Three-dimensional hierarchical metamaterials incorporating multi-directional programmable thermal expansion

The dimensional stability under the temperature variation is of great significance for the temperature-sensitive structures, motivating the development of metamaterials with the programmable coefficient of thermal expansion (CTE). Here, all the configurations, totally including 51 types for the bi-m...

Full description

Saved in:
Bibliographic Details
Published inMechanics of Materials Vol. 163; p. 104095
Main Authors Wang, Kaiyu, Lin, Fan, Chen, Jiaxin, Wei, Zhuoyi, Wei, Kai, Yang, Xujing
Format Journal Article
LanguageEnglish
Japanese
Published Elsevier Ltd 01.12.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The dimensional stability under the temperature variation is of great significance for the temperature-sensitive structures, motivating the development of metamaterials with the programmable coefficient of thermal expansion (CTE). Here, all the configurations, totally including 51 types for the bi-material pyramid unit cells, were comprehensively devised to attain the widely programmable CTE in single direction. Furthermore, by using an originally developed matrix transformation method, multiple classes of the pyramid-based hierarchical metamaterials were systematically devised. These hierarchical metamaterials incorporated the unidirectional, transversal and isotropic CTEs in the multiple directions. The closed-form expressions of the CTE and relative density for the devised pyramid unit cells and hierarchical metamaterials were analytically established. The theoretical analysis was well verified by the performed numerical modeling, and confirmed that the large ranges of the programmable CTEs could be obtained by rationally adjusting the material and geometry parameters. Besides, the comprehensive comparison of the specific CTE identified that the programmable CTE and low relative density could be well balanced through the devised hierarchical metamaterials. The coupling effect of both material and geometrical parameters on the programmable CTE was figured out, providing a proper guideline to design the metamaterials with both light weight and desirable CTE. •All configurations of bi-material pyramid cells were devised and analyzed to attain theunidirectional programmable CTE.•A matrix transformation method was proposed to devise hierarchical metamaterials with multi-directional programmable CTE.•The CTE and relative density for hierarchical metamaterials were analytically expressed and numerically validated.•The comparison identified the programmable CTE and low relative density can be well balanced by hierarchical metamaterials.
AbstractList The dimensional stability under the temperature variation is of great significance for the temperature-sensitive structures, motivating the development of metamaterials with the programmable coefficient of thermal expansion (CTE). Here, all the configurations, totally including 51 types for the bi-material pyramid unit cells, were comprehensively devised to attain the widely programmable CTE in single direction. Furthermore, by using an originally developed matrix transformation method, multiple classes of the pyramid-based hierarchical metamaterials were systematically devised. These hierarchical metamaterials incorporated the unidirectional, transversal and isotropic CTEs in the multiple directions. The closed-form expressions of the CTE and relative density for the devised pyramid unit cells and hierarchical metamaterials were analytically established. The theoretical analysis was well verified by the performed numerical modeling, and confirmed that the large ranges of the programmable CTEs could be obtained by rationally adjusting the material and geometry parameters. Besides, the comprehensive comparison of the specific CTE identified that the programmable CTE and low relative density could be well balanced through the devised hierarchical metamaterials. The coupling effect of both material and geometrical parameters on the programmable CTE was figured out, providing a proper guideline to design the metamaterials with both light weight and desirable CTE. •All configurations of bi-material pyramid cells were devised and analyzed to attain theunidirectional programmable CTE.•A matrix transformation method was proposed to devise hierarchical metamaterials with multi-directional programmable CTE.•The CTE and relative density for hierarchical metamaterials were analytically expressed and numerically validated.•The comparison identified the programmable CTE and low relative density can be well balanced by hierarchical metamaterials.
ArticleNumber 104095
Author Wei, Kai
Wang, Kaiyu
Chen, Jiaxin
Yang, Xujing
Wei, Zhuoyi
Lin, Fan
Author_xml – sequence: 1
  givenname: Kaiyu
  surname: Wang
  fullname: Wang, Kaiyu
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, PR China
– sequence: 2
  givenname: Fan
  surname: Lin
  fullname: Lin, Fan
  organization: School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, 923-1292, Japan
– sequence: 3
  givenname: Jiaxin
  surname: Chen
  fullname: Chen, Jiaxin
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, PR China
– sequence: 4
  givenname: Zhuoyi
  surname: Wei
  fullname: Wei, Zhuoyi
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, PR China
– sequence: 5
  givenname: Kai
  orcidid: 0000-0002-1129-9250
  surname: Wei
  fullname: Wei, Kai
  email: weikai@hnu.edu.cn
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, PR China
– sequence: 6
  givenname: Xujing
  surname: Yang
  fullname: Yang, Xujing
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, PR China
BackLink https://cir.nii.ac.jp/crid/1872272492430254592$$DView record in CiNii
BookMark eNqFkc1LwzAchoNMcJv-CUIPXjvz2Q88iAy_YOBlnkOa_rJmNu1Io-h_b2p38rJLQl5-zxvyZIFmXd8BQtcErwgm2e1-5UA3ToUVxZTEjONSnKE5KXKa5jlnMzSPc3maZSy7QIth2GOMRSnyOfrYNh4gra2DbrB9p9qkseCV143V8eAgqNgM3qp2SGyne3_ovQq22yXusw02oh50mNCD73deOaeqFpLQgHcxhO-D-uu-ROcmtsDVcV-i96fH7fol3bw9v64fNqnmmIfUqFxpRgqVEVNpYCIvhKFC1DXXGaNZYcqy0nWlDS0qQuuyMCyGtVGMl3UBbInE1Kt9PwwejDx465T_kQTL0Zjcy6MxORqTk7HI3f3jtA1qfFrwyrYn6ZuJ7qyN4LiOH0BzykvKGaaCi5LGsftpDKKBr6haDtpCp2HyKOvenrjoF5fym5U
CitedBy_id crossref_primary_10_1016_j_ijmecsci_2024_109024
crossref_primary_10_1016_j_apmt_2024_102460
crossref_primary_10_1016_j_mechmat_2023_104902
crossref_primary_10_1016_j_engstruct_2024_119439
crossref_primary_10_1038_s41467_024_53530_9
crossref_primary_10_1016_j_compstruct_2023_116900
crossref_primary_10_1016_j_ijmecsci_2022_107428
crossref_primary_10_1021_acsami_4c07222
crossref_primary_10_1016_j_compstruct_2024_118717
crossref_primary_10_1016_j_compstruct_2023_117499
crossref_primary_10_1016_j_jmps_2022_105064
crossref_primary_10_1016_j_tws_2024_111596
crossref_primary_10_1016_j_tws_2022_110223
crossref_primary_10_1016_j_ijmecsci_2022_108015
crossref_primary_10_1016_j_matdes_2023_112146
crossref_primary_10_1016_j_mechmat_2022_104531
crossref_primary_10_1016_j_ijmecsci_2023_108488
crossref_primary_10_1016_j_ijmecsci_2023_108664
crossref_primary_10_1016_j_mechmat_2022_104386
Cites_doi 10.1016/j.mechmat.2007.09.004
10.1016/j.compstruct.2018.01.030
10.1002/adma.201905405
10.1002/adma.201700360
10.1016/j.actamat.2010.12.037
10.1016/j.jmps.2007.02.009
10.1016/j.compstruct.2018.01.108
10.1016/j.jmps.2015.10.004
10.1115/1.4044335
10.1007/BF00275406
10.1021/am508621s
10.1016/j.ijmecsci.2017.10.042
10.1115/1.4024122
10.1088/0964-1726/25/11/115030
10.1016/j.compstruct.2019.111318
10.1016/j.compstruct.2016.11.056
10.1016/j.jmps.2018.04.012
10.1039/c1sm05109a
10.1002/adem.201900225
10.1016/j.compstruct.2017.05.036
10.1088/1361-665X/aacf73
10.1016/j.mechmat.2010.05.003
10.1103/PhysRevLett.117.175901
10.2140/jomms.2019.14.155
10.1016/j.compstruct.2018.07.075
10.1177/0954406219884973
10.1016/j.ijsolstr.2018.06.018
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID RYH
AAYXX
CITATION
DOI 10.1016/j.mechmat.2021.104095
DatabaseName CiNii Complete
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7743
ExternalDocumentID 10_1016_j_mechmat_2021_104095
S0167663621003136
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SST
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
RYH
SSH
AAYXX
ABWVN
ACRPL
ADNMO
AFJKZ
AGQPQ
CITATION
ID FETCH-LOGICAL-c404t-fa7ac318a61fbce35785f255dd4c63268f99bcdbcf28b12d98f368fdfa349d8e3
IEDL.DBID .~1
ISSN 0167-6636
IngestDate Thu Apr 24 22:54:58 EDT 2025
Tue Jul 01 03:20:20 EDT 2025
Thu Jun 26 21:16:51 EDT 2025
Fri Feb 23 02:41:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Thermal expansion
Cellular material
Finite element analysis
Hierarchical metamaterial
Lightweight
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-fa7ac318a61fbce35785f255dd4c63268f99bcdbcf28b12d98f368fdfa349d8e3
ORCID 0000-0002-1129-9250
0000-0001-5209-5417
ParticipantIDs crossref_primary_10_1016_j_mechmat_2021_104095
crossref_citationtrail_10_1016_j_mechmat_2021_104095
nii_cinii_1872272492430254592
elsevier_sciencedirect_doi_10_1016_j_mechmat_2021_104095
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-01
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Mechanics of Materials
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Wei, Peng, Wang, Duan, Yang, Wen (bib25) 2018; 188
Steeves, dos Santos e Lucato, He, Antinucci, Hutchinson, Evans (bib17) 2007; 55
Breger, Yoon, Xiao, Kwag, Wang, Fisher, Nguyen, Gracias (bib5) 2016; 7
Lakes (bib12) 1996; 15
Vineyard, Gao (bib21) 2021; 127
Elsayed, Pasini (bib8) 2010; 42
Zheng, Fu, Li, Hu (bib29) 2018; 27
Toropova (bib19) 2019; 14
Xie, Pei, Yu (bib26) 2018; 203
He, Yu, Xie (bib9) 2019; 11
Xu, Farag, Pasini (bib27) 2018; 117
Dong, Peng, Zhang, Gu, Sun (bib7) 2017; 176
Heo, Li, Bao, Ju (bib10) 2019; 21
Ai, Gao (bib3) 2019; 229
Miller, Mackenzie, Smith, Evans (bib14) 2008; 40
Palumbo, Smith, Miller, Evans (bib16) 2011; 59
Li, Chen, Li, Cao, Wang (bib13) 2018; 189
Ni, Guo, Li, Huang, Zhang, Rogers (bib15) 2019; 31
Wang, Jackson, Ge, Hopkins, Spadaccini, Fang (bib22) 2016; 117
Ai, Gao (bib2) 2018; 135
Cabras, Brun, Misseroni (bib6) 2019; 4765
Yang, Yang, Niu (bib28) 2019; 234
Toropova, Steeves (bib20) 2016; 25
Hopkins, Lange, Spadaccini (bib11) 2013; 135
Boatti, Vasios, Bertoldi (bib4) 2017; 29
Ai, Gao (bib1) 2017; 162
Wei, Peng, Qu, Pei, Fang (bib24) 2018; 150
Wei, Chen, Pei, Fang (bib23) 2016; 86
Stoychev, Puretskiy, Ionov (bib18) 2011; 7
Cabras (10.1016/j.mechmat.2021.104095_bib6) 2019; 4765
Lakes (10.1016/j.mechmat.2021.104095_bib12) 1996; 15
Ni (10.1016/j.mechmat.2021.104095_bib15) 2019; 31
Heo (10.1016/j.mechmat.2021.104095_bib10) 2019; 21
Zheng (10.1016/j.mechmat.2021.104095_bib29) 2018; 27
Wei (10.1016/j.mechmat.2021.104095_bib25) 2018; 188
Vineyard (10.1016/j.mechmat.2021.104095_bib21) 2021; 127
Xu (10.1016/j.mechmat.2021.104095_bib27) 2018; 117
Elsayed (10.1016/j.mechmat.2021.104095_bib8) 2010; 42
Ai (10.1016/j.mechmat.2021.104095_bib3) 2019; 229
Yang (10.1016/j.mechmat.2021.104095_bib28) 2019; 234
He (10.1016/j.mechmat.2021.104095_bib9) 2019; 11
Wei (10.1016/j.mechmat.2021.104095_bib23) 2016; 86
Boatti (10.1016/j.mechmat.2021.104095_bib4) 2017; 29
Li (10.1016/j.mechmat.2021.104095_bib13) 2018; 189
Wang (10.1016/j.mechmat.2021.104095_bib22) 2016; 117
Steeves (10.1016/j.mechmat.2021.104095_bib17) 2007; 55
Toropova (10.1016/j.mechmat.2021.104095_bib20) 2016; 25
Palumbo (10.1016/j.mechmat.2021.104095_bib16) 2011; 59
Xie (10.1016/j.mechmat.2021.104095_bib26) 2018; 203
Ai (10.1016/j.mechmat.2021.104095_bib1) 2017; 162
Ai (10.1016/j.mechmat.2021.104095_bib2) 2018; 135
Stoychev (10.1016/j.mechmat.2021.104095_bib18) 2011; 7
Toropova (10.1016/j.mechmat.2021.104095_bib19) 2019; 14
Hopkins (10.1016/j.mechmat.2021.104095_bib11) 2013; 135
Breger (10.1016/j.mechmat.2021.104095_bib5) 2016; 7
Dong (10.1016/j.mechmat.2021.104095_bib7) 2017; 176
Miller (10.1016/j.mechmat.2021.104095_bib14) 2008; 40
Wei (10.1016/j.mechmat.2021.104095_bib24) 2018; 150
References_xml – volume: 189
  start-page: 586
  year: 2018
  end-page: 597
  ident: bib13
  article-title: Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion
  publication-title: Compos. Struct.
– volume: 203
  start-page: 709
  year: 2018
  end-page: 717
  ident: bib26
  article-title: Double-layer sandwich annulus with ultra-low thermal expansion
  publication-title: Compos. Struct.
– volume: 15
  start-page: 475
  year: 1996
  end-page: 477
  ident: bib12
  article-title: Cellular solid structures with unbounded thermal expansion
  publication-title: J. Mater. Sci. Lett.
– volume: 229
  start-page: 111318
  year: 2019
  ident: bib3
  article-title: Topology optimization of 2-D mechanical metamaterials using a parametric level set method combined with a meshfree algorithm
  publication-title: Compos. Struct.
– volume: 117
  start-page: 54
  year: 2018
  end-page: 87
  ident: bib27
  article-title: Routes to program thermal expansion in three-dimensional lattice metamaterials built from tetrahedral building blocks
  publication-title: J. Mech. Phys. Solid.
– volume: 55
  start-page: 1803
  year: 2007
  end-page: 1822
  ident: bib17
  article-title: Concepts for structurally robust materials that combine low thermal expansion with high stiffness
  publication-title: J. Mech. Phys. Solid.
– volume: 29
  start-page: 1700360
  year: 2017
  ident: bib4
  article-title: Origami metamaterials for tunable thermal expansion
  publication-title: Adv. Mater.
– volume: 21
  start-page: 1900225
  year: 2019
  ident: bib10
  article-title: A passive thermal switch with kirigami-inspired mesostructures
  publication-title: Adv. Eng. Mater.
– volume: 135
  start-page: 61004
  year: 2013
  ident: bib11
  article-title: Designing microstructural architectures with thermally actuated properties using freedom, actuation, and constraint topologies
  publication-title: J. Mech. Des.
– volume: 40
  start-page: 351
  year: 2008
  end-page: 361
  ident: bib14
  article-title: A generalised scale-independent mechanism for tailoring of thermal expansivity: positive and negative
  publication-title: Mech. Mater.
– volume: 135
  start-page: 101
  year: 2018
  end-page: 113
  ident: bib2
  article-title: Three-dimensional metamaterials with a negative Poisson's ratio and a non-positive coefficient of thermal expansion
  publication-title: Int. J. Mech. Sci.
– volume: 117
  start-page: 175901
  year: 2016
  ident: bib22
  article-title: Lightweight mechanical metamaterials with tunable negative thermal expansion
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 3277
  year: 2011
  end-page: 3279
  ident: bib18
  article-title: Self-folding all-polymer thermoresponsive microcapsules
  publication-title: Soft Matter
– volume: 7
  start-page: 3398
  year: 2016
  end-page: 3405
  ident: bib5
  article-title: Self-folding thermo-magnetically responsive soft microgrippers
  publication-title: ACS Appl. Mater. Interfaces
– volume: 86
  start-page: 173
  year: 2016
  end-page: 191
  ident: bib23
  article-title: Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit
  publication-title: J. Mech. Phys. Solid.
– volume: 14
  start-page: 155
  year: 2019
  end-page: 178
  ident: bib19
  article-title: Anistropic multimaterial lattices as thermal adapters
  publication-title: J. Mech. Mater. Struct.
– volume: 150
  start-page: 255
  year: 2018
  end-page: 267
  ident: bib24
  article-title: A cellular metastructure incorporating coupled negative thermal expansion and negative Poisson's ratio
  publication-title: Int. J. Solid Struct.
– volume: 127
  start-page: 819
  year: 2021
  end-page: 854
  ident: bib21
  article-title: Topology and shape optimization of 2-D and 3-D micro-architectured thermoelastic metamaterials using a parametric level set method
  publication-title: CMES-Comput. Model. Eng. Sci.
– volume: 188
  start-page: 287
  year: 2018
  end-page: 296
  ident: bib25
  article-title: Three dimensional lightweight lattice structures with large positive, zero and negative thermal expansion
  publication-title: Compos. Struct.
– volume: 25
  start-page: 115030
  year: 2016
  ident: bib20
  article-title: Bimaterial lattices as thermal adapters and actuators
  publication-title: Smart Mater. Struct.
– volume: 31
  start-page: 1905405
  year: 2019
  ident: bib15
  article-title: 2D mechanical metamaterials with widely tunable unusual modes of thermal expansion
  publication-title: Adv. Mat.
– volume: 42
  start-page: 709
  year: 2010
  end-page: 725
  ident: bib8
  article-title: Analysis of the elastostatic specific stiffness of 2D stretching-dominated lattice materials
  publication-title: Mech. Mater.
– volume: 176
  start-page: 329
  year: 2017
  end-page: 341
  ident: bib7
  article-title: Temperature-dependent thermal expansion behaviors of carbon fiber/epoxy plain woven composites: experimental and numerical studies
  publication-title: Compos. Struct.
– volume: 27
  start-page: 85005
  year: 2018
  ident: bib29
  article-title: A novel re-entrant honeycomb of negative thermal expansion
  publication-title: Smart Mater. Struct.
– volume: 162
  start-page: 70
  year: 2017
  end-page: 84
  ident: bib1
  article-title: Metamaterials with negative Poisson's ratio and non-positive thermal expansion
  publication-title: Compos. Struct.
– volume: 59
  start-page: 2392
  year: 2011
  end-page: 2403
  ident: bib16
  article-title: Near-zero thermal expansivity 2-D lattice structures: performance in terms of mass and mechanical properties
  publication-title: Acta Mater.
– volume: 234
  start-page: 837
  year: 2019
  end-page: 846
  ident: bib28
  article-title: Design and study on the tailorable directional thermal expansion of dual-material planar metamaterial
  publication-title: P. I. Mech. Eng. C-J. Mec.
– volume: 4765
  start-page: 20190468
  year: 2019
  ident: bib6
  article-title: Micro-structured medium with large isotropic negative thermal expansion
  publication-title: P. Roy. Soc. A-Math. Phy.
– volume: 11
  start-page: 61003
  year: 2019
  ident: bib9
  article-title: Bi-material re-entrant triangle cellular structures incorporating tailorable thermal expansion and tunable Poisson's ratio
  publication-title: J. Mech. Robot.
– volume: 40
  start-page: 351
  year: 2008
  ident: 10.1016/j.mechmat.2021.104095_bib14
  article-title: A generalised scale-independent mechanism for tailoring of thermal expansivity: positive and negative
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2007.09.004
– volume: 188
  start-page: 287
  year: 2018
  ident: 10.1016/j.mechmat.2021.104095_bib25
  article-title: Three dimensional lightweight lattice structures with large positive, zero and negative thermal expansion
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2018.01.030
– volume: 31
  start-page: 1905405
  year: 2019
  ident: 10.1016/j.mechmat.2021.104095_bib15
  article-title: 2D mechanical metamaterials with widely tunable unusual modes of thermal expansion
  publication-title: Adv. Mat.
  doi: 10.1002/adma.201905405
– volume: 29
  start-page: 1700360
  year: 2017
  ident: 10.1016/j.mechmat.2021.104095_bib4
  article-title: Origami metamaterials for tunable thermal expansion
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700360
– volume: 59
  start-page: 2392
  year: 2011
  ident: 10.1016/j.mechmat.2021.104095_bib16
  article-title: Near-zero thermal expansivity 2-D lattice structures: performance in terms of mass and mechanical properties
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.12.037
– volume: 55
  start-page: 1803
  year: 2007
  ident: 10.1016/j.mechmat.2021.104095_bib17
  article-title: Concepts for structurally robust materials that combine low thermal expansion with high stiffness
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/j.jmps.2007.02.009
– volume: 189
  start-page: 586
  year: 2018
  ident: 10.1016/j.mechmat.2021.104095_bib13
  article-title: Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2018.01.108
– volume: 86
  start-page: 173
  year: 2016
  ident: 10.1016/j.mechmat.2021.104095_bib23
  article-title: Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/j.jmps.2015.10.004
– volume: 11
  start-page: 61003
  year: 2019
  ident: 10.1016/j.mechmat.2021.104095_bib9
  article-title: Bi-material re-entrant triangle cellular structures incorporating tailorable thermal expansion and tunable Poisson's ratio
  publication-title: J. Mech. Robot.
  doi: 10.1115/1.4044335
– volume: 15
  start-page: 475
  year: 1996
  ident: 10.1016/j.mechmat.2021.104095_bib12
  article-title: Cellular solid structures with unbounded thermal expansion
  publication-title: J. Mater. Sci. Lett.
  doi: 10.1007/BF00275406
– volume: 7
  start-page: 3398
  year: 2016
  ident: 10.1016/j.mechmat.2021.104095_bib5
  article-title: Self-folding thermo-magnetically responsive soft microgrippers
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am508621s
– volume: 135
  start-page: 101
  year: 2018
  ident: 10.1016/j.mechmat.2021.104095_bib2
  article-title: Three-dimensional metamaterials with a negative Poisson's ratio and a non-positive coefficient of thermal expansion
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2017.10.042
– volume: 135
  start-page: 61004
  year: 2013
  ident: 10.1016/j.mechmat.2021.104095_bib11
  article-title: Designing microstructural architectures with thermally actuated properties using freedom, actuation, and constraint topologies
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4024122
– volume: 25
  start-page: 115030
  year: 2016
  ident: 10.1016/j.mechmat.2021.104095_bib20
  article-title: Bimaterial lattices as thermal adapters and actuators
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/11/115030
– volume: 127
  start-page: 819
  year: 2021
  ident: 10.1016/j.mechmat.2021.104095_bib21
  article-title: Topology and shape optimization of 2-D and 3-D micro-architectured thermoelastic metamaterials using a parametric level set method
  publication-title: CMES-Comput. Model. Eng. Sci.
– volume: 229
  start-page: 111318
  year: 2019
  ident: 10.1016/j.mechmat.2021.104095_bib3
  article-title: Topology optimization of 2-D mechanical metamaterials using a parametric level set method combined with a meshfree algorithm
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2019.111318
– volume: 162
  start-page: 70
  year: 2017
  ident: 10.1016/j.mechmat.2021.104095_bib1
  article-title: Metamaterials with negative Poisson's ratio and non-positive thermal expansion
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2016.11.056
– volume: 117
  start-page: 54
  year: 2018
  ident: 10.1016/j.mechmat.2021.104095_bib27
  article-title: Routes to program thermal expansion in three-dimensional lattice metamaterials built from tetrahedral building blocks
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/j.jmps.2018.04.012
– volume: 7
  start-page: 3277
  year: 2011
  ident: 10.1016/j.mechmat.2021.104095_bib18
  article-title: Self-folding all-polymer thermoresponsive microcapsules
  publication-title: Soft Matter
  doi: 10.1039/c1sm05109a
– volume: 21
  start-page: 1900225
  year: 2019
  ident: 10.1016/j.mechmat.2021.104095_bib10
  article-title: A passive thermal switch with kirigami-inspired mesostructures
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201900225
– volume: 4765
  start-page: 20190468
  year: 2019
  ident: 10.1016/j.mechmat.2021.104095_bib6
  article-title: Micro-structured medium with large isotropic negative thermal expansion
  publication-title: P. Roy. Soc. A-Math. Phy.
– volume: 176
  start-page: 329
  year: 2017
  ident: 10.1016/j.mechmat.2021.104095_bib7
  article-title: Temperature-dependent thermal expansion behaviors of carbon fiber/epoxy plain woven composites: experimental and numerical studies
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.05.036
– volume: 27
  start-page: 85005
  year: 2018
  ident: 10.1016/j.mechmat.2021.104095_bib29
  article-title: A novel re-entrant honeycomb of negative thermal expansion
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aacf73
– volume: 42
  start-page: 709
  year: 2010
  ident: 10.1016/j.mechmat.2021.104095_bib8
  article-title: Analysis of the elastostatic specific stiffness of 2D stretching-dominated lattice materials
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2010.05.003
– volume: 117
  start-page: 175901
  year: 2016
  ident: 10.1016/j.mechmat.2021.104095_bib22
  article-title: Lightweight mechanical metamaterials with tunable negative thermal expansion
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.175901
– volume: 14
  start-page: 155
  year: 2019
  ident: 10.1016/j.mechmat.2021.104095_bib19
  article-title: Anistropic multimaterial lattices as thermal adapters
  publication-title: J. Mech. Mater. Struct.
  doi: 10.2140/jomms.2019.14.155
– volume: 203
  start-page: 709
  year: 2018
  ident: 10.1016/j.mechmat.2021.104095_bib26
  article-title: Double-layer sandwich annulus with ultra-low thermal expansion
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2018.07.075
– volume: 234
  start-page: 837
  year: 2019
  ident: 10.1016/j.mechmat.2021.104095_bib28
  article-title: Design and study on the tailorable directional thermal expansion of dual-material planar metamaterial
  publication-title: P. I. Mech. Eng. C-J. Mec.
  doi: 10.1177/0954406219884973
– volume: 150
  start-page: 255
  year: 2018
  ident: 10.1016/j.mechmat.2021.104095_bib24
  article-title: A cellular metastructure incorporating coupled negative thermal expansion and negative Poisson's ratio
  publication-title: Int. J. Solid Struct.
  doi: 10.1016/j.ijsolstr.2018.06.018
SSID ssj0005957
ssib001714515
ssib017385910
ssib000975114
ssib006543823
ssib000533552
Score 2.435346
Snippet The dimensional stability under the temperature variation is of great significance for the temperature-sensitive structures, motivating the development of...
SourceID crossref
nii
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104095
SubjectTerms Cellular material
Finite element analysis
Hierarchical metamaterial
Lightweight
Thermal expansion
Title Three-dimensional hierarchical metamaterials incorporating multi-directional programmable thermal expansion
URI https://dx.doi.org/10.1016/j.mechmat.2021.104095
https://cir.nii.ac.jp/crid/1872272492430254592
Volume 163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qPXkQn1i1koPXNM3udpMcS7FUxV5sobeQfWGqqUUiePK3O5NNtIJQ8JLDklmWmdl5sDPfEHKdWIQ7hQuoQ0t9rqnF993Mj0RfgzsFlabYO_wwFZM5v1sMFi0yanphsKyytv3OplfWul4Jam4G6zwPHrGAHvylgKQFAQgRdpvzCLW897lR5pE4tE_E98a_f7p4gmWvMOoJAkNIE2mIr519HDPxt3_aWeX5hucZH5D9OmT0hu5Uh6RlVkdkbwNI8Jg8z0AkxtcI1e9gNjyccV29EoAQvMKUGZzAaZuHgAwOvxiIvaqk0HdscKR1zVaBXVUeBogFLJoPsBu49wmZj29mo4lfj1HwFe_z0rdZlCm4upkIrVSmgrexkElozZWA6C22SSKVlsrSWIZUJ7FlsKhtxniiY8NOSXv1ujJnxGNMSdgDnLpgXKiBtMYazrQV3MhYZB3CG-alqsYYx1EXL2lTTLZMa56nyPPU8bxDet9kaweysY0gbiST_tKWFBzBNtIuSBJOh98wjiiNEDSRM4QFGCT0_P9bX2DSX1W6-JRdknb59m66ELKU8qrSySuyO7y9n0y_AB9x7GA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwJBDG54HNSD8RlR0T14XWBnh2H3SIgE5HEREm6b3XlEUJAYTPz5tswgmJiQeNnDbNpM2k7bybRfAR5iQ3CneABVYJjPFTP0vpv6DVFTGE7RpBn1Dg-GojPmT5P6JAetTS8MlVU63299-tpbu5Wqk2Z1OZ1Wn6mAHuOlwEsLARCKPBQJnapegGKz2-sMt5UesQX8JIhvItg28lRnlbmWL5gb4k2RBfTgWaNJE3-HqPxiOt0JPu0TOHZZo9e0GzuFnF6cwdEOluA5vI5QK9pXhNZvkTY8GnO9fihAPXhzvUpxB9bgPMJksBDGSOytqwp9KwlL6sq25tRY5VGOOMdF_YWug3hfwLj9OGp1fDdJwZe8xle-SRupxNObisBkUq8RbgxeJpTiUmACF5k4zqTKpGFRFjAVRybERWXSkMcq0uElFBbvC30FXhjKDHlgXBchF7KeGW00D5URXGeRSEvAN8JLpIMZp2kXb8mmnmyWOJknJPPEyrwElR-ypcXZ2EcQbTST_DKYBGPBPtIyahJ3R98gajDWINxEHhIyQD1m1_9nfQ8HndGgn_S7w94NHNIfW_tyC4XVx6cuYwazyu6chX4DOEzvEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+hierarchical+metamaterials+incorporating+multi-directional+programmable+thermal+expansion&rft.jtitle=Mechanics+of+materials&rft.au=Wang%2C+Kaiyu&rft.au=Lin%2C+Fan&rft.au=Chen%2C+Jiaxin&rft.au=Wei%2C+Zhuoyi&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0167-6636&rft.eissn=1872-7743&rft.volume=163&rft_id=info:doi/10.1016%2Fj.mechmat.2021.104095&rft.externalDocID=S0167663621003136
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6636&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6636&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6636&client=summon