Leaflet remodeling reduces tricuspid valve function in a computational model
Tricuspid valve leaflets have historically been considered “passive flaps”. However, we have recently shown that tricuspid leaflets actively remodel in sheep with functional tricuspid regurgitation. We hypothesize that these remodeling-induced changes reduce leaflet coaptation and, therefore, contri...
Saved in:
Published in | Journal of the mechanical behavior of biomedical materials Vol. 152; p. 106453 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1751-6161 1878-0180 1878-0180 |
DOI | 10.1016/j.jmbbm.2024.106453 |
Cover
Loading…
Abstract | Tricuspid valve leaflets have historically been considered “passive flaps”. However, we have recently shown that tricuspid leaflets actively remodel in sheep with functional tricuspid regurgitation. We hypothesize that these remodeling-induced changes reduce leaflet coaptation and, therefore, contribute to valvular dysfunction. To test this, we simulated the impact of remodeling-induced changes on valve mechanics in a reverse-engineered computer model of the human tricuspid valve. To this end, we combined right-heart pressures and tricuspid annular dynamics recorded in an ex vivo beating heart, with subject-matched in vitro measurements of valve geometry and material properties, to build a subject-specific finite element model. Next, we modified the annular geometry and boundary conditions to mimic changes seen in patients with pulmonary hypertension. In this model, we then increased leaflet thickness and stiffness and reduced the stretch at which leaflets stiffen, which we call “transition-λ.” Subsequently, we quantified mean leaflet stresses, leaflet systolic angles, and coaptation area as measures of valve function. We found that leaflet stresses, leaflet systolic angle, and coaptation area are sensitive to independent changes in stiffness, thickness, and transition-λ. When combining thickening, stiffening, and changes in transition-λ, we found that anterior and posterior leaflet stresses decreased by 26% and 28%, respectively. Furthermore, systolic angles increased by 43%, and coaptation area decreased by 66%; thereby impeding valve function. While only a computational study, we provide the first evidence that remodeling-induced leaflet thickening and stiffening may contribute to valvular dysfunction. Targeted suppression of such changes in diseased valves could restore normal valve mechanics and promote leaflet coaptation.
[Display omitted]
•We introduce the effects of leaflet remodeling in a computer model of the human tricuspid valve.•We demonstrate that remodeling-induced changes alter leaflet stress, leaflet motion, and valve coaptation area.•We show that suppressing leaflet thickening and stiffening may improve valve function. |
---|---|
AbstractList | Tricuspid valve leaflets have historically been considered “passive flaps”. However, we have recently shown that tricuspid leaflets actively remodel in sheep with functional tricuspid regurgitation. We hypothesize that these remodeling-induced changes reduce leaflet coaptation and, therefore, contribute to valvular dysfunction. To test this, we simulated the impact of remodeling-induced changes on valve mechanics in a reverse-engineered computer model of the human tricuspid valve. To this end, we combined right-heart pressures and tricuspid annular dynamics recorded in an ex vivo beating heart, with subject-matched in vitro measurements of valve geometry and material properties, to build a subject-specific finite element model. Next, we modified the annular geometry and boundary conditions to mimic changes seen in patients with pulmonary hypertension. In this model, we then increased leaflet thickness and stiffness and reduced the stretch at which leaflets stiffen, which we call “transition-λ.” Subsequently, we quantified mean leaflet stresses, leaflet systolic angles, and coaptation area as measures of valve function. We found that leaflet stresses, leaflet systolic angle, and coaptation area are sensitive to independent changes in stiffness, thickness, and transition-λ. When combining thickening, stiffening, and changes in transition-λ, we found that anterior and posterior leaflet stresses decreased by 26% and 28%, respectively. Furthermore, systolic angles increased by 43%, and coaptation area decreased by 66%; thereby impeding valve function. While only a computational study, we provide the first evidence that remodeling-induced leaflet thickening and stiffening may contribute to valvular dysfunction. Targeted suppression of such changes in diseased valves could restore normal valve mechanics and promote leaflet coaptation.
[Display omitted]
•We introduce the effects of leaflet remodeling in a computer model of the human tricuspid valve.•We demonstrate that remodeling-induced changes alter leaflet stress, leaflet motion, and valve coaptation area.•We show that suppressing leaflet thickening and stiffening may improve valve function. Tricuspid valve leaflets have historically been considered "passive flaps". However, we have recently shown that tricuspid leaflets actively remodel in sheep with functional tricuspid regurgitation. We hypothesize that these remodeling-induced changes reduce leaflet coaptation and, therefore, contribute to valvular dysfunction. To test this, we simulated the impact of remodeling-induced changes on valve mechanics in a reverse-engineered computer model of the human tricuspid valve. To this end, we combined right-heart pressures and tricuspid annular dynamics recorded in an ex vivo beating heart, with subject-matched in vitro measurements of valve geometry and material properties, to build a subject-specific finite element model. Next, we modified the annular geometry and boundary conditions to mimic changes seen in patients with pulmonary hypertension. In this model, we then increased leaflet thickness and stiffness and reduced the stretch at which leaflets stiffen, which we call "transition-λ." Subsequently, we quantified mean leaflet stresses, leaflet systolic angles, and coaptation area as measures of valve function. We found that leaflet stresses, leaflet systolic angle, and coaptation area are sensitive to independent changes in stiffness, thickness, and transition-λ. When combining thickening, stiffening, and changes in transition-λ, we found that anterior and posterior leaflet stresses decreased by 26% and 28%, respectively. Furthermore, systolic angles increased by 43%, and coaptation area decreased by 66%; thereby impeding valve function. While only a computational study, we provide the first evidence that remodeling-induced leaflet thickening and stiffening may contribute to valvular dysfunction. Targeted suppression of such changes in diseased valves could restore normal valve mechanics and promote leaflet coaptation.Tricuspid valve leaflets have historically been considered "passive flaps". However, we have recently shown that tricuspid leaflets actively remodel in sheep with functional tricuspid regurgitation. We hypothesize that these remodeling-induced changes reduce leaflet coaptation and, therefore, contribute to valvular dysfunction. To test this, we simulated the impact of remodeling-induced changes on valve mechanics in a reverse-engineered computer model of the human tricuspid valve. To this end, we combined right-heart pressures and tricuspid annular dynamics recorded in an ex vivo beating heart, with subject-matched in vitro measurements of valve geometry and material properties, to build a subject-specific finite element model. Next, we modified the annular geometry and boundary conditions to mimic changes seen in patients with pulmonary hypertension. In this model, we then increased leaflet thickness and stiffness and reduced the stretch at which leaflets stiffen, which we call "transition-λ." Subsequently, we quantified mean leaflet stresses, leaflet systolic angles, and coaptation area as measures of valve function. We found that leaflet stresses, leaflet systolic angle, and coaptation area are sensitive to independent changes in stiffness, thickness, and transition-λ. When combining thickening, stiffening, and changes in transition-λ, we found that anterior and posterior leaflet stresses decreased by 26% and 28%, respectively. Furthermore, systolic angles increased by 43%, and coaptation area decreased by 66%; thereby impeding valve function. While only a computational study, we provide the first evidence that remodeling-induced leaflet thickening and stiffening may contribute to valvular dysfunction. Targeted suppression of such changes in diseased valves could restore normal valve mechanics and promote leaflet coaptation. Tricuspid valve leaflets have historically been considered "passive flaps". However, we have recently shown that tricuspid leaflets actively remodel in sheep with functional tricuspid regurgitation. We hypothesize that these remodeling-induced changes reduce leaflet coaptation and, therefore, contribute to valvular dysfunction. To test this, we simulated the impact of remodeling-induced changes on valve mechanics in a reverse-engineered computer model of the human tricuspid valve. To this end, we combined right-heart pressures and tricuspid annular dynamics recorded in an ex vivo beating heart, with subject-matched in vitro measurements of valve geometry and material properties, to build a subject-specific finite element model. Next, we modified the annular geometry and boundary conditions to mimic changes seen in patients with pulmonary hypertension. In this model, we then increased leaflet thickness and stiffness and reduced the stretch at which leaflets stiffen, which we call "transition-λ." Subsequently, we quantified mean leaflet stresses, leaflet systolic angles, and coaptation area as measures of valve function. We found that leaflet stresses, leaflet systolic angle, and coaptation area are sensitive to independent changes in stiffness, thickness, and transition-λ. When combining thickening, stiffening, and changes in transition-λ, we found that anterior and posterior leaflet stresses decreased by 26% and 28%, respectively. Furthermore, systolic angles increased by 43%, and coaptation area decreased by 66%; thereby impeding valve function. While only a computational study, we provide the first evidence that remodeling-induced leaflet thickening and stiffening may contribute to valvular dysfunction. Targeted suppression of such changes in diseased valves could restore normal valve mechanics and promote leaflet coaptation. |
ArticleNumber | 106453 |
Author | Mathur, Mrudang Malinowski, Marcin Timek, Tomasz A. Rausch, Manuel K. Jazwiec, Tomasz |
Author_xml | – sequence: 1 givenname: Mrudang orcidid: 0000-0002-9273-5586 surname: Mathur fullname: Mathur, Mrudang organization: Department of Mechanical Engineering, University of Texas at Austin, 204 E Dean Keeton Street, Austin, 78712, TX, United States of America – sequence: 2 givenname: Marcin orcidid: 0000-0002-4526-2843 surname: Malinowski fullname: Malinowski, Marcin organization: Division of Cardiothoracic Surgery, Spectrum Health, 221 Michigan Street NE Suite 300, Grand Rapids, 49503, MI, United States of America – sequence: 3 givenname: Tomasz surname: Jazwiec fullname: Jazwiec, Tomasz organization: Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland – sequence: 4 givenname: Tomasz A. surname: Timek fullname: Timek, Tomasz A. organization: Division of Cardiothoracic Surgery, Spectrum Health, 221 Michigan Street NE Suite 300, Grand Rapids, 49503, MI, United States of America – sequence: 5 givenname: Manuel K. orcidid: 0000-0003-1337-6472 surname: Rausch fullname: Rausch, Manuel K. email: manuel.rausch@utexas.edu organization: Department of Mechanical Engineering, University of Texas at Austin, 204 E Dean Keeton Street, Austin, 78712, TX, United States of America |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38335648$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtqwzAQRUVJaR7tFxSKl904HVmyLC-6KKEvMHTTroUsj4uMH6lkB_r3deJk00VWcxnuGZizJLO2a5GQWwprClQ8VOuqyfNmHUHEx43gMbsgCyoTGQKVMBtzEtNQUEHnZOl9BSAApLwicyYZiwWXC5JlqMsa-8Bh0xVY2_Z7jMVg0Ae9s2bwW1sEO13vMCiH1vS2awPbBjowXbMder1f6Do4wNfkstS1x5vjXJGvl-fPzVuYfby-b56y0HDgfVgmaIDGqUSDhaB5orUWFEvJAcHImLHSsCgvZYSsgDTCBJFzoWOWQ5wIyVbkfrq7dd3PgL5XjfUG61q32A1eRWkUA0sZj8bq3bE65A0Wautso92vOhkYC-lUMK7z3mGpjJ2-6p22taKg9rZVpQ621d62mmyPLPvHns6fpx4nCkdFO4tOeWOxHV1Yh6ZXRWfP8n8by5nc |
CitedBy_id | crossref_primary_10_1016_j_jmbbm_2024_106879 crossref_primary_10_1007_s00366_024_02031_w crossref_primary_10_1007_s10439_024_03637_3 crossref_primary_10_1016_j_jmbbm_2024_106829 |
Cites_doi | 10.1016/j.jacc.2017.07.734 10.1093/ehjci/jes040 10.1016/j.jacc.2003.09.036 10.1093/eurheartj/ehs474 10.1016/j.actbio.2019.11.039 10.1016/j.jtcvs.2018.08.110 10.7554/eLife.63855 10.1016/j.cardiores.2006.08.017 10.1093/ejcts/ezad115 10.1053/j.semtcvs.2020.09.012 10.1080/10255842.2019.1647533 10.1007/s00366-022-01659-w 10.1002/ca.20692 10.1093/eurheartj/ehy641 10.1016/j.jbiomech.2018.11.015 10.1016/j.jacc.2022.05.025 10.1093/ehjci/jeac085 10.1016/j.actbio.2017.11.040 10.1007/s10237-015-0674-0 10.1016/j.jmbbm.2023.105858 10.1016/j.jacc.2004.06.079 10.1007/s10439-018-2024-8 10.1111/jocs.14042 10.1016/S0003-4975(98)01106-0 10.1016/j.jmbbm.2015.10.001 10.1007/s10237-019-01148-y 10.1016/j.jmbbm.2012.07.001 10.1161/CIRCULATIONAHA.116.024848 10.1016/j.actbio.2023.03.029 10.1038/nrcardio.2014.162 10.1016/j.jacc.2011.09.069 10.1016/j.cobme.2019.12.008 10.1115/1.4054485 10.1161/JAHA.118.009777 10.1016/j.mehy.2003.12.001 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd Copyright © 2024 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Copyright © 2024 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jmbbm.2024.106453 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-0180 |
ExternalDocumentID | 38335648 10_1016_j_jmbbm_2024_106453 S1751616124000857 |
Genre | Research Support, U.S. Gov't, P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R21 HL161832 – fundername: American Heart Association-American Stroke Association grantid: 18CDA34120028 – fundername: NHLBI NIH HHS grantid: R01 HL165251 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSM SST SSZ T5K ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 |
ID | FETCH-LOGICAL-c404t-f7ec01598eced61b7aaa61ef840e0c8533fc32bf82e3d092e7ee446a53b057683 |
IEDL.DBID | .~1 |
ISSN | 1751-6161 1878-0180 |
IngestDate | Thu Jul 10 19:08:06 EDT 2025 Mon Jul 21 06:02:53 EDT 2025 Thu Jul 03 08:33:21 EDT 2025 Thu Apr 24 23:03:01 EDT 2025 Sat Feb 01 16:09:45 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Annuloplasty Repair Transcatheter Maladaptation |
Language | English |
License | Copyright © 2024 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-f7ec01598eced61b7aaa61ef840e0c8533fc32bf82e3d092e7ee446a53b057683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9273-5586 0000-0002-4526-2843 0000-0003-1337-6472 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/11048730 |
PMID | 38335648 |
PQID | 2925039342 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2925039342 pubmed_primary_38335648 crossref_citationtrail_10_1016_j_jmbbm_2024_106453 crossref_primary_10_1016_j_jmbbm_2024_106453 elsevier_sciencedirect_doi_10_1016_j_jmbbm_2024_106453 |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of the mechanical behavior of biomedical materials |
PublicationTitleAlternate | J Mech Behav Biomed Mater |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Rausch (b29) 2020; 15 Gupta, Grande-Allen (b6) 2006; 72 Laurence, Ross, Jett, Johns, Echols, Baumwart, Towner, Liao, Bajona, Wu, Lee (b14) 2019; 83 Sielicka, Sarin, Shi, Sulejmani, Corporan, Kalra, Thourani, Sun, Guyton, Padala (b33) 2018; 7 Haese, Mathur, Lin, Malinowski, Timek, Rausch (b7) 2023 Pant, Thomas, Black, Verba, Lesicko, Amini (b28) 2018; 67 Nickenig, Kowalski, Hausleiter, Braun, Schofer, Yzeiraj, Rudolph, Friedrichs, Maisano, Taramasso, Fam, Bianchi, Bedogni, Denti, Alfieri, Latib, Colombo, Hammerstingl, Schueler (b27) 2017; 135 Bartko, Dal-Bianco, Guerrero, Beaudoin, Szymanski, Kim, Seybolt, Handschumacher, Sullivan, Garcia, Titus, Wylie-Sears, Irvin, Messas, Hagège, Carpentier, Aikawa, Bischoff, Levine (b3) 2017; 70 Muresian (b25) 2009; 22 Afilalo, Grapsa, Nihoyannopoulos, Beaudoin, Gibbs, Channick, Langleben, Rudski, Hua, Handschumacher, Picard, Levine (b1) 2015; 8 Grande-Allen, Borowski, Troughton, Houghtaling, DiPaola, Moravec, Vesely, Griffin (b5) 2005; 45 Iwasieczko, Gaddam, Gaweda, Goodyke, Mathur, Lin, Zagorski, Solarewicz, Cohle, Rausch, Timek (b9) 2023; 63 Ring, Rana, Kydd, Boyd, Parker, Rusk (b31) 2012; 13 Muraru, Badano (b24) 2022; 23 Meador, Mathur, Sugerman, Malinowski, Jazwiec, Wang, Lacerda, Timek, Rausch (b23) 2020; 9 Mathur, Jazwiec, Meador, Malinowski, Goehler, Ferguson, Timek, Rausch (b20) 2019; 18 Badano, Muraru, Enriquez-Sarano (b2) 2013; 34 Mathur, Meador, Malinowski, Jazwiec, Timek, Rausch (b21) 2022 Wu, Ching, Maas, Lasso, Sabin, Weiss, Jolley (b38) 2022; 144 Nath, Foster, Heidenreich (b26) 2004; 43 Taramasso, Vanermen, Maisano, Guidotti, La Canna, Alfieri (b34) 2012; 59 Jazwiec, Malinowski, Ferguson, Parker, Mathur, Rausch, Timek (b10) 2021; 33 van Kelle, Rausch, Kuhl, Loerakker (b11) 2019; 22 Rausch, Tibayan, Craig Miller, Kuhl (b30) 2012; 15 Kong, Pham, Martin, McKay, Primiano, Hashim, Kodali, Sun (b12) 2018; 46 Lin, Mathur, Malinowski, Timek, Rausch (b16) 2022 Williams, Jew (b37) 2004; 62 Wang, Fulcher, Abeysuriya, McGrady, Wilcox, Celermajer, Lal (b35) 2019; 40 Wang, Leinwand, Anseth (b36) 2014; 11 Loerakker, Ristori, Baaijens (b17) 2016; 58 Meador, Mathur, Sugerman, Jazwiec, Malinowski, Bersi, Timek, Rausch (b22) 2020; 102 Sadeghinia, Aguilera, Urheim, Persson, Ellensen, Haaverstad, Holzapfel, Skallerud, Prot (b32) 2023; 164 Wu, Ching, Sabin, Laurence, Maas, Lasso, Weiss, Jolley (b39) 2023; 142 Marsit, Clavel, Paquin, Deschênes, Hadjadj, Sénéchal-Dumais, Couet, Arsenault, Handschumacher, Levine, Aikawa, Pibarot, Beaudoin (b19) 2022; 80 Calafiore, Foschi, Kheirallah, Alsaied, Alfonso, Tancredi, Gaudino, Di Mauro (b4) 2019; 34 Lee, Rabbah, Yoganathan, Gorman, Gorman, Sacks (b15) 2015; 14 Malinowski, Jazwiec, Goehler, Quay, Bush, Jovinge, Rausch, Timek (b18) 2019; 157 Hahn, Weckbach, Noack, Hamid, Kitamura, Bae, Lurz, Kodali, Sorajja, Hausleiter, Nabauer (b8) 2021; 14 Kunzelman, Quick, Cochran (b13) 1998; 66 Kunzelman (10.1016/j.jmbbm.2024.106453_b13) 1998; 66 Sadeghinia (10.1016/j.jmbbm.2024.106453_b32) 2023; 164 Sielicka (10.1016/j.jmbbm.2024.106453_b33) 2018; 7 Iwasieczko (10.1016/j.jmbbm.2024.106453_b9) 2023; 63 Gupta (10.1016/j.jmbbm.2024.106453_b6) 2006; 72 Rausch (10.1016/j.jmbbm.2024.106453_b30) 2012; 15 Mathur (10.1016/j.jmbbm.2024.106453_b20) 2019; 18 Afilalo (10.1016/j.jmbbm.2024.106453_b1) 2015; 8 Haese (10.1016/j.jmbbm.2024.106453_b7) 2023 Muraru (10.1016/j.jmbbm.2024.106453_b24) 2022; 23 Wu (10.1016/j.jmbbm.2024.106453_b39) 2023; 142 Kong (10.1016/j.jmbbm.2024.106453_b12) 2018; 46 Lin (10.1016/j.jmbbm.2024.106453_b16) 2022 Mathur (10.1016/j.jmbbm.2024.106453_b21) 2022 Laurence (10.1016/j.jmbbm.2024.106453_b14) 2019; 83 Muresian (10.1016/j.jmbbm.2024.106453_b25) 2009; 22 Meador (10.1016/j.jmbbm.2024.106453_b22) 2020; 102 Calafiore (10.1016/j.jmbbm.2024.106453_b4) 2019; 34 van Kelle (10.1016/j.jmbbm.2024.106453_b11) 2019; 22 Loerakker (10.1016/j.jmbbm.2024.106453_b17) 2016; 58 Lee (10.1016/j.jmbbm.2024.106453_b15) 2015; 14 Rausch (10.1016/j.jmbbm.2024.106453_b29) 2020; 15 Ring (10.1016/j.jmbbm.2024.106453_b31) 2012; 13 Marsit (10.1016/j.jmbbm.2024.106453_b19) 2022; 80 Nickenig (10.1016/j.jmbbm.2024.106453_b27) 2017; 135 Wu (10.1016/j.jmbbm.2024.106453_b38) 2022; 144 Pant (10.1016/j.jmbbm.2024.106453_b28) 2018; 67 Malinowski (10.1016/j.jmbbm.2024.106453_b18) 2019; 157 Meador (10.1016/j.jmbbm.2024.106453_b23) 2020; 9 Williams (10.1016/j.jmbbm.2024.106453_b37) 2004; 62 Grande-Allen (10.1016/j.jmbbm.2024.106453_b5) 2005; 45 Hahn (10.1016/j.jmbbm.2024.106453_b8) 2021; 14 Jazwiec (10.1016/j.jmbbm.2024.106453_b10) 2021; 33 Taramasso (10.1016/j.jmbbm.2024.106453_b34) 2012; 59 Bartko (10.1016/j.jmbbm.2024.106453_b3) 2017; 70 Badano (10.1016/j.jmbbm.2024.106453_b2) 2013; 34 Nath (10.1016/j.jmbbm.2024.106453_b26) 2004; 43 Wang (10.1016/j.jmbbm.2024.106453_b35) 2019; 40 Wang (10.1016/j.jmbbm.2024.106453_b36) 2014; 11 |
References_xml | – volume: 15 start-page: 208 year: 2012 end-page: 217 ident: b30 article-title: Evidence of adaptive mitral leaflet growth publication-title: J. Mech. Behav. Biomed. Mater. – volume: 33 start-page: 356 year: 2021 end-page: 364 ident: b10 article-title: Tricuspid valve anterior leaflet strains in ovine functional tricuspid regurgitation publication-title: Semin. Thorac. Cardiovasc. Surg. – volume: 23 start-page: 863 year: 2022 end-page: 866 ident: b24 article-title: Shedding new light on the fascinating right heart publication-title: Eur. Heart J. Cardiovasc. Imaging – volume: 34 start-page: 404 year: 2019 end-page: 411 ident: b4 article-title: Early failure of tricuspid annuloplasty. Should we repair the tricuspid valve at an earlier stage? The role of right ventricle and tricuspid apparatus publication-title: J. Card. Surg. – volume: 43 start-page: 405 year: 2004 end-page: 409 ident: b26 article-title: Impact of tricuspid regurgitation on long-term survival publication-title: J. Am. Coll. Cardiol. – volume: 62 start-page: 605 year: 2004 end-page: 611 ident: b37 article-title: Is the mitral valve passive flap theory overstated? An active valve is hypothesized publication-title: Med. Hypotheses – volume: 9 start-page: 1 year: 2020 end-page: 22 ident: b23 article-title: The tricuspid valve also maladapts as shown in sheep with biventricular heart failure publication-title: eLife – volume: 67 start-page: 248 year: 2018 end-page: 258 ident: b28 article-title: Pressure-induced microstructural changes in porcine tricuspid valve leaflets publication-title: Acta Biomater. – volume: 15 start-page: 10 year: 2020 end-page: 15 ident: b29 article-title: Growth and remodeling of atrioventricular heart valves: A potential target for pharmacological treatment? publication-title: Curr. Opin. Biomed. Eng. – start-page: 1 year: 2023 end-page: 10 ident: b7 article-title: Impact of tricuspid annuloplasty device shape and size on valve mechanics - a computational study publication-title: JTCVS Open – volume: 45 start-page: 54 year: 2005 end-page: 61 ident: b5 article-title: Apparently normal mitral valves in patients with heart failure demonstrate biochemical and structural derangements publication-title: J. Am. Coll. Cardiol. – start-page: 0 year: 2022 end-page: 10 ident: b16 article-title: The impact of thickness heterogeneity on soft tissue biomechanics: a novel measurement technique and a demonstration on heart valve tissue publication-title: Biomech. Model. Mechanobiol. – volume: 80 start-page: 500 year: 2022 end-page: 510 ident: b19 article-title: Effects of cyproheptadine on mitral valve remodeling and regurgitation after myocardial infarction publication-title: J. Am. Coll. Cardiol. – volume: 22 start-page: 85 year: 2009 end-page: 98 ident: b25 article-title: The clinical anatomy of the mitral valve publication-title: Clin. Anatomy – volume: 11 start-page: 715 year: 2014 end-page: 727 ident: b36 article-title: Cardiac valve cells and their microenvironment—insights from in vitro studies publication-title: Nat. Rev. Cardiol. – volume: 22 start-page: 1174 year: 2019 end-page: 1185 ident: b11 article-title: A computational model to predict cell traction-mediated prestretch in the mitral valve publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 34 start-page: 1875 year: 2013 end-page: 1884 ident: b2 article-title: Assessment of functional tricuspid regurgitation publication-title: Eur. Heart J. – volume: 144 year: 2022 ident: b38 article-title: A computational framework for atrioventricular valve modeling using open-source software publication-title: J. Biomech. Eng. – volume: 40 start-page: 476 year: 2019 end-page: 484 ident: b35 article-title: Tricuspid regurgitation is associated with increased mortality independent of pulmonary pressures and right heart failure: A systematic review and meta-analysis publication-title: Eur. Heart J. – volume: 58 start-page: 173 year: 2016 end-page: 187 ident: b17 article-title: A computational analysis of cell-mediated compaction and collagen remodeling in tissue-engineered heart valves publication-title: J. Mech. Behav. Biomed. Mater. – volume: 164 start-page: 269 year: 2023 end-page: 281 ident: b32 article-title: Mechanical behavior and collagen structure of degenerative mitral valve leaflets and a finite element model of primary mitral regurgitation publication-title: Acta Biomater. – volume: 18 start-page: 1351 year: 2019 end-page: 1361 ident: b20 article-title: Tricuspid valve leaflet strains in the beating ovine heart publication-title: Biomech. Model. Mechanobiol. – volume: 157 start-page: 1452 year: 2019 end-page: 1461.e1 ident: b18 article-title: Sonomicrometry-derived 3-dimensional geometry of the human tricuspid annulus publication-title: J. Thorac. Cardiovasc. Surg. – volume: 70 start-page: 1232 year: 2017 end-page: 1244 ident: b3 article-title: Effect of losartan on mitral valve changes after myocardial infarction publication-title: J. Am. Coll. Cardiol. – volume: 14 start-page: 1299 year: 2021 end-page: 1305 ident: b8 article-title: Proposal for a standard echocardiographic tricuspid valve nomenclature publication-title: JACC: Cardiovasc. Imaging – volume: 66 start-page: S198 year: 1998 end-page: S205 ident: b13 article-title: Altered collagen concentration in mitral valve leaflets: biochemical and finite element analysis publication-title: Ann. Thorac. Surg. – volume: 142 year: 2023 ident: b39 article-title: The effects of leaflet material properties on the simulated function of regurgitant mitral valves publication-title: J. Mech. Behav. Biomed. Mater. – volume: 7 start-page: 1 year: 2018 end-page: 18 ident: b33 article-title: Pathological remodeling of mitral valve leaflets from unphysiologic leaflet mechanics after undersized mitral annuloplasty to repair ischemic mitral regurgitation publication-title: J. Am. Heart Assoc. – volume: 46 start-page: 1112 year: 2018 end-page: 1127 ident: b12 article-title: Finite element analysis of tricuspid valve deformation from multi-slice computed tomography images publication-title: Ann. Biomed. Eng. – volume: 102 start-page: 100 year: 2020 end-page: 113 ident: b22 article-title: A detailed mechanical and microstructural analysis of ovine tricuspid valve leaflets publication-title: Acta Biomater. – volume: 83 start-page: 16 year: 2019 end-page: 27 ident: b14 article-title: An investigation of regional variations in the biaxial mechanical properties and stress relaxation behaviors of porcine atrioventricular heart valve leaflets publication-title: J. Biomech. – volume: 72 start-page: 375 year: 2006 end-page: 383 ident: b6 article-title: Effects of static and cyclic loading in regulating extracellular matrix synthesis by cardiovascular cells publication-title: Cardiovasc. Res. – year: 2022 ident: b21 article-title: Texas TriValve 1.0 : a reverse-engineered, open model of the human tricuspid valve publication-title: Eng. Comput. – volume: 14 start-page: 1281 year: 2015 end-page: 1302 ident: b15 article-title: On the effects of leaflet microstructure and constitutive model on the closing behavior of the mitral valve publication-title: Biomech. Model. Mechanobiol. – volume: 135 start-page: 1802 year: 2017 end-page: 1814 ident: b27 article-title: Transcatheter treatment of severe tricuspid regurgitation with the edge-to-edge mitraclip technique publication-title: Circulation – volume: 13 start-page: 756 year: 2012 end-page: 762 ident: b31 article-title: Dynamics of the tricuspid valve annulus in normal and dilated right hearts: A three-dimensional transoesophageal echocardiography study publication-title: Eur. Heart J. Cardiovasc. Imaging – volume: 59 start-page: 703 year: 2012 end-page: 710 ident: b34 article-title: The growing clinical importance of secondary tricuspid regurgitation publication-title: J. Am. Coll. Cardiol. – volume: 8 start-page: 1 year: 2015 end-page: 8 ident: b1 article-title: Leaflet area as a determinant of tricuspid regurgitation severity in patients with pulmonary hypertension publication-title: Circ.: Cardiovasc. Imaging – volume: 63 start-page: ezad115 year: 2023 ident: b9 article-title: Valvular complex and tissue remodelling in ovine functional tricuspid regurgitation publication-title: Eur. J. Cardio-Thorac. Surg. – volume: 70 start-page: 1232 issue: 10 year: 2017 ident: 10.1016/j.jmbbm.2024.106453_b3 article-title: Effect of losartan on mitral valve changes after myocardial infarction publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2017.07.734 – volume: 13 start-page: 756 issue: 9 year: 2012 ident: 10.1016/j.jmbbm.2024.106453_b31 article-title: Dynamics of the tricuspid valve annulus in normal and dilated right hearts: A three-dimensional transoesophageal echocardiography study publication-title: Eur. Heart J. Cardiovasc. Imaging doi: 10.1093/ehjci/jes040 – volume: 43 start-page: 405 issue: 3 year: 2004 ident: 10.1016/j.jmbbm.2024.106453_b26 article-title: Impact of tricuspid regurgitation on long-term survival publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2003.09.036 – volume: 34 start-page: 1875 issue: 25 year: 2013 ident: 10.1016/j.jmbbm.2024.106453_b2 article-title: Assessment of functional tricuspid regurgitation publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehs474 – start-page: 1 year: 2023 ident: 10.1016/j.jmbbm.2024.106453_b7 article-title: Impact of tricuspid annuloplasty device shape and size on valve mechanics - a computational study publication-title: JTCVS Open – volume: 102 start-page: 100 year: 2020 ident: 10.1016/j.jmbbm.2024.106453_b22 article-title: A detailed mechanical and microstructural analysis of ovine tricuspid valve leaflets publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.11.039 – volume: 157 start-page: 1452 issue: 4 year: 2019 ident: 10.1016/j.jmbbm.2024.106453_b18 article-title: Sonomicrometry-derived 3-dimensional geometry of the human tricuspid annulus publication-title: J. Thorac. Cardiovasc. Surg. doi: 10.1016/j.jtcvs.2018.08.110 – volume: 9 start-page: 1 year: 2020 ident: 10.1016/j.jmbbm.2024.106453_b23 article-title: The tricuspid valve also maladapts as shown in sheep with biventricular heart failure publication-title: eLife doi: 10.7554/eLife.63855 – volume: 72 start-page: 375 issue: 3 year: 2006 ident: 10.1016/j.jmbbm.2024.106453_b6 article-title: Effects of static and cyclic loading in regulating extracellular matrix synthesis by cardiovascular cells publication-title: Cardiovasc. Res. doi: 10.1016/j.cardiores.2006.08.017 – volume: 63 start-page: ezad115 issue: 5 year: 2023 ident: 10.1016/j.jmbbm.2024.106453_b9 article-title: Valvular complex and tissue remodelling in ovine functional tricuspid regurgitation publication-title: Eur. J. Cardio-Thorac. Surg. doi: 10.1093/ejcts/ezad115 – volume: 33 start-page: 356 issue: 2 year: 2021 ident: 10.1016/j.jmbbm.2024.106453_b10 article-title: Tricuspid valve anterior leaflet strains in ovine functional tricuspid regurgitation publication-title: Semin. Thorac. Cardiovasc. Surg. doi: 10.1053/j.semtcvs.2020.09.012 – volume: 22 start-page: 1174 issue: 15 year: 2019 ident: 10.1016/j.jmbbm.2024.106453_b11 article-title: A computational model to predict cell traction-mediated prestretch in the mitral valve publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2019.1647533 – year: 2022 ident: 10.1016/j.jmbbm.2024.106453_b21 article-title: Texas TriValve 1.0 : a reverse-engineered, open model of the human tricuspid valve publication-title: Eng. Comput. doi: 10.1007/s00366-022-01659-w – volume: 22 start-page: 85 issue: 1 year: 2009 ident: 10.1016/j.jmbbm.2024.106453_b25 article-title: The clinical anatomy of the mitral valve publication-title: Clin. Anatomy doi: 10.1002/ca.20692 – volume: 40 start-page: 476 issue: 5 year: 2019 ident: 10.1016/j.jmbbm.2024.106453_b35 article-title: Tricuspid regurgitation is associated with increased mortality independent of pulmonary pressures and right heart failure: A systematic review and meta-analysis publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehy641 – volume: 83 start-page: 16 year: 2019 ident: 10.1016/j.jmbbm.2024.106453_b14 article-title: An investigation of regional variations in the biaxial mechanical properties and stress relaxation behaviors of porcine atrioventricular heart valve leaflets publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2018.11.015 – volume: 80 start-page: 500 year: 2022 ident: 10.1016/j.jmbbm.2024.106453_b19 article-title: Effects of cyproheptadine on mitral valve remodeling and regurgitation after myocardial infarction publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2022.05.025 – start-page: 0 year: 2022 ident: 10.1016/j.jmbbm.2024.106453_b16 article-title: The impact of thickness heterogeneity on soft tissue biomechanics: a novel measurement technique and a demonstration on heart valve tissue publication-title: Biomech. Model. Mechanobiol. – volume: 23 start-page: 863 issue: 7 year: 2022 ident: 10.1016/j.jmbbm.2024.106453_b24 article-title: Shedding new light on the fascinating right heart publication-title: Eur. Heart J. Cardiovasc. Imaging doi: 10.1093/ehjci/jeac085 – volume: 67 start-page: 248 year: 2018 ident: 10.1016/j.jmbbm.2024.106453_b28 article-title: Pressure-induced microstructural changes in porcine tricuspid valve leaflets publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.11.040 – volume: 14 start-page: 1281 issue: 6 year: 2015 ident: 10.1016/j.jmbbm.2024.106453_b15 article-title: On the effects of leaflet microstructure and constitutive model on the closing behavior of the mitral valve publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-015-0674-0 – volume: 142 year: 2023 ident: 10.1016/j.jmbbm.2024.106453_b39 article-title: The effects of leaflet material properties on the simulated function of regurgitant mitral valves publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2023.105858 – volume: 45 start-page: 54 issue: 1 year: 2005 ident: 10.1016/j.jmbbm.2024.106453_b5 article-title: Apparently normal mitral valves in patients with heart failure demonstrate biochemical and structural derangements publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2004.06.079 – volume: 14 start-page: 1299 issue: 7 year: 2021 ident: 10.1016/j.jmbbm.2024.106453_b8 article-title: Proposal for a standard echocardiographic tricuspid valve nomenclature publication-title: JACC: Cardiovasc. Imaging – volume: 46 start-page: 1112 issue: 8 year: 2018 ident: 10.1016/j.jmbbm.2024.106453_b12 article-title: Finite element analysis of tricuspid valve deformation from multi-slice computed tomography images publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-018-2024-8 – volume: 34 start-page: 404 issue: 6 year: 2019 ident: 10.1016/j.jmbbm.2024.106453_b4 article-title: Early failure of tricuspid annuloplasty. Should we repair the tricuspid valve at an earlier stage? The role of right ventricle and tricuspid apparatus publication-title: J. Card. Surg. doi: 10.1111/jocs.14042 – volume: 66 start-page: S198 issue: 6 year: 1998 ident: 10.1016/j.jmbbm.2024.106453_b13 article-title: Altered collagen concentration in mitral valve leaflets: biochemical and finite element analysis publication-title: Ann. Thorac. Surg. doi: 10.1016/S0003-4975(98)01106-0 – volume: 8 start-page: 1 issue: 5 year: 2015 ident: 10.1016/j.jmbbm.2024.106453_b1 article-title: Leaflet area as a determinant of tricuspid regurgitation severity in patients with pulmonary hypertension publication-title: Circ.: Cardiovasc. Imaging – volume: 58 start-page: 173 year: 2016 ident: 10.1016/j.jmbbm.2024.106453_b17 article-title: A computational analysis of cell-mediated compaction and collagen remodeling in tissue-engineered heart valves publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2015.10.001 – volume: 18 start-page: 1351 issue: 0123456789 year: 2019 ident: 10.1016/j.jmbbm.2024.106453_b20 article-title: Tricuspid valve leaflet strains in the beating ovine heart publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-019-01148-y – volume: 15 start-page: 208 year: 2012 ident: 10.1016/j.jmbbm.2024.106453_b30 article-title: Evidence of adaptive mitral leaflet growth publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2012.07.001 – volume: 135 start-page: 1802 issue: 19 year: 2017 ident: 10.1016/j.jmbbm.2024.106453_b27 article-title: Transcatheter treatment of severe tricuspid regurgitation with the edge-to-edge mitraclip technique publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.116.024848 – volume: 164 start-page: 269 year: 2023 ident: 10.1016/j.jmbbm.2024.106453_b32 article-title: Mechanical behavior and collagen structure of degenerative mitral valve leaflets and a finite element model of primary mitral regurgitation publication-title: Acta Biomater. doi: 10.1016/j.actbio.2023.03.029 – volume: 11 start-page: 715 issue: 12 year: 2014 ident: 10.1016/j.jmbbm.2024.106453_b36 article-title: Cardiac valve cells and their microenvironment—insights from in vitro studies publication-title: Nat. Rev. Cardiol. doi: 10.1038/nrcardio.2014.162 – volume: 59 start-page: 703 issue: 8 year: 2012 ident: 10.1016/j.jmbbm.2024.106453_b34 article-title: The growing clinical importance of secondary tricuspid regurgitation publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2011.09.069 – volume: 15 start-page: 10 year: 2020 ident: 10.1016/j.jmbbm.2024.106453_b29 article-title: Growth and remodeling of atrioventricular heart valves: A potential target for pharmacological treatment? publication-title: Curr. Opin. Biomed. Eng. doi: 10.1016/j.cobme.2019.12.008 – volume: 144 issue: 10 year: 2022 ident: 10.1016/j.jmbbm.2024.106453_b38 article-title: A computational framework for atrioventricular valve modeling using open-source software publication-title: J. Biomech. Eng. doi: 10.1115/1.4054485 – volume: 7 start-page: 1 issue: 21 year: 2018 ident: 10.1016/j.jmbbm.2024.106453_b33 article-title: Pathological remodeling of mitral valve leaflets from unphysiologic leaflet mechanics after undersized mitral annuloplasty to repair ischemic mitral regurgitation publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.118.009777 – volume: 62 start-page: 605 issue: 4 year: 2004 ident: 10.1016/j.jmbbm.2024.106453_b37 article-title: Is the mitral valve passive flap theory overstated? An active valve is hypothesized publication-title: Med. Hypotheses doi: 10.1016/j.mehy.2003.12.001 |
SSID | ssj0060088 |
Score | 2.3993728 |
Snippet | Tricuspid valve leaflets have historically been considered “passive flaps”. However, we have recently shown that tricuspid leaflets actively remodel in sheep... Tricuspid valve leaflets have historically been considered "passive flaps". However, we have recently shown that tricuspid leaflets actively remodel in sheep... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 106453 |
SubjectTerms | Animals Annuloplasty Catheters Computer Simulation Humans Hypertension, Pulmonary Maladaptation Pressure Repair Sheep Transcatheter Tricuspid Valve |
Title | Leaflet remodeling reduces tricuspid valve function in a computational model |
URI | https://dx.doi.org/10.1016/j.jmbbm.2024.106453 https://www.ncbi.nlm.nih.gov/pubmed/38335648 https://www.proquest.com/docview/2925039342 |
Volume | 152 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAvCmPykiMhKa28xqriqpA6QKVulm2c5FaQVr1wchv5-wkFQztwJZYthLdne_7nNyDkDujwKQqzrzMT1JPmCBGPwi43QOIIpWAjlzXktdB2BuK51EwqpFOlQtjwypL31_4dOety5FmKc3mbDxuviHwIV1BhBaOONiMciEia-UP3-swD8Rz13vSTvbs7KrykIvxmnxqbdPRmcCRUAR8EzptYp8OhbqH5KCkj7RdvOERqUF-TPZ_FRU8If0-2I68SzoH1-YGB_EyRRUuqC3Hv1rMxilFA_sCalHNaoaOc6qocR0eyq-D1C0-JcPu43un55U9EzwjfLH0sggMInwSAwowbOlIKRW2IMNzHPgGsZlnhjOdxQx46icMIgA8EaqAa98ePfgZ2cmnOVwQqjWPY1SkYdoI7WdK-yGSXJbFqdGC6TphlaykKQuK274WH7KKHJtIJ2BpBSwLAdfJ_XrRrKinsX16WClB_jELiR5_-8LbSmUSN4z9C6JymK4WkiXI-njCBauT80KX6zfhNgUtFPHlfx97RfbsXRHac012lvMV3CBrWeqGM8sG2W0_vfQGP1CK7M0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOiDfjGSSOVCtJ-jpOCDTY2AWQuEVJ6kpDUCa28ftx0hbBAQ7cqjRWIzvx9yV1bIAzq9HmOi2CIszyQNooJT-ItNwjTBKdoUl81ZK7cTx4lLdP0VMLLpu7MC6ssvb9lU_33rpu6dXa7E0nk949AR_RFUJo6YlDsgQdl50qakOnfzMcjBuHTJDuy0-6_oETaJIP-TCv51dj3I10LqkllpH4DaB-I6AeiK7XYa1mkKxfDXIDWlhuwuq3vIJbMBqhK8o7Z-_oK91QIz3mZMUZcxn5F7PpJGc0xz6QOWBzxmGTkmlmfZGH-oCQeeFteLy-ergcBHXZhMDKUM6DIkFLIJ-lSDqML0yitY4vsKCtHIaW4FkUVnBTpBxFHmYcE0TaFOpImNDtPsQOtMu3EveAGSPSlGxpubHShIU2YUw8lxdpbo3kpgu80ZWydU5xV9riRTXBY8_KK1g5BatKwV04_xKaVik1_u4eN0ZQP2aGIqf_t-BpYzJFa8b9CNElvi1mimdE_EQmJO_CbmXLr5EIdwstlun-fz97AsuDh7uRGt2Mhwew4t5UkT6H0J6_L_CISMzcHNeT9BNx9u9- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leaflet+remodeling+reduces+tricuspid+valve+function+in+a+computational+model&rft.jtitle=Journal+of+the+mechanical+behavior+of+biomedical+materials&rft.au=Mathur%2C+Mrudang&rft.au=Malinowski%2C+Marcin&rft.au=Jazwiec%2C+Tomasz&rft.au=Timek%2C+Tomasz+A&rft.date=2024-04-01&rft.eissn=1878-0180&rft.volume=152&rft.spage=106453&rft_id=info:doi/10.1016%2Fj.jmbbm.2024.106453&rft_id=info%3Apmid%2F38335648&rft.externalDocID=38335648 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-6161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-6161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-6161&client=summon |