Dominance of soil moisture over aridity in explaining vegetation greenness across global drylands
Drylands are one of the most sensitive areas to climate change. Despite being characterized by water scarcity and low precipitation, drylands support a wide range of green biodiversity and nearly 40 % of the global population. However, the climate change impacts on dryland characteristics and vegeta...
Saved in:
Published in | The Science of the total environment Vol. 917; p. 170482 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
20.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Drylands are one of the most sensitive areas to climate change. Despite being characterized by water scarcity and low precipitation, drylands support a wide range of green biodiversity and nearly 40 % of the global population. However, the climate change impacts on dryland characteristics and vegetation dynamics are debatable as the reasons remain poorly understood. Here, we use hydro-meteorological variables from ERA5 reanalysis and GIMMS-NDVI to analyze the changes in dryland aridity and vegetation greenness in the eight selected global dryland regions. The total dryland area (excluding hyperarid) has increased by 12 %, while arid, semiarid, and dry sub-humid areas have increased by 10.5 %, 8 %, and 25 %, respectively. We find a significant increase in aridity in drylands across the globe, except for South Asia. A decrease (increase) in precipitation is the major driver for a significant increase (decrease) in dryland aridity, with a notable contribution from climate warming. Despite decreasing trends in precipitation, vegetation greenness has significantly increased in most dryland regions due to increased soil moisture. Cropland expansion in Europe, Asia, and Australia resulted in the maximum increase in NDVI (Normalized Difference Vegetation Index) in dryland regions. The highest increase, with a ΔNDVI of 0.075, was observed in South Asia. The enhanced vegetation greenness observed is attributed to the expansion of croplands in recent decades, which has increased soil moisture. Overall, we show that monitoring soil moisture variability can provide a more robust explanation for vegetation greenness in the global drylands than aridity change. Moreover, human interventions of climatic alteration through land use change practices, such as cropland expansion, cannot be ignored while explaining the ecosystem dynamics of the drylands.
[Display omitted]
•A significant increase in aridity across global drylands was observed, except for South Asia.•The expansion of drylands in arid, semiarid, and dry sub-humid regions highlights escalating influence of climate change.•Vegetation greenness rises significantly despite decreased precipitation trends in most dryland regions.•The enhanced soil moisture in most of the drylands results from cropland expansion. |
---|---|
AbstractList | Drylands are one of the most sensitive areas to climate change. Despite being characterized by water scarcity and low precipitation, drylands support a wide range of green biodiversity and nearly 40 % of the global population. However, the climate change impacts on dryland characteristics and vegetation dynamics are debatable as the reasons remain poorly understood. Here, we use hydro-meteorological variables from ERA5 reanalysis and GIMMS-NDVI to analyze the changes in dryland aridity and vegetation greenness in the eight selected global dryland regions. The total dryland area (excluding hyperarid) has increased by 12 %, while arid, semiarid, and dry sub-humid areas have increased by 10.5 %, 8 %, and 25 %, respectively. We find a significant increase in aridity in drylands across the globe, except for South Asia. A decrease (increase) in precipitation is the major driver for a significant increase (decrease) in dryland aridity, with a notable contribution from climate warming. Despite decreasing trends in precipitation, vegetation greenness has significantly increased in most dryland regions due to increased soil moisture. Cropland expansion in Europe, Asia, and Australia resulted in the maximum increase in NDVI (Normalized Difference Vegetation Index) in dryland regions. The highest increase, with a ΔNDVI of 0.075, was observed in South Asia. The enhanced vegetation greenness observed is attributed to the expansion of croplands in recent decades, which has increased soil moisture. Overall, we show that monitoring soil moisture variability can provide a more robust explanation for vegetation greenness in the global drylands than aridity change. Moreover, human interventions of climatic alteration through land use change practices, such as cropland expansion, cannot be ignored while explaining the ecosystem dynamics of the drylands. Drylands are one of the most sensitive areas to climate change. Despite being characterized by water scarcity and low precipitation, drylands support a wide range of green biodiversity and nearly 40 % of the global population. However, the climate change impacts on dryland characteristics and vegetation dynamics are debatable as the reasons remain poorly understood. Here, we use hydro-meteorological variables from ERA5 reanalysis and GIMMS-NDVI to analyze the changes in dryland aridity and vegetation greenness in the eight selected global dryland regions. The total dryland area (excluding hyperarid) has increased by 12 %, while arid, semiarid, and dry sub-humid areas have increased by 10.5 %, 8 %, and 25 %, respectively. We find a significant increase in aridity in drylands across the globe, except for South Asia. A decrease (increase) in precipitation is the major driver for a significant increase (decrease) in dryland aridity, with a notable contribution from climate warming. Despite decreasing trends in precipitation, vegetation greenness has significantly increased in most dryland regions due to increased soil moisture. Cropland expansion in Europe, Asia, and Australia resulted in the maximum increase in NDVI (Normalized Difference Vegetation Index) in dryland regions. The highest increase, with a ΔNDVI of 0.075, was observed in South Asia. The enhanced vegetation greenness observed is attributed to the expansion of croplands in recent decades, which has increased soil moisture. Overall, we show that monitoring soil moisture variability can provide a more robust explanation for vegetation greenness in the global drylands than aridity change. Moreover, human interventions of climatic alteration through land use change practices, such as cropland expansion, cannot be ignored while explaining the ecosystem dynamics of the drylands.Drylands are one of the most sensitive areas to climate change. Despite being characterized by water scarcity and low precipitation, drylands support a wide range of green biodiversity and nearly 40 % of the global population. However, the climate change impacts on dryland characteristics and vegetation dynamics are debatable as the reasons remain poorly understood. Here, we use hydro-meteorological variables from ERA5 reanalysis and GIMMS-NDVI to analyze the changes in dryland aridity and vegetation greenness in the eight selected global dryland regions. The total dryland area (excluding hyperarid) has increased by 12 %, while arid, semiarid, and dry sub-humid areas have increased by 10.5 %, 8 %, and 25 %, respectively. We find a significant increase in aridity in drylands across the globe, except for South Asia. A decrease (increase) in precipitation is the major driver for a significant increase (decrease) in dryland aridity, with a notable contribution from climate warming. Despite decreasing trends in precipitation, vegetation greenness has significantly increased in most dryland regions due to increased soil moisture. Cropland expansion in Europe, Asia, and Australia resulted in the maximum increase in NDVI (Normalized Difference Vegetation Index) in dryland regions. The highest increase, with a ΔNDVI of 0.075, was observed in South Asia. The enhanced vegetation greenness observed is attributed to the expansion of croplands in recent decades, which has increased soil moisture. Overall, we show that monitoring soil moisture variability can provide a more robust explanation for vegetation greenness in the global drylands than aridity change. Moreover, human interventions of climatic alteration through land use change practices, such as cropland expansion, cannot be ignored while explaining the ecosystem dynamics of the drylands. Drylands are one of the most sensitive areas to climate change. Despite being characterized by water scarcity and low precipitation, drylands support a wide range of green biodiversity and nearly 40 % of the global population. However, the climate change impacts on dryland characteristics and vegetation dynamics are debatable as the reasons remain poorly understood. Here, we use hydro-meteorological variables from ERA5 reanalysis and GIMMS-NDVI to analyze the changes in dryland aridity and vegetation greenness in the eight selected global dryland regions. The total dryland area (excluding hyperarid) has increased by 12 %, while arid, semiarid, and dry sub-humid areas have increased by 10.5 %, 8 %, and 25 %, respectively. We find a significant increase in aridity in drylands across the globe, except for South Asia. A decrease (increase) in precipitation is the major driver for a significant increase (decrease) in dryland aridity, with a notable contribution from climate warming. Despite decreasing trends in precipitation, vegetation greenness has significantly increased in most dryland regions due to increased soil moisture. Cropland expansion in Europe, Asia, and Australia resulted in the maximum increase in NDVI (Normalized Difference Vegetation Index) in dryland regions. The highest increase, with a ΔNDVI of 0.075, was observed in South Asia. The enhanced vegetation greenness observed is attributed to the expansion of croplands in recent decades, which has increased soil moisture. Overall, we show that monitoring soil moisture variability can provide a more robust explanation for vegetation greenness in the global drylands than aridity change. Moreover, human interventions of climatic alteration through land use change practices, such as cropland expansion, cannot be ignored while explaining the ecosystem dynamics of the drylands. Drylands are one of the most sensitive areas to climate change. Despite being characterized by water scarcity and low precipitation, drylands support a wide range of green biodiversity and nearly 40 % of the global population. However, the climate change impacts on dryland characteristics and vegetation dynamics are debatable as the reasons remain poorly understood. Here, we use hydro-meteorological variables from ERA5 reanalysis and GIMMS-NDVI to analyze the changes in dryland aridity and vegetation greenness in the eight selected global dryland regions. The total dryland area (excluding hyperarid) has increased by 12 %, while arid, semiarid, and dry sub-humid areas have increased by 10.5 %, 8 %, and 25 %, respectively. We find a significant increase in aridity in drylands across the globe, except for South Asia. A decrease (increase) in precipitation is the major driver for a significant increase (decrease) in dryland aridity, with a notable contribution from climate warming. Despite decreasing trends in precipitation, vegetation greenness has significantly increased in most dryland regions due to increased soil moisture. Cropland expansion in Europe, Asia, and Australia resulted in the maximum increase in NDVI (Normalized Difference Vegetation Index) in dryland regions. The highest increase, with a ΔNDVI of 0.075, was observed in South Asia. The enhanced vegetation greenness observed is attributed to the expansion of croplands in recent decades, which has increased soil moisture. Overall, we show that monitoring soil moisture variability can provide a more robust explanation for vegetation greenness in the global drylands than aridity change. Moreover, human interventions of climatic alteration through land use change practices, such as cropland expansion, cannot be ignored while explaining the ecosystem dynamics of the drylands. [Display omitted] •A significant increase in aridity across global drylands was observed, except for South Asia.•The expansion of drylands in arid, semiarid, and dry sub-humid regions highlights escalating influence of climate change.•Vegetation greenness rises significantly despite decreased precipitation trends in most dryland regions.•The enhanced soil moisture in most of the drylands results from cropland expansion. |
ArticleNumber | 170482 |
Author | Kumar, Rahul Kushwaha, Anuj Prakash Mahto, Shanti Shwarup Mohapatra, Pranab Kumar Tripathi, Indra Mani Tiwari, Amar Deep Sahu, Bidhan Kumar Jain, Vikrant |
Author_xml | – sequence: 1 givenname: Indra Mani surname: Tripathi fullname: Tripathi, Indra Mani email: indra.tripathi@iitgn.ac.in organization: Department of Earth Sciences, Indian Institute of Technology (IIT) Gandhinagar, India – sequence: 2 givenname: Shanti Shwarup surname: Mahto fullname: Mahto, Shanti Shwarup organization: Department of Earth Sciences, Indian Institute of Technology (IIT) Gandhinagar, India – sequence: 3 givenname: Anuj Prakash surname: Kushwaha fullname: Kushwaha, Anuj Prakash organization: Department of Earth Sciences, Indian Institute of Technology (IIT) Gandhinagar, India – sequence: 4 givenname: Rahul surname: Kumar fullname: Kumar, Rahul organization: Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, USA – sequence: 5 givenname: Amar Deep surname: Tiwari fullname: Tiwari, Amar Deep organization: Department of Civil and Environmental Engineering, Michigan State University, USA – sequence: 6 givenname: Bidhan Kumar surname: Sahu fullname: Sahu, Bidhan Kumar organization: Department of Civil Engineering, Indian Institute of Technology (IIT) Gandhinagar, India – sequence: 7 givenname: Vikrant surname: Jain fullname: Jain, Vikrant organization: Department of Earth Sciences, Indian Institute of Technology (IIT) Gandhinagar, India – sequence: 8 givenname: Pranab Kumar surname: Mohapatra fullname: Mohapatra, Pranab Kumar organization: Department of Civil Engineering, Indian Institute of Technology (IIT) Gandhinagar, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38296067$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvEzEUha2qqE0LfwG8ZDPBr4zHCxZVaQGpEhtYW37ciRzN2MF2IvLvcZqWBZt4c62rc-61z3eDLmOKgNAHSpaU0P7TZllcqKlC3C8ZYWJJJREDu0ALOkjVUcL6S7QgrdepXslrdFPKhrQjB3qFrvnAVE96uUDmS5pDNNEBTiMuKUx4TqHUXW6NPWRscvChHnCIGP5sJxNiiGu8hzVUU0OKeJ0BYoRSsHE5tbKekjUT9vkwmejLW_RmNFOBdy_1Fv16fPh5_617-vH1-_3dU-cEEbUbrRoZgFNeWrqi1IDqOZNg_EisdOAJVU7xdvV2AME5gBDUcuMsKDFafos-nuZuc_q9g1L1HIqDqT0C0q5oTld8NfRKDGelTDFF2bCSpEnfv0h3dgavtznMJh_0a4JN8PkkeP58hlE3MM_J1GzCpCnRR2J6o_8R00di-kSs-eV__tcV5513Jye0VPcB8lEHjaQPGVzVPoWzM_4CUQ24oQ |
CitedBy_id | crossref_primary_10_1016_j_agwat_2024_109262 crossref_primary_10_1007_s00442_024_05643_7 crossref_primary_10_1007_s12145_025_01706_2 crossref_primary_10_3390_agriculture14091453 crossref_primary_10_1007_s40333_024_0064_5 crossref_primary_10_1016_j_geoderma_2024_117022 |
Cites_doi | 10.2307/1907187 10.1002/grl.50563 10.1016/j.agee.2021.107584 10.1038/nclimate3004 10.3390/rs6086929 10.1016/j.rse.2012.01.017 10.1007/s11027-010-9263-9 10.5194/essd-12-1217-2020 10.1111/gcb.15729 10.5194/acp-13-10081-2013 10.1126/science.aaa1668 10.1016/j.rse.2013.09.011 10.1007/s10531-016-1095-9 10.1038/s41598-017-07058-2 10.1038/ncomms14196 10.1175/JHM-386.1 10.1038/nature13376 10.1080/01621459.1968.10480934 10.1175/JCLI-D-22-0103.1 10.1126/science.1078972 10.1038/s41467-020-15515-2 10.1029/2019GL082781 10.1038/s41467-022-32631-3 10.1002/qj.3803 10.1029/2019JD031155 10.1038/nclimate3275 10.1016/j.jaridenv.2005.03.008 10.3390/geosciences9070289 10.1016/j.scitotenv.2022.156860 10.1002/joc.7301 10.1038/s41893-017-0004-x 10.1002/joc.4124 10.1111/nph.17395 10.1007/s00382-015-2636-8 10.3390/atmos12020217 10.1098/rstb.2012.0016 10.3390/atmos11090996 10.1007/s00376-015-4267-8 10.1146/annurev-ecolsys-121415-032311 10.1038/s41467-020-17710-7 10.1080/01431160500168686 10.1088/1748-9326/acc8ed 10.1016/j.rse.2019.111401 10.1038/s43017-021-00144-0 10.1111/gcb.15658 10.5194/hess-16-2585-2012 10.5194/hess-22-3515-2018 10.1111/gcb.12512 10.1038/srep20716 10.1038/s41893-019-0220-7 10.1002/eco.2420 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. Copyright © 2024 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier B.V. – notice: Copyright © 2024 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2024.170482 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 38296067 10_1016_j_scitotenv_2024_170482 S0048969724006193 |
Genre | Journal Article |
GeographicLocations | Australia Europe South Asia |
GeographicLocations_xml | – name: South Asia – name: Europe – name: Australia |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SEW SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAQXK AATTM AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEUPX AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SSH WUQ XPP ZXP ZY4 NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c404t-fb9f2eec9d7b1511ae96327eadf0b7ced019c93b7cdb8e433ee441b3acbe94fb3 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Fri Aug 22 20:23:03 EDT 2025 Tue Aug 05 10:39:49 EDT 2025 Thu Apr 03 07:08:39 EDT 2025 Tue Jul 01 02:09:33 EDT 2025 Thu Apr 24 23:05:44 EDT 2025 Sat Feb 01 16:04:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Climate change Cropland expansion Soil moisture Dryland area Vegetation greenness Aridity |
Language | English |
License | Copyright © 2024 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-fb9f2eec9d7b1511ae96327eadf0b7ced019c93b7cdb8e433ee441b3acbe94fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 38296067 |
PQID | 2929128570 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3153586948 proquest_miscellaneous_2929128570 pubmed_primary_38296067 crossref_citationtrail_10_1016_j_scitotenv_2024_170482 crossref_primary_10_1016_j_scitotenv_2024_170482 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2024_170482 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-20 |
PublicationDateYYYYMMDD | 2024-03-20 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Smith, Dannenberg, Yan, Herrmann, Barnes, Barron-Gafford, Biederman, Ferrenberg, Fox, Hudson (bb0245) 2019; 233 Dardel, Kergoat, Hiernaux, Mougin, Grippa, Tucker (bb0055) 2014; 140 Mahto, Mishra (bb0180) 2023 Zhu, Xie, Qin, Wang, Xu, Wang (bb0320) 2021; 12 Tong, Brandt, Yue, Horion, Wang, De, Tian, Schurgers, Xiao, Luo (bb0265) 2018; 1 Spinoni, Vogt, Naumann, Carrao, Barbosa (bb0250) 2015; 35 Ji, Huang, Xie, Liu (bb0130) 2015; 32 Zhang, Gentine, Luo, Lian, Liu, Zhou, Michalak, Sun, Fisher, Piao (bb0310) 2022; 13 Wang, d’Odorico, Evans, Eldridge, McCabe, Caylor, King (bb0295) 2012; 16 Ukkola, De Kauwe, Roderick, Burrell, Lehmann, Pitman (bb0280) 2021; 27 D’Odorico, Bhattachan (bb0060) 2012; 367 Donohue, Roderick, McVicar, Farquhar (bb0065) 2013; 40 Hickler, Eklundh, Seaquist, Smith, Ardö, Olsson, Sykes, Sjöström (bb0115) 2005 Ohmura, Wild (bb0200) 2002; 298 Hersbach, Bell, Berrisford, Hirahara, Horányi, Muñoz-Sabater, Nicolas, Peubey, Radu, Schepers, Simmons, Soci, Abdalla, Abellan, Balsamo, Bechtold, Biavati, Bidlot, Bonavita, De, Dahlgren, Dee, Diamantakis, Dragani, Flemming, Forbes, Fuentes, Geer, Haimberger, Healy, Hogan, Hólm, Janisková, Keeley, Laloyaux, Lopez, Lupu, Radnoti, Rosnay, Rozum, Vamborg, Villaume, Thépaut (bb0110) 2020; 146 Olsson, Eklundh, Ardö (bb0205) 2005; 63 Feng, Gu, Luo, Liu, Gulakhmadov, Slater, Li, Zhang, Kong (bb0080) 2022; 35 Tao, Liu, Small, Chen, Wang, Sun (bb0255) 2021; 320 Tucker, Pinzon, Brown, Slayback, Pak, Mahoney, Vermote, El Saleous (bb0275) 2005; 26 Fensholt, Langanke, Rasmussen, Reenberg, Prince, Tucker, Scholes, Le, Bondeau, Eastman (bb0085) 2012; 121 Gonsamo, Ciais, Miralles, Sitch, Dorigo, Lombardozzi, Friedlingstein, Nabel, Goll, O’Sullivan (bb0100) 2021; 27 Tetzner, Thomas, Allen (bb0260) 2019; 9 Maestre, Eldridge, Soliveres, Kéfi, Delgado-Baquerizo, Bowker, García-Palacios, Gaitán, Gallardo, Lázaro (bb0165) 2016; 47 Mahto, Mishra (bb0175) 2019; 124 Feng, Fu (bb0075) 2013; 13 Qiao, Wang (bb0220) 2022; 15 Albergel, Dutra, Munier, Calvet, Munoz-Sabater, de Rosnay, Balsamo (bb0010) 2018; 22 Liu, Gong, Wang, Clinton, Bai, Liang (bb0155) 2020; 12 Anon (bb0015) 2019 Huang, Yu, Dai, Wei, Kang (bb0125) 2017; 7 Sen (bb0240) 1968; 63 Dai, Trenberth, Qian (bb0045) 2004; 5 Lu, Wang, McCabe (bb0160) 2016; 6 Graham, Hudson, Maturilli (bb0105) 2019; 46 Yao, Liu, Huang, Gao, Wang, Li, Yu, Chen (bb0305) 2020; 11 Burrell, Evans, De Kauwe (bb0030) 2020; 11 Armah, Odoi, Yengoh, Obiri, Yawson, Afrifa (bb0020) 2011; 16 White, Nackoney (bb0300) 2003 Leng, Huete, Cleverly, Lu, Ma, Gao, Yu (bb0140) 2022; 842 Kendall (bb0135) 1975; Vol 2 Pinzon, Tucker (bb0210) 2014; 6 Huang, Ji, Xie, Wang, He, Ran (bb0120) 2016; 46 Gleixner, Demissie, Diro (bb0095) 2020; 11 Middleton, Thomas (bb0195) 1997 Reynolds, Smith, Lambin, Turner, Mortimore (bb0225) 2007 Schmeller, Bridgewater (bb0235) 2016; 25 UNEP (bb0285) 1992 Fang, Guo, Hu, Kato, Muraoka, Son (bb0070) 2014; 20 Trees (bb0270) 2016 Chen, Park, Wang, Piao, Xu, Chaturvedi, Fuchs, Brovkin, Ciais, Fensholt (bb0035) 2019; 2 Mahto, Mishra (bb0185) 2023; 18 UNESCO (bb0290) 1979 Cherlet, Hutchinson, Reynolds, Hill, Sommer, Von Maltitz (bb0040) 2018 Schlaepfer, Bradford, Lauenroth, Munson, Tietjen, Hall, Wilson, Duniway, Jia, Pyke (bb0230) 2017; 8 Zotarelli, Dukes, Romero, Migliaccio, Morgan (bb0325) 2010; 1 Daramola, Xu (bb0050) 2022; 42 Ahlström, Raupach, Schurgers, Smith, Arneth, Jung, Reichstein, Canadell, Friedlingstein, Jain (bb0005) 2015; 348 Zhu, Piao, Myneni, Huang, Zeng, Canadell, Ciais, Sitch, Friedlingstein, Arneth (bb0315) 2016; 6 Li, Wang, Kaseke, Li, Seely (bb0145) 2016; 11 Bhanja, Mukherjee, Rodell, Wada, Chattopadhyay, Velicogna, Pangaluru, Famiglietti (bb0025) 2017; 7 Mann (bb0190) 1945; 13 for Atmospheric Research T N C (bb0090) 2018 Poulter, Frank, Ciais, Myneni, Andela, Bi, Broquet, Canadell, Chevallier, Liu (bb0215) 2014; 509 Lian, Piao, Chen, Huntingford, Fu, Li, Huang, Sheffield, Berg, Keenan (bb0150) 2021; 2 Maestre, Benito, Berdugo, Concostrina-Zubiri, Delgado-Baquerizo, Eldridge, Guirado, Gross, Kéfi, Le Bagousse-Pinguet (bb0170) 2021; 231 Tong (10.1016/j.scitotenv.2024.170482_bb0265) 2018; 1 Gonsamo (10.1016/j.scitotenv.2024.170482_bb0100) 2021; 27 Reynolds (10.1016/j.scitotenv.2024.170482_bb0225) 2007 Mann (10.1016/j.scitotenv.2024.170482_bb0190) 1945; 13 Anon (10.1016/j.scitotenv.2024.170482_bb0015) 2019 Mahto (10.1016/j.scitotenv.2024.170482_bb0185) 2023; 18 Ukkola (10.1016/j.scitotenv.2024.170482_bb0280) 2021; 27 White (10.1016/j.scitotenv.2024.170482_bb0300) 2003 Schlaepfer (10.1016/j.scitotenv.2024.170482_bb0230) 2017; 8 Dai (10.1016/j.scitotenv.2024.170482_bb0045) 2004; 5 Kendall (10.1016/j.scitotenv.2024.170482_bb0135) 1975; Vol 2 for Atmospheric Research T N C (10.1016/j.scitotenv.2024.170482_bb0090) 2018 Qiao (10.1016/j.scitotenv.2024.170482_bb0220) 2022; 15 Spinoni (10.1016/j.scitotenv.2024.170482_bb0250) 2015; 35 UNESCO (10.1016/j.scitotenv.2024.170482_bb0290) 1979 Yao (10.1016/j.scitotenv.2024.170482_bb0305) 2020; 11 Ahlström (10.1016/j.scitotenv.2024.170482_bb0005) 2015; 348 Hickler (10.1016/j.scitotenv.2024.170482_bb0115) 2005 Tao (10.1016/j.scitotenv.2024.170482_bb0255) 2021; 320 Liu (10.1016/j.scitotenv.2024.170482_bb0155) 2020; 12 Middleton (10.1016/j.scitotenv.2024.170482_bb0195) 1997 Fensholt (10.1016/j.scitotenv.2024.170482_bb0085) 2012; 121 Tetzner (10.1016/j.scitotenv.2024.170482_bb0260) 2019; 9 Burrell (10.1016/j.scitotenv.2024.170482_bb0030) 2020; 11 UNEP (10.1016/j.scitotenv.2024.170482_bb0285) 1992 Olsson (10.1016/j.scitotenv.2024.170482_bb0205) 2005; 63 Maestre (10.1016/j.scitotenv.2024.170482_bb0165) 2016; 47 Huang (10.1016/j.scitotenv.2024.170482_bb0120) 2016; 46 Poulter (10.1016/j.scitotenv.2024.170482_bb0215) 2014; 509 Zotarelli (10.1016/j.scitotenv.2024.170482_bb0325) 2010; 1 Feng (10.1016/j.scitotenv.2024.170482_bb0080) 2022; 35 Bhanja (10.1016/j.scitotenv.2024.170482_bb0025) 2017; 7 Smith (10.1016/j.scitotenv.2024.170482_bb0245) 2019; 233 Albergel (10.1016/j.scitotenv.2024.170482_bb0010) 2018; 22 Gleixner (10.1016/j.scitotenv.2024.170482_bb0095) 2020; 11 Huang (10.1016/j.scitotenv.2024.170482_bb0125) 2017; 7 Leng (10.1016/j.scitotenv.2024.170482_bb0140) 2022; 842 Dardel (10.1016/j.scitotenv.2024.170482_bb0055) 2014; 140 Lian (10.1016/j.scitotenv.2024.170482_bb0150) 2021; 2 Mahto (10.1016/j.scitotenv.2024.170482_bb0180) 2023 Graham (10.1016/j.scitotenv.2024.170482_bb0105) 2019; 46 Ohmura (10.1016/j.scitotenv.2024.170482_bb0200) 2002; 298 Donohue (10.1016/j.scitotenv.2024.170482_bb0065) 2013; 40 Pinzon (10.1016/j.scitotenv.2024.170482_bb0210) 2014; 6 Zhu (10.1016/j.scitotenv.2024.170482_bb0315) 2016; 6 Fang (10.1016/j.scitotenv.2024.170482_bb0070) 2014; 20 Feng (10.1016/j.scitotenv.2024.170482_bb0075) 2013; 13 Zhu (10.1016/j.scitotenv.2024.170482_bb0320) 2021; 12 Schmeller (10.1016/j.scitotenv.2024.170482_bb0235) 2016; 25 Mahto (10.1016/j.scitotenv.2024.170482_bb0175) 2019; 124 Sen (10.1016/j.scitotenv.2024.170482_bb0240) 1968; 63 Lu (10.1016/j.scitotenv.2024.170482_bb0160) 2016; 6 Cherlet (10.1016/j.scitotenv.2024.170482_bb0040) 2018 Trees (10.1016/j.scitotenv.2024.170482_bb0270) 2016 Armah (10.1016/j.scitotenv.2024.170482_bb0020) 2011; 16 Hersbach (10.1016/j.scitotenv.2024.170482_bb0110) 2020; 146 Ji (10.1016/j.scitotenv.2024.170482_bb0130) 2015; 32 Daramola (10.1016/j.scitotenv.2024.170482_bb0050) 2022; 42 Chen (10.1016/j.scitotenv.2024.170482_bb0035) 2019; 2 D’Odorico (10.1016/j.scitotenv.2024.170482_bb0060) 2012; 367 Maestre (10.1016/j.scitotenv.2024.170482_bb0170) 2021; 231 Tucker (10.1016/j.scitotenv.2024.170482_bb0275) 2005; 26 Zhang (10.1016/j.scitotenv.2024.170482_bb0310) 2022; 13 Li (10.1016/j.scitotenv.2024.170482_bb0145) 2016; 11 Wang (10.1016/j.scitotenv.2024.170482_bb0295) 2012; 16 |
References_xml | – volume: Vol 2 year: 1975 ident: bb0135 article-title: Multivariate Analysis – volume: 233 year: 2019 ident: bb0245 article-title: Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities publication-title: Remote Sens. Environ. – start-page: 54 year: 1979 ident: bb0290 article-title: Map of the world distribution of arid regions: explanatory note publication-title: MAP Technical Notes 7 – volume: 40 start-page: 3031 year: 2013 end-page: 3035 ident: bb0065 article-title: Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments publication-title: Geophys. Res. Lett. – volume: 13 start-page: 245 year: 1945 ident: bb0190 article-title: Nonparametric tests against trend publication-title: Econometrica – volume: 46 start-page: 1131 year: 2016 end-page: 1150 ident: bb0120 article-title: Global semi-arid climate change over last 60 years publication-title: Clim. Dyn. – start-page: 32 year: 2005 ident: bb0115 article-title: Precipitation controls Sahel greening trend publication-title: Geophys. Res. Lett. – volume: 47 start-page: 215 year: 2016 end-page: 237 ident: bb0165 article-title: Structure and functioning of dryland ecosystems in a changing world publication-title: Annu. Rev. Ecol. Evol. Syst. – year: 2003 ident: bb0300 article-title: Drylands, People, and Ecosystem Goods and Services: A Web-based Geospatial Analysis (PDF Version) – volume: 20 start-page: 2019 year: 2014 end-page: 2030 ident: bb0070 article-title: Forest biomass carbon sinks in E ast Asia, with special reference to the relative contributions of forest expansion and forest growth publication-title: Glob. Chang. Biol. – volume: 63 start-page: 556 year: 2005 end-page: 566 ident: bb0205 article-title: Greening of the Sahel—trends, patterns and hypotheses publication-title: J. Arid Environ. – year: 1992 ident: bb0285 article-title: World Atlas of Desertification – volume: 35 start-page: 2210 year: 2015 end-page: 2222 ident: bb0250 article-title: Towards identifying areas at climatological risk of desertification using the Köppen–Geiger classification and FAO aridity index publication-title: Int. J. Climatol. – volume: 25 start-page: 801 year: 2016 end-page: 805 ident: bb0235 article-title: The Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES): progress and next steps publication-title: Biodivers. Conserv. – volume: 7 start-page: 417 year: 2017 end-page: 422 ident: bb0125 article-title: Drylands face potential threat under 2 C global warming target publication-title: Nat. Clim. Chang. – volume: 509 start-page: 600 year: 2014 end-page: 603 ident: bb0215 article-title: Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle publication-title: Nature – volume: 35 start-page: 2901 year: 2022 end-page: 2917 ident: bb0080 article-title: Greenhouse gas emissions drive global dryland expansion but not spatial patterns of change in aridification publication-title: J. Climate – year: 1997 ident: bb0195 article-title: World Atlas of Desertification – volume: 12 start-page: 1217 year: 2020 end-page: 1243 ident: bb0155 article-title: Annual dynamics of global land cover and its long-term changes from 1982 to 2015 publication-title: Earth Syst. Sci. Data – volume: 121 start-page: 144 year: 2012 end-page: 158 ident: bb0085 article-title: Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers publication-title: Remote Sens. Environ. – volume: 12 start-page: 217 year: 2021 ident: bb0320 article-title: An assessment of ERA5 reanalysis for Antarctic near-surface air temperature publication-title: Atmosphere (Basel) – volume: 13 start-page: 10081 year: 2013 end-page: 10094 ident: bb0075 article-title: Expansion of global drylands under a warming climate publication-title: Atmos. Chem. Phys. – volume: 2 start-page: 232 year: 2021 end-page: 250 ident: bb0150 article-title: Multifaceted characteristics of dryland aridity changes in a warming world publication-title: Nat. Rev. Earth Environ. – volume: 11 start-page: 1665 year: 2020 ident: bb0305 article-title: Accelerated dryland expansion regulates future variability in dryland gross primary production publication-title: Nat. Commun. – year: 2018 ident: bb0090 article-title: Global GIMMS NDVI3g v1 Dataset (1981–2015) A Big Earth Data Platf. Three Poles Online – volume: 27 start-page: 4367 year: 2021 end-page: 4380 ident: bb0280 article-title: Annual precipitation explains variability in dryland vegetation greenness globally but not locally publication-title: Glob. Chang. Biol. – volume: 63 start-page: 1379 year: 1968 end-page: 1389 ident: bb0240 article-title: Estimates of the regression coefficient based on Kendall’s tau publication-title: J. Am. Stat. Assoc. – volume: 1 start-page: 44 year: 2018 end-page: 50 ident: bb0265 article-title: Increased vegetation growth and carbon stock in China karst via ecological engineering publication-title: Nat. Sustain. – volume: 140 start-page: 350 year: 2014 end-page: 364 ident: bb0055 article-title: Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger) publication-title: Remote Sens. Environ. – volume: 2 start-page: 122 year: 2019 end-page: 129 ident: bb0035 article-title: China and India lead in greening of the world through land-use management publication-title: Nat. Sustain. – volume: 1 year: 2010 ident: bb0325 article-title: Step by Step Calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method) – volume: 7 start-page: 1 year: 2017 end-page: 7 ident: bb0025 article-title: Groundwater rejuvenation in parts of India influenced by water-policy change implementation publication-title: Sci. Rep. – start-page: 1 year: 2023 end-page: 31 ident: bb0180 article-title: Flash drought intensification due to enhanced land-atmospheric coupling in India publication-title: J. Climate – volume: 16 start-page: 291 year: 2011 end-page: 306 ident: bb0020 article-title: Food security and climate change in drought-sensitive savanna zones of Ghana publication-title: Mitig. Adapt. Strateg. Glob. Chang. – volume: 26 start-page: 4485 year: 2005 end-page: 4498 ident: bb0275 article-title: An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data publication-title: Int. J. Remote Sens. – volume: 11 year: 2016 ident: bb0145 article-title: The impact of rainfall on soil moisture dynamics in a foggy desert publication-title: PloS One – volume: 6 start-page: 6929 year: 2014 end-page: 6960 ident: bb0210 article-title: A non-stationary 1981–2012 AVHRR NDVI3g time series publication-title: Remote Sens. – volume: 27 start-page: 3336 year: 2021 end-page: 3349 ident: bb0100 article-title: Greening drylands despite warming consistent with carbon dioxide fertilization effect publication-title: Glob. Chang. Biol. – volume: 298 start-page: 1345 year: 2002 end-page: 1346 ident: bb0200 article-title: Is the hydrological cycle accelerating? publication-title: Science (80-) – year: 2016 ident: bb0270 article-title: Land use in drylands: the first global assessment publication-title: Full Rep. (FAO, 2019) – start-page: 847 year: 2007 end-page: 851 ident: bb0225 article-title: Batterbury, s PJ, Downing, TE, Dowlatabadi, HR, Fernandez, J., Herrick, JE, Hubersannwald, E., h. Jiang, H., Leemans, R., Lynam, T., Maest. FT, Ayarza, M., Walker, B – volume: 320 year: 2021 ident: bb0255 article-title: The effects of land management patterns on soil carbon sequestration and C: N: P stoichiometry in sloping croplands in southern China publication-title: Agric. Ecosyst. Environ. – volume: 6 start-page: 791 year: 2016 end-page: 795 ident: bb0315 article-title: Greening of the Earth and its drivers publication-title: Nat. Clim. Chang. – volume: 22 start-page: 3515 year: 2018 end-page: 3532 ident: bb0010 article-title: {ERA-5} and {ERA-Interim} driven {ISBA} land surface model simulations: which one performs better? publication-title: Hydrol. Earth Syst. Sci. – volume: 367 start-page: 3145 year: 2012 end-page: 3157 ident: bb0060 article-title: Hydrologic variability in dryland regions: impacts on ecosystem dynamics and food security publication-title: Philos. Trans. R. Soc. B Biol. Sci. – volume: 9 start-page: 289 year: 2019 ident: bb0260 article-title: A validation of ERA5 reanalysis data in the Southern Antarctic Peninsula—Ellsworth land region, and its implications for ice core studies publication-title: Geosciences – volume: 124 start-page: 9423 year: 2019 end-page: 9441 ident: bb0175 article-title: Does ERA-5 outperform other reanalysis products for hydrologic applications in India? publication-title: J. Geophys. Res. Atmos. – volume: 348 start-page: 895 year: 2015 end-page: 899 ident: bb0005 article-title: The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink publication-title: Science (80-) – year: 2018 ident: bb0040 article-title: World Atlas of Desertification Rethinking Land Degradation and Sustainable Land Management – volume: 231 start-page: 540 year: 2021 end-page: 558 ident: bb0170 article-title: Biogeography of global drylands publication-title: New Phytol. – volume: 15 start-page: e2420 year: 2022 ident: bb0220 article-title: Satellite observed vegetation dynamics and drivers in the Namib sand sea over the recent 20 years publication-title: Ecohydrology – volume: 42 start-page: 1267 year: 2022 end-page: 1282 ident: bb0050 article-title: Recent changes in global dryland temperature and precipitation publication-title: Int. J. Climatol. – year: 2019 ident: bb0015 article-title: Climate Change and Land: An {IPCC} Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems – volume: 46 start-page: 6138 year: 2019 end-page: 6147 ident: bb0105 article-title: Improved performance of ERA5 in Arctic gateway relative to four global atmospheric reanalyses publication-title: Geophys. Res. Lett. – volume: 5 start-page: 1117 year: 2004 end-page: 1130 ident: bb0045 article-title: A global dataset of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming publication-title: J. Hydrometeorol. – volume: 6 start-page: 20716 year: 2016 ident: bb0160 article-title: Elevated CO2 as a driver of global dryland greening publication-title: Sci. Rep. – volume: 842 year: 2022 ident: bb0140 article-title: Response of dryland vegetation under extreme wet events with satellite measures of greenness and fluorescence publication-title: Sci. Total Environ. – volume: 11 start-page: 996 year: 2020 ident: bb0095 article-title: Did ERA5 improve temperature and precipitation reanalysis over East Africa? publication-title: Atmosphere (Basel) – volume: 16 start-page: 2585 year: 2012 end-page: 2603 ident: bb0295 article-title: Dryland ecohydrology and climate change: critical issues and technical advances publication-title: Hydrol. Earth Syst. Sci. – volume: 11 start-page: 3853 year: 2020 ident: bb0030 article-title: Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification publication-title: Nat. Commun. – volume: 8 start-page: 14196 year: 2017 ident: bb0230 article-title: Climate change reduces extent of temperate drylands and intensifies drought in deep soils publication-title: Nat. Commun. – volume: 32 start-page: 1565 year: 2015 end-page: 1574 ident: bb0130 article-title: Comparison of dryland climate change in observations and CMIP5 simulations publication-title: Adv. Atmos. Sci. – volume: 18 start-page: 44044 year: 2023 ident: bb0185 article-title: Increasing risk of simultaneous occurrence of flash drought in major global croplands publication-title: Environ. Res. Lett. – volume: 146 start-page: 1999 year: 2020 end-page: 2049 ident: bb0110 article-title: The ERA5 global reanalysis Q publication-title: J. R. Meteorol. Soc. – volume: 13 start-page: 4875 year: 2022 ident: bb0310 article-title: Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2 publication-title: Nat. Commun. – volume: 13 start-page: 245 year: 1945 ident: 10.1016/j.scitotenv.2024.170482_bb0190 article-title: Nonparametric tests against trend publication-title: Econometrica doi: 10.2307/1907187 – volume: Vol 2 year: 1975 ident: 10.1016/j.scitotenv.2024.170482_bb0135 – volume: 40 start-page: 3031 year: 2013 ident: 10.1016/j.scitotenv.2024.170482_bb0065 article-title: Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments publication-title: Geophys. Res. Lett. doi: 10.1002/grl.50563 – volume: 320 year: 2021 ident: 10.1016/j.scitotenv.2024.170482_bb0255 article-title: The effects of land management patterns on soil carbon sequestration and C: N: P stoichiometry in sloping croplands in southern China publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2021.107584 – volume: 6 start-page: 791 year: 2016 ident: 10.1016/j.scitotenv.2024.170482_bb0315 article-title: Greening of the Earth and its drivers publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate3004 – volume: 6 start-page: 6929 year: 2014 ident: 10.1016/j.scitotenv.2024.170482_bb0210 article-title: A non-stationary 1981–2012 AVHRR NDVI3g time series publication-title: Remote Sens. doi: 10.3390/rs6086929 – volume: 121 start-page: 144 year: 2012 ident: 10.1016/j.scitotenv.2024.170482_bb0085 article-title: Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.01.017 – volume: 16 start-page: 291 year: 2011 ident: 10.1016/j.scitotenv.2024.170482_bb0020 article-title: Food security and climate change in drought-sensitive savanna zones of Ghana publication-title: Mitig. Adapt. Strateg. Glob. Chang. doi: 10.1007/s11027-010-9263-9 – volume: 12 start-page: 1217 year: 2020 ident: 10.1016/j.scitotenv.2024.170482_bb0155 article-title: Annual dynamics of global land cover and its long-term changes from 1982 to 2015 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-12-1217-2020 – volume: 27 start-page: 4367 year: 2021 ident: 10.1016/j.scitotenv.2024.170482_bb0280 article-title: Annual precipitation explains variability in dryland vegetation greenness globally but not locally publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.15729 – volume: 13 start-page: 10081 year: 2013 ident: 10.1016/j.scitotenv.2024.170482_bb0075 article-title: Expansion of global drylands under a warming climate publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-13-10081-2013 – volume: 348 start-page: 895 year: 2015 ident: 10.1016/j.scitotenv.2024.170482_bb0005 article-title: The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink publication-title: Science (80-) doi: 10.1126/science.aaa1668 – volume: 140 start-page: 350 year: 2014 ident: 10.1016/j.scitotenv.2024.170482_bb0055 article-title: Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.09.011 – volume: 25 start-page: 801 year: 2016 ident: 10.1016/j.scitotenv.2024.170482_bb0235 article-title: The Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES): progress and next steps publication-title: Biodivers. Conserv. doi: 10.1007/s10531-016-1095-9 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.scitotenv.2024.170482_bb0025 article-title: Groundwater rejuvenation in parts of India influenced by water-policy change implementation publication-title: Sci. Rep. doi: 10.1038/s41598-017-07058-2 – start-page: 32 year: 2005 ident: 10.1016/j.scitotenv.2024.170482_bb0115 article-title: Precipitation controls Sahel greening trend publication-title: Geophys. Res. Lett. – volume: 8 start-page: 14196 year: 2017 ident: 10.1016/j.scitotenv.2024.170482_bb0230 article-title: Climate change reduces extent of temperate drylands and intensifies drought in deep soils publication-title: Nat. Commun. doi: 10.1038/ncomms14196 – year: 1997 ident: 10.1016/j.scitotenv.2024.170482_bb0195 – volume: 5 start-page: 1117 year: 2004 ident: 10.1016/j.scitotenv.2024.170482_bb0045 article-title: A global dataset of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming publication-title: J. Hydrometeorol. doi: 10.1175/JHM-386.1 – volume: 509 start-page: 600 year: 2014 ident: 10.1016/j.scitotenv.2024.170482_bb0215 article-title: Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle publication-title: Nature doi: 10.1038/nature13376 – volume: 63 start-page: 1379 year: 1968 ident: 10.1016/j.scitotenv.2024.170482_bb0240 article-title: Estimates of the regression coefficient based on Kendall’s tau publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1968.10480934 – volume: 35 start-page: 2901 year: 2022 ident: 10.1016/j.scitotenv.2024.170482_bb0080 article-title: Greenhouse gas emissions drive global dryland expansion but not spatial patterns of change in aridification publication-title: J. Climate doi: 10.1175/JCLI-D-22-0103.1 – volume: 298 start-page: 1345 year: 2002 ident: 10.1016/j.scitotenv.2024.170482_bb0200 article-title: Is the hydrological cycle accelerating? publication-title: Science (80-) doi: 10.1126/science.1078972 – volume: 11 start-page: 1665 year: 2020 ident: 10.1016/j.scitotenv.2024.170482_bb0305 article-title: Accelerated dryland expansion regulates future variability in dryland gross primary production publication-title: Nat. Commun. doi: 10.1038/s41467-020-15515-2 – volume: 46 start-page: 6138 year: 2019 ident: 10.1016/j.scitotenv.2024.170482_bb0105 article-title: Improved performance of ERA5 in Arctic gateway relative to four global atmospheric reanalyses publication-title: Geophys. Res. Lett. doi: 10.1029/2019GL082781 – volume: 1 year: 2010 ident: 10.1016/j.scitotenv.2024.170482_bb0325 – volume: 13 start-page: 4875 year: 2022 ident: 10.1016/j.scitotenv.2024.170482_bb0310 article-title: Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2 publication-title: Nat. Commun. doi: 10.1038/s41467-022-32631-3 – volume: 146 start-page: 1999 year: 2020 ident: 10.1016/j.scitotenv.2024.170482_bb0110 article-title: The ERA5 global reanalysis Q publication-title: J. R. Meteorol. Soc. doi: 10.1002/qj.3803 – year: 2016 ident: 10.1016/j.scitotenv.2024.170482_bb0270 article-title: Land use in drylands: the first global assessment – volume: 124 start-page: 9423 year: 2019 ident: 10.1016/j.scitotenv.2024.170482_bb0175 article-title: Does ERA-5 outperform other reanalysis products for hydrologic applications in India? publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2019JD031155 – volume: 7 start-page: 417 year: 2017 ident: 10.1016/j.scitotenv.2024.170482_bb0125 article-title: Drylands face potential threat under 2 C global warming target publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate3275 – volume: 63 start-page: 556 year: 2005 ident: 10.1016/j.scitotenv.2024.170482_bb0205 article-title: Greening of the Sahel—trends, patterns and hypotheses publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2005.03.008 – volume: 9 start-page: 289 year: 2019 ident: 10.1016/j.scitotenv.2024.170482_bb0260 article-title: A validation of ERA5 reanalysis data in the Southern Antarctic Peninsula—Ellsworth land region, and its implications for ice core studies publication-title: Geosciences doi: 10.3390/geosciences9070289 – year: 1992 ident: 10.1016/j.scitotenv.2024.170482_bb0285 – volume: 842 year: 2022 ident: 10.1016/j.scitotenv.2024.170482_bb0140 article-title: Response of dryland vegetation under extreme wet events with satellite measures of greenness and fluorescence publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.156860 – volume: 42 start-page: 1267 year: 2022 ident: 10.1016/j.scitotenv.2024.170482_bb0050 article-title: Recent changes in global dryland temperature and precipitation publication-title: Int. J. Climatol. doi: 10.1002/joc.7301 – volume: 1 start-page: 44 year: 2018 ident: 10.1016/j.scitotenv.2024.170482_bb0265 article-title: Increased vegetation growth and carbon stock in China karst via ecological engineering publication-title: Nat. Sustain. doi: 10.1038/s41893-017-0004-x – volume: 35 start-page: 2210 year: 2015 ident: 10.1016/j.scitotenv.2024.170482_bb0250 article-title: Towards identifying areas at climatological risk of desertification using the Köppen–Geiger classification and FAO aridity index publication-title: Int. J. Climatol. doi: 10.1002/joc.4124 – volume: 231 start-page: 540 year: 2021 ident: 10.1016/j.scitotenv.2024.170482_bb0170 article-title: Biogeography of global drylands publication-title: New Phytol. doi: 10.1111/nph.17395 – year: 2003 ident: 10.1016/j.scitotenv.2024.170482_bb0300 – year: 2018 ident: 10.1016/j.scitotenv.2024.170482_bb0090 – volume: 46 start-page: 1131 year: 2016 ident: 10.1016/j.scitotenv.2024.170482_bb0120 article-title: Global semi-arid climate change over last 60 years publication-title: Clim. Dyn. doi: 10.1007/s00382-015-2636-8 – volume: 12 start-page: 217 year: 2021 ident: 10.1016/j.scitotenv.2024.170482_bb0320 article-title: An assessment of ERA5 reanalysis for Antarctic near-surface air temperature publication-title: Atmosphere (Basel) doi: 10.3390/atmos12020217 – volume: 367 start-page: 3145 year: 2012 ident: 10.1016/j.scitotenv.2024.170482_bb0060 article-title: Hydrologic variability in dryland regions: impacts on ecosystem dynamics and food security publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2012.0016 – year: 2018 ident: 10.1016/j.scitotenv.2024.170482_bb0040 – volume: 11 start-page: 996 year: 2020 ident: 10.1016/j.scitotenv.2024.170482_bb0095 article-title: Did ERA5 improve temperature and precipitation reanalysis over East Africa? publication-title: Atmosphere (Basel) doi: 10.3390/atmos11090996 – volume: 32 start-page: 1565 year: 2015 ident: 10.1016/j.scitotenv.2024.170482_bb0130 article-title: Comparison of dryland climate change in observations and CMIP5 simulations publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-015-4267-8 – volume: 47 start-page: 215 year: 2016 ident: 10.1016/j.scitotenv.2024.170482_bb0165 article-title: Structure and functioning of dryland ecosystems in a changing world publication-title: Annu. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev-ecolsys-121415-032311 – volume: 11 start-page: 3853 year: 2020 ident: 10.1016/j.scitotenv.2024.170482_bb0030 article-title: Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification publication-title: Nat. Commun. doi: 10.1038/s41467-020-17710-7 – volume: 26 start-page: 4485 year: 2005 ident: 10.1016/j.scitotenv.2024.170482_bb0275 article-title: An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160500168686 – start-page: 54 year: 1979 ident: 10.1016/j.scitotenv.2024.170482_bb0290 article-title: Map of the world distribution of arid regions: explanatory note – volume: 18 start-page: 44044 year: 2023 ident: 10.1016/j.scitotenv.2024.170482_bb0185 article-title: Increasing risk of simultaneous occurrence of flash drought in major global croplands publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/acc8ed – volume: 233 year: 2019 ident: 10.1016/j.scitotenv.2024.170482_bb0245 article-title: Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111401 – volume: 2 start-page: 232 year: 2021 ident: 10.1016/j.scitotenv.2024.170482_bb0150 article-title: Multifaceted characteristics of dryland aridity changes in a warming world publication-title: Nat. Rev. Earth Environ. doi: 10.1038/s43017-021-00144-0 – volume: 27 start-page: 3336 year: 2021 ident: 10.1016/j.scitotenv.2024.170482_bb0100 article-title: Greening drylands despite warming consistent with carbon dioxide fertilization effect publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.15658 – year: 2019 ident: 10.1016/j.scitotenv.2024.170482_bb0015 – volume: 16 start-page: 2585 year: 2012 ident: 10.1016/j.scitotenv.2024.170482_bb0295 article-title: Dryland ecohydrology and climate change: critical issues and technical advances publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-16-2585-2012 – volume: 22 start-page: 3515 year: 2018 ident: 10.1016/j.scitotenv.2024.170482_bb0010 article-title: {ERA-5} and {ERA-Interim} driven {ISBA} land surface model simulations: which one performs better? publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-3515-2018 – start-page: 1 year: 2023 ident: 10.1016/j.scitotenv.2024.170482_bb0180 article-title: Flash drought intensification due to enhanced land-atmospheric coupling in India publication-title: J. Climate – volume: 20 start-page: 2019 year: 2014 ident: 10.1016/j.scitotenv.2024.170482_bb0070 article-title: Forest biomass carbon sinks in E ast Asia, with special reference to the relative contributions of forest expansion and forest growth publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12512 – volume: 6 start-page: 20716 year: 2016 ident: 10.1016/j.scitotenv.2024.170482_bb0160 article-title: Elevated CO2 as a driver of global dryland greening publication-title: Sci. Rep. doi: 10.1038/srep20716 – volume: 11 year: 2016 ident: 10.1016/j.scitotenv.2024.170482_bb0145 article-title: The impact of rainfall on soil moisture dynamics in a foggy desert publication-title: PloS One – start-page: 847 year: 2007 ident: 10.1016/j.scitotenv.2024.170482_bb0225 – volume: 2 start-page: 122 year: 2019 ident: 10.1016/j.scitotenv.2024.170482_bb0035 article-title: China and India lead in greening of the world through land-use management publication-title: Nat. Sustain. doi: 10.1038/s41893-019-0220-7 – volume: 15 start-page: e2420 year: 2022 ident: 10.1016/j.scitotenv.2024.170482_bb0220 article-title: Satellite observed vegetation dynamics and drivers in the Namib sand sea over the recent 20 years publication-title: Ecohydrology doi: 10.1002/eco.2420 |
SSID | ssj0000781 |
Score | 2.47644 |
Snippet | Drylands are one of the most sensitive areas to climate change. Despite being characterized by water scarcity and low precipitation, drylands support a wide... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 170482 |
SubjectTerms | arid lands Aridity Australia biodiversity climate Climate change cropland Cropland expansion dry environmental conditions Dryland area ecosystems Europe humans hydrometeorology land use change normalized difference vegetation index Soil moisture soil water South Asia vegetation Vegetation greenness water shortages |
Title | Dominance of soil moisture over aridity in explaining vegetation greenness across global drylands |
URI | https://dx.doi.org/10.1016/j.scitotenv.2024.170482 https://www.ncbi.nlm.nih.gov/pubmed/38296067 https://www.proquest.com/docview/2929128570 https://www.proquest.com/docview/3153586948 |
Volume | 917 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CSqFQSrtt2u0jqNCrE1vSWlJvIU3YdmkOpaG5CUmWwoatvewjJJf89o4se0MOSw492RaSkTUzmk_WNyOALwULUpYyZDEXXcYdyzOjKpuxyqC3LxDht8mqf56V43P-42J0sQPHfSxMpFV2c3-a09vZuis57EbzcD6dxhhfLlWpRGRB4jIgZvzkXEQtP7i7p3nEZDZplxkNG2s_4Hjhe1cNYtNrXChSflAIrEW3eahtCLT1RKcv4UUHIclR6uUr2PH1AJ6mQyVvB7B3ch-7htU6410O4Hn6RUdS5NFrMN-algfjPGkCWTbTGfnboNTXCyxADSe4jK4QpJNpTfzNfJbOkiDX_rKjKJLLSNqJcyUx7beQlF6EVIvbNoT4DZyfnvw-HmfdiQuZ4zlfZcGqQL13qhIWoUBhPNonFahtIbcCRYKA0CmGt5WVnjPmPcIpy4yzXvFg2R7s1k3t3wEJTFSuTRdWeC7wRdIY5RwdeVVwH-gQyn6UtevSkcdTMWa6551d6Y14dBSPTuIZQr5pOE8ZOR5v8rUXo36gXBr9xuONP_eC12h6cT_F1L5ZLzVFPUb3PhL59joMPcpIlorLIbxNWrPpNZM0rh_F-__p3gd4Fp8iLY7mH2F3tVj7T4iTVna_NYR9eHL0fTI-i9fJrz-Tf6y7F4k |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrRBICMFCYXkaiWtoEjuxza0qrba03VMr9WbZjlNttSSrfVT03zOOna16WPXALXLsyPG8vknmAfA9o7UQpagTX4suYZamiZaVSWil0dpniPC7YtXnk3J8yX5fFVc7cNjnwviwyqj7g07vtHUc2Y-nuT-fTn2OLxOylNxHQaIbQJ_Arq9OVQxg9-DkdDy5V8hchMZ5DGUbFzwI88JHr1qEp7foK-bsR8ZxVr7NSG0DoZ0xOn4FLyOKJAdho69hxzVDeBr6St4NYe_oPn0Np0X5XQ7hRfhKR0Ly0RvQv9ouFMY60tZk2U5n5E-LhF8vcACZnKAnXSFOJ9OGuL_zWWgnQW7ddYxSJNc-bserS6K7dyGhwgipFnddFvFbuDw-ujgcJ7HpQmJZylZJbWSdO2dlxQ2igUw7FNGcI8PVqeFIFcSEVlK8rIxwjFLnEFEZqq1xktWG7sGgaRv3HkhNeWW7imGZYxwfJLSW1uaFkxlzdT6Csj9lZWNFct8YY6b60LMbtSGP8uRRgTwjSDcL56Eox-NLfvZkVA_4S6HpeHzxt57wCqXP_1LRjWvXS5UjK6OFL3i6fQ5Fo1KIUjIxgneBaza7piL3LiT_8D_b-wrPxhfnZ-rsZHL6EZ77Oz5KLk8_wWC1WLvPCJtW5ksUi39j1BiX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dominance+of+soil+moisture+over+aridity+in+explaining+vegetation+greenness+across+global+drylands&rft.jtitle=The+Science+of+the+total+environment&rft.au=Tripathi%2C+Indra+Mani&rft.au=Mahto%2C+Shanti+Shwarup&rft.au=Kushwaha%2C+Anuj+Prakash&rft.au=Kumar%2C+Rahul&rft.date=2024-03-20&rft.eissn=1879-1026&rft.volume=917&rft.spage=170482&rft_id=info:doi/10.1016%2Fj.scitotenv.2024.170482&rft_id=info%3Apmid%2F38296067&rft.externalDocID=38296067 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |