Influence of mechanical pretreatment and organic concentration of Irish brown seaweed for methane production

The European Commission opened a discussion about limiting first generation food based biofuels in favour of advanced biofuels. The main reason was to limit the uncertainty in estimates of indirect land use change emissions (ILUC) of food based biofuels. Brown seaweeds represent a valuable solution....

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 118; pp. 1079 - 1089
Main Authors Montingelli, M.E., Benyounis, K.Y., Quilty, B., Stokes, J., Olabi, A.G.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The European Commission opened a discussion about limiting first generation food based biofuels in favour of advanced biofuels. The main reason was to limit the uncertainty in estimates of indirect land use change emissions (ILUC) of food based biofuels. Brown seaweeds represent a valuable solution. The lack of lignin makes them suitable for degradation processes such as anaerobic digestion (AD). The main output of AD is biogas which can be upgraded to biomethane and used as a transport fuel. The most common Irish brown seaweeds namely Laminaria sp. and Ascophyllum nodosum were subject to AD. The effects of beating pretreatment time (5–10–15 min) and changes in the seaweeds volatile solids (VS) concentration (1–2.5–4%) on methane production were investigated through a response surface methodology (RSM). Laminaria sp. showed the highest methane yield of 240 ml CH4 g−1 VS when the pretreatment time was set at 15 min and at VS concentration of 2.5%. In the case of Ascophyllum nodosum, the best yield of 169 mL CH4 g−1 VS was found at the longest pretreatment time tested and at the minimum concentration of VS. The RSM analysis revealed that the VS concentration had the strongest impact on the methane yield. •Laminaria sp. exhibited 40% more methane than Ascophyllum nodosum.•The VS concentration had a major impact on the methane yields of both species.•The pretreatment time had a marginal impact on the methane yields of both species.•Ascophyllum nodosum showed 30% more methane than the untreated sample.•Laminaria sp. showed the highest methane yield at 2.5% VS and 15 min of treatment.
AbstractList The European Commission opened a discussion about limiting first generation food based biofuels in favour of advanced biofuels. The main reason was to limit the uncertainty in estimates of indirect land use change emissions (ILUC) of food based biofuels. Brown seaweeds represent a valuable solution. The lack of lignin makes them suitable for degradation processes such as anaerobic digestion (AD). The main output of AD is biogas which can be upgraded to biomethane and used as a transport fuel. The most common Irish brown seaweeds namely Laminaria sp. and Ascophyllum nodosum were subject to AD. The effects of beating pretreatment time (5-10-15 min) and changes in the seaweeds volatile solids (VS) concentration (1-2.5-4%) on methane production were investigated through a response surface methodology (RSM). Laminaria sp. showed the highest methane yield of 240 ml CH4 g-1 VS when the pretreatment time was set at 15 min and at VS concentration of 2.5%. In the case of Ascophyllum nodosum, the best yield of 169 mL CH4 g-1 VS was found at the longest pretreatment time tested and at the minimum concentration of VS. The RSM analysis revealed that the VS concentration had the strongest impact on the methane yield.
The European Commission opened a discussion about limiting first generation food based biofuels in favour of advanced biofuels. The main reason was to limit the uncertainty in estimates of indirect land use change emissions (ILUC) of food based biofuels. Brown seaweeds represent a valuable solution. The lack of lignin makes them suitable for degradation processes such as anaerobic digestion (AD). The main output of AD is biogas which can be upgraded to biomethane and used as a transport fuel. The most common Irish brown seaweeds namely Laminaria sp. and Ascophyllum nodosum were subject to AD. The effects of beating pretreatment time (5–10–15 min) and changes in the seaweeds volatile solids (VS) concentration (1–2.5–4%) on methane production were investigated through a response surface methodology (RSM). Laminaria sp. showed the highest methane yield of 240 ml CH4 g−1 VS when the pretreatment time was set at 15 min and at VS concentration of 2.5%. In the case of Ascophyllum nodosum, the best yield of 169 mL CH4 g−1 VS was found at the longest pretreatment time tested and at the minimum concentration of VS. The RSM analysis revealed that the VS concentration had the strongest impact on the methane yield. •Laminaria sp. exhibited 40% more methane than Ascophyllum nodosum.•The VS concentration had a major impact on the methane yields of both species.•The pretreatment time had a marginal impact on the methane yields of both species.•Ascophyllum nodosum showed 30% more methane than the untreated sample.•Laminaria sp. showed the highest methane yield at 2.5% VS and 15 min of treatment.
The European Commission opened a discussion about limiting first generation food based biofuels in favour of advanced biofuels. The main reason was to limit the uncertainty in estimates of indirect land use change emissions (ILUC) of food based biofuels. Brown seaweeds represent a valuable solution. The lack of lignin makes them suitable for degradation processes such as anaerobic digestion (AD). The main output of AD is biogas which can be upgraded to biomethane and used as a transport fuel. The most common Irish brown seaweeds namely Laminaria sp. and Ascophyllum nodosum were subject to AD. The effects of beating pretreatment time (5–10–15 min) and changes in the seaweeds volatile solids (VS) concentration (1–2.5–4%) on methane production were investigated through a response surface methodology (RSM). Laminaria sp. showed the highest methane yield of 240 ml CH4 g⁻¹ VS when the pretreatment time was set at 15 min and at VS concentration of 2.5%. In the case of Ascophyllum nodosum, the best yield of 169 mL CH4 g⁻¹ VS was found at the longest pretreatment time tested and at the minimum concentration of VS. The RSM analysis revealed that the VS concentration had the strongest impact on the methane yield.
Author Stokes, J.
Montingelli, M.E.
Benyounis, K.Y.
Quilty, B.
Olabi, A.G.
Author_xml – sequence: 1
  givenname: M.E.
  surname: Montingelli
  fullname: Montingelli, M.E.
  email: maria.montingelli3@mail.dcu.ie
  organization: School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland
– sequence: 2
  givenname: K.Y.
  surname: Benyounis
  fullname: Benyounis, K.Y.
  organization: School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland
– sequence: 3
  givenname: B.
  surname: Quilty
  fullname: Quilty, B.
  organization: School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
– sequence: 4
  givenname: J.
  surname: Stokes
  fullname: Stokes, J.
  organization: School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland
– sequence: 5
  givenname: A.G.
  surname: Olabi
  fullname: Olabi, A.G.
  organization: School of Engineering, University of the West of Scotland, Paisley PA1 2BE, Scotland, UK
BookMark eNqFkTtPBCEUhYnRxPXxDyxIbGxm5TEzCxYmxvjYxMRGa8IwF2UzCwqMZv-9jGtloRXh8p3DzTkHaNcHDwidUDKnhLbnqzl4iC-bOSu3-TTlbAfNqFjwql2IZhfNCG9J1dQ120cHKa0IIY2QcoaGpbfDCN4ADhavwbxq74we8FuEHEHnNfiMte9xiC_TEzahwD5HnV3wk2gZXXrFXQyfHifQnwA9tiEWs1zMoDiFfjQTfYT2rB4SHP-ch-j59ubp-r56eLxbXl89VKYmda6sMI21nHRS61ZLKmxL-ELUhgkjdU1ES0hHJWMgha0lb0XXSLMQpJU9QCf5ITrb-pav30dIWa1dMjAMZZ0wJsUop0IwIkVBT3-hqzBGX7ZTVHJGRcOaplD1ljIxpBTBqrfo1jpuFCVqqkCt1LYCNVXwPeWsyC5-yYzL37mV-Nzwn_hyK4aS1IeDqJJxU1G9i2Cy6oP72-ALY9enwQ
CitedBy_id crossref_primary_10_1016_j_mtsust_2022_100120
crossref_primary_10_3390_en15249395
crossref_primary_10_1016_j_carbpol_2024_121990
crossref_primary_10_1016_j_rser_2022_113012
crossref_primary_10_1016_j_energy_2020_119634
crossref_primary_10_3389_fenrg_2023_1170133
crossref_primary_10_1088_1755_1315_239_1_012030
crossref_primary_10_56845_terys_v1i1_200
crossref_primary_10_3390_app9091915
crossref_primary_10_3390_su151914542
crossref_primary_10_1021_acs_energyfuels_8b04224
crossref_primary_10_3390_en13112713
crossref_primary_10_3390_biomass5010007
crossref_primary_10_1007_s12649_021_01669_7
crossref_primary_10_1016_j_energy_2018_07_196
crossref_primary_10_1016_j_energy_2017_07_054
crossref_primary_10_1016_j_energy_2018_05_197
crossref_primary_10_1016_j_energy_2018_08_147
crossref_primary_10_3390_fermentation4040100
crossref_primary_10_1016_j_renene_2024_121347
crossref_primary_10_1007_s11783_018_1040_0
crossref_primary_10_3390_en14238053
crossref_primary_10_1007_s11157_019_09496_y
crossref_primary_10_1016_j_energy_2018_02_073
crossref_primary_10_1016_j_fuel_2019_04_134
crossref_primary_10_3390_en13092399
crossref_primary_10_1016_j_energy_2018_04_115
crossref_primary_10_1016_j_energy_2017_08_070
crossref_primary_10_3390_ijerph20010219
crossref_primary_10_1007_s13399_020_01247_2
crossref_primary_10_1016_j_energy_2018_09_196
crossref_primary_10_3390_en14061703
crossref_primary_10_1016_j_biotechadv_2022_107987
crossref_primary_10_1016_j_renene_2018_09_008
crossref_primary_10_1007_s10311_022_01520_y
crossref_primary_10_1016_j_wasman_2017_06_040
crossref_primary_10_3390_en16155844
crossref_primary_10_3390_en14164851
crossref_primary_10_1186_s13705_024_00452_5
crossref_primary_10_1016_j_heliyon_2023_e17757
crossref_primary_10_3390_molecules26165105
crossref_primary_10_1016_j_jenvman_2021_114309
crossref_primary_10_3390_methane3010010
Cites_doi 10.1016/j.biotechadv.2007.02.001
10.1016/j.renene.2013.08.023
10.1016/j.rser.2011.07.098
10.1186/1754-6834-5-86
10.1080/01430750.2013.842496
10.1007/s12649-012-9181-z
10.1016/j.rser.2014.11.052
10.1023/A:1007966126570
10.1016/0144-4565(87)90019-9
10.1016/j.biortech.2014.08.005
10.1016/j.rser.2009.07.004
10.1016/j.enconman.2009.03.013
10.1016/j.enconman.2015.11.008
10.1126/science.1214547
10.3390/ijms9091621
10.1016/j.apenergy.2012.07.031
10.1016/j.procbio.2012.06.022
10.1016/j.rser.2015.10.022
10.1016/j.apenergy.2010.12.012
10.1016/j.rser.2013.07.029
10.1007/s10811-014-0327-1
10.1080/09593330.2013.765922
10.1016/j.energy.2012.04.005
10.1016/j.apenergy.2010.10.020
10.1021/es101946t
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright Elsevier BV Jan 1, 2017
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 1, 2017
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2016.10.132
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
EndPage 1089
ExternalDocumentID 10_1016_j_energy_2016_10_132
S036054421631578X
GeographicLocations Ireland
GeographicLocations_xml – name: Ireland
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
7SP
7ST
7TB
8FD
C1K
EFKBS
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c404t-f8c5ff30b9aa6a918f603784c28c9a408600b1922e98f49368b59c78069deeb93
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Fri Jul 11 05:22:01 EDT 2025
Wed Aug 13 08:38:51 EDT 2025
Tue Jul 01 00:53:05 EDT 2025
Thu Apr 24 23:06:33 EDT 2025
Fri Feb 23 02:32:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Laminaria sp
Pretreatment
Organic substrate concentration
Anaerobic digestion
Ascophyllum nodosum
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-f8c5ff30b9aa6a918f603784c28c9a408600b1922e98f49368b59c78069deeb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1932185255
PQPubID 2045484
PageCount 11
ParticipantIDs proquest_miscellaneous_2131882098
proquest_journals_1932185255
crossref_primary_10_1016_j_energy_2016_10_132
crossref_citationtrail_10_1016_j_energy_2016_10_132
elsevier_sciencedirect_doi_10_1016_j_energy_2016_10_132
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
2017-01-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Howley, Holland, O'Rourke (bib3) 2014
Tedesco, Marrero Barroso, Olabi (bib29) 2014; 62
European Commission (bib1) 2009
Ghadiryanfar, Rosentrater, Keyhani, Omid (bib13) 2016; 54
Vanegas, Bartlett (bib23) 2013; 34
Montgomery (bib35) 2008
European Parliament News (bib5)
Singh, Smyth, Murphy (bib15) 2010; 14
Montingelli, Tedesco, Dassisti, Olabi (bib27) 2012
Chisti (bib7) 2007; 25
Nkemka, Murto (bib28) 2012; 47
Sarker, Bruhn, Ward, Møller, Rivz̆a, Rivz̆a (bib33) 2012
Plevin, Jones, Torn, Gibbs (bib6) 2010; 44
MacArtain, McKennedy, Zaffaroni, Jordan (bib21) 2013; 36
Montingelli, Benyounis, Stokes, Olabi (bib30) 2016; 108
Browne, Nizami, Thamsiriroj, Murphy (bib14) 2011; 15
Gurung, Van Ginkel, Kang, Qambrani, Oh (bib20) 2012; 43
Hanssen, Indergaard, Østgaard, Bævre, Pedersen, Jensen (bib22) 1987; 14
Demirbas, Balat, Balat (bib9) 2009; 50
Moen, Horn, Østgaard (bib38) 1997; 9
(bib34) 2006
Guiry (bib17)
Wargacki, Leonard, Win, Regitsky, Santos, Kim (bib11) 2012; 335
Montingelli, Tedesco, Olabi (bib19) 2015; 43
Singh, Olsen (bib12) 2011; 88
Taherzadeh, Karimi (bib26) 2008; 9
Schiener, Black, Stanley, Green (bib37) 2015; 27
European Parliament News (bib4)
Hughes, Kelly, Black, Stanley (bib10) 2012; 5
Ehimen, Sun, Carrington, Birch, Eaton-Rye (bib31) 2011; 88
Dineen, Howley, Holland (bib2) 2015
Dębowski, Zieliński, Grala, Dudek (bib18) 2013; 27
Eriksson (bib36) 2010
Daroch, Geng, Wang (bib8) 2012; 102
Allen, Wall, Herrmann, Murphy (bib16) 2014; 170
Vanegas, Bartlett (bib24) 2013; 4
Vanegas, Bartlett (bib25) 2015; 36
Metcalf E. Inc (bib32) 2003
Taherzadeh (10.1016/j.energy.2016.10.132_bib26) 2008; 9
Singh (10.1016/j.energy.2016.10.132_bib12) 2011; 88
Vanegas (10.1016/j.energy.2016.10.132_bib23) 2013; 34
Ghadiryanfar (10.1016/j.energy.2016.10.132_bib13) 2016; 54
Chisti (10.1016/j.energy.2016.10.132_bib7) 2007; 25
Gurung (10.1016/j.energy.2016.10.132_bib20) 2012; 43
Moen (10.1016/j.energy.2016.10.132_bib38) 1997; 9
MacArtain (10.1016/j.energy.2016.10.132_bib21) 2013; 36
Howley (10.1016/j.energy.2016.10.132_bib3) 2014
Tedesco (10.1016/j.energy.2016.10.132_bib29) 2014; 62
Allen (10.1016/j.energy.2016.10.132_bib16) 2014; 170
Vanegas (10.1016/j.energy.2016.10.132_bib25) 2015; 36
Sarker (10.1016/j.energy.2016.10.132_bib33) 2012
Schiener (10.1016/j.energy.2016.10.132_bib37) 2015; 27
Montingelli (10.1016/j.energy.2016.10.132_bib19) 2015; 43
Demirbas (10.1016/j.energy.2016.10.132_bib9) 2009; 50
European Parliament News (10.1016/j.energy.2016.10.132_bib5)
Dębowski (10.1016/j.energy.2016.10.132_bib18) 2013; 27
Nkemka (10.1016/j.energy.2016.10.132_bib28) 2012; 47
Plevin (10.1016/j.energy.2016.10.132_bib6) 2010; 44
Wargacki (10.1016/j.energy.2016.10.132_bib11) 2012; 335
Dineen (10.1016/j.energy.2016.10.132_bib2) 2015
Vanegas (10.1016/j.energy.2016.10.132_bib24) 2013; 4
Hanssen (10.1016/j.energy.2016.10.132_bib22) 1987; 14
European Commission (10.1016/j.energy.2016.10.132_bib1) 2009
(10.1016/j.energy.2016.10.132_bib34) 2006
Eriksson (10.1016/j.energy.2016.10.132_bib36) 2010
Montingelli (10.1016/j.energy.2016.10.132_bib30) 2016; 108
Daroch (10.1016/j.energy.2016.10.132_bib8) 2012; 102
Ehimen (10.1016/j.energy.2016.10.132_bib31) 2011; 88
Hughes (10.1016/j.energy.2016.10.132_bib10) 2012; 5
Metcalf E. Inc (10.1016/j.energy.2016.10.132_bib32) 2003
Montgomery (10.1016/j.energy.2016.10.132_bib35) 2008
Singh (10.1016/j.energy.2016.10.132_bib15) 2010; 14
Browne (10.1016/j.energy.2016.10.132_bib14) 2011; 15
European Parliament News (10.1016/j.energy.2016.10.132_bib4)
Guiry (10.1016/j.energy.2016.10.132_bib17)
Montingelli (10.1016/j.energy.2016.10.132_bib27) 2012
References_xml – volume: 27
  start-page: 596
  year: 2013
  end-page: 604
  ident: bib18
  article-title: Algae biomass as an alternative substrate in biogas production technologies-Review
  publication-title: Renew Sustain Energy Rev
– volume: 15
  start-page: 4537
  year: 2011
  end-page: 4547
  ident: bib14
  article-title: Assessing the cost of biofuel production with increasing penetration of the transport fuel market: a case study of gaseous biomethane in Ireland
  publication-title: Renew Sustain Energy Rev
– volume: 14
  start-page: 277
  year: 2010
  end-page: 288
  ident: bib15
  article-title: A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take
  publication-title: Renew Sustain Energy Rev
– volume: 36
  start-page: 1
  year: 2013
  end-page: 10
  ident: bib21
  article-title: Comparing the anaerobic digestion of Ascophyllum nodosum, the organic fraction of municipal solid waste and white rice in batch reactors
  publication-title: Int J Ambient Energy
– volume: 50
  start-page: 1746
  year: 2009
  end-page: 1760
  ident: bib9
  article-title: Potential contribution of biomass to the sustainable energy development
  publication-title: Energy Convers Manag
– volume: 27
  start-page: 363
  year: 2015
  end-page: 373
  ident: bib37
  article-title: The seasonal variation in the chemical composition of the kelp species
  publication-title: J Appl Phycol
– volume: 44
  start-page: 8015
  year: 2010
  end-page: 8021
  ident: bib6
  article-title: Greenhouse gas emissions from biofuels' indirect land use change are uncertain but may be much greater than previously estimated
  publication-title: Environ Sci Technol
– volume: 335
  start-page: 308
  year: 2012
  end-page: 313
  ident: bib11
  article-title: An engineered microbial platform for direct biofuel production from brown macroalgae
  publication-title: Science
– year: 2012
  ident: bib27
  article-title: Review of mechanical and physical biomass pretreatment to increase the biogas yield
  publication-title: International conference on sustainable energy & environmental protection (SEEP), Dublin
– volume: 5
  start-page: 1
  year: 2012
  end-page: 7
  ident: bib10
  article-title: Biogas from macroalgae: is it time to revisit the idea?
  publication-title: Biotechnol Biofuels
– volume: 88
  start-page: 3548
  year: 2011
  end-page: 3555
  ident: bib12
  article-title: A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels
  publication-title: Appl Energy
– volume: 47
  start-page: 2523
  year: 2012
  end-page: 2526
  ident: bib28
  article-title: Exploring strategies for seaweed hydrolysis: effect on methane potential and heavy metal mobilisation
  publication-title: Process Biochem
– year: 2008
  ident: bib35
  article-title: Design and analysis of experiments
– volume: 62
  start-page: 527
  year: 2014
  end-page: 534
  ident: bib29
  article-title: Optimisation of mechanical pre-treatment of
  publication-title: Renew Energy
– year: 2009
  ident: bib1
  article-title: Directive 2009/28/EC of the European parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/EC and 2003/30
  publication-title: Off. J Eur Union
– volume: 170
  start-page: 436
  year: 2014
  end-page: 444
  ident: bib16
  article-title: Investigation of the optimal percentage of green seaweed that may be co-digested with dairy slurry to produce gaseous biofuel
  publication-title: Bioresour Technol
– ident: bib4
  article-title: Environment Committee backs switchover to advanced biofuels
– year: 2006
  ident: bib34
  publication-title: VDI V. 4630-Fermentation of organic materials
– year: 2015
  ident: bib2
  article-title: Renewable energy in Ireland 2013
– volume: 9
  start-page: 1621
  year: 2008
  end-page: 1651
  ident: bib26
  article-title: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review
  publication-title: Int J Mol Sci
– volume: 43
  start-page: 961
  year: 2015
  end-page: 972
  ident: bib19
  article-title: Biogas production from algal biomass: a review
  publication-title: Renew Sustain Energy Rev
– volume: 36
  start-page: 183
  year: 2015
  end-page: 189
  ident: bib25
  article-title: Biogas production from the anaerobic digestion of Laminaria digitata in a 10 L pilot-plant with digestate re-use as fertiliser
  publication-title: Int J Ambient Energy
– year: 2003
  ident: bib32
  article-title: Wastewater engineering, treatment and reuse
– volume: 9
  start-page: 157
  year: 1997
  end-page: 166
  ident: bib38
  article-title: Alginate degradation during anaerobic digestion of Laminaria hyperborea stipes
  publication-title: J Appl Phycol
– volume: 25
  start-page: 294
  year: 2007
  end-page: 306
  ident: bib7
  article-title: Biodiesel from microalgae
  publication-title: Biotechnol Adv
– volume: 88
  start-page: 3454
  year: 2011
  end-page: 3463
  ident: bib31
  article-title: Anaerobic digestion of microalgae residues resulting from the biodiesel production process
  publication-title: Appl Energy
– volume: 102
  start-page: 1371
  year: 2012
  end-page: 1381
  ident: bib8
  article-title: Recent advances in liquid biofuel production from algal feedstocks
  publication-title: Appl Energy
– volume: 34
  start-page: 2277
  year: 2013
  end-page: 2283
  ident: bib23
  article-title: Green energy from marine algae: biogas production and composition from the anaerobic digestion of Irish seaweed species
  publication-title: Environ Technol
– start-page: 86
  year: 2012
  end-page: 90
  ident: bib33
  article-title: Bio-fuel from anaerobic co-digestion of the macro-algae
  publication-title: Proceedings of the international scientific conference. Jelgava, Latvia
– volume: 4
  start-page: 509
  year: 2013
  end-page: 515
  ident: bib24
  article-title: Anaerobic digestion of
  publication-title: Waste Biomass Valorization
– volume: 14
  start-page: 1
  year: 1987
  end-page: 13
  ident: bib22
  article-title: Anaerobic digestion of
  publication-title: Biomass
– volume: 54
  start-page: 473
  year: 2016
  end-page: 481
  ident: bib13
  article-title: A review of macroalgae production, with potential applications in biofuels and bioenergy
  publication-title: Renew Sustain Energy Rev
– volume: 43
  start-page: 396
  year: 2012
  end-page: 401
  ident: bib20
  article-title: Evaluation of marine biomass as a source of methane in batch tests: a lab-scale study
  publication-title: Energy
– start-page: 95
  year: 2010
  end-page: 105
  ident: bib36
  article-title: Environmental technology assessment of natural gas compared to biogas
  publication-title: Nat Gas InTech
– year: 2014
  ident: bib3
  article-title: Renewable energy in Ireland 2012
– ident: bib17
  article-title: Phaeophyceae: brown algae
– volume: 108
  start-page: 202
  year: 2016
  end-page: 209
  ident: bib30
  article-title: Pretreatment of macroalgal biomass for biogas production
  publication-title: Energy Convers Manag
– ident: bib5
  article-title: European Parliament backs switchover to advanced biofuels
– year: 2006
  ident: 10.1016/j.energy.2016.10.132_bib34
– ident: 10.1016/j.energy.2016.10.132_bib5
– year: 2012
  ident: 10.1016/j.energy.2016.10.132_bib27
  article-title: Review of mechanical and physical biomass pretreatment to increase the biogas yield
– volume: 25
  start-page: 294
  year: 2007
  ident: 10.1016/j.energy.2016.10.132_bib7
  article-title: Biodiesel from microalgae
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2007.02.001
– volume: 62
  start-page: 527
  year: 2014
  ident: 10.1016/j.energy.2016.10.132_bib29
  article-title: Optimisation of mechanical pre-treatment of Laminariaceae sp. biomass-derived biogas
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2013.08.023
– volume: 15
  start-page: 4537
  year: 2011
  ident: 10.1016/j.energy.2016.10.132_bib14
  article-title: Assessing the cost of biofuel production with increasing penetration of the transport fuel market: a case study of gaseous biomethane in Ireland
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2011.07.098
– year: 2008
  ident: 10.1016/j.energy.2016.10.132_bib35
– year: 2014
  ident: 10.1016/j.energy.2016.10.132_bib3
– start-page: 95
  year: 2010
  ident: 10.1016/j.energy.2016.10.132_bib36
  article-title: Environmental technology assessment of natural gas compared to biogas
  publication-title: Nat Gas InTech
– volume: 5
  start-page: 1
  year: 2012
  ident: 10.1016/j.energy.2016.10.132_bib10
  article-title: Biogas from macroalgae: is it time to revisit the idea?
  publication-title: Biotechnol Biofuels
  doi: 10.1186/1754-6834-5-86
– volume: 36
  start-page: 183
  year: 2015
  ident: 10.1016/j.energy.2016.10.132_bib25
  article-title: Biogas production from the anaerobic digestion of Laminaria digitata in a 10 L pilot-plant with digestate re-use as fertiliser
  publication-title: Int J Ambient Energy
  doi: 10.1080/01430750.2013.842496
– year: 2009
  ident: 10.1016/j.energy.2016.10.132_bib1
  article-title: Directive 2009/28/EC of the European parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/EC and 2003/30
  publication-title: Off. J Eur Union
– volume: 4
  start-page: 509
  year: 2013
  ident: 10.1016/j.energy.2016.10.132_bib24
  article-title: Anaerobic digestion of Laminaria digitata: the effect of temperature on biogas production and composition
  publication-title: Waste Biomass Valorization
  doi: 10.1007/s12649-012-9181-z
– volume: 43
  start-page: 961
  year: 2015
  ident: 10.1016/j.energy.2016.10.132_bib19
  article-title: Biogas production from algal biomass: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.11.052
– volume: 9
  start-page: 157
  year: 1997
  ident: 10.1016/j.energy.2016.10.132_bib38
  article-title: Alginate degradation during anaerobic digestion of Laminaria hyperborea stipes
  publication-title: J Appl Phycol
  doi: 10.1023/A:1007966126570
– volume: 14
  start-page: 1
  year: 1987
  ident: 10.1016/j.energy.2016.10.132_bib22
  article-title: Anaerobic digestion of Laminaria sp. and Ascophyllum nodosum and application of end products
  publication-title: Biomass
  doi: 10.1016/0144-4565(87)90019-9
– start-page: 86
  year: 2012
  ident: 10.1016/j.energy.2016.10.132_bib33
  article-title: Bio-fuel from anaerobic co-digestion of the macro-algae Ulva lactuca and Laminaria digitata
– volume: 170
  start-page: 436
  year: 2014
  ident: 10.1016/j.energy.2016.10.132_bib16
  article-title: Investigation of the optimal percentage of green seaweed that may be co-digested with dairy slurry to produce gaseous biofuel
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2014.08.005
– volume: 14
  start-page: 277
  year: 2010
  ident: 10.1016/j.energy.2016.10.132_bib15
  article-title: A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2009.07.004
– ident: 10.1016/j.energy.2016.10.132_bib17
– volume: 50
  start-page: 1746
  year: 2009
  ident: 10.1016/j.energy.2016.10.132_bib9
  article-title: Potential contribution of biomass to the sustainable energy development
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2009.03.013
– year: 2015
  ident: 10.1016/j.energy.2016.10.132_bib2
– volume: 108
  start-page: 202
  year: 2016
  ident: 10.1016/j.energy.2016.10.132_bib30
  article-title: Pretreatment of macroalgal biomass for biogas production
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.11.008
– volume: 335
  start-page: 308
  year: 2012
  ident: 10.1016/j.energy.2016.10.132_bib11
  article-title: An engineered microbial platform for direct biofuel production from brown macroalgae
  publication-title: Science
  doi: 10.1126/science.1214547
– volume: 9
  start-page: 1621
  year: 2008
  ident: 10.1016/j.energy.2016.10.132_bib26
  article-title: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms9091621
– volume: 102
  start-page: 1371
  year: 2012
  ident: 10.1016/j.energy.2016.10.132_bib8
  article-title: Recent advances in liquid biofuel production from algal feedstocks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.07.031
– volume: 36
  start-page: 1
  year: 2013
  ident: 10.1016/j.energy.2016.10.132_bib21
  article-title: Comparing the anaerobic digestion of Ascophyllum nodosum, the organic fraction of municipal solid waste and white rice in batch reactors
  publication-title: Int J Ambient Energy
– volume: 47
  start-page: 2523
  year: 2012
  ident: 10.1016/j.energy.2016.10.132_bib28
  article-title: Exploring strategies for seaweed hydrolysis: effect on methane potential and heavy metal mobilisation
  publication-title: Process Biochem
  doi: 10.1016/j.procbio.2012.06.022
– volume: 54
  start-page: 473
  year: 2016
  ident: 10.1016/j.energy.2016.10.132_bib13
  article-title: A review of macroalgae production, with potential applications in biofuels and bioenergy
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.10.022
– volume: 88
  start-page: 3548
  year: 2011
  ident: 10.1016/j.energy.2016.10.132_bib12
  article-title: A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.12.012
– volume: 27
  start-page: 596
  year: 2013
  ident: 10.1016/j.energy.2016.10.132_bib18
  article-title: Algae biomass as an alternative substrate in biogas production technologies-Review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.07.029
– volume: 27
  start-page: 363
  year: 2015
  ident: 10.1016/j.energy.2016.10.132_bib37
  article-title: The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta
  publication-title: J Appl Phycol
  doi: 10.1007/s10811-014-0327-1
– volume: 34
  start-page: 2277
  year: 2013
  ident: 10.1016/j.energy.2016.10.132_bib23
  article-title: Green energy from marine algae: biogas production and composition from the anaerobic digestion of Irish seaweed species
  publication-title: Environ Technol
  doi: 10.1080/09593330.2013.765922
– year: 2003
  ident: 10.1016/j.energy.2016.10.132_bib32
– ident: 10.1016/j.energy.2016.10.132_bib4
– volume: 43
  start-page: 396
  year: 2012
  ident: 10.1016/j.energy.2016.10.132_bib20
  article-title: Evaluation of marine biomass as a source of methane in batch tests: a lab-scale study
  publication-title: Energy
  doi: 10.1016/j.energy.2012.04.005
– volume: 88
  start-page: 3454
  year: 2011
  ident: 10.1016/j.energy.2016.10.132_bib31
  article-title: Anaerobic digestion of microalgae residues resulting from the biodiesel production process
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.10.020
– volume: 44
  start-page: 8015
  year: 2010
  ident: 10.1016/j.energy.2016.10.132_bib6
  article-title: Greenhouse gas emissions from biofuels' indirect land use change are uncertain but may be much greater than previously estimated
  publication-title: Environ Sci Technol
  doi: 10.1021/es101946t
SSID ssj0005899
Score 2.3957958
Snippet The European Commission opened a discussion about limiting first generation food based biofuels in favour of advanced biofuels. The main reason was to limit...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1079
SubjectTerms Algae
Anaerobic digestion
Anaerobic processes
Ascophyllum nodosum
Biodiesel fuels
Biofuels
Biogas
Emissions
Food
Laminaria
Laminaria sp
Land use
land use change
Lignin
macroalgae
Methane
methane production
Organic substrate concentration
Pretreatment
Response surface methodology
Seaweeds
uncertainty
Volatile solids
Title Influence of mechanical pretreatment and organic concentration of Irish brown seaweed for methane production
URI https://dx.doi.org/10.1016/j.energy.2016.10.132
https://www.proquest.com/docview/1932185255
https://www.proquest.com/docview/2131882098
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB1CemgvJU0bum0aVOhVWa8s29IxhIRNF3JoG7o3IckSpKTeJbuht_72zMhS-gEl0JNBHtlGMxo9WfNmAD5I21hV2ZaLEFouYxO4drbhLkYnZsHG6FOU72U7v5Ifl81yB04LF4bCKrPvH3168ta5ZZpHc7q-vp5-Rt-LeEMKRBQztLslMdhlR1Z-_PO3MA-VakiSMCfpQp9LMV4h8esowKs9TjUgxL-Wp78cdVp9zvfgeYaN7GT8shewE4Z9eFpYxZt9ODj7xVhDwTxlNy_h5qKUIWGryL4HYvqSYhhFGpYoc2aHno0FnjzzxGQccjpd6pSq0DNHG3aGM-MHLngMsS6j6tN2CGw9Zo1F6VdwdX725XTOc4kF7mUltzwq38RYV05b21o9U7Gt6k5JL5TXVuJ-p6ocgkARtIpS161yjfadqlrdh-B0fQC7w2oIr4H5SHlhdK3oMDV2zsmAj-1r4Xsl-q6bQF1G1vicf5zKYNyYEmj2zYz6MKSP1FqLCfCHXusx_8Yj8l1RmvnDjgwuEY_0PCw6NnkebwzBW6KXN80E3j_cxhlIxyo4wqu7jREz9IsIpLR6898vfwvPBOGF9G_nEHa3t3fhHaKdrTtK5nwET04uFvNLui4-fV3cAwa7A7I
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcigXBIWKhQJG4upu1nES-4iqVlsovdBKe7Nsx5aK2uyK3Ypbf3tnHLt8SKgSV2ecRB7PzEs8Mw_go7SNVZVtuQih5TI2gWtnG-5idGIWbIw-ZfmetfML-XnRLLbgsNTCUFpl9v2jT0_eOo9M82pOV5eX02_oexFvSIGIYob7bvEIHks0X6IxOLj9Lc9DJRJJkuYkXurnUpJXSAV2lOHVHiQSCPGv-PSXp07h5_gZPM24kX0aX-05bIVhF3ZKWfF6F_aOfpWsoWC22fULuDopPCRsGdl1oFJf0gyjVMOSZs7s0LOR4ckzT6WMQ-6nS5MSDT1z9MXO0DR-YsRjCHYZ0U_bIbDV2DYWpV_CxfHR-eGcZ44F7mUlNzwq38RYV05b21o9U7Gt6k5JL5TXVuIHT1U5RIEiaBWlrlvlGu07VbW6D8Hpeg-2h-UQXgHzkRrD6FrRaWrsnJMBb9vXwvdK9F03gbqsrPG5ATnxYFyZkmn23Yz6MKSPNFqLCfD7WauxAccD8l1RmvljIxmMEQ_M3C86NtmQ14bwLdWXN80EPtxfRhOkcxVc4eXN2ogZOkZEUlq9_u-Hv4ed-fnXU3N6cvblDTwRBB7Sj5592N78uAlvEfps3Lu0te8AxAEDnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+mechanical+pretreatment+and+organic+concentration+of+Irish+brown+seaweed+for+methane+production&rft.jtitle=Energy+%28Oxford%29&rft.au=Montingelli%2C+ME&rft.au=Benyounis%2C+KY&rft.au=Quilty%2C+B&rft.au=Stokes%2C+J&rft.date=2017-01-01&rft.pub=Elsevier+BV&rft.issn=0360-5442&rft.eissn=1873-6785&rft.volume=118&rft.spage=1079&rft_id=info:doi/10.1016%2Fj.energy.2016.10.132&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon