Influence of mechanical pretreatment and organic concentration of Irish brown seaweed for methane production
The European Commission opened a discussion about limiting first generation food based biofuels in favour of advanced biofuels. The main reason was to limit the uncertainty in estimates of indirect land use change emissions (ILUC) of food based biofuels. Brown seaweeds represent a valuable solution....
Saved in:
Published in | Energy (Oxford) Vol. 118; pp. 1079 - 1089 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.01.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The European Commission opened a discussion about limiting first generation food based biofuels in favour of advanced biofuels. The main reason was to limit the uncertainty in estimates of indirect land use change emissions (ILUC) of food based biofuels. Brown seaweeds represent a valuable solution. The lack of lignin makes them suitable for degradation processes such as anaerobic digestion (AD). The main output of AD is biogas which can be upgraded to biomethane and used as a transport fuel. The most common Irish brown seaweeds namely Laminaria sp. and Ascophyllum nodosum were subject to AD. The effects of beating pretreatment time (5–10–15 min) and changes in the seaweeds volatile solids (VS) concentration (1–2.5–4%) on methane production were investigated through a response surface methodology (RSM). Laminaria sp. showed the highest methane yield of 240 ml CH4 g−1 VS when the pretreatment time was set at 15 min and at VS concentration of 2.5%. In the case of Ascophyllum nodosum, the best yield of 169 mL CH4 g−1 VS was found at the longest pretreatment time tested and at the minimum concentration of VS. The RSM analysis revealed that the VS concentration had the strongest impact on the methane yield.
•Laminaria sp. exhibited 40% more methane than Ascophyllum nodosum.•The VS concentration had a major impact on the methane yields of both species.•The pretreatment time had a marginal impact on the methane yields of both species.•Ascophyllum nodosum showed 30% more methane than the untreated sample.•Laminaria sp. showed the highest methane yield at 2.5% VS and 15 min of treatment. |
---|---|
AbstractList | The European Commission opened a discussion about limiting first generation food based biofuels in favour of advanced biofuels. The main reason was to limit the uncertainty in estimates of indirect land use change emissions (ILUC) of food based biofuels. Brown seaweeds represent a valuable solution. The lack of lignin makes them suitable for degradation processes such as anaerobic digestion (AD). The main output of AD is biogas which can be upgraded to biomethane and used as a transport fuel. The most common Irish brown seaweeds namely Laminaria sp. and Ascophyllum nodosum were subject to AD. The effects of beating pretreatment time (5-10-15 min) and changes in the seaweeds volatile solids (VS) concentration (1-2.5-4%) on methane production were investigated through a response surface methodology (RSM). Laminaria sp. showed the highest methane yield of 240 ml CH4 g-1 VS when the pretreatment time was set at 15 min and at VS concentration of 2.5%. In the case of Ascophyllum nodosum, the best yield of 169 mL CH4 g-1 VS was found at the longest pretreatment time tested and at the minimum concentration of VS. The RSM analysis revealed that the VS concentration had the strongest impact on the methane yield. The European Commission opened a discussion about limiting first generation food based biofuels in favour of advanced biofuels. The main reason was to limit the uncertainty in estimates of indirect land use change emissions (ILUC) of food based biofuels. Brown seaweeds represent a valuable solution. The lack of lignin makes them suitable for degradation processes such as anaerobic digestion (AD). The main output of AD is biogas which can be upgraded to biomethane and used as a transport fuel. The most common Irish brown seaweeds namely Laminaria sp. and Ascophyllum nodosum were subject to AD. The effects of beating pretreatment time (5–10–15 min) and changes in the seaweeds volatile solids (VS) concentration (1–2.5–4%) on methane production were investigated through a response surface methodology (RSM). Laminaria sp. showed the highest methane yield of 240 ml CH4 g−1 VS when the pretreatment time was set at 15 min and at VS concentration of 2.5%. In the case of Ascophyllum nodosum, the best yield of 169 mL CH4 g−1 VS was found at the longest pretreatment time tested and at the minimum concentration of VS. The RSM analysis revealed that the VS concentration had the strongest impact on the methane yield. •Laminaria sp. exhibited 40% more methane than Ascophyllum nodosum.•The VS concentration had a major impact on the methane yields of both species.•The pretreatment time had a marginal impact on the methane yields of both species.•Ascophyllum nodosum showed 30% more methane than the untreated sample.•Laminaria sp. showed the highest methane yield at 2.5% VS and 15 min of treatment. The European Commission opened a discussion about limiting first generation food based biofuels in favour of advanced biofuels. The main reason was to limit the uncertainty in estimates of indirect land use change emissions (ILUC) of food based biofuels. Brown seaweeds represent a valuable solution. The lack of lignin makes them suitable for degradation processes such as anaerobic digestion (AD). The main output of AD is biogas which can be upgraded to biomethane and used as a transport fuel. The most common Irish brown seaweeds namely Laminaria sp. and Ascophyllum nodosum were subject to AD. The effects of beating pretreatment time (5–10–15 min) and changes in the seaweeds volatile solids (VS) concentration (1–2.5–4%) on methane production were investigated through a response surface methodology (RSM). Laminaria sp. showed the highest methane yield of 240 ml CH4 g⁻¹ VS when the pretreatment time was set at 15 min and at VS concentration of 2.5%. In the case of Ascophyllum nodosum, the best yield of 169 mL CH4 g⁻¹ VS was found at the longest pretreatment time tested and at the minimum concentration of VS. The RSM analysis revealed that the VS concentration had the strongest impact on the methane yield. |
Author | Stokes, J. Montingelli, M.E. Benyounis, K.Y. Quilty, B. Olabi, A.G. |
Author_xml | – sequence: 1 givenname: M.E. surname: Montingelli fullname: Montingelli, M.E. email: maria.montingelli3@mail.dcu.ie organization: School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland – sequence: 2 givenname: K.Y. surname: Benyounis fullname: Benyounis, K.Y. organization: School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland – sequence: 3 givenname: B. surname: Quilty fullname: Quilty, B. organization: School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland – sequence: 4 givenname: J. surname: Stokes fullname: Stokes, J. organization: School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland – sequence: 5 givenname: A.G. surname: Olabi fullname: Olabi, A.G. organization: School of Engineering, University of the West of Scotland, Paisley PA1 2BE, Scotland, UK |
BookMark | eNqFkTtPBCEUhYnRxPXxDyxIbGxm5TEzCxYmxvjYxMRGa8IwF2UzCwqMZv-9jGtloRXh8p3DzTkHaNcHDwidUDKnhLbnqzl4iC-bOSu3-TTlbAfNqFjwql2IZhfNCG9J1dQ120cHKa0IIY2QcoaGpbfDCN4ADhavwbxq74we8FuEHEHnNfiMte9xiC_TEzahwD5HnV3wk2gZXXrFXQyfHifQnwA9tiEWs1zMoDiFfjQTfYT2rB4SHP-ch-j59ubp-r56eLxbXl89VKYmda6sMI21nHRS61ZLKmxL-ELUhgkjdU1ES0hHJWMgha0lb0XXSLMQpJU9QCf5ITrb-pav30dIWa1dMjAMZZ0wJsUop0IwIkVBT3-hqzBGX7ZTVHJGRcOaplD1ljIxpBTBqrfo1jpuFCVqqkCt1LYCNVXwPeWsyC5-yYzL37mV-Nzwn_hyK4aS1IeDqJJxU1G9i2Cy6oP72-ALY9enwQ |
CitedBy_id | crossref_primary_10_1016_j_mtsust_2022_100120 crossref_primary_10_3390_en15249395 crossref_primary_10_1016_j_carbpol_2024_121990 crossref_primary_10_1016_j_rser_2022_113012 crossref_primary_10_1016_j_energy_2020_119634 crossref_primary_10_3389_fenrg_2023_1170133 crossref_primary_10_1088_1755_1315_239_1_012030 crossref_primary_10_56845_terys_v1i1_200 crossref_primary_10_3390_app9091915 crossref_primary_10_3390_su151914542 crossref_primary_10_1021_acs_energyfuels_8b04224 crossref_primary_10_3390_en13112713 crossref_primary_10_3390_biomass5010007 crossref_primary_10_1007_s12649_021_01669_7 crossref_primary_10_1016_j_energy_2018_07_196 crossref_primary_10_1016_j_energy_2017_07_054 crossref_primary_10_1016_j_energy_2018_05_197 crossref_primary_10_1016_j_energy_2018_08_147 crossref_primary_10_3390_fermentation4040100 crossref_primary_10_1016_j_renene_2024_121347 crossref_primary_10_1007_s11783_018_1040_0 crossref_primary_10_3390_en14238053 crossref_primary_10_1007_s11157_019_09496_y crossref_primary_10_1016_j_energy_2018_02_073 crossref_primary_10_1016_j_fuel_2019_04_134 crossref_primary_10_3390_en13092399 crossref_primary_10_1016_j_energy_2018_04_115 crossref_primary_10_1016_j_energy_2017_08_070 crossref_primary_10_3390_ijerph20010219 crossref_primary_10_1007_s13399_020_01247_2 crossref_primary_10_1016_j_energy_2018_09_196 crossref_primary_10_3390_en14061703 crossref_primary_10_1016_j_biotechadv_2022_107987 crossref_primary_10_1016_j_renene_2018_09_008 crossref_primary_10_1007_s10311_022_01520_y crossref_primary_10_1016_j_wasman_2017_06_040 crossref_primary_10_3390_en16155844 crossref_primary_10_3390_en14164851 crossref_primary_10_1186_s13705_024_00452_5 crossref_primary_10_1016_j_heliyon_2023_e17757 crossref_primary_10_3390_molecules26165105 crossref_primary_10_1016_j_jenvman_2021_114309 crossref_primary_10_3390_methane3010010 |
Cites_doi | 10.1016/j.biotechadv.2007.02.001 10.1016/j.renene.2013.08.023 10.1016/j.rser.2011.07.098 10.1186/1754-6834-5-86 10.1080/01430750.2013.842496 10.1007/s12649-012-9181-z 10.1016/j.rser.2014.11.052 10.1023/A:1007966126570 10.1016/0144-4565(87)90019-9 10.1016/j.biortech.2014.08.005 10.1016/j.rser.2009.07.004 10.1016/j.enconman.2009.03.013 10.1016/j.enconman.2015.11.008 10.1126/science.1214547 10.3390/ijms9091621 10.1016/j.apenergy.2012.07.031 10.1016/j.procbio.2012.06.022 10.1016/j.rser.2015.10.022 10.1016/j.apenergy.2010.12.012 10.1016/j.rser.2013.07.029 10.1007/s10811-014-0327-1 10.1080/09593330.2013.765922 10.1016/j.energy.2012.04.005 10.1016/j.apenergy.2010.10.020 10.1021/es101946t |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Copyright Elsevier BV Jan 1, 2017 |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright Elsevier BV Jan 1, 2017 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
DOI | 10.1016/j.energy.2016.10.132 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 1873-6785 |
EndPage | 1089 |
ExternalDocumentID | 10_1016_j_energy_2016_10_132 S036054421631578X |
GeographicLocations | Ireland |
GeographicLocations_xml | – name: Ireland |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ 7SP 7ST 7TB 8FD C1K EFKBS F28 FR3 KR7 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c404t-f8c5ff30b9aa6a918f603784c28c9a408600b1922e98f49368b59c78069deeb93 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 |
IngestDate | Fri Jul 11 05:22:01 EDT 2025 Wed Aug 13 08:38:51 EDT 2025 Tue Jul 01 00:53:05 EDT 2025 Thu Apr 24 23:06:33 EDT 2025 Fri Feb 23 02:32:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Laminaria sp Pretreatment Organic substrate concentration Anaerobic digestion Ascophyllum nodosum |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-f8c5ff30b9aa6a918f603784c28c9a408600b1922e98f49368b59c78069deeb93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1932185255 |
PQPubID | 2045484 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2131882098 proquest_journals_1932185255 crossref_primary_10_1016_j_energy_2016_10_132 crossref_citationtrail_10_1016_j_energy_2016_10_132 elsevier_sciencedirect_doi_10_1016_j_energy_2016_10_132 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 2017-01-00 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Howley, Holland, O'Rourke (bib3) 2014 Tedesco, Marrero Barroso, Olabi (bib29) 2014; 62 European Commission (bib1) 2009 Ghadiryanfar, Rosentrater, Keyhani, Omid (bib13) 2016; 54 Vanegas, Bartlett (bib23) 2013; 34 Montgomery (bib35) 2008 European Parliament News (bib5) Singh, Smyth, Murphy (bib15) 2010; 14 Montingelli, Tedesco, Dassisti, Olabi (bib27) 2012 Chisti (bib7) 2007; 25 Nkemka, Murto (bib28) 2012; 47 Sarker, Bruhn, Ward, Møller, Rivz̆a, Rivz̆a (bib33) 2012 Plevin, Jones, Torn, Gibbs (bib6) 2010; 44 MacArtain, McKennedy, Zaffaroni, Jordan (bib21) 2013; 36 Montingelli, Benyounis, Stokes, Olabi (bib30) 2016; 108 Browne, Nizami, Thamsiriroj, Murphy (bib14) 2011; 15 Gurung, Van Ginkel, Kang, Qambrani, Oh (bib20) 2012; 43 Hanssen, Indergaard, Østgaard, Bævre, Pedersen, Jensen (bib22) 1987; 14 Demirbas, Balat, Balat (bib9) 2009; 50 Moen, Horn, Østgaard (bib38) 1997; 9 (bib34) 2006 Guiry (bib17) Wargacki, Leonard, Win, Regitsky, Santos, Kim (bib11) 2012; 335 Montingelli, Tedesco, Olabi (bib19) 2015; 43 Singh, Olsen (bib12) 2011; 88 Taherzadeh, Karimi (bib26) 2008; 9 Schiener, Black, Stanley, Green (bib37) 2015; 27 European Parliament News (bib4) Hughes, Kelly, Black, Stanley (bib10) 2012; 5 Ehimen, Sun, Carrington, Birch, Eaton-Rye (bib31) 2011; 88 Dineen, Howley, Holland (bib2) 2015 Dębowski, Zieliński, Grala, Dudek (bib18) 2013; 27 Eriksson (bib36) 2010 Daroch, Geng, Wang (bib8) 2012; 102 Allen, Wall, Herrmann, Murphy (bib16) 2014; 170 Vanegas, Bartlett (bib24) 2013; 4 Vanegas, Bartlett (bib25) 2015; 36 Metcalf E. Inc (bib32) 2003 Taherzadeh (10.1016/j.energy.2016.10.132_bib26) 2008; 9 Singh (10.1016/j.energy.2016.10.132_bib12) 2011; 88 Vanegas (10.1016/j.energy.2016.10.132_bib23) 2013; 34 Ghadiryanfar (10.1016/j.energy.2016.10.132_bib13) 2016; 54 Chisti (10.1016/j.energy.2016.10.132_bib7) 2007; 25 Gurung (10.1016/j.energy.2016.10.132_bib20) 2012; 43 Moen (10.1016/j.energy.2016.10.132_bib38) 1997; 9 MacArtain (10.1016/j.energy.2016.10.132_bib21) 2013; 36 Howley (10.1016/j.energy.2016.10.132_bib3) 2014 Tedesco (10.1016/j.energy.2016.10.132_bib29) 2014; 62 Allen (10.1016/j.energy.2016.10.132_bib16) 2014; 170 Vanegas (10.1016/j.energy.2016.10.132_bib25) 2015; 36 Sarker (10.1016/j.energy.2016.10.132_bib33) 2012 Schiener (10.1016/j.energy.2016.10.132_bib37) 2015; 27 Montingelli (10.1016/j.energy.2016.10.132_bib19) 2015; 43 Demirbas (10.1016/j.energy.2016.10.132_bib9) 2009; 50 European Parliament News (10.1016/j.energy.2016.10.132_bib5) Dębowski (10.1016/j.energy.2016.10.132_bib18) 2013; 27 Nkemka (10.1016/j.energy.2016.10.132_bib28) 2012; 47 Plevin (10.1016/j.energy.2016.10.132_bib6) 2010; 44 Wargacki (10.1016/j.energy.2016.10.132_bib11) 2012; 335 Dineen (10.1016/j.energy.2016.10.132_bib2) 2015 Vanegas (10.1016/j.energy.2016.10.132_bib24) 2013; 4 Hanssen (10.1016/j.energy.2016.10.132_bib22) 1987; 14 European Commission (10.1016/j.energy.2016.10.132_bib1) 2009 (10.1016/j.energy.2016.10.132_bib34) 2006 Eriksson (10.1016/j.energy.2016.10.132_bib36) 2010 Montingelli (10.1016/j.energy.2016.10.132_bib30) 2016; 108 Daroch (10.1016/j.energy.2016.10.132_bib8) 2012; 102 Ehimen (10.1016/j.energy.2016.10.132_bib31) 2011; 88 Hughes (10.1016/j.energy.2016.10.132_bib10) 2012; 5 Metcalf E. Inc (10.1016/j.energy.2016.10.132_bib32) 2003 Montgomery (10.1016/j.energy.2016.10.132_bib35) 2008 Singh (10.1016/j.energy.2016.10.132_bib15) 2010; 14 Browne (10.1016/j.energy.2016.10.132_bib14) 2011; 15 European Parliament News (10.1016/j.energy.2016.10.132_bib4) Guiry (10.1016/j.energy.2016.10.132_bib17) Montingelli (10.1016/j.energy.2016.10.132_bib27) 2012 |
References_xml | – volume: 27 start-page: 596 year: 2013 end-page: 604 ident: bib18 article-title: Algae biomass as an alternative substrate in biogas production technologies-Review publication-title: Renew Sustain Energy Rev – volume: 15 start-page: 4537 year: 2011 end-page: 4547 ident: bib14 article-title: Assessing the cost of biofuel production with increasing penetration of the transport fuel market: a case study of gaseous biomethane in Ireland publication-title: Renew Sustain Energy Rev – volume: 14 start-page: 277 year: 2010 end-page: 288 ident: bib15 article-title: A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take publication-title: Renew Sustain Energy Rev – volume: 36 start-page: 1 year: 2013 end-page: 10 ident: bib21 article-title: Comparing the anaerobic digestion of Ascophyllum nodosum, the organic fraction of municipal solid waste and white rice in batch reactors publication-title: Int J Ambient Energy – volume: 50 start-page: 1746 year: 2009 end-page: 1760 ident: bib9 article-title: Potential contribution of biomass to the sustainable energy development publication-title: Energy Convers Manag – volume: 27 start-page: 363 year: 2015 end-page: 373 ident: bib37 article-title: The seasonal variation in the chemical composition of the kelp species publication-title: J Appl Phycol – volume: 44 start-page: 8015 year: 2010 end-page: 8021 ident: bib6 article-title: Greenhouse gas emissions from biofuels' indirect land use change are uncertain but may be much greater than previously estimated publication-title: Environ Sci Technol – volume: 335 start-page: 308 year: 2012 end-page: 313 ident: bib11 article-title: An engineered microbial platform for direct biofuel production from brown macroalgae publication-title: Science – year: 2012 ident: bib27 article-title: Review of mechanical and physical biomass pretreatment to increase the biogas yield publication-title: International conference on sustainable energy & environmental protection (SEEP), Dublin – volume: 5 start-page: 1 year: 2012 end-page: 7 ident: bib10 article-title: Biogas from macroalgae: is it time to revisit the idea? publication-title: Biotechnol Biofuels – volume: 88 start-page: 3548 year: 2011 end-page: 3555 ident: bib12 article-title: A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels publication-title: Appl Energy – volume: 47 start-page: 2523 year: 2012 end-page: 2526 ident: bib28 article-title: Exploring strategies for seaweed hydrolysis: effect on methane potential and heavy metal mobilisation publication-title: Process Biochem – year: 2008 ident: bib35 article-title: Design and analysis of experiments – volume: 62 start-page: 527 year: 2014 end-page: 534 ident: bib29 article-title: Optimisation of mechanical pre-treatment of publication-title: Renew Energy – year: 2009 ident: bib1 article-title: Directive 2009/28/EC of the European parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/EC and 2003/30 publication-title: Off. J Eur Union – volume: 170 start-page: 436 year: 2014 end-page: 444 ident: bib16 article-title: Investigation of the optimal percentage of green seaweed that may be co-digested with dairy slurry to produce gaseous biofuel publication-title: Bioresour Technol – ident: bib4 article-title: Environment Committee backs switchover to advanced biofuels – year: 2006 ident: bib34 publication-title: VDI V. 4630-Fermentation of organic materials – year: 2015 ident: bib2 article-title: Renewable energy in Ireland 2013 – volume: 9 start-page: 1621 year: 2008 end-page: 1651 ident: bib26 article-title: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review publication-title: Int J Mol Sci – volume: 43 start-page: 961 year: 2015 end-page: 972 ident: bib19 article-title: Biogas production from algal biomass: a review publication-title: Renew Sustain Energy Rev – volume: 36 start-page: 183 year: 2015 end-page: 189 ident: bib25 article-title: Biogas production from the anaerobic digestion of Laminaria digitata in a 10 L pilot-plant with digestate re-use as fertiliser publication-title: Int J Ambient Energy – year: 2003 ident: bib32 article-title: Wastewater engineering, treatment and reuse – volume: 9 start-page: 157 year: 1997 end-page: 166 ident: bib38 article-title: Alginate degradation during anaerobic digestion of Laminaria hyperborea stipes publication-title: J Appl Phycol – volume: 25 start-page: 294 year: 2007 end-page: 306 ident: bib7 article-title: Biodiesel from microalgae publication-title: Biotechnol Adv – volume: 88 start-page: 3454 year: 2011 end-page: 3463 ident: bib31 article-title: Anaerobic digestion of microalgae residues resulting from the biodiesel production process publication-title: Appl Energy – volume: 102 start-page: 1371 year: 2012 end-page: 1381 ident: bib8 article-title: Recent advances in liquid biofuel production from algal feedstocks publication-title: Appl Energy – volume: 34 start-page: 2277 year: 2013 end-page: 2283 ident: bib23 article-title: Green energy from marine algae: biogas production and composition from the anaerobic digestion of Irish seaweed species publication-title: Environ Technol – start-page: 86 year: 2012 end-page: 90 ident: bib33 article-title: Bio-fuel from anaerobic co-digestion of the macro-algae publication-title: Proceedings of the international scientific conference. Jelgava, Latvia – volume: 4 start-page: 509 year: 2013 end-page: 515 ident: bib24 article-title: Anaerobic digestion of publication-title: Waste Biomass Valorization – volume: 14 start-page: 1 year: 1987 end-page: 13 ident: bib22 article-title: Anaerobic digestion of publication-title: Biomass – volume: 54 start-page: 473 year: 2016 end-page: 481 ident: bib13 article-title: A review of macroalgae production, with potential applications in biofuels and bioenergy publication-title: Renew Sustain Energy Rev – volume: 43 start-page: 396 year: 2012 end-page: 401 ident: bib20 article-title: Evaluation of marine biomass as a source of methane in batch tests: a lab-scale study publication-title: Energy – start-page: 95 year: 2010 end-page: 105 ident: bib36 article-title: Environmental technology assessment of natural gas compared to biogas publication-title: Nat Gas InTech – year: 2014 ident: bib3 article-title: Renewable energy in Ireland 2012 – ident: bib17 article-title: Phaeophyceae: brown algae – volume: 108 start-page: 202 year: 2016 end-page: 209 ident: bib30 article-title: Pretreatment of macroalgal biomass for biogas production publication-title: Energy Convers Manag – ident: bib5 article-title: European Parliament backs switchover to advanced biofuels – year: 2006 ident: 10.1016/j.energy.2016.10.132_bib34 – ident: 10.1016/j.energy.2016.10.132_bib5 – year: 2012 ident: 10.1016/j.energy.2016.10.132_bib27 article-title: Review of mechanical and physical biomass pretreatment to increase the biogas yield – volume: 25 start-page: 294 year: 2007 ident: 10.1016/j.energy.2016.10.132_bib7 article-title: Biodiesel from microalgae publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2007.02.001 – volume: 62 start-page: 527 year: 2014 ident: 10.1016/j.energy.2016.10.132_bib29 article-title: Optimisation of mechanical pre-treatment of Laminariaceae sp. biomass-derived biogas publication-title: Renew Energy doi: 10.1016/j.renene.2013.08.023 – volume: 15 start-page: 4537 year: 2011 ident: 10.1016/j.energy.2016.10.132_bib14 article-title: Assessing the cost of biofuel production with increasing penetration of the transport fuel market: a case study of gaseous biomethane in Ireland publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2011.07.098 – year: 2008 ident: 10.1016/j.energy.2016.10.132_bib35 – year: 2014 ident: 10.1016/j.energy.2016.10.132_bib3 – start-page: 95 year: 2010 ident: 10.1016/j.energy.2016.10.132_bib36 article-title: Environmental technology assessment of natural gas compared to biogas publication-title: Nat Gas InTech – volume: 5 start-page: 1 year: 2012 ident: 10.1016/j.energy.2016.10.132_bib10 article-title: Biogas from macroalgae: is it time to revisit the idea? publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-5-86 – volume: 36 start-page: 183 year: 2015 ident: 10.1016/j.energy.2016.10.132_bib25 article-title: Biogas production from the anaerobic digestion of Laminaria digitata in a 10 L pilot-plant with digestate re-use as fertiliser publication-title: Int J Ambient Energy doi: 10.1080/01430750.2013.842496 – year: 2009 ident: 10.1016/j.energy.2016.10.132_bib1 article-title: Directive 2009/28/EC of the European parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/EC and 2003/30 publication-title: Off. J Eur Union – volume: 4 start-page: 509 year: 2013 ident: 10.1016/j.energy.2016.10.132_bib24 article-title: Anaerobic digestion of Laminaria digitata: the effect of temperature on biogas production and composition publication-title: Waste Biomass Valorization doi: 10.1007/s12649-012-9181-z – volume: 43 start-page: 961 year: 2015 ident: 10.1016/j.energy.2016.10.132_bib19 article-title: Biogas production from algal biomass: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.11.052 – volume: 9 start-page: 157 year: 1997 ident: 10.1016/j.energy.2016.10.132_bib38 article-title: Alginate degradation during anaerobic digestion of Laminaria hyperborea stipes publication-title: J Appl Phycol doi: 10.1023/A:1007966126570 – volume: 14 start-page: 1 year: 1987 ident: 10.1016/j.energy.2016.10.132_bib22 article-title: Anaerobic digestion of Laminaria sp. and Ascophyllum nodosum and application of end products publication-title: Biomass doi: 10.1016/0144-4565(87)90019-9 – start-page: 86 year: 2012 ident: 10.1016/j.energy.2016.10.132_bib33 article-title: Bio-fuel from anaerobic co-digestion of the macro-algae Ulva lactuca and Laminaria digitata – volume: 170 start-page: 436 year: 2014 ident: 10.1016/j.energy.2016.10.132_bib16 article-title: Investigation of the optimal percentage of green seaweed that may be co-digested with dairy slurry to produce gaseous biofuel publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.08.005 – volume: 14 start-page: 277 year: 2010 ident: 10.1016/j.energy.2016.10.132_bib15 article-title: A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2009.07.004 – ident: 10.1016/j.energy.2016.10.132_bib17 – volume: 50 start-page: 1746 year: 2009 ident: 10.1016/j.energy.2016.10.132_bib9 article-title: Potential contribution of biomass to the sustainable energy development publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2009.03.013 – year: 2015 ident: 10.1016/j.energy.2016.10.132_bib2 – volume: 108 start-page: 202 year: 2016 ident: 10.1016/j.energy.2016.10.132_bib30 article-title: Pretreatment of macroalgal biomass for biogas production publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.11.008 – volume: 335 start-page: 308 year: 2012 ident: 10.1016/j.energy.2016.10.132_bib11 article-title: An engineered microbial platform for direct biofuel production from brown macroalgae publication-title: Science doi: 10.1126/science.1214547 – volume: 9 start-page: 1621 year: 2008 ident: 10.1016/j.energy.2016.10.132_bib26 article-title: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review publication-title: Int J Mol Sci doi: 10.3390/ijms9091621 – volume: 102 start-page: 1371 year: 2012 ident: 10.1016/j.energy.2016.10.132_bib8 article-title: Recent advances in liquid biofuel production from algal feedstocks publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.07.031 – volume: 36 start-page: 1 year: 2013 ident: 10.1016/j.energy.2016.10.132_bib21 article-title: Comparing the anaerobic digestion of Ascophyllum nodosum, the organic fraction of municipal solid waste and white rice in batch reactors publication-title: Int J Ambient Energy – volume: 47 start-page: 2523 year: 2012 ident: 10.1016/j.energy.2016.10.132_bib28 article-title: Exploring strategies for seaweed hydrolysis: effect on methane potential and heavy metal mobilisation publication-title: Process Biochem doi: 10.1016/j.procbio.2012.06.022 – volume: 54 start-page: 473 year: 2016 ident: 10.1016/j.energy.2016.10.132_bib13 article-title: A review of macroalgae production, with potential applications in biofuels and bioenergy publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.10.022 – volume: 88 start-page: 3548 year: 2011 ident: 10.1016/j.energy.2016.10.132_bib12 article-title: A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.12.012 – volume: 27 start-page: 596 year: 2013 ident: 10.1016/j.energy.2016.10.132_bib18 article-title: Algae biomass as an alternative substrate in biogas production technologies-Review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.07.029 – volume: 27 start-page: 363 year: 2015 ident: 10.1016/j.energy.2016.10.132_bib37 article-title: The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta publication-title: J Appl Phycol doi: 10.1007/s10811-014-0327-1 – volume: 34 start-page: 2277 year: 2013 ident: 10.1016/j.energy.2016.10.132_bib23 article-title: Green energy from marine algae: biogas production and composition from the anaerobic digestion of Irish seaweed species publication-title: Environ Technol doi: 10.1080/09593330.2013.765922 – year: 2003 ident: 10.1016/j.energy.2016.10.132_bib32 – ident: 10.1016/j.energy.2016.10.132_bib4 – volume: 43 start-page: 396 year: 2012 ident: 10.1016/j.energy.2016.10.132_bib20 article-title: Evaluation of marine biomass as a source of methane in batch tests: a lab-scale study publication-title: Energy doi: 10.1016/j.energy.2012.04.005 – volume: 88 start-page: 3454 year: 2011 ident: 10.1016/j.energy.2016.10.132_bib31 article-title: Anaerobic digestion of microalgae residues resulting from the biodiesel production process publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.10.020 – volume: 44 start-page: 8015 year: 2010 ident: 10.1016/j.energy.2016.10.132_bib6 article-title: Greenhouse gas emissions from biofuels' indirect land use change are uncertain but may be much greater than previously estimated publication-title: Environ Sci Technol doi: 10.1021/es101946t |
SSID | ssj0005899 |
Score | 2.3957958 |
Snippet | The European Commission opened a discussion about limiting first generation food based biofuels in favour of advanced biofuels. The main reason was to limit... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1079 |
SubjectTerms | Algae Anaerobic digestion Anaerobic processes Ascophyllum nodosum Biodiesel fuels Biofuels Biogas Emissions Food Laminaria Laminaria sp Land use land use change Lignin macroalgae Methane methane production Organic substrate concentration Pretreatment Response surface methodology Seaweeds uncertainty Volatile solids |
Title | Influence of mechanical pretreatment and organic concentration of Irish brown seaweed for methane production |
URI | https://dx.doi.org/10.1016/j.energy.2016.10.132 https://www.proquest.com/docview/1932185255 https://www.proquest.com/docview/2131882098 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB1CemgvJU0bum0aVOhVWa8s29IxhIRNF3JoG7o3IckSpKTeJbuht_72zMhS-gEl0JNBHtlGMxo9WfNmAD5I21hV2ZaLEFouYxO4drbhLkYnZsHG6FOU72U7v5Ifl81yB04LF4bCKrPvH3168ta5ZZpHc7q-vp5-Rt-LeEMKRBQztLslMdhlR1Z-_PO3MA-VakiSMCfpQp9LMV4h8esowKs9TjUgxL-Wp78cdVp9zvfgeYaN7GT8shewE4Z9eFpYxZt9ODj7xVhDwTxlNy_h5qKUIWGryL4HYvqSYhhFGpYoc2aHno0FnjzzxGQccjpd6pSq0DNHG3aGM-MHLngMsS6j6tN2CGw9Zo1F6VdwdX725XTOc4kF7mUltzwq38RYV05b21o9U7Gt6k5JL5TXVuJ-p6ocgkARtIpS161yjfadqlrdh-B0fQC7w2oIr4H5SHlhdK3oMDV2zsmAj-1r4Xsl-q6bQF1G1vicf5zKYNyYEmj2zYz6MKSP1FqLCfCHXusx_8Yj8l1RmvnDjgwuEY_0PCw6NnkebwzBW6KXN80E3j_cxhlIxyo4wqu7jREz9IsIpLR6898vfwvPBOGF9G_nEHa3t3fhHaKdrTtK5nwET04uFvNLui4-fV3cAwa7A7I |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcigXBIWKhQJG4upu1nES-4iqVlsovdBKe7Nsx5aK2uyK3Ypbf3tnHLt8SKgSV2ecRB7PzEs8Mw_go7SNVZVtuQih5TI2gWtnG-5idGIWbIw-ZfmetfML-XnRLLbgsNTCUFpl9v2jT0_eOo9M82pOV5eX02_oexFvSIGIYob7bvEIHks0X6IxOLj9Lc9DJRJJkuYkXurnUpJXSAV2lOHVHiQSCPGv-PSXp07h5_gZPM24kX0aX-05bIVhF3ZKWfF6F_aOfpWsoWC22fULuDopPCRsGdl1oFJf0gyjVMOSZs7s0LOR4ckzT6WMQ-6nS5MSDT1z9MXO0DR-YsRjCHYZ0U_bIbDV2DYWpV_CxfHR-eGcZ44F7mUlNzwq38RYV05b21o9U7Gt6k5JL5TXVuIHT1U5RIEiaBWlrlvlGu07VbW6D8Hpeg-2h-UQXgHzkRrD6FrRaWrsnJMBb9vXwvdK9F03gbqsrPG5ATnxYFyZkmn23Yz6MKSPNFqLCfD7WauxAccD8l1RmvljIxmMEQ_M3C86NtmQ14bwLdWXN80EPtxfRhOkcxVc4eXN2ogZOkZEUlq9_u-Hv4ed-fnXU3N6cvblDTwRBB7Sj5592N78uAlvEfps3Lu0te8AxAEDnQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+mechanical+pretreatment+and+organic+concentration+of+Irish+brown+seaweed+for+methane+production&rft.jtitle=Energy+%28Oxford%29&rft.au=Montingelli%2C+ME&rft.au=Benyounis%2C+KY&rft.au=Quilty%2C+B&rft.au=Stokes%2C+J&rft.date=2017-01-01&rft.pub=Elsevier+BV&rft.issn=0360-5442&rft.eissn=1873-6785&rft.volume=118&rft.spage=1079&rft_id=info:doi/10.1016%2Fj.energy.2016.10.132&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |