Leaflet remodeling reduces tricuspid valve function in a computational model

Tricuspid valve leaflets have historically been considered “passive flaps”. However, we have recently shown that tricuspid leaflets actively remodel in sheep with functional tricuspid regurgitation. We hypothesize that these remodeling-induced changes reduce leaflet coaptation and, therefore, contri...

Full description

Saved in:
Bibliographic Details
Published inJournal of the mechanical behavior of biomedical materials Vol. 152; p. 106453
Main Authors Mathur, Mrudang, Malinowski, Marcin, Jazwiec, Tomasz, Timek, Tomasz A., Rausch, Manuel K.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.04.2024
Subjects
Online AccessGet full text
ISSN1751-6161
1878-0180
1878-0180
DOI10.1016/j.jmbbm.2024.106453

Cover

Loading…
Abstract Tricuspid valve leaflets have historically been considered “passive flaps”. However, we have recently shown that tricuspid leaflets actively remodel in sheep with functional tricuspid regurgitation. We hypothesize that these remodeling-induced changes reduce leaflet coaptation and, therefore, contribute to valvular dysfunction. To test this, we simulated the impact of remodeling-induced changes on valve mechanics in a reverse-engineered computer model of the human tricuspid valve. To this end, we combined right-heart pressures and tricuspid annular dynamics recorded in an ex vivo beating heart, with subject-matched in vitro measurements of valve geometry and material properties, to build a subject-specific finite element model. Next, we modified the annular geometry and boundary conditions to mimic changes seen in patients with pulmonary hypertension. In this model, we then increased leaflet thickness and stiffness and reduced the stretch at which leaflets stiffen, which we call “transition-λ.” Subsequently, we quantified mean leaflet stresses, leaflet systolic angles, and coaptation area as measures of valve function. We found that leaflet stresses, leaflet systolic angle, and coaptation area are sensitive to independent changes in stiffness, thickness, and transition-λ. When combining thickening, stiffening, and changes in transition-λ, we found that anterior and posterior leaflet stresses decreased by 26% and 28%, respectively. Furthermore, systolic angles increased by 43%, and coaptation area decreased by 66%; thereby impeding valve function. While only a computational study, we provide the first evidence that remodeling-induced leaflet thickening and stiffening may contribute to valvular dysfunction. Targeted suppression of such changes in diseased valves could restore normal valve mechanics and promote leaflet coaptation. [Display omitted] •We introduce the effects of leaflet remodeling in a computer model of the human tricuspid valve.•We demonstrate that remodeling-induced changes alter leaflet stress, leaflet motion, and valve coaptation area.•We show that suppressing leaflet thickening and stiffening may improve valve function.
AbstractList Tricuspid valve leaflets have historically been considered “passive flaps”. However, we have recently shown that tricuspid leaflets actively remodel in sheep with functional tricuspid regurgitation. We hypothesize that these remodeling-induced changes reduce leaflet coaptation and, therefore, contribute to valvular dysfunction. To test this, we simulated the impact of remodeling-induced changes on valve mechanics in a reverse-engineered computer model of the human tricuspid valve. To this end, we combined right-heart pressures and tricuspid annular dynamics recorded in an ex vivo beating heart, with subject-matched in vitro measurements of valve geometry and material properties, to build a subject-specific finite element model. Next, we modified the annular geometry and boundary conditions to mimic changes seen in patients with pulmonary hypertension. In this model, we then increased leaflet thickness and stiffness and reduced the stretch at which leaflets stiffen, which we call “transition-λ.” Subsequently, we quantified mean leaflet stresses, leaflet systolic angles, and coaptation area as measures of valve function. We found that leaflet stresses, leaflet systolic angle, and coaptation area are sensitive to independent changes in stiffness, thickness, and transition-λ. When combining thickening, stiffening, and changes in transition-λ, we found that anterior and posterior leaflet stresses decreased by 26% and 28%, respectively. Furthermore, systolic angles increased by 43%, and coaptation area decreased by 66%; thereby impeding valve function. While only a computational study, we provide the first evidence that remodeling-induced leaflet thickening and stiffening may contribute to valvular dysfunction. Targeted suppression of such changes in diseased valves could restore normal valve mechanics and promote leaflet coaptation. [Display omitted] •We introduce the effects of leaflet remodeling in a computer model of the human tricuspid valve.•We demonstrate that remodeling-induced changes alter leaflet stress, leaflet motion, and valve coaptation area.•We show that suppressing leaflet thickening and stiffening may improve valve function.
Tricuspid valve leaflets have historically been considered "passive flaps". However, we have recently shown that tricuspid leaflets actively remodel in sheep with functional tricuspid regurgitation. We hypothesize that these remodeling-induced changes reduce leaflet coaptation and, therefore, contribute to valvular dysfunction. To test this, we simulated the impact of remodeling-induced changes on valve mechanics in a reverse-engineered computer model of the human tricuspid valve. To this end, we combined right-heart pressures and tricuspid annular dynamics recorded in an ex vivo beating heart, with subject-matched in vitro measurements of valve geometry and material properties, to build a subject-specific finite element model. Next, we modified the annular geometry and boundary conditions to mimic changes seen in patients with pulmonary hypertension. In this model, we then increased leaflet thickness and stiffness and reduced the stretch at which leaflets stiffen, which we call "transition-λ." Subsequently, we quantified mean leaflet stresses, leaflet systolic angles, and coaptation area as measures of valve function. We found that leaflet stresses, leaflet systolic angle, and coaptation area are sensitive to independent changes in stiffness, thickness, and transition-λ. When combining thickening, stiffening, and changes in transition-λ, we found that anterior and posterior leaflet stresses decreased by 26% and 28%, respectively. Furthermore, systolic angles increased by 43%, and coaptation area decreased by 66%; thereby impeding valve function. While only a computational study, we provide the first evidence that remodeling-induced leaflet thickening and stiffening may contribute to valvular dysfunction. Targeted suppression of such changes in diseased valves could restore normal valve mechanics and promote leaflet coaptation.Tricuspid valve leaflets have historically been considered "passive flaps". However, we have recently shown that tricuspid leaflets actively remodel in sheep with functional tricuspid regurgitation. We hypothesize that these remodeling-induced changes reduce leaflet coaptation and, therefore, contribute to valvular dysfunction. To test this, we simulated the impact of remodeling-induced changes on valve mechanics in a reverse-engineered computer model of the human tricuspid valve. To this end, we combined right-heart pressures and tricuspid annular dynamics recorded in an ex vivo beating heart, with subject-matched in vitro measurements of valve geometry and material properties, to build a subject-specific finite element model. Next, we modified the annular geometry and boundary conditions to mimic changes seen in patients with pulmonary hypertension. In this model, we then increased leaflet thickness and stiffness and reduced the stretch at which leaflets stiffen, which we call "transition-λ." Subsequently, we quantified mean leaflet stresses, leaflet systolic angles, and coaptation area as measures of valve function. We found that leaflet stresses, leaflet systolic angle, and coaptation area are sensitive to independent changes in stiffness, thickness, and transition-λ. When combining thickening, stiffening, and changes in transition-λ, we found that anterior and posterior leaflet stresses decreased by 26% and 28%, respectively. Furthermore, systolic angles increased by 43%, and coaptation area decreased by 66%; thereby impeding valve function. While only a computational study, we provide the first evidence that remodeling-induced leaflet thickening and stiffening may contribute to valvular dysfunction. Targeted suppression of such changes in diseased valves could restore normal valve mechanics and promote leaflet coaptation.
Tricuspid valve leaflets have historically been considered "passive flaps". However, we have recently shown that tricuspid leaflets actively remodel in sheep with functional tricuspid regurgitation. We hypothesize that these remodeling-induced changes reduce leaflet coaptation and, therefore, contribute to valvular dysfunction. To test this, we simulated the impact of remodeling-induced changes on valve mechanics in a reverse-engineered computer model of the human tricuspid valve. To this end, we combined right-heart pressures and tricuspid annular dynamics recorded in an ex vivo beating heart, with subject-matched in vitro measurements of valve geometry and material properties, to build a subject-specific finite element model. Next, we modified the annular geometry and boundary conditions to mimic changes seen in patients with pulmonary hypertension. In this model, we then increased leaflet thickness and stiffness and reduced the stretch at which leaflets stiffen, which we call "transition-λ." Subsequently, we quantified mean leaflet stresses, leaflet systolic angles, and coaptation area as measures of valve function. We found that leaflet stresses, leaflet systolic angle, and coaptation area are sensitive to independent changes in stiffness, thickness, and transition-λ. When combining thickening, stiffening, and changes in transition-λ, we found that anterior and posterior leaflet stresses decreased by 26% and 28%, respectively. Furthermore, systolic angles increased by 43%, and coaptation area decreased by 66%; thereby impeding valve function. While only a computational study, we provide the first evidence that remodeling-induced leaflet thickening and stiffening may contribute to valvular dysfunction. Targeted suppression of such changes in diseased valves could restore normal valve mechanics and promote leaflet coaptation.
ArticleNumber 106453
Author Mathur, Mrudang
Malinowski, Marcin
Timek, Tomasz A.
Rausch, Manuel K.
Jazwiec, Tomasz
Author_xml – sequence: 1
  givenname: Mrudang
  orcidid: 0000-0002-9273-5586
  surname: Mathur
  fullname: Mathur, Mrudang
  organization: Department of Mechanical Engineering, University of Texas at Austin, 204 E Dean Keeton Street, Austin, 78712, TX, United States of America
– sequence: 2
  givenname: Marcin
  orcidid: 0000-0002-4526-2843
  surname: Malinowski
  fullname: Malinowski, Marcin
  organization: Division of Cardiothoracic Surgery, Spectrum Health, 221 Michigan Street NE Suite 300, Grand Rapids, 49503, MI, United States of America
– sequence: 3
  givenname: Tomasz
  surname: Jazwiec
  fullname: Jazwiec, Tomasz
  organization: Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland
– sequence: 4
  givenname: Tomasz A.
  surname: Timek
  fullname: Timek, Tomasz A.
  organization: Division of Cardiothoracic Surgery, Spectrum Health, 221 Michigan Street NE Suite 300, Grand Rapids, 49503, MI, United States of America
– sequence: 5
  givenname: Manuel K.
  orcidid: 0000-0003-1337-6472
  surname: Rausch
  fullname: Rausch, Manuel K.
  email: manuel.rausch@utexas.edu
  organization: Department of Mechanical Engineering, University of Texas at Austin, 204 E Dean Keeton Street, Austin, 78712, TX, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38335648$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtqwzAQRUVJaR7tFxSKl904HVmyLC-6KKEvMHTTroUsj4uMH6lkB_r3deJk00VWcxnuGZizJLO2a5GQWwprClQ8VOuqyfNmHUHEx43gMbsgCyoTGQKVMBtzEtNQUEHnZOl9BSAApLwicyYZiwWXC5JlqMsa-8Bh0xVY2_Z7jMVg0Ae9s2bwW1sEO13vMCiH1vS2awPbBjowXbMder1f6Do4wNfkstS1x5vjXJGvl-fPzVuYfby-b56y0HDgfVgmaIDGqUSDhaB5orUWFEvJAcHImLHSsCgvZYSsgDTCBJFzoWOWQ5wIyVbkfrq7dd3PgL5XjfUG61q32A1eRWkUA0sZj8bq3bE65A0Wautso92vOhkYC-lUMK7z3mGpjJ2-6p22taKg9rZVpQ621d62mmyPLPvHns6fpx4nCkdFO4tOeWOxHV1Yh6ZXRWfP8n8by5nc
CitedBy_id crossref_primary_10_1016_j_jmbbm_2024_106879
crossref_primary_10_1007_s00366_024_02031_w
crossref_primary_10_1007_s10439_024_03637_3
crossref_primary_10_1016_j_jmbbm_2024_106829
Cites_doi 10.1016/j.jacc.2017.07.734
10.1093/ehjci/jes040
10.1016/j.jacc.2003.09.036
10.1093/eurheartj/ehs474
10.1016/j.actbio.2019.11.039
10.1016/j.jtcvs.2018.08.110
10.7554/eLife.63855
10.1016/j.cardiores.2006.08.017
10.1093/ejcts/ezad115
10.1053/j.semtcvs.2020.09.012
10.1080/10255842.2019.1647533
10.1007/s00366-022-01659-w
10.1002/ca.20692
10.1093/eurheartj/ehy641
10.1016/j.jbiomech.2018.11.015
10.1016/j.jacc.2022.05.025
10.1093/ehjci/jeac085
10.1016/j.actbio.2017.11.040
10.1007/s10237-015-0674-0
10.1016/j.jmbbm.2023.105858
10.1016/j.jacc.2004.06.079
10.1007/s10439-018-2024-8
10.1111/jocs.14042
10.1016/S0003-4975(98)01106-0
10.1016/j.jmbbm.2015.10.001
10.1007/s10237-019-01148-y
10.1016/j.jmbbm.2012.07.001
10.1161/CIRCULATIONAHA.116.024848
10.1016/j.actbio.2023.03.029
10.1038/nrcardio.2014.162
10.1016/j.jacc.2011.09.069
10.1016/j.cobme.2019.12.008
10.1115/1.4054485
10.1161/JAHA.118.009777
10.1016/j.mehy.2003.12.001
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jmbbm.2024.106453
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-0180
ExternalDocumentID 38335648
10_1016_j_jmbbm_2024_106453
S1751616124000857
Genre Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R21 HL161832
– fundername: American Heart Association-American Stroke Association
  grantid: 18CDA34120028
– fundername: NHLBI NIH HHS
  grantid: R01 HL165251
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ID FETCH-LOGICAL-c404t-f7ec01598eced61b7aaa61ef840e0c8533fc32bf82e3d092e7ee446a53b057683
IEDL.DBID .~1
ISSN 1751-6161
1878-0180
IngestDate Thu Jul 10 19:08:06 EDT 2025
Mon Jul 21 06:02:53 EDT 2025
Thu Jul 03 08:33:21 EDT 2025
Thu Apr 24 23:03:01 EDT 2025
Sat Feb 01 16:09:45 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Annuloplasty
Repair
Transcatheter
Maladaptation
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-f7ec01598eced61b7aaa61ef840e0c8533fc32bf82e3d092e7ee446a53b057683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9273-5586
0000-0002-4526-2843
0000-0003-1337-6472
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11048730
PMID 38335648
PQID 2925039342
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2925039342
pubmed_primary_38335648
crossref_citationtrail_10_1016_j_jmbbm_2024_106453
crossref_primary_10_1016_j_jmbbm_2024_106453
elsevier_sciencedirect_doi_10_1016_j_jmbbm_2024_106453
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of the mechanical behavior of biomedical materials
PublicationTitleAlternate J Mech Behav Biomed Mater
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rausch (b29) 2020; 15
Gupta, Grande-Allen (b6) 2006; 72
Laurence, Ross, Jett, Johns, Echols, Baumwart, Towner, Liao, Bajona, Wu, Lee (b14) 2019; 83
Sielicka, Sarin, Shi, Sulejmani, Corporan, Kalra, Thourani, Sun, Guyton, Padala (b33) 2018; 7
Haese, Mathur, Lin, Malinowski, Timek, Rausch (b7) 2023
Pant, Thomas, Black, Verba, Lesicko, Amini (b28) 2018; 67
Nickenig, Kowalski, Hausleiter, Braun, Schofer, Yzeiraj, Rudolph, Friedrichs, Maisano, Taramasso, Fam, Bianchi, Bedogni, Denti, Alfieri, Latib, Colombo, Hammerstingl, Schueler (b27) 2017; 135
Bartko, Dal-Bianco, Guerrero, Beaudoin, Szymanski, Kim, Seybolt, Handschumacher, Sullivan, Garcia, Titus, Wylie-Sears, Irvin, Messas, Hagège, Carpentier, Aikawa, Bischoff, Levine (b3) 2017; 70
Muresian (b25) 2009; 22
Afilalo, Grapsa, Nihoyannopoulos, Beaudoin, Gibbs, Channick, Langleben, Rudski, Hua, Handschumacher, Picard, Levine (b1) 2015; 8
Grande-Allen, Borowski, Troughton, Houghtaling, DiPaola, Moravec, Vesely, Griffin (b5) 2005; 45
Iwasieczko, Gaddam, Gaweda, Goodyke, Mathur, Lin, Zagorski, Solarewicz, Cohle, Rausch, Timek (b9) 2023; 63
Ring, Rana, Kydd, Boyd, Parker, Rusk (b31) 2012; 13
Muraru, Badano (b24) 2022; 23
Meador, Mathur, Sugerman, Malinowski, Jazwiec, Wang, Lacerda, Timek, Rausch (b23) 2020; 9
Mathur, Jazwiec, Meador, Malinowski, Goehler, Ferguson, Timek, Rausch (b20) 2019; 18
Badano, Muraru, Enriquez-Sarano (b2) 2013; 34
Mathur, Meador, Malinowski, Jazwiec, Timek, Rausch (b21) 2022
Wu, Ching, Maas, Lasso, Sabin, Weiss, Jolley (b38) 2022; 144
Nath, Foster, Heidenreich (b26) 2004; 43
Taramasso, Vanermen, Maisano, Guidotti, La Canna, Alfieri (b34) 2012; 59
Jazwiec, Malinowski, Ferguson, Parker, Mathur, Rausch, Timek (b10) 2021; 33
van Kelle, Rausch, Kuhl, Loerakker (b11) 2019; 22
Rausch, Tibayan, Craig Miller, Kuhl (b30) 2012; 15
Kong, Pham, Martin, McKay, Primiano, Hashim, Kodali, Sun (b12) 2018; 46
Lin, Mathur, Malinowski, Timek, Rausch (b16) 2022
Williams, Jew (b37) 2004; 62
Wang, Fulcher, Abeysuriya, McGrady, Wilcox, Celermajer, Lal (b35) 2019; 40
Wang, Leinwand, Anseth (b36) 2014; 11
Loerakker, Ristori, Baaijens (b17) 2016; 58
Meador, Mathur, Sugerman, Jazwiec, Malinowski, Bersi, Timek, Rausch (b22) 2020; 102
Sadeghinia, Aguilera, Urheim, Persson, Ellensen, Haaverstad, Holzapfel, Skallerud, Prot (b32) 2023; 164
Wu, Ching, Sabin, Laurence, Maas, Lasso, Weiss, Jolley (b39) 2023; 142
Marsit, Clavel, Paquin, Deschênes, Hadjadj, Sénéchal-Dumais, Couet, Arsenault, Handschumacher, Levine, Aikawa, Pibarot, Beaudoin (b19) 2022; 80
Calafiore, Foschi, Kheirallah, Alsaied, Alfonso, Tancredi, Gaudino, Di Mauro (b4) 2019; 34
Lee, Rabbah, Yoganathan, Gorman, Gorman, Sacks (b15) 2015; 14
Malinowski, Jazwiec, Goehler, Quay, Bush, Jovinge, Rausch, Timek (b18) 2019; 157
Hahn, Weckbach, Noack, Hamid, Kitamura, Bae, Lurz, Kodali, Sorajja, Hausleiter, Nabauer (b8) 2021; 14
Kunzelman, Quick, Cochran (b13) 1998; 66
Kunzelman (10.1016/j.jmbbm.2024.106453_b13) 1998; 66
Sadeghinia (10.1016/j.jmbbm.2024.106453_b32) 2023; 164
Sielicka (10.1016/j.jmbbm.2024.106453_b33) 2018; 7
Iwasieczko (10.1016/j.jmbbm.2024.106453_b9) 2023; 63
Gupta (10.1016/j.jmbbm.2024.106453_b6) 2006; 72
Rausch (10.1016/j.jmbbm.2024.106453_b30) 2012; 15
Mathur (10.1016/j.jmbbm.2024.106453_b20) 2019; 18
Afilalo (10.1016/j.jmbbm.2024.106453_b1) 2015; 8
Haese (10.1016/j.jmbbm.2024.106453_b7) 2023
Muraru (10.1016/j.jmbbm.2024.106453_b24) 2022; 23
Wu (10.1016/j.jmbbm.2024.106453_b39) 2023; 142
Kong (10.1016/j.jmbbm.2024.106453_b12) 2018; 46
Lin (10.1016/j.jmbbm.2024.106453_b16) 2022
Mathur (10.1016/j.jmbbm.2024.106453_b21) 2022
Laurence (10.1016/j.jmbbm.2024.106453_b14) 2019; 83
Muresian (10.1016/j.jmbbm.2024.106453_b25) 2009; 22
Meador (10.1016/j.jmbbm.2024.106453_b22) 2020; 102
Calafiore (10.1016/j.jmbbm.2024.106453_b4) 2019; 34
van Kelle (10.1016/j.jmbbm.2024.106453_b11) 2019; 22
Loerakker (10.1016/j.jmbbm.2024.106453_b17) 2016; 58
Lee (10.1016/j.jmbbm.2024.106453_b15) 2015; 14
Rausch (10.1016/j.jmbbm.2024.106453_b29) 2020; 15
Ring (10.1016/j.jmbbm.2024.106453_b31) 2012; 13
Marsit (10.1016/j.jmbbm.2024.106453_b19) 2022; 80
Nickenig (10.1016/j.jmbbm.2024.106453_b27) 2017; 135
Wu (10.1016/j.jmbbm.2024.106453_b38) 2022; 144
Pant (10.1016/j.jmbbm.2024.106453_b28) 2018; 67
Malinowski (10.1016/j.jmbbm.2024.106453_b18) 2019; 157
Meador (10.1016/j.jmbbm.2024.106453_b23) 2020; 9
Williams (10.1016/j.jmbbm.2024.106453_b37) 2004; 62
Grande-Allen (10.1016/j.jmbbm.2024.106453_b5) 2005; 45
Hahn (10.1016/j.jmbbm.2024.106453_b8) 2021; 14
Jazwiec (10.1016/j.jmbbm.2024.106453_b10) 2021; 33
Taramasso (10.1016/j.jmbbm.2024.106453_b34) 2012; 59
Bartko (10.1016/j.jmbbm.2024.106453_b3) 2017; 70
Badano (10.1016/j.jmbbm.2024.106453_b2) 2013; 34
Nath (10.1016/j.jmbbm.2024.106453_b26) 2004; 43
Wang (10.1016/j.jmbbm.2024.106453_b35) 2019; 40
Wang (10.1016/j.jmbbm.2024.106453_b36) 2014; 11
References_xml – volume: 15
  start-page: 208
  year: 2012
  end-page: 217
  ident: b30
  article-title: Evidence of adaptive mitral leaflet growth
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 33
  start-page: 356
  year: 2021
  end-page: 364
  ident: b10
  article-title: Tricuspid valve anterior leaflet strains in ovine functional tricuspid regurgitation
  publication-title: Semin. Thorac. Cardiovasc. Surg.
– volume: 23
  start-page: 863
  year: 2022
  end-page: 866
  ident: b24
  article-title: Shedding new light on the fascinating right heart
  publication-title: Eur. Heart J. Cardiovasc. Imaging
– volume: 34
  start-page: 404
  year: 2019
  end-page: 411
  ident: b4
  article-title: Early failure of tricuspid annuloplasty. Should we repair the tricuspid valve at an earlier stage? The role of right ventricle and tricuspid apparatus
  publication-title: J. Card. Surg.
– volume: 43
  start-page: 405
  year: 2004
  end-page: 409
  ident: b26
  article-title: Impact of tricuspid regurgitation on long-term survival
  publication-title: J. Am. Coll. Cardiol.
– volume: 62
  start-page: 605
  year: 2004
  end-page: 611
  ident: b37
  article-title: Is the mitral valve passive flap theory overstated? An active valve is hypothesized
  publication-title: Med. Hypotheses
– volume: 9
  start-page: 1
  year: 2020
  end-page: 22
  ident: b23
  article-title: The tricuspid valve also maladapts as shown in sheep with biventricular heart failure
  publication-title: eLife
– volume: 67
  start-page: 248
  year: 2018
  end-page: 258
  ident: b28
  article-title: Pressure-induced microstructural changes in porcine tricuspid valve leaflets
  publication-title: Acta Biomater.
– volume: 15
  start-page: 10
  year: 2020
  end-page: 15
  ident: b29
  article-title: Growth and remodeling of atrioventricular heart valves: A potential target for pharmacological treatment?
  publication-title: Curr. Opin. Biomed. Eng.
– start-page: 1
  year: 2023
  end-page: 10
  ident: b7
  article-title: Impact of tricuspid annuloplasty device shape and size on valve mechanics - a computational study
  publication-title: JTCVS Open
– volume: 45
  start-page: 54
  year: 2005
  end-page: 61
  ident: b5
  article-title: Apparently normal mitral valves in patients with heart failure demonstrate biochemical and structural derangements
  publication-title: J. Am. Coll. Cardiol.
– start-page: 0
  year: 2022
  end-page: 10
  ident: b16
  article-title: The impact of thickness heterogeneity on soft tissue biomechanics: a novel measurement technique and a demonstration on heart valve tissue
  publication-title: Biomech. Model. Mechanobiol.
– volume: 80
  start-page: 500
  year: 2022
  end-page: 510
  ident: b19
  article-title: Effects of cyproheptadine on mitral valve remodeling and regurgitation after myocardial infarction
  publication-title: J. Am. Coll. Cardiol.
– volume: 22
  start-page: 85
  year: 2009
  end-page: 98
  ident: b25
  article-title: The clinical anatomy of the mitral valve
  publication-title: Clin. Anatomy
– volume: 11
  start-page: 715
  year: 2014
  end-page: 727
  ident: b36
  article-title: Cardiac valve cells and their microenvironment—insights from in vitro studies
  publication-title: Nat. Rev. Cardiol.
– volume: 22
  start-page: 1174
  year: 2019
  end-page: 1185
  ident: b11
  article-title: A computational model to predict cell traction-mediated prestretch in the mitral valve
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 34
  start-page: 1875
  year: 2013
  end-page: 1884
  ident: b2
  article-title: Assessment of functional tricuspid regurgitation
  publication-title: Eur. Heart J.
– volume: 144
  year: 2022
  ident: b38
  article-title: A computational framework for atrioventricular valve modeling using open-source software
  publication-title: J. Biomech. Eng.
– volume: 40
  start-page: 476
  year: 2019
  end-page: 484
  ident: b35
  article-title: Tricuspid regurgitation is associated with increased mortality independent of pulmonary pressures and right heart failure: A systematic review and meta-analysis
  publication-title: Eur. Heart J.
– volume: 58
  start-page: 173
  year: 2016
  end-page: 187
  ident: b17
  article-title: A computational analysis of cell-mediated compaction and collagen remodeling in tissue-engineered heart valves
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 164
  start-page: 269
  year: 2023
  end-page: 281
  ident: b32
  article-title: Mechanical behavior and collagen structure of degenerative mitral valve leaflets and a finite element model of primary mitral regurgitation
  publication-title: Acta Biomater.
– volume: 18
  start-page: 1351
  year: 2019
  end-page: 1361
  ident: b20
  article-title: Tricuspid valve leaflet strains in the beating ovine heart
  publication-title: Biomech. Model. Mechanobiol.
– volume: 157
  start-page: 1452
  year: 2019
  end-page: 1461.e1
  ident: b18
  article-title: Sonomicrometry-derived 3-dimensional geometry of the human tricuspid annulus
  publication-title: J. Thorac. Cardiovasc. Surg.
– volume: 70
  start-page: 1232
  year: 2017
  end-page: 1244
  ident: b3
  article-title: Effect of losartan on mitral valve changes after myocardial infarction
  publication-title: J. Am. Coll. Cardiol.
– volume: 14
  start-page: 1299
  year: 2021
  end-page: 1305
  ident: b8
  article-title: Proposal for a standard echocardiographic tricuspid valve nomenclature
  publication-title: JACC: Cardiovasc. Imaging
– volume: 66
  start-page: S198
  year: 1998
  end-page: S205
  ident: b13
  article-title: Altered collagen concentration in mitral valve leaflets: biochemical and finite element analysis
  publication-title: Ann. Thorac. Surg.
– volume: 142
  year: 2023
  ident: b39
  article-title: The effects of leaflet material properties on the simulated function of regurgitant mitral valves
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 7
  start-page: 1
  year: 2018
  end-page: 18
  ident: b33
  article-title: Pathological remodeling of mitral valve leaflets from unphysiologic leaflet mechanics after undersized mitral annuloplasty to repair ischemic mitral regurgitation
  publication-title: J. Am. Heart Assoc.
– volume: 46
  start-page: 1112
  year: 2018
  end-page: 1127
  ident: b12
  article-title: Finite element analysis of tricuspid valve deformation from multi-slice computed tomography images
  publication-title: Ann. Biomed. Eng.
– volume: 102
  start-page: 100
  year: 2020
  end-page: 113
  ident: b22
  article-title: A detailed mechanical and microstructural analysis of ovine tricuspid valve leaflets
  publication-title: Acta Biomater.
– volume: 83
  start-page: 16
  year: 2019
  end-page: 27
  ident: b14
  article-title: An investigation of regional variations in the biaxial mechanical properties and stress relaxation behaviors of porcine atrioventricular heart valve leaflets
  publication-title: J. Biomech.
– volume: 72
  start-page: 375
  year: 2006
  end-page: 383
  ident: b6
  article-title: Effects of static and cyclic loading in regulating extracellular matrix synthesis by cardiovascular cells
  publication-title: Cardiovasc. Res.
– year: 2022
  ident: b21
  article-title: Texas TriValve 1.0 : a reverse-engineered, open model of the human tricuspid valve
  publication-title: Eng. Comput.
– volume: 14
  start-page: 1281
  year: 2015
  end-page: 1302
  ident: b15
  article-title: On the effects of leaflet microstructure and constitutive model on the closing behavior of the mitral valve
  publication-title: Biomech. Model. Mechanobiol.
– volume: 135
  start-page: 1802
  year: 2017
  end-page: 1814
  ident: b27
  article-title: Transcatheter treatment of severe tricuspid regurgitation with the edge-to-edge mitraclip technique
  publication-title: Circulation
– volume: 13
  start-page: 756
  year: 2012
  end-page: 762
  ident: b31
  article-title: Dynamics of the tricuspid valve annulus in normal and dilated right hearts: A three-dimensional transoesophageal echocardiography study
  publication-title: Eur. Heart J. Cardiovasc. Imaging
– volume: 59
  start-page: 703
  year: 2012
  end-page: 710
  ident: b34
  article-title: The growing clinical importance of secondary tricuspid regurgitation
  publication-title: J. Am. Coll. Cardiol.
– volume: 8
  start-page: 1
  year: 2015
  end-page: 8
  ident: b1
  article-title: Leaflet area as a determinant of tricuspid regurgitation severity in patients with pulmonary hypertension
  publication-title: Circ.: Cardiovasc. Imaging
– volume: 63
  start-page: ezad115
  year: 2023
  ident: b9
  article-title: Valvular complex and tissue remodelling in ovine functional tricuspid regurgitation
  publication-title: Eur. J. Cardio-Thorac. Surg.
– volume: 70
  start-page: 1232
  issue: 10
  year: 2017
  ident: 10.1016/j.jmbbm.2024.106453_b3
  article-title: Effect of losartan on mitral valve changes after myocardial infarction
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2017.07.734
– volume: 13
  start-page: 756
  issue: 9
  year: 2012
  ident: 10.1016/j.jmbbm.2024.106453_b31
  article-title: Dynamics of the tricuspid valve annulus in normal and dilated right hearts: A three-dimensional transoesophageal echocardiography study
  publication-title: Eur. Heart J. Cardiovasc. Imaging
  doi: 10.1093/ehjci/jes040
– volume: 43
  start-page: 405
  issue: 3
  year: 2004
  ident: 10.1016/j.jmbbm.2024.106453_b26
  article-title: Impact of tricuspid regurgitation on long-term survival
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2003.09.036
– volume: 34
  start-page: 1875
  issue: 25
  year: 2013
  ident: 10.1016/j.jmbbm.2024.106453_b2
  article-title: Assessment of functional tricuspid regurgitation
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehs474
– start-page: 1
  year: 2023
  ident: 10.1016/j.jmbbm.2024.106453_b7
  article-title: Impact of tricuspid annuloplasty device shape and size on valve mechanics - a computational study
  publication-title: JTCVS Open
– volume: 102
  start-page: 100
  year: 2020
  ident: 10.1016/j.jmbbm.2024.106453_b22
  article-title: A detailed mechanical and microstructural analysis of ovine tricuspid valve leaflets
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.11.039
– volume: 157
  start-page: 1452
  issue: 4
  year: 2019
  ident: 10.1016/j.jmbbm.2024.106453_b18
  article-title: Sonomicrometry-derived 3-dimensional geometry of the human tricuspid annulus
  publication-title: J. Thorac. Cardiovasc. Surg.
  doi: 10.1016/j.jtcvs.2018.08.110
– volume: 9
  start-page: 1
  year: 2020
  ident: 10.1016/j.jmbbm.2024.106453_b23
  article-title: The tricuspid valve also maladapts as shown in sheep with biventricular heart failure
  publication-title: eLife
  doi: 10.7554/eLife.63855
– volume: 72
  start-page: 375
  issue: 3
  year: 2006
  ident: 10.1016/j.jmbbm.2024.106453_b6
  article-title: Effects of static and cyclic loading in regulating extracellular matrix synthesis by cardiovascular cells
  publication-title: Cardiovasc. Res.
  doi: 10.1016/j.cardiores.2006.08.017
– volume: 63
  start-page: ezad115
  issue: 5
  year: 2023
  ident: 10.1016/j.jmbbm.2024.106453_b9
  article-title: Valvular complex and tissue remodelling in ovine functional tricuspid regurgitation
  publication-title: Eur. J. Cardio-Thorac. Surg.
  doi: 10.1093/ejcts/ezad115
– volume: 33
  start-page: 356
  issue: 2
  year: 2021
  ident: 10.1016/j.jmbbm.2024.106453_b10
  article-title: Tricuspid valve anterior leaflet strains in ovine functional tricuspid regurgitation
  publication-title: Semin. Thorac. Cardiovasc. Surg.
  doi: 10.1053/j.semtcvs.2020.09.012
– volume: 22
  start-page: 1174
  issue: 15
  year: 2019
  ident: 10.1016/j.jmbbm.2024.106453_b11
  article-title: A computational model to predict cell traction-mediated prestretch in the mitral valve
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2019.1647533
– year: 2022
  ident: 10.1016/j.jmbbm.2024.106453_b21
  article-title: Texas TriValve 1.0 : a reverse-engineered, open model of the human tricuspid valve
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-022-01659-w
– volume: 22
  start-page: 85
  issue: 1
  year: 2009
  ident: 10.1016/j.jmbbm.2024.106453_b25
  article-title: The clinical anatomy of the mitral valve
  publication-title: Clin. Anatomy
  doi: 10.1002/ca.20692
– volume: 40
  start-page: 476
  issue: 5
  year: 2019
  ident: 10.1016/j.jmbbm.2024.106453_b35
  article-title: Tricuspid regurgitation is associated with increased mortality independent of pulmonary pressures and right heart failure: A systematic review and meta-analysis
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehy641
– volume: 83
  start-page: 16
  year: 2019
  ident: 10.1016/j.jmbbm.2024.106453_b14
  article-title: An investigation of regional variations in the biaxial mechanical properties and stress relaxation behaviors of porcine atrioventricular heart valve leaflets
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2018.11.015
– volume: 80
  start-page: 500
  year: 2022
  ident: 10.1016/j.jmbbm.2024.106453_b19
  article-title: Effects of cyproheptadine on mitral valve remodeling and regurgitation after myocardial infarction
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2022.05.025
– start-page: 0
  year: 2022
  ident: 10.1016/j.jmbbm.2024.106453_b16
  article-title: The impact of thickness heterogeneity on soft tissue biomechanics: a novel measurement technique and a demonstration on heart valve tissue
  publication-title: Biomech. Model. Mechanobiol.
– volume: 23
  start-page: 863
  issue: 7
  year: 2022
  ident: 10.1016/j.jmbbm.2024.106453_b24
  article-title: Shedding new light on the fascinating right heart
  publication-title: Eur. Heart J. Cardiovasc. Imaging
  doi: 10.1093/ehjci/jeac085
– volume: 67
  start-page: 248
  year: 2018
  ident: 10.1016/j.jmbbm.2024.106453_b28
  article-title: Pressure-induced microstructural changes in porcine tricuspid valve leaflets
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.11.040
– volume: 14
  start-page: 1281
  issue: 6
  year: 2015
  ident: 10.1016/j.jmbbm.2024.106453_b15
  article-title: On the effects of leaflet microstructure and constitutive model on the closing behavior of the mitral valve
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-015-0674-0
– volume: 142
  year: 2023
  ident: 10.1016/j.jmbbm.2024.106453_b39
  article-title: The effects of leaflet material properties on the simulated function of regurgitant mitral valves
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2023.105858
– volume: 45
  start-page: 54
  issue: 1
  year: 2005
  ident: 10.1016/j.jmbbm.2024.106453_b5
  article-title: Apparently normal mitral valves in patients with heart failure demonstrate biochemical and structural derangements
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2004.06.079
– volume: 14
  start-page: 1299
  issue: 7
  year: 2021
  ident: 10.1016/j.jmbbm.2024.106453_b8
  article-title: Proposal for a standard echocardiographic tricuspid valve nomenclature
  publication-title: JACC: Cardiovasc. Imaging
– volume: 46
  start-page: 1112
  issue: 8
  year: 2018
  ident: 10.1016/j.jmbbm.2024.106453_b12
  article-title: Finite element analysis of tricuspid valve deformation from multi-slice computed tomography images
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-018-2024-8
– volume: 34
  start-page: 404
  issue: 6
  year: 2019
  ident: 10.1016/j.jmbbm.2024.106453_b4
  article-title: Early failure of tricuspid annuloplasty. Should we repair the tricuspid valve at an earlier stage? The role of right ventricle and tricuspid apparatus
  publication-title: J. Card. Surg.
  doi: 10.1111/jocs.14042
– volume: 66
  start-page: S198
  issue: 6
  year: 1998
  ident: 10.1016/j.jmbbm.2024.106453_b13
  article-title: Altered collagen concentration in mitral valve leaflets: biochemical and finite element analysis
  publication-title: Ann. Thorac. Surg.
  doi: 10.1016/S0003-4975(98)01106-0
– volume: 8
  start-page: 1
  issue: 5
  year: 2015
  ident: 10.1016/j.jmbbm.2024.106453_b1
  article-title: Leaflet area as a determinant of tricuspid regurgitation severity in patients with pulmonary hypertension
  publication-title: Circ.: Cardiovasc. Imaging
– volume: 58
  start-page: 173
  year: 2016
  ident: 10.1016/j.jmbbm.2024.106453_b17
  article-title: A computational analysis of cell-mediated compaction and collagen remodeling in tissue-engineered heart valves
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2015.10.001
– volume: 18
  start-page: 1351
  issue: 0123456789
  year: 2019
  ident: 10.1016/j.jmbbm.2024.106453_b20
  article-title: Tricuspid valve leaflet strains in the beating ovine heart
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-019-01148-y
– volume: 15
  start-page: 208
  year: 2012
  ident: 10.1016/j.jmbbm.2024.106453_b30
  article-title: Evidence of adaptive mitral leaflet growth
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2012.07.001
– volume: 135
  start-page: 1802
  issue: 19
  year: 2017
  ident: 10.1016/j.jmbbm.2024.106453_b27
  article-title: Transcatheter treatment of severe tricuspid regurgitation with the edge-to-edge mitraclip technique
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.116.024848
– volume: 164
  start-page: 269
  year: 2023
  ident: 10.1016/j.jmbbm.2024.106453_b32
  article-title: Mechanical behavior and collagen structure of degenerative mitral valve leaflets and a finite element model of primary mitral regurgitation
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2023.03.029
– volume: 11
  start-page: 715
  issue: 12
  year: 2014
  ident: 10.1016/j.jmbbm.2024.106453_b36
  article-title: Cardiac valve cells and their microenvironment—insights from in vitro studies
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/nrcardio.2014.162
– volume: 59
  start-page: 703
  issue: 8
  year: 2012
  ident: 10.1016/j.jmbbm.2024.106453_b34
  article-title: The growing clinical importance of secondary tricuspid regurgitation
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2011.09.069
– volume: 15
  start-page: 10
  year: 2020
  ident: 10.1016/j.jmbbm.2024.106453_b29
  article-title: Growth and remodeling of atrioventricular heart valves: A potential target for pharmacological treatment?
  publication-title: Curr. Opin. Biomed. Eng.
  doi: 10.1016/j.cobme.2019.12.008
– volume: 144
  issue: 10
  year: 2022
  ident: 10.1016/j.jmbbm.2024.106453_b38
  article-title: A computational framework for atrioventricular valve modeling using open-source software
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4054485
– volume: 7
  start-page: 1
  issue: 21
  year: 2018
  ident: 10.1016/j.jmbbm.2024.106453_b33
  article-title: Pathological remodeling of mitral valve leaflets from unphysiologic leaflet mechanics after undersized mitral annuloplasty to repair ischemic mitral regurgitation
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.118.009777
– volume: 62
  start-page: 605
  issue: 4
  year: 2004
  ident: 10.1016/j.jmbbm.2024.106453_b37
  article-title: Is the mitral valve passive flap theory overstated? An active valve is hypothesized
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2003.12.001
SSID ssj0060088
Score 2.3993728
Snippet Tricuspid valve leaflets have historically been considered “passive flaps”. However, we have recently shown that tricuspid leaflets actively remodel in sheep...
Tricuspid valve leaflets have historically been considered "passive flaps". However, we have recently shown that tricuspid leaflets actively remodel in sheep...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106453
SubjectTerms Animals
Annuloplasty
Catheters
Computer Simulation
Humans
Hypertension, Pulmonary
Maladaptation
Pressure
Repair
Sheep
Transcatheter
Tricuspid Valve
Title Leaflet remodeling reduces tricuspid valve function in a computational model
URI https://dx.doi.org/10.1016/j.jmbbm.2024.106453
https://www.ncbi.nlm.nih.gov/pubmed/38335648
https://www.proquest.com/docview/2925039342
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAvCmPykiMhKa28xqriqpA6QKVulm2c5FaQVr1wchv5-wkFQztwJZYthLdne_7nNyDkDujwKQqzrzMT1JPmCBGPwi43QOIIpWAjlzXktdB2BuK51EwqpFOlQtjwypL31_4dOety5FmKc3mbDxuviHwIV1BhBaOONiMciEia-UP3-swD8Rz13vSTvbs7KrykIvxmnxqbdPRmcCRUAR8EzptYp8OhbqH5KCkj7RdvOERqUF-TPZ_FRU8If0-2I68SzoH1-YGB_EyRRUuqC3Hv1rMxilFA_sCalHNaoaOc6qocR0eyq-D1C0-JcPu43un55U9EzwjfLH0sggMInwSAwowbOlIKRW2IMNzHPgGsZlnhjOdxQx46icMIgA8EaqAa98ePfgZ2cmnOVwQqjWPY1SkYdoI7WdK-yGSXJbFqdGC6TphlaykKQuK274WH7KKHJtIJ2BpBSwLAdfJ_XrRrKinsX16WClB_jELiR5_-8LbSmUSN4z9C6JymK4WkiXI-njCBauT80KX6zfhNgUtFPHlfx97RfbsXRHac012lvMV3CBrWeqGM8sG2W0_vfQGP1CK7M0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOiDfjGSSOVCtJ-jpOCDTY2AWQuEVJ6kpDUCa28ftx0hbBAQ7cqjRWIzvx9yV1bIAzq9HmOi2CIszyQNooJT-ItNwjTBKdoUl81ZK7cTx4lLdP0VMLLpu7MC6ssvb9lU_33rpu6dXa7E0nk949AR_RFUJo6YlDsgQdl50qakOnfzMcjBuHTJDuy0-6_oETaJIP-TCv51dj3I10LqkllpH4DaB-I6AeiK7XYa1mkKxfDXIDWlhuwuq3vIJbMBqhK8o7Z-_oK91QIz3mZMUZcxn5F7PpJGc0xz6QOWBzxmGTkmlmfZGH-oCQeeFteLy-ergcBHXZhMDKUM6DIkFLIJ-lSDqML0yitY4vsKCtHIaW4FkUVnBTpBxFHmYcE0TaFOpImNDtPsQOtMu3EveAGSPSlGxpubHShIU2YUw8lxdpbo3kpgu80ZWydU5xV9riRTXBY8_KK1g5BatKwV04_xKaVik1_u4eN0ZQP2aGIqf_t-BpYzJFa8b9CNElvi1mimdE_EQmJO_CbmXLr5EIdwstlun-fz97AsuDh7uRGt2Mhwew4t5UkT6H0J6_L_CISMzcHNeT9BNx9u9-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leaflet+remodeling+reduces+tricuspid+valve+function+in+a+computational+model&rft.jtitle=Journal+of+the+mechanical+behavior+of+biomedical+materials&rft.au=Mathur%2C+Mrudang&rft.au=Malinowski%2C+Marcin&rft.au=Jazwiec%2C+Tomasz&rft.au=Timek%2C+Tomasz+A&rft.date=2024-04-01&rft.eissn=1878-0180&rft.volume=152&rft.spage=106453&rft_id=info:doi/10.1016%2Fj.jmbbm.2024.106453&rft_id=info%3Apmid%2F38335648&rft.externalDocID=38335648
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-6161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-6161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-6161&client=summon