Three-dimensional hierarchical metamaterials incorporating multi-directional programmable thermal expansion
The dimensional stability under the temperature variation is of great significance for the temperature-sensitive structures, motivating the development of metamaterials with the programmable coefficient of thermal expansion (CTE). Here, all the configurations, totally including 51 types for the bi-m...
Saved in:
Published in | Mechanics of Materials Vol. 163; p. 104095 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
Elsevier Ltd
01.12.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The dimensional stability under the temperature variation is of great significance for the temperature-sensitive structures, motivating the development of metamaterials with the programmable coefficient of thermal expansion (CTE). Here, all the configurations, totally including 51 types for the bi-material pyramid unit cells, were comprehensively devised to attain the widely programmable CTE in single direction. Furthermore, by using an originally developed matrix transformation method, multiple classes of the pyramid-based hierarchical metamaterials were systematically devised. These hierarchical metamaterials incorporated the unidirectional, transversal and isotropic CTEs in the multiple directions. The closed-form expressions of the CTE and relative density for the devised pyramid unit cells and hierarchical metamaterials were analytically established. The theoretical analysis was well verified by the performed numerical modeling, and confirmed that the large ranges of the programmable CTEs could be obtained by rationally adjusting the material and geometry parameters. Besides, the comprehensive comparison of the specific CTE identified that the programmable CTE and low relative density could be well balanced through the devised hierarchical metamaterials. The coupling effect of both material and geometrical parameters on the programmable CTE was figured out, providing a proper guideline to design the metamaterials with both light weight and desirable CTE.
•All configurations of bi-material pyramid cells were devised and analyzed to attain theunidirectional programmable CTE.•A matrix transformation method was proposed to devise hierarchical metamaterials with multi-directional programmable CTE.•The CTE and relative density for hierarchical metamaterials were analytically expressed and numerically validated.•The comparison identified the programmable CTE and low relative density can be well balanced by hierarchical metamaterials. |
---|---|
AbstractList | The dimensional stability under the temperature variation is of great significance for the temperature-sensitive structures, motivating the development of metamaterials with the programmable coefficient of thermal expansion (CTE). Here, all the configurations, totally including 51 types for the bi-material pyramid unit cells, were comprehensively devised to attain the widely programmable CTE in single direction. Furthermore, by using an originally developed matrix transformation method, multiple classes of the pyramid-based hierarchical metamaterials were systematically devised. These hierarchical metamaterials incorporated the unidirectional, transversal and isotropic CTEs in the multiple directions. The closed-form expressions of the CTE and relative density for the devised pyramid unit cells and hierarchical metamaterials were analytically established. The theoretical analysis was well verified by the performed numerical modeling, and confirmed that the large ranges of the programmable CTEs could be obtained by rationally adjusting the material and geometry parameters. Besides, the comprehensive comparison of the specific CTE identified that the programmable CTE and low relative density could be well balanced through the devised hierarchical metamaterials. The coupling effect of both material and geometrical parameters on the programmable CTE was figured out, providing a proper guideline to design the metamaterials with both light weight and desirable CTE.
•All configurations of bi-material pyramid cells were devised and analyzed to attain theunidirectional programmable CTE.•A matrix transformation method was proposed to devise hierarchical metamaterials with multi-directional programmable CTE.•The CTE and relative density for hierarchical metamaterials were analytically expressed and numerically validated.•The comparison identified the programmable CTE and low relative density can be well balanced by hierarchical metamaterials. |
ArticleNumber | 104095 |
Author | Wei, Kai Wang, Kaiyu Chen, Jiaxin Yang, Xujing Wei, Zhuoyi Lin, Fan |
Author_xml | – sequence: 1 givenname: Kaiyu surname: Wang fullname: Wang, Kaiyu organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, PR China – sequence: 2 givenname: Fan surname: Lin fullname: Lin, Fan organization: School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, 923-1292, Japan – sequence: 3 givenname: Jiaxin surname: Chen fullname: Chen, Jiaxin organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, PR China – sequence: 4 givenname: Zhuoyi surname: Wei fullname: Wei, Zhuoyi organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, PR China – sequence: 5 givenname: Kai orcidid: 0000-0002-1129-9250 surname: Wei fullname: Wei, Kai email: weikai@hnu.edu.cn organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, PR China – sequence: 6 givenname: Xujing surname: Yang fullname: Yang, Xujing organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, PR China |
BackLink | https://cir.nii.ac.jp/crid/1872272492430254592$$DView record in CiNii |
BookMark | eNqFkc1LwzAchoNMcJv-CUIPXjvz2Q88iAy_YOBlnkOa_rJmNu1Io-h_b2p38rJLQl5-zxvyZIFmXd8BQtcErwgm2e1-5UA3ToUVxZTEjONSnKE5KXKa5jlnMzSPc3maZSy7QIth2GOMRSnyOfrYNh4gra2DbrB9p9qkseCV143V8eAgqNgM3qp2SGyne3_ovQq22yXusw02oh50mNCD73deOaeqFpLQgHcxhO-D-uu-ROcmtsDVcV-i96fH7fol3bw9v64fNqnmmIfUqFxpRgqVEVNpYCIvhKFC1DXXGaNZYcqy0nWlDS0qQuuyMCyGtVGMl3UBbInE1Kt9PwwejDx465T_kQTL0Zjcy6MxORqTk7HI3f3jtA1qfFrwyrYn6ZuJ7qyN4LiOH0BzykvKGaaCi5LGsftpDKKBr6haDtpCp2HyKOvenrjoF5fym5U |
CitedBy_id | crossref_primary_10_1016_j_ijmecsci_2024_109024 crossref_primary_10_1016_j_apmt_2024_102460 crossref_primary_10_1016_j_mechmat_2023_104902 crossref_primary_10_1016_j_engstruct_2024_119439 crossref_primary_10_1038_s41467_024_53530_9 crossref_primary_10_1016_j_compstruct_2023_116900 crossref_primary_10_1016_j_ijmecsci_2022_107428 crossref_primary_10_1021_acsami_4c07222 crossref_primary_10_1016_j_compstruct_2024_118717 crossref_primary_10_1016_j_compstruct_2023_117499 crossref_primary_10_1016_j_jmps_2022_105064 crossref_primary_10_1016_j_tws_2024_111596 crossref_primary_10_1016_j_tws_2022_110223 crossref_primary_10_1016_j_ijmecsci_2022_108015 crossref_primary_10_1016_j_matdes_2023_112146 crossref_primary_10_1016_j_mechmat_2022_104531 crossref_primary_10_1016_j_ijmecsci_2023_108488 crossref_primary_10_1016_j_ijmecsci_2023_108664 crossref_primary_10_1016_j_mechmat_2022_104386 |
Cites_doi | 10.1016/j.mechmat.2007.09.004 10.1016/j.compstruct.2018.01.030 10.1002/adma.201905405 10.1002/adma.201700360 10.1016/j.actamat.2010.12.037 10.1016/j.jmps.2007.02.009 10.1016/j.compstruct.2018.01.108 10.1016/j.jmps.2015.10.004 10.1115/1.4044335 10.1007/BF00275406 10.1021/am508621s 10.1016/j.ijmecsci.2017.10.042 10.1115/1.4024122 10.1088/0964-1726/25/11/115030 10.1016/j.compstruct.2019.111318 10.1016/j.compstruct.2016.11.056 10.1016/j.jmps.2018.04.012 10.1039/c1sm05109a 10.1002/adem.201900225 10.1016/j.compstruct.2017.05.036 10.1088/1361-665X/aacf73 10.1016/j.mechmat.2010.05.003 10.1103/PhysRevLett.117.175901 10.2140/jomms.2019.14.155 10.1016/j.compstruct.2018.07.075 10.1177/0954406219884973 10.1016/j.ijsolstr.2018.06.018 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | RYH AAYXX CITATION |
DOI | 10.1016/j.mechmat.2021.104095 |
DatabaseName | CiNii Complete CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-7743 |
ExternalDocumentID | 10_1016_j_mechmat_2021_104095 S0167663621003136 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M24 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SMS SPC SPCBC SST SSZ T5K WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO ACVFH ADCNI AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV RYH SSH AAYXX ABWVN ACRPL ADNMO AFJKZ AGQPQ CITATION |
ID | FETCH-LOGICAL-c404t-fa7ac318a61fbce35785f255dd4c63268f99bcdbcf28b12d98f368fdfa349d8e3 |
IEDL.DBID | .~1 |
ISSN | 0167-6636 |
IngestDate | Thu Apr 24 22:54:58 EDT 2025 Tue Jul 01 03:20:20 EDT 2025 Thu Jun 26 21:16:51 EDT 2025 Fri Feb 23 02:41:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermal expansion Cellular material Finite element analysis Hierarchical metamaterial Lightweight |
Language | English Japanese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-fa7ac318a61fbce35785f255dd4c63268f99bcdbcf28b12d98f368fdfa349d8e3 |
ORCID | 0000-0002-1129-9250 0000-0001-5209-5417 |
ParticipantIDs | crossref_primary_10_1016_j_mechmat_2021_104095 crossref_citationtrail_10_1016_j_mechmat_2021_104095 nii_cinii_1872272492430254592 elsevier_sciencedirect_doi_10_1016_j_mechmat_2021_104095 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-01 2021-12-00 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Mechanics of Materials |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Wei, Peng, Wang, Duan, Yang, Wen (bib25) 2018; 188 Steeves, dos Santos e Lucato, He, Antinucci, Hutchinson, Evans (bib17) 2007; 55 Breger, Yoon, Xiao, Kwag, Wang, Fisher, Nguyen, Gracias (bib5) 2016; 7 Lakes (bib12) 1996; 15 Vineyard, Gao (bib21) 2021; 127 Elsayed, Pasini (bib8) 2010; 42 Zheng, Fu, Li, Hu (bib29) 2018; 27 Toropova (bib19) 2019; 14 Xie, Pei, Yu (bib26) 2018; 203 He, Yu, Xie (bib9) 2019; 11 Xu, Farag, Pasini (bib27) 2018; 117 Dong, Peng, Zhang, Gu, Sun (bib7) 2017; 176 Heo, Li, Bao, Ju (bib10) 2019; 21 Ai, Gao (bib3) 2019; 229 Miller, Mackenzie, Smith, Evans (bib14) 2008; 40 Palumbo, Smith, Miller, Evans (bib16) 2011; 59 Li, Chen, Li, Cao, Wang (bib13) 2018; 189 Ni, Guo, Li, Huang, Zhang, Rogers (bib15) 2019; 31 Wang, Jackson, Ge, Hopkins, Spadaccini, Fang (bib22) 2016; 117 Ai, Gao (bib2) 2018; 135 Cabras, Brun, Misseroni (bib6) 2019; 4765 Yang, Yang, Niu (bib28) 2019; 234 Toropova, Steeves (bib20) 2016; 25 Hopkins, Lange, Spadaccini (bib11) 2013; 135 Boatti, Vasios, Bertoldi (bib4) 2017; 29 Ai, Gao (bib1) 2017; 162 Wei, Peng, Qu, Pei, Fang (bib24) 2018; 150 Wei, Chen, Pei, Fang (bib23) 2016; 86 Stoychev, Puretskiy, Ionov (bib18) 2011; 7 Cabras (10.1016/j.mechmat.2021.104095_bib6) 2019; 4765 Lakes (10.1016/j.mechmat.2021.104095_bib12) 1996; 15 Ni (10.1016/j.mechmat.2021.104095_bib15) 2019; 31 Heo (10.1016/j.mechmat.2021.104095_bib10) 2019; 21 Zheng (10.1016/j.mechmat.2021.104095_bib29) 2018; 27 Wei (10.1016/j.mechmat.2021.104095_bib25) 2018; 188 Vineyard (10.1016/j.mechmat.2021.104095_bib21) 2021; 127 Xu (10.1016/j.mechmat.2021.104095_bib27) 2018; 117 Elsayed (10.1016/j.mechmat.2021.104095_bib8) 2010; 42 Ai (10.1016/j.mechmat.2021.104095_bib3) 2019; 229 Yang (10.1016/j.mechmat.2021.104095_bib28) 2019; 234 He (10.1016/j.mechmat.2021.104095_bib9) 2019; 11 Wei (10.1016/j.mechmat.2021.104095_bib23) 2016; 86 Boatti (10.1016/j.mechmat.2021.104095_bib4) 2017; 29 Li (10.1016/j.mechmat.2021.104095_bib13) 2018; 189 Wang (10.1016/j.mechmat.2021.104095_bib22) 2016; 117 Steeves (10.1016/j.mechmat.2021.104095_bib17) 2007; 55 Toropova (10.1016/j.mechmat.2021.104095_bib20) 2016; 25 Palumbo (10.1016/j.mechmat.2021.104095_bib16) 2011; 59 Xie (10.1016/j.mechmat.2021.104095_bib26) 2018; 203 Ai (10.1016/j.mechmat.2021.104095_bib1) 2017; 162 Ai (10.1016/j.mechmat.2021.104095_bib2) 2018; 135 Stoychev (10.1016/j.mechmat.2021.104095_bib18) 2011; 7 Toropova (10.1016/j.mechmat.2021.104095_bib19) 2019; 14 Hopkins (10.1016/j.mechmat.2021.104095_bib11) 2013; 135 Breger (10.1016/j.mechmat.2021.104095_bib5) 2016; 7 Dong (10.1016/j.mechmat.2021.104095_bib7) 2017; 176 Miller (10.1016/j.mechmat.2021.104095_bib14) 2008; 40 Wei (10.1016/j.mechmat.2021.104095_bib24) 2018; 150 |
References_xml | – volume: 189 start-page: 586 year: 2018 end-page: 597 ident: bib13 article-title: Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion publication-title: Compos. Struct. – volume: 203 start-page: 709 year: 2018 end-page: 717 ident: bib26 article-title: Double-layer sandwich annulus with ultra-low thermal expansion publication-title: Compos. Struct. – volume: 15 start-page: 475 year: 1996 end-page: 477 ident: bib12 article-title: Cellular solid structures with unbounded thermal expansion publication-title: J. Mater. Sci. Lett. – volume: 229 start-page: 111318 year: 2019 ident: bib3 article-title: Topology optimization of 2-D mechanical metamaterials using a parametric level set method combined with a meshfree algorithm publication-title: Compos. Struct. – volume: 117 start-page: 54 year: 2018 end-page: 87 ident: bib27 article-title: Routes to program thermal expansion in three-dimensional lattice metamaterials built from tetrahedral building blocks publication-title: J. Mech. Phys. Solid. – volume: 55 start-page: 1803 year: 2007 end-page: 1822 ident: bib17 article-title: Concepts for structurally robust materials that combine low thermal expansion with high stiffness publication-title: J. Mech. Phys. Solid. – volume: 29 start-page: 1700360 year: 2017 ident: bib4 article-title: Origami metamaterials for tunable thermal expansion publication-title: Adv. Mater. – volume: 21 start-page: 1900225 year: 2019 ident: bib10 article-title: A passive thermal switch with kirigami-inspired mesostructures publication-title: Adv. Eng. Mater. – volume: 135 start-page: 61004 year: 2013 ident: bib11 article-title: Designing microstructural architectures with thermally actuated properties using freedom, actuation, and constraint topologies publication-title: J. Mech. Des. – volume: 40 start-page: 351 year: 2008 end-page: 361 ident: bib14 article-title: A generalised scale-independent mechanism for tailoring of thermal expansivity: positive and negative publication-title: Mech. Mater. – volume: 135 start-page: 101 year: 2018 end-page: 113 ident: bib2 article-title: Three-dimensional metamaterials with a negative Poisson's ratio and a non-positive coefficient of thermal expansion publication-title: Int. J. Mech. Sci. – volume: 117 start-page: 175901 year: 2016 ident: bib22 article-title: Lightweight mechanical metamaterials with tunable negative thermal expansion publication-title: Phys. Rev. Lett. – volume: 7 start-page: 3277 year: 2011 end-page: 3279 ident: bib18 article-title: Self-folding all-polymer thermoresponsive microcapsules publication-title: Soft Matter – volume: 7 start-page: 3398 year: 2016 end-page: 3405 ident: bib5 article-title: Self-folding thermo-magnetically responsive soft microgrippers publication-title: ACS Appl. Mater. Interfaces – volume: 86 start-page: 173 year: 2016 end-page: 191 ident: bib23 article-title: Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit publication-title: J. Mech. Phys. Solid. – volume: 14 start-page: 155 year: 2019 end-page: 178 ident: bib19 article-title: Anistropic multimaterial lattices as thermal adapters publication-title: J. Mech. Mater. Struct. – volume: 150 start-page: 255 year: 2018 end-page: 267 ident: bib24 article-title: A cellular metastructure incorporating coupled negative thermal expansion and negative Poisson's ratio publication-title: Int. J. Solid Struct. – volume: 127 start-page: 819 year: 2021 end-page: 854 ident: bib21 article-title: Topology and shape optimization of 2-D and 3-D micro-architectured thermoelastic metamaterials using a parametric level set method publication-title: CMES-Comput. Model. Eng. Sci. – volume: 188 start-page: 287 year: 2018 end-page: 296 ident: bib25 article-title: Three dimensional lightweight lattice structures with large positive, zero and negative thermal expansion publication-title: Compos. Struct. – volume: 25 start-page: 115030 year: 2016 ident: bib20 article-title: Bimaterial lattices as thermal adapters and actuators publication-title: Smart Mater. Struct. – volume: 31 start-page: 1905405 year: 2019 ident: bib15 article-title: 2D mechanical metamaterials with widely tunable unusual modes of thermal expansion publication-title: Adv. Mat. – volume: 42 start-page: 709 year: 2010 end-page: 725 ident: bib8 article-title: Analysis of the elastostatic specific stiffness of 2D stretching-dominated lattice materials publication-title: Mech. Mater. – volume: 176 start-page: 329 year: 2017 end-page: 341 ident: bib7 article-title: Temperature-dependent thermal expansion behaviors of carbon fiber/epoxy plain woven composites: experimental and numerical studies publication-title: Compos. Struct. – volume: 27 start-page: 85005 year: 2018 ident: bib29 article-title: A novel re-entrant honeycomb of negative thermal expansion publication-title: Smart Mater. Struct. – volume: 162 start-page: 70 year: 2017 end-page: 84 ident: bib1 article-title: Metamaterials with negative Poisson's ratio and non-positive thermal expansion publication-title: Compos. Struct. – volume: 59 start-page: 2392 year: 2011 end-page: 2403 ident: bib16 article-title: Near-zero thermal expansivity 2-D lattice structures: performance in terms of mass and mechanical properties publication-title: Acta Mater. – volume: 234 start-page: 837 year: 2019 end-page: 846 ident: bib28 article-title: Design and study on the tailorable directional thermal expansion of dual-material planar metamaterial publication-title: P. I. Mech. Eng. C-J. Mec. – volume: 4765 start-page: 20190468 year: 2019 ident: bib6 article-title: Micro-structured medium with large isotropic negative thermal expansion publication-title: P. Roy. Soc. A-Math. Phy. – volume: 11 start-page: 61003 year: 2019 ident: bib9 article-title: Bi-material re-entrant triangle cellular structures incorporating tailorable thermal expansion and tunable Poisson's ratio publication-title: J. Mech. Robot. – volume: 40 start-page: 351 year: 2008 ident: 10.1016/j.mechmat.2021.104095_bib14 article-title: A generalised scale-independent mechanism for tailoring of thermal expansivity: positive and negative publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2007.09.004 – volume: 188 start-page: 287 year: 2018 ident: 10.1016/j.mechmat.2021.104095_bib25 article-title: Three dimensional lightweight lattice structures with large positive, zero and negative thermal expansion publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2018.01.030 – volume: 31 start-page: 1905405 year: 2019 ident: 10.1016/j.mechmat.2021.104095_bib15 article-title: 2D mechanical metamaterials with widely tunable unusual modes of thermal expansion publication-title: Adv. Mat. doi: 10.1002/adma.201905405 – volume: 29 start-page: 1700360 year: 2017 ident: 10.1016/j.mechmat.2021.104095_bib4 article-title: Origami metamaterials for tunable thermal expansion publication-title: Adv. Mater. doi: 10.1002/adma.201700360 – volume: 59 start-page: 2392 year: 2011 ident: 10.1016/j.mechmat.2021.104095_bib16 article-title: Near-zero thermal expansivity 2-D lattice structures: performance in terms of mass and mechanical properties publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.12.037 – volume: 55 start-page: 1803 year: 2007 ident: 10.1016/j.mechmat.2021.104095_bib17 article-title: Concepts for structurally robust materials that combine low thermal expansion with high stiffness publication-title: J. Mech. Phys. Solid. doi: 10.1016/j.jmps.2007.02.009 – volume: 189 start-page: 586 year: 2018 ident: 10.1016/j.mechmat.2021.104095_bib13 article-title: Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2018.01.108 – volume: 86 start-page: 173 year: 2016 ident: 10.1016/j.mechmat.2021.104095_bib23 article-title: Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit publication-title: J. Mech. Phys. Solid. doi: 10.1016/j.jmps.2015.10.004 – volume: 11 start-page: 61003 year: 2019 ident: 10.1016/j.mechmat.2021.104095_bib9 article-title: Bi-material re-entrant triangle cellular structures incorporating tailorable thermal expansion and tunable Poisson's ratio publication-title: J. Mech. Robot. doi: 10.1115/1.4044335 – volume: 15 start-page: 475 year: 1996 ident: 10.1016/j.mechmat.2021.104095_bib12 article-title: Cellular solid structures with unbounded thermal expansion publication-title: J. Mater. Sci. Lett. doi: 10.1007/BF00275406 – volume: 7 start-page: 3398 year: 2016 ident: 10.1016/j.mechmat.2021.104095_bib5 article-title: Self-folding thermo-magnetically responsive soft microgrippers publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am508621s – volume: 135 start-page: 101 year: 2018 ident: 10.1016/j.mechmat.2021.104095_bib2 article-title: Three-dimensional metamaterials with a negative Poisson's ratio and a non-positive coefficient of thermal expansion publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.10.042 – volume: 135 start-page: 61004 year: 2013 ident: 10.1016/j.mechmat.2021.104095_bib11 article-title: Designing microstructural architectures with thermally actuated properties using freedom, actuation, and constraint topologies publication-title: J. Mech. Des. doi: 10.1115/1.4024122 – volume: 25 start-page: 115030 year: 2016 ident: 10.1016/j.mechmat.2021.104095_bib20 article-title: Bimaterial lattices as thermal adapters and actuators publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/11/115030 – volume: 127 start-page: 819 year: 2021 ident: 10.1016/j.mechmat.2021.104095_bib21 article-title: Topology and shape optimization of 2-D and 3-D micro-architectured thermoelastic metamaterials using a parametric level set method publication-title: CMES-Comput. Model. Eng. Sci. – volume: 229 start-page: 111318 year: 2019 ident: 10.1016/j.mechmat.2021.104095_bib3 article-title: Topology optimization of 2-D mechanical metamaterials using a parametric level set method combined with a meshfree algorithm publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.111318 – volume: 162 start-page: 70 year: 2017 ident: 10.1016/j.mechmat.2021.104095_bib1 article-title: Metamaterials with negative Poisson's ratio and non-positive thermal expansion publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2016.11.056 – volume: 117 start-page: 54 year: 2018 ident: 10.1016/j.mechmat.2021.104095_bib27 article-title: Routes to program thermal expansion in three-dimensional lattice metamaterials built from tetrahedral building blocks publication-title: J. Mech. Phys. Solid. doi: 10.1016/j.jmps.2018.04.012 – volume: 7 start-page: 3277 year: 2011 ident: 10.1016/j.mechmat.2021.104095_bib18 article-title: Self-folding all-polymer thermoresponsive microcapsules publication-title: Soft Matter doi: 10.1039/c1sm05109a – volume: 21 start-page: 1900225 year: 2019 ident: 10.1016/j.mechmat.2021.104095_bib10 article-title: A passive thermal switch with kirigami-inspired mesostructures publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201900225 – volume: 4765 start-page: 20190468 year: 2019 ident: 10.1016/j.mechmat.2021.104095_bib6 article-title: Micro-structured medium with large isotropic negative thermal expansion publication-title: P. Roy. Soc. A-Math. Phy. – volume: 176 start-page: 329 year: 2017 ident: 10.1016/j.mechmat.2021.104095_bib7 article-title: Temperature-dependent thermal expansion behaviors of carbon fiber/epoxy plain woven composites: experimental and numerical studies publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.05.036 – volume: 27 start-page: 85005 year: 2018 ident: 10.1016/j.mechmat.2021.104095_bib29 article-title: A novel re-entrant honeycomb of negative thermal expansion publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aacf73 – volume: 42 start-page: 709 year: 2010 ident: 10.1016/j.mechmat.2021.104095_bib8 article-title: Analysis of the elastostatic specific stiffness of 2D stretching-dominated lattice materials publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2010.05.003 – volume: 117 start-page: 175901 year: 2016 ident: 10.1016/j.mechmat.2021.104095_bib22 article-title: Lightweight mechanical metamaterials with tunable negative thermal expansion publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.175901 – volume: 14 start-page: 155 year: 2019 ident: 10.1016/j.mechmat.2021.104095_bib19 article-title: Anistropic multimaterial lattices as thermal adapters publication-title: J. Mech. Mater. Struct. doi: 10.2140/jomms.2019.14.155 – volume: 203 start-page: 709 year: 2018 ident: 10.1016/j.mechmat.2021.104095_bib26 article-title: Double-layer sandwich annulus with ultra-low thermal expansion publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2018.07.075 – volume: 234 start-page: 837 year: 2019 ident: 10.1016/j.mechmat.2021.104095_bib28 article-title: Design and study on the tailorable directional thermal expansion of dual-material planar metamaterial publication-title: P. I. Mech. Eng. C-J. Mec. doi: 10.1177/0954406219884973 – volume: 150 start-page: 255 year: 2018 ident: 10.1016/j.mechmat.2021.104095_bib24 article-title: A cellular metastructure incorporating coupled negative thermal expansion and negative Poisson's ratio publication-title: Int. J. Solid Struct. doi: 10.1016/j.ijsolstr.2018.06.018 |
SSID | ssj0005957 ssib001714515 ssib017385910 ssib000975114 ssib006543823 ssib000533552 |
Score | 2.435346 |
Snippet | The dimensional stability under the temperature variation is of great significance for the temperature-sensitive structures, motivating the development of... |
SourceID | crossref nii elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104095 |
SubjectTerms | Cellular material Finite element analysis Hierarchical metamaterial Lightweight Thermal expansion |
Title | Three-dimensional hierarchical metamaterials incorporating multi-directional programmable thermal expansion |
URI | https://dx.doi.org/10.1016/j.mechmat.2021.104095 https://cir.nii.ac.jp/crid/1872272492430254592 |
Volume | 163 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qPXkQn1i1koPXNM3udpMcS7FUxV5sobeQfWGqqUUiePK3O5NNtIJQ8JLDklmWmdl5sDPfEHKdWIQ7hQuoQ0t9rqnF993Mj0RfgzsFlabYO_wwFZM5v1sMFi0yanphsKyytv3OplfWul4Jam4G6zwPHrGAHvylgKQFAQgRdpvzCLW897lR5pE4tE_E98a_f7p4gmWvMOoJAkNIE2mIr519HDPxt3_aWeX5hucZH5D9OmT0hu5Uh6RlVkdkbwNI8Jg8z0AkxtcI1e9gNjyccV29EoAQvMKUGZzAaZuHgAwOvxiIvaqk0HdscKR1zVaBXVUeBogFLJoPsBu49wmZj29mo4lfj1HwFe_z0rdZlCm4upkIrVSmgrexkElozZWA6C22SSKVlsrSWIZUJ7FlsKhtxniiY8NOSXv1ujJnxGNMSdgDnLpgXKiBtMYazrQV3MhYZB3CG-alqsYYx1EXL2lTTLZMa56nyPPU8bxDet9kaweysY0gbiST_tKWFBzBNtIuSBJOh98wjiiNEDSRM4QFGCT0_P9bX2DSX1W6-JRdknb59m66ELKU8qrSySuyO7y9n0y_AB9x7GA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwJBDG54HNSD8RlR0T14XWBnh2H3SIgE5HEREm6b3XlEUJAYTPz5tswgmJiQeNnDbNpM2k7bybRfAR5iQ3CneABVYJjPFTP0vpv6DVFTGE7RpBn1Dg-GojPmT5P6JAetTS8MlVU63299-tpbu5Wqk2Z1OZ1Wn6mAHuOlwEsLARCKPBQJnapegGKz2-sMt5UesQX8JIhvItg28lRnlbmWL5gb4k2RBfTgWaNJE3-HqPxiOt0JPu0TOHZZo9e0GzuFnF6cwdEOluA5vI5QK9pXhNZvkTY8GnO9fihAPXhzvUpxB9bgPMJksBDGSOytqwp9KwlL6sq25tRY5VGOOMdF_YWug3hfwLj9OGp1fDdJwZe8xle-SRupxNObisBkUq8RbgxeJpTiUmACF5k4zqTKpGFRFjAVRybERWXSkMcq0uElFBbvC30FXhjKDHlgXBchF7KeGW00D5URXGeRSEvAN8JLpIMZp2kXb8mmnmyWOJknJPPEyrwElR-ypcXZ2EcQbTST_DKYBGPBPtIyahJ3R98gajDWINxEHhIyQD1m1_9nfQ8HndGgn_S7w94NHNIfW_tyC4XVx6cuYwazyu6chX4DOEzvEQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+hierarchical+metamaterials+incorporating+multi-directional+programmable+thermal+expansion&rft.jtitle=Mechanics+of+materials&rft.au=Wang%2C+Kaiyu&rft.au=Lin%2C+Fan&rft.au=Chen%2C+Jiaxin&rft.au=Wei%2C+Zhuoyi&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0167-6636&rft.eissn=1872-7743&rft.volume=163&rft_id=info:doi/10.1016%2Fj.mechmat.2021.104095&rft.externalDocID=S0167663621003136 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6636&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6636&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6636&client=summon |