at climatological risk of desertification using the Köppen–Geiger classification and FAO aridity index
  publication-title: Int. J. Climatol.
– volume: 25
  start-page: 801
  year: 2016
  end-page: 805
  ident: bb0235
  article-title: The Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES): progress and next steps
  publication-title: Biodivers. Conserv.
– volume: 7
  start-page: 417
  year: 2017
  end-page: 422
  ident: bb0125
  article-title: Drylands face potential threat under 2 C global warming target
  publication-title: Nat. Clim. Chang.
– volume: 509
  start-page: 600
  year: 2014
  end-page: 603
  ident: bb0215
  article-title: Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle
  publication-title: Nature
– volume: 35
  start-page: 2901
  year: 2022
  end-page: 2917
  ident: bb0080
  article-title: Greenhouse gas emissions drive global dryland expansion but not spatial patterns of change in aridification
  publication-title: J. Climate
– year: 1997
  ident: bb0195
  article-title: World Atlas of Desertification
– volume: 12
  start-page: 1217
  year: 2020
  end-page: 1243
  ident: bb0155
  article-title: Annual dynamics of global land cover and its long-term changes from 1982 to 2015
  publication-title: Earth Syst. Sci. Data
– volume: 121
  start-page: 144
  year: 2012
  end-page: 158
  ident: bb0085
  article-title: Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 217
  year: 2021
  ident: bb0320
  article-title: An assessment of ERA5 reanalysis for Antarctic near-surface air temperature
  publication-title: Atmosphere (Basel)
– volume: 13
  start-page: 10081
  year: 2013
  end-page: 10094
  ident: bb0075
  article-title: Expansion of global drylands under a warming climate
  publication-title: Atmos. Chem. Phys.
– volume: 2
  start-page: 232
  year: 2021
  end-page: 250
  ident: bb0150
  article-title: Multifaceted characteristics of dryland aridity changes in a warming world
  publication-title: Nat. Rev. Earth Environ.
– volume: 11
  start-page: 1665
  year: 2020
  ident: bb0305
  article-title: Accelerated dryland expansion regulates future variability in dryland gross primary production
  publication-title: Nat. Commun.
– year: 2018
  ident: bb0090
  article-title: Global GIMMS NDVI3g v1 Dataset (1981–2015) A Big Earth Data Platf. Three Poles Online
– volume: 27
  start-page: 4367
  year: 2021
  end-page: 4380
  ident: bb0280
  article-title: Annual precipitation explains variability in dryland vegetation greenness globally but not locally
  publication-title: Glob. Chang. Biol.
– volume: 63
  start-page: 1379
  year: 1968
  end-page: 1389
  ident: bb0240
  article-title: Estimates of the regression coefficient based on Kendall’s tau
  publication-title: J. Am. Stat. Assoc.
– volume: 1
  start-page: 44
  year: 2018
  end-page: 50
  ident: bb0265
  article-title: Increased vegetation growth and carbon stock in China karst via ecological engineering
  publication-title: Nat. Sustain.
– volume: 140
  start-page: 350
  year: 2014
  end-page: 364
  ident: bb0055
  article-title: Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger)
  publication-title: Remote Sens. Environ.
– volume: 2
  start-page: 122
  year: 2019
  end-page: 129
  ident: bb0035
  article-title: China and India lead in greening of the world through land-use management
  publication-title: Nat. Sustain.
– volume: 1
  year: 2010
  ident: bb0325
  article-title: Step by Step Calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method)
– volume: 7
  start-page: 1
  year: 2017
  end-page: 7
  ident: bb0025
  article-title: Groundwater rejuvenation in parts of India influenced by water-policy change implementation
  publication-title: Sci. Rep.
– start-page: 1
  year: 2023
  end-page: 31
  ident: bb0180
  article-title: Flash drought intensification due to enhanced land-atmospheric coupling in India
  publication-title: J. Climate
– volume: 16
  start-page: 291
  year: 2011
  end-page: 306
  ident: bb0020
  article-title: Food security and climate change in drought-sensitive savanna zones of Ghana
  publication-title: Mitig. Adapt. Strateg. Glob. Chang.
– volume: 26
  start-page: 4485
  year: 2005
  end-page: 4498
  ident: bb0275
  article-title: An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data
  publication-title: Int. J. Remote Sens.
– volume: 11
  year: 2016
  ident: bb0145
  article-title: The impact of rainfall on soil moisture dynamics in a foggy desert
  publication-title: PloS One
– volume: 6
  start-page: 6929
  year: 2014
  end-page: 6960
  ident: bb0210
  article-title: A non-stationary 1981–2012 AVHRR NDVI3g time series
  publication-title: Remote Sens.
– volume: 27
  start-page: 3336
  year: 2021
  end-page: 3349
  ident: bb0100
  article-title: Greening drylands despite warming consistent with carbon dioxide fertilization effect
  publication-title: Glob. Chang. Biol.
– volume: 298
  start-page: 1345
  year: 2002
  end-page: 1346
  ident: bb0200
  article-title: Is the hydrological cycle accelerating?
  publication-title: Science (80-)
– year: 2016
  ident: bb0270
  article-title: Land use in drylands: the first global assessment
  publication-title: Full Rep. (FAO, 2019)
– start-page: 847
  year: 2007
  end-page: 851
  ident: bb0225
  article-title: Batterbury, s PJ, Downing, TE, Dowlatabadi, HR, Fernandez, J., Herrick, JE, Hubersannwald, E., h. Jiang, H., Leemans, R., Lynam, T., Maest. FT, Ayarza, M., Walker, B
– volume: 320
  year: 2021
  ident: bb0255
  article-title: The effects of land management patterns on soil carbon sequestration and C: N: P stoichiometry in sloping croplands in southern China
  publication-title: Agric. Ecosyst. Environ.
– volume: 6
  start-page: 791
  year: 2016
  end-page: 795
  ident: bb0315
  article-title: Greening of the Earth and its drivers
  publication-title: Nat. Clim. Chang.
– volume: 22
  start-page: 3515
  year: 2018
  end-page: 3532
  ident: bb0010
  article-title: {ERA-5} and {ERA-Interim} driven {ISBA} land surface model simulations: which one performs better?
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 367
  start-page: 3145
  year: 2012
  end-page: 3157
  ident: bb0060
  article-title: Hydrologic variability in dryland regions: impacts on ecosystem dynamics and food security
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
– volume: 9
  start-page: 289
  year: 2019
  ident: bb0260
  article-title: A validation of ERA5 reanalysis data in the Southern Antarctic Peninsula—Ellsworth land region, and its implications for ice core studies
  publication-title: Geosciences
– volume: 124
  start-page: 9423
  year: 2019
  end-page: 9441
  ident: bb0175
  article-title: Does ERA-5 outperform other reanalysis products for hydrologic applications in India?
  publication-title: J. Geophys. Res. Atmos.
– volume: 348
  start-page: 895
  year: 2015
  end-page: 899
  ident: bb0005
  article-title: The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink
  publication-title: Science (80-)
– year: 2018
  ident: bb0040
  article-title: World Atlas of Desertification Rethinking Land Degradation and Sustainable Land Management
– volume: 231
  start-page: 540
  year: 2021
  end-page: 558
  ident: bb0170
  article-title: Biogeography of global drylands
  publication-title: New Phytol.
– volume: 15
  start-page: e2420
  year: 2022
  ident: bb0220
  article-title: Satellite observed vegetation dynamics and drivers in the Namib sand sea over the recent 20 years
  publication-title: Ecohydrology
– volume: 42
  start-page: 1267
  year: 2022
  end-page: 1282
  ident: bb0050
  article-title: Recent changes in global dryland temperature and precipitation
  publication-title: Int. J. Climatol.
– year: 2019
  ident: bb0015
  article-title: Climate Change and Land: An {IPCC} Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems
– volume: 46
  start-page: 6138
  year: 2019
  end-page: 6147
  ident: bb0105
  article-title: Improved performance of ERA5 in Arctic gateway relative to four global atmospheric reanalyses
  publication-title: Geophys. Res. Lett.
– volume: 5
  start-page: 1117
  year: 2004
  end-page: 1130
  ident: bb0045
  article-title: A global dataset of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming
  publication-title: J. Hydrometeorol.
– volume: 6
  start-page: 20716
  year: 2016
  ident: bb0160
  article-title: Elevated CO2 as a driver of global dryland greening
  publication-title: Sci. Rep.
– volume: 842
  year: 2022
  ident: bb0140
  article-title: Response of dryland vegetation under extreme wet events with satellite measures of greenness and fluorescence
  publication-title: Sci. Total Environ.
– volume: 11
  start-page: 996
  year: 2020
  ident: bb0095
  article-title: Did ERA5 improve temperature and precipitation reanalysis over East Africa?
  publication-title: Atmosphere (Basel)
– volume: 16
  start-page: 2585
  year: 2012
  end-page: 2603
  ident: bb0295
  article-title: Dryland ecohydrology and climate change: critical issues and technical advances
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 11
  start-page: 3853
  year: 2020
  ident: bb0030
  article-title: Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification
  publication-title: Nat. Commun.
– volume: 8
  start-page: 14196
  year: 2017
  ident: bb0230
  article-title: Climate change reduces extent of temperate drylands and intensifies drought in deep soils
  publication-title: Nat. Commun.
– volume: 32
  start-page: 1565
  year: 2015
  end-page: 1574
  ident: bb0130
  article-title: Comparison of dryland climate change in observations and CMIP5 simulations
  publication-title: Adv. Atmos. Sci.
– volume: 18
  start-page: 44044
  year: 2023
  ident: bb0185
  article-title: Increasing risk of simultaneous occurrence of flash drought in major global croplands
  publication-title: Environ. Res. Lett.
– volume: 146
  start-page: 1999
  year: 2020
  end-page: 2049
  ident: bb0110
  article-title: The ERA5 global reanalysis Q
  publication-title: J. R. Meteorol. Soc.
– volume: 13
  start-page: 4875
  year: 2022
  ident: bb0310
  article-title: Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2
  publication-title: Nat. Commun.
– volume: 13
  start-page: 245
  year: 1945
  ident: 10.1016/j.scitotenv.2024.170482_bb0190
  article-title: Nonparametric tests against trend
  publication-title: Econometrica
  doi: 10.2307/1907187
– volume: Vol 2
  year: 1975
  ident: 10.1016/j.scitotenv.2024.170482_bb0135
– volume: 40
  start-page: 3031
  year: 2013
  ident: 10.1016/j.scitotenv.2024.170482_bb0065
  article-title: Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/grl.50563
– volume: 320
  year: 2021
  ident: 10.1016/j.scitotenv.2024.170482_bb0255
  article-title: The effects of land management patterns on soil carbon sequestration and C: N: P stoichiometry in sloping croplands in southern China
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2021.107584
– volume: 6
  start-page: 791
  year: 2016
  ident: 10.1016/j.scitotenv.2024.170482_bb0315
  article-title: Greening of the Earth and its drivers
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate3004
– volume: 6
  start-page: 6929
  year: 2014
  ident: 10.1016/j.scitotenv.2024.170482_bb0210
  article-title: A non-stationary 1981–2012 AVHRR NDVI3g time series
  publication-title: Remote Sens.
  doi: 10.3390/rs6086929
– volume: 121
  start-page: 144
  year: 2012
  ident: 10.1016/j.scitotenv.2024.170482_bb0085
  article-title: Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.01.017
– volume: 16
  start-page: 291
  year: 2011
  ident: 10.1016/j.scitotenv.2024.170482_bb0020
  article-title: Food security and climate change in drought-sensitive savanna zones of Ghana
  publication-title: Mitig. Adapt. Strateg. Glob. Chang.
  doi: 10.1007/s11027-010-9263-9
– volume: 12
  start-page: 1217
  year: 2020
  ident: 10.1016/j.scitotenv.2024.170482_bb0155
  article-title: Annual dynamics of global land cover and its long-term changes from 1982 to 2015
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-12-1217-2020
– volume: 27
  start-page: 4367
  year: 2021
  ident: 10.1016/j.scitotenv.2024.170482_bb0280
  article-title: Annual precipitation explains variability in dryland vegetation greenness globally but not locally
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.15729
– volume: 13
  start-page: 10081
  year: 2013
  ident: 10.1016/j.scitotenv.2024.170482_bb0075
  article-title: Expansion of global drylands under a warming climate
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-13-10081-2013
– volume: 348
  start-page: 895
  year: 2015
  ident: 10.1016/j.scitotenv.2024.170482_bb0005
  article-title: The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink
  publication-title: Science (80-)
  doi: 10.1126/science.aaa1668
– volume: 140
  start-page: 350
  year: 2014
  ident: 10.1016/j.scitotenv.2024.170482_bb0055
  article-title: Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.09.011
– volume: 25
  start-page: 801
  year: 2016
  ident: 10.1016/j.scitotenv.2024.170482_bb0235
  article-title: The Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES): progress and next steps
  publication-title: Biodivers. Conserv.
  doi: 10.1007/s10531-016-1095-9
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.scitotenv.2024.170482_bb0025
  article-title: Groundwater rejuvenation in parts of India influenced by water-policy change implementation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-07058-2
– start-page: 32
  year: 2005
  ident: 10.1016/j.scitotenv.2024.170482_bb0115
  article-title: Precipitation controls Sahel greening trend
  publication-title: Geophys. Res. Lett.
– volume: 8
  start-page: 14196
  year: 2017
  ident: 10.1016/j.scitotenv.2024.170482_bb0230
  article-title: Climate change reduces extent of temperate drylands and intensifies drought in deep soils
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14196
– year: 1997
  ident: 10.1016/j.scitotenv.2024.170482_bb0195
– volume: 5
  start-page: 1117
  year: 2004
  ident: 10.1016/j.scitotenv.2024.170482_bb0045
  article-title: A global dataset of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-386.1
– volume: 509
  start-page: 600
  year: 2014
  ident: 10.1016/j.scitotenv.2024.170482_bb0215
  article-title: Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle
  publication-title: Nature
  doi: 10.1038/nature13376
– volume: 63
  start-page: 1379
  year: 1968
  ident: 10.1016/j.scitotenv.2024.170482_bb0240
  article-title: Estimates of the regression coefficient based on Kendall’s tau
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1968.10480934
– volume: 35
  start-page: 2901
  year: 2022
  ident: 10.1016/j.scitotenv.2024.170482_bb0080
  article-title: Greenhouse gas emissions drive global dryland expansion but not spatial patterns of change in aridification
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-22-0103.1
– volume: 298
  start-page: 1345
  year: 2002
  ident: 10.1016/j.scitotenv.2024.170482_bb0200
  article-title: Is the hydrological cycle accelerating?
  publication-title: Science (80-)
  doi: 10.1126/science.1078972
– volume: 11
  start-page: 1665
  year: 2020
  ident: 10.1016/j.scitotenv.2024.170482_bb0305
  article-title: Accelerated dryland expansion regulates future variability in dryland gross primary production
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15515-2
– volume: 46
  start-page: 6138
  year: 2019
  ident: 10.1016/j.scitotenv.2024.170482_bb0105
  article-title: Improved performance of ERA5 in Arctic gateway relative to four global atmospheric reanalyses
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL082781
– volume: 1
  year: 2010
  ident: 10.1016/j.scitotenv.2024.170482_bb0325
– volume: 13
  start-page: 4875
  year: 2022
  ident: 10.1016/j.scitotenv.2024.170482_bb0310
  article-title: Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32631-3
– volume: 146
  start-page: 1999
  year: 2020
  ident: 10.1016/j.scitotenv.2024.170482_bb0110
  article-title: The ERA5 global reanalysis Q
  publication-title: J. R. Meteorol. Soc.
  doi: 10.1002/qj.3803
– year: 2016
  ident: 10.1016/j.scitotenv.2024.170482_bb0270
  article-title: Land use in drylands: the first global assessment
– volume: 124
  start-page: 9423
  year: 2019
  ident: 10.1016/j.scitotenv.2024.170482_bb0175
  article-title: Does ERA-5 outperform other reanalysis products for hydrologic applications in India?
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2019JD031155
– volume: 7
  start-page: 417
  year: 2017
  ident: 10.1016/j.scitotenv.2024.170482_bb0125
  article-title: Drylands face potential threat under 2 C global warming target
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate3275
– volume: 63
  start-page: 556
  year: 2005
  ident: 10.1016/j.scitotenv.2024.170482_bb0205
  article-title: Greening of the Sahel—trends, patterns and hypotheses
  publication-title: J. Arid Environ.
  doi: 10.1016/j.jaridenv.2005.03.008
– volume: 9
  start-page: 289
  year: 2019
  ident: 10.1016/j.scitotenv.2024.170482_bb0260
  article-title: A validation of ERA5 reanalysis data in the Southern Antarctic Peninsula—Ellsworth land region, and its implications for ice core studies
  publication-title: Geosciences
  doi: 10.3390/geosciences9070289
– year: 1992
  ident: 10.1016/j.scitotenv.2024.170482_bb0285
– volume: 842
  year: 2022
  ident: 10.1016/j.scitotenv.2024.170482_bb0140
  article-title: Response of dryland vegetation under extreme wet events with satellite measures of greenness and fluorescence
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.156860
– volume: 42
  start-page: 1267
  year: 2022
  ident: 10.1016/j.scitotenv.2024.170482_bb0050
  article-title: Recent changes in global dryland temperature and precipitation
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.7301
– volume: 1
  start-page: 44
  year: 2018
  ident: 10.1016/j.scitotenv.2024.170482_bb0265
  article-title: Increased vegetation growth and carbon stock in China karst via ecological engineering
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-017-0004-x
– volume: 35
  start-page: 2210
  year: 2015
  ident: 10.1016/j.scitotenv.2024.170482_bb0250
  article-title: Towards identifying areas at climatological risk of desertification using the Köppen–Geiger classification and FAO aridity index
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.4124
– volume: 231
  start-page: 540
  year: 2021
  ident: 10.1016/j.scitotenv.2024.170482_bb0170
  article-title: Biogeography of global drylands
  publication-title: New Phytol.
  doi: 10.1111/nph.17395
– year: 2003
  ident: 10.1016/j.scitotenv.2024.170482_bb0300
– year: 2018
  ident: 10.1016/j.scitotenv.2024.170482_bb0090
– volume: 46
  start-page: 1131
  year: 2016
  ident: 10.1016/j.scitotenv.2024.170482_bb0120
  article-title: Global semi-arid climate change over last 60 years
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-015-2636-8
– volume: 12
  start-page: 217
  year: 2021
  ident: 10.1016/j.scitotenv.2024.170482_bb0320
  article-title: An assessment of ERA5 reanalysis for Antarctic near-surface air temperature
  publication-title: Atmosphere (Basel)
  doi: 10.3390/atmos12020217
– volume: 367
  start-page: 3145
  year: 2012
  ident: 10.1016/j.scitotenv.2024.170482_bb0060
  article-title: Hydrologic variability in dryland regions: impacts on ecosystem dynamics and food security
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2012.0016
– year: 2018
  ident: 10.1016/j.scitotenv.2024.170482_bb0040
– volume: 11
  start-page: 996
  year: 2020
  ident: 10.1016/j.scitotenv.2024.170482_bb0095
  article-title: Did ERA5 improve temperature and precipitation reanalysis over East Africa?
  publication-title: Atmosphere (Basel)
  doi: 10.3390/atmos11090996
– volume: 32
  start-page: 1565
  year: 2015
  ident: 10.1016/j.scitotenv.2024.170482_bb0130
  article-title: Comparison of dryland climate change in observations and CMIP5 simulations
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-015-4267-8
– volume: 47
  start-page: 215
  year: 2016
  ident: 10.1016/j.scitotenv.2024.170482_bb0165
  article-title: Structure and functioning of dryland ecosystems in a changing world
  publication-title: Annu. Rev. Ecol. Evol. Syst.
  doi: 10.1146/annurev-ecolsys-121415-032311
– volume: 11
  start-page: 3853
  year: 2020
  ident: 10.1016/j.scitotenv.2024.170482_bb0030
  article-title: Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17710-7
– volume: 26
  start-page: 4485
  year: 2005
  ident: 10.1016/j.scitotenv.2024.170482_bb0275
  article-title: An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160500168686
– start-page: 54
  year: 1979
  ident: 10.1016/j.scitotenv.2024.170482_bb0290
  article-title: Map of the world distribution of arid regions: explanatory note
– volume: 18
  start-page: 44044
  year: 2023
  ident: 10.1016/j.scitotenv.2024.170482_bb0185
  article-title: Increasing risk of simultaneous occurrence of flash drought in major global croplands
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/acc8ed
– volume: 233
  year: 2019
  ident: 10.1016/j.scitotenv.2024.170482_bb0245
  article-title: Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111401
– volume: 2
  start-page: 232
  year: 2021
  ident: 10.1016/j.scitotenv.2024.170482_bb0150
  article-title: Multifaceted characteristics of dryland aridity changes in a warming world
  publication-title: Nat. Rev. Earth Environ.
  doi: 10.1038/s43017-021-00144-0
– volume: 27
  start-page: 3336
  year: 2021
  ident: 10.1016/j.scitotenv.2024.170482_bb0100
  article-title: Greening drylands despite warming consistent with carbon dioxide fertilization effect
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.15658
– year: 2019
  ident: 10.1016/j.scitotenv.2024.170482_bb0015
– volume: 16
  start-page: 2585
  year: 2012
  ident: 10.1016/j.scitotenv.2024.170482_bb0295
  article-title: Dryland ecohydrology and climate change: critical issues and technical advances
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-16-2585-2012
– volume: 22
  start-page: 3515
  year: 2018
  ident: 10.1016/j.scitotenv.2024.170482_bb0010
  article-title: {ERA-5} and {ERA-Interim} driven {ISBA} land surface model simulations: which one performs better?
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-3515-2018
– start-page: 1
  year: 2023
  ident: 10.1016/j.scitotenv.2024.170482_bb0180
  article-title: Flash drought intensification due to enhanced land-atmospheric coupling in India
  publication-title: J. Climate
– volume: 20
  start-page: 2019
  year: 2014
  ident: 10.1016/j.scitotenv.2024.170482_bb0070
  article-title: Forest biomass carbon sinks in E ast Asia, with special reference to the relative contributions of forest expansion and forest growth
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12512
– volume: 6
  start-page: 20716
  year: 2016
  ident: 10.1016/j.scitotenv.2024.170482_bb0160
  article-title: Elevated CO2 as a driver of global dryland greening
  publication-title: Sci. Rep.
  doi: 10.1038/srep20716
– volume: 11
  year: 2016
  ident: 10.1016/j.scitotenv.2024.170482_bb0145
  article-title: The impact of rainfall on soil moisture dynamics in a foggy desert
  publication-title: PloS One
– start-page: 847
  year: 2007
  ident: 10.1016/j.scitotenv.2024.170482_bb0225
– volume: 2
  start-page: 122
  year: 2019
  ident: 10.1016/j.scitotenv.2024.170482_bb0035
  article-title: China and India lead in greening of the world through land-use management
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-019-0220-7
– volume: 15
  start-page: e2420
  year: 2022
  ident: 10.1016/j.scitotenv.2024.170482_bb0220
  article-title: Satellite observed vegetation dynamics and drivers in the Namib sand sea over the recent 20 years
  publication-title: Ecohydrology
  doi: 10.1002/eco.2420
SSID ssj0000781
Score 2.47644
Snippet Drylands are one of the most sensitive areas to climate change. Despite being characterized by water scarcity and low precipitation, drylands support a wide...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 170482
SubjectTerms arid lands
Aridity
Australia
biodiversity
climate
Climate change
cropland
Cropland expansion
dry environmental conditions
Dryland area
ecosystems
Europe
humans
hydrometeorology
land use change
normalized difference vegetation index
Soil moisture
soil water
South Asia
vegetation
Vegetation greenness
water shortages
Title Dominance of soil moisture over aridity in explaining vegetation greenness across global drylands
URI https://dx.doi.org/10.1016/j.scitotenv.2024.170482
https://www.ncbi.nlm.nih.gov/pubmed/38296067
https://www.proquest.com/docview/2929128570
https://www.proquest.com/docview/3153586948
Volume 917
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CSqFQSrtt2u0jqNCrE1vSWlJvIU3YdmkOpaG5CUmWwoatvewjJJf89o4se0MOSw492RaSkTUzmk_WNyOALwULUpYyZDEXXcYdyzOjKpuxyqC3LxDht8mqf56V43P-42J0sQPHfSxMpFV2c3-a09vZuis57EbzcD6dxhhfLlWpRGRB4jIgZvzkXEQtP7i7p3nEZDZplxkNG2s_4Hjhe1cNYtNrXChSflAIrEW3eahtCLT1RKcv4UUHIclR6uUr2PH1AJ6mQyVvB7B3ch-7htU6410O4Hn6RUdS5NFrMN-algfjPGkCWTbTGfnboNTXCyxADSe4jK4QpJNpTfzNfJbOkiDX_rKjKJLLSNqJcyUx7beQlF6EVIvbNoT4DZyfnvw-HmfdiQuZ4zlfZcGqQL13qhIWoUBhPNonFahtIbcCRYKA0CmGt5WVnjPmPcIpy4yzXvFg2R7s1k3t3wEJTFSuTRdWeC7wRdIY5RwdeVVwH-gQyn6UtevSkcdTMWa6551d6Y14dBSPTuIZQr5pOE8ZOR5v8rUXo36gXBr9xuONP_eC12h6cT_F1L5ZLzVFPUb3PhL59joMPcpIlorLIbxNWrPpNZM0rh_F-__p3gd4Fp8iLY7mH2F3tVj7T4iTVna_NYR9eHL0fTI-i9fJrz-Tf6y7F4k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrRBICMFCYXkaiWtoEjuxza0qrba03VMr9WbZjlNttSSrfVT03zOOna16WPXALXLsyPG8vknmAfA9o7UQpagTX4suYZamiZaVSWil0dpniPC7YtXnk3J8yX5fFVc7cNjnwviwyqj7g07vtHUc2Y-nuT-fTn2OLxOylNxHQaIbQJ_Arq9OVQxg9-DkdDy5V8hchMZ5DGUbFzwI88JHr1qEp7foK-bsR8ZxVr7NSG0DoZ0xOn4FLyOKJAdho69hxzVDeBr6St4NYe_oPn0Np0X5XQ7hRfhKR0Ly0RvQv9ouFMY60tZk2U5n5E-LhF8vcACZnKAnXSFOJ9OGuL_zWWgnQW7ddYxSJNc-bserS6K7dyGhwgipFnddFvFbuDw-ujgcJ7HpQmJZylZJbWSdO2dlxQ2igUw7FNGcI8PVqeFIFcSEVlK8rIxwjFLnEFEZqq1xktWG7sGgaRv3HkhNeWW7imGZYxwfJLSW1uaFkxlzdT6Csj9lZWNFct8YY6b60LMbtSGP8uRRgTwjSDcL56Eox-NLfvZkVA_4S6HpeHzxt57wCqXP_1LRjWvXS5UjK6OFL3i6fQ5Fo1KIUjIxgneBaza7piL3LiT_8D_b-wrPxhfnZ-rsZHL6EZ77Oz5KLk8_wWC1WLvPCJtW5ksUi39j1BiX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dominance+of+soil+moisture+over+aridity+in+explaining+vegetation+greenness+across+global+drylands&rft.jtitle=The+Science+of+the+total+environment&rft.au=Tripathi%2C+Indra+Mani&rft.au=Mahto%2C+Shanti+Shwarup&rft.au=Kushwaha%2C+Anuj+Prakash&rft.au=Kumar%2C+Rahul&rft.date=2024-03-20&rft.eissn=1879-1026&rft.volume=917&rft.spage=170482&rft_id=info:doi/10.1016%2Fj.scitotenv.2024.170482&rft_id=info%3Apmid%2F38296067&rft.externalDocID=38296067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon