Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters

Accurate prediction of water quality parameters plays a crucial and decisive role in environmental monitoring, ecological systems sustainability, human health, aquaculture and improved agricultural practices. In this study a new hybrid two-layer decomposition model based on the complete ensemble emp...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 648; pp. 839 - 853
Main Authors Fijani, Elham, Barzegar, Rahim, Deo, Ravinesh, Tziritis, Evangelos, Skordas, Konstantinos
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.01.2019
Subjects
Online AccessGet full text
ISSN0048-9697
1879-1026
1879-1026
DOI10.1016/j.scitotenv.2018.08.221

Cover

Loading…
Abstract Accurate prediction of water quality parameters plays a crucial and decisive role in environmental monitoring, ecological systems sustainability, human health, aquaculture and improved agricultural practices. In this study a new hybrid two-layer decomposition model based on the complete ensemble empirical mode decomposition algorithm with adaptive noise (CEEMDAN) and the variational mode decomposition (VMD) algorithm coupled with extreme learning machines (ELM) and also least square support vector machine (LSSVM) was designed to support real-time environmental monitoring of water quality parameters, i.e. chlorophyll-a (Chl-a) and dissolved oxygen (DO) in a Lake reservoir. Daily measurements of Chl-a and DO for June 2012–May 2013 were employed where the partial autocorrelation function was applied to screen the relevant inputs for the model construction. The variables were then split into training, validation and testing subsets where the first stage of the model testing captured the superiority of the ELM over the LSSVM algorithm. To improve these standalone predictive models, a second stage implemented a two-layer decomposition with the model inputs decomposed in the form of high and low frequency oscillations, represented by the intrinsic mode function (IMF) through the CEEMDAN algorithm. The highest frequency component, IMF1 was further decomposed with the VMD algorithm to segregate key model input features, leading to a two-layer hybrid VMD-CEEMDAN model. The VMD-CEEMDAN-ELM model was able to reduce the root mean square and the mean absolute error by about 14.04% and 7.12% for the Chl-a estimation and about 5.33% and 4.30% for the DO estimation, respectively, compared with the standalone counterparts. Overall, the developed methodology demonstrates the robustness of the two-phase VMD-CEEMDAN-ELM model in identifying and analyzing critical water quality parameters with a limited set of model construction data over daily horizons, and thus, to actively support environmental monitoring tasks, especially in case of high-frequency, and relatively complex, real-time datasets. [Display omitted] •Designing a new hybrid framework for the water quality parameters (e.g. Chl-a and DO) estimation in the Prespa Lake•Incorporating a hybrid two-layer decomposition using CEEMDAN and VMD algorithms with LSSVM and ELM models•Improving the performance of the machine learning based water quality parameter estimation models
AbstractList Accurate prediction of water quality parameters plays a crucial and decisive role in environmental monitoring, ecological systems sustainability, human health, aquaculture and improved agricultural practices. In this study a new hybrid two-layer decomposition model based on the complete ensemble empirical mode decomposition algorithm with adaptive noise (CEEMDAN) and the variational mode decomposition (VMD) algorithm coupled with extreme learning machines (ELM) and also least square support vector machine (LSSVM) was designed to support real-time environmental monitoring of water quality parameters, i.e. chlorophyll-a (Chl-a) and dissolved oxygen (DO) in a Lake reservoir. Daily measurements of Chl-a and DO for June 2012-May 2013 were employed where the partial autocorrelation function was applied to screen the relevant inputs for the model construction. The variables were then split into training, validation and testing subsets where the first stage of the model testing captured the superiority of the ELM over the LSSVM algorithm. To improve these standalone predictive models, a second stage implemented a two-layer decomposition with the model inputs decomposed in the form of high and low frequency oscillations, represented by the intrinsic mode function (IMF) through the CEEMDAN algorithm. The highest frequency component, IMF1 was further decomposed with the VMD algorithm to segregate key model input features, leading to a two-layer hybrid VMD-CEEMDAN model. The VMD-CEEMDAN-ELM model was able to reduce the root mean square and the mean absolute error by about 14.04% and 7.12% for the Chl-a estimation and about 5.33% and 4.30% for the DO estimation, respectively, compared with the standalone counterparts. Overall, the developed methodology demonstrates the robustness of the two-phase VMD-CEEMDAN-ELM model in identifying and analyzing critical water quality parameters with a limited set of model construction data over daily horizons, and thus, to actively support environmental monitoring tasks, especially in case of high-frequency, and relatively complex, real-time datasets.
Accurate prediction of water quality parameters plays a crucial and decisive role in environmental monitoring, ecological systems sustainability, human health, aquaculture and improved agricultural practices. In this study a new hybrid two-layer decomposition model based on the complete ensemble empirical mode decomposition algorithm with adaptive noise (CEEMDAN) and the variational mode decomposition (VMD) algorithm coupled with extreme learning machines (ELM) and also least square support vector machine (LSSVM) was designed to support real-time environmental monitoring of water quality parameters, i.e. chlorophyll-a (Chl-a) and dissolved oxygen (DO) in a Lake reservoir. Daily measurements of Chl-a and DO for June 2012-May 2013 were employed where the partial autocorrelation function was applied to screen the relevant inputs for the model construction. The variables were then split into training, validation and testing subsets where the first stage of the model testing captured the superiority of the ELM over the LSSVM algorithm. To improve these standalone predictive models, a second stage implemented a two-layer decomposition with the model inputs decomposed in the form of high and low frequency oscillations, represented by the intrinsic mode function (IMF) through the CEEMDAN algorithm. The highest frequency component, IMF1 was further decomposed with the VMD algorithm to segregate key model input features, leading to a two-layer hybrid VMD-CEEMDAN model. The VMD-CEEMDAN-ELM model was able to reduce the root mean square and the mean absolute error by about 14.04% and 7.12% for the Chl-a estimation and about 5.33% and 4.30% for the DO estimation, respectively, compared with the standalone counterparts. Overall, the developed methodology demonstrates the robustness of the two-phase VMD-CEEMDAN-ELM model in identifying and analyzing critical water quality parameters with a limited set of model construction data over daily horizons, and thus, to actively support environmental monitoring tasks, especially in case of high-frequency, and relatively complex, real-time datasets.Accurate prediction of water quality parameters plays a crucial and decisive role in environmental monitoring, ecological systems sustainability, human health, aquaculture and improved agricultural practices. In this study a new hybrid two-layer decomposition model based on the complete ensemble empirical mode decomposition algorithm with adaptive noise (CEEMDAN) and the variational mode decomposition (VMD) algorithm coupled with extreme learning machines (ELM) and also least square support vector machine (LSSVM) was designed to support real-time environmental monitoring of water quality parameters, i.e. chlorophyll-a (Chl-a) and dissolved oxygen (DO) in a Lake reservoir. Daily measurements of Chl-a and DO for June 2012-May 2013 were employed where the partial autocorrelation function was applied to screen the relevant inputs for the model construction. The variables were then split into training, validation and testing subsets where the first stage of the model testing captured the superiority of the ELM over the LSSVM algorithm. To improve these standalone predictive models, a second stage implemented a two-layer decomposition with the model inputs decomposed in the form of high and low frequency oscillations, represented by the intrinsic mode function (IMF) through the CEEMDAN algorithm. The highest frequency component, IMF1 was further decomposed with the VMD algorithm to segregate key model input features, leading to a two-layer hybrid VMD-CEEMDAN model. The VMD-CEEMDAN-ELM model was able to reduce the root mean square and the mean absolute error by about 14.04% and 7.12% for the Chl-a estimation and about 5.33% and 4.30% for the DO estimation, respectively, compared with the standalone counterparts. Overall, the developed methodology demonstrates the robustness of the two-phase VMD-CEEMDAN-ELM model in identifying and analyzing critical water quality parameters with a limited set of model construction data over daily horizons, and thus, to actively support environmental monitoring tasks, especially in case of high-frequency, and relatively complex, real-time datasets.
Accurate prediction of water quality parameters plays a crucial and decisive role in environmental monitoring, ecological systems sustainability, human health, aquaculture and improved agricultural practices. In this study a new hybrid two-layer decomposition model based on the complete ensemble empirical mode decomposition algorithm with adaptive noise (CEEMDAN) and the variational mode decomposition (VMD) algorithm coupled with extreme learning machines (ELM) and also least square support vector machine (LSSVM) was designed to support real-time environmental monitoring of water quality parameters, i.e. chlorophyll-a (Chl-a) and dissolved oxygen (DO) in a Lake reservoir. Daily measurements of Chl-a and DO for June 2012–May 2013 were employed where the partial autocorrelation function was applied to screen the relevant inputs for the model construction. The variables were then split into training, validation and testing subsets where the first stage of the model testing captured the superiority of the ELM over the LSSVM algorithm. To improve these standalone predictive models, a second stage implemented a two-layer decomposition with the model inputs decomposed in the form of high and low frequency oscillations, represented by the intrinsic mode function (IMF) through the CEEMDAN algorithm. The highest frequency component, IMF1 was further decomposed with the VMD algorithm to segregate key model input features, leading to a two-layer hybrid VMD-CEEMDAN model. The VMD-CEEMDAN-ELM model was able to reduce the root mean square and the mean absolute error by about 14.04% and 7.12% for the Chl-a estimation and about 5.33% and 4.30% for the DO estimation, respectively, compared with the standalone counterparts. Overall, the developed methodology demonstrates the robustness of the two-phase VMD-CEEMDAN-ELM model in identifying and analyzing critical water quality parameters with a limited set of model construction data over daily horizons, and thus, to actively support environmental monitoring tasks, especially in case of high-frequency, and relatively complex, real-time datasets. [Display omitted] •Designing a new hybrid framework for the water quality parameters (e.g. Chl-a and DO) estimation in the Prespa Lake•Incorporating a hybrid two-layer decomposition using CEEMDAN and VMD algorithms with LSSVM and ELM models•Improving the performance of the machine learning based water quality parameter estimation models
Author Fijani, Elham
Tziritis, Evangelos
Barzegar, Rahim
Skordas, Konstantinos
Deo, Ravinesh
Author_xml – sequence: 1
  givenname: Elham
  surname: Fijani
  fullname: Fijani, Elham
  email: efijani@ut.ac.ir
  organization: School of Geology, College of Science, University of Tehran, Tehran, Iran
– sequence: 2
  givenname: Rahim
  surname: Barzegar
  fullname: Barzegar, Rahim
  email: rm.barzegar@tabrizu.ac.ir
  organization: Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
– sequence: 3
  givenname: Ravinesh
  surname: Deo
  fullname: Deo, Ravinesh
  email: ravinesh.Deo@usq.edu.au
  organization: School of Agricultural Computational and Environmental Sciences, International Centre for Applied Climate Sciences, Institute of Agriculture and Environment, University of Southern Queensland, Springfield, Australia
– sequence: 4
  givenname: Evangelos
  surname: Tziritis
  fullname: Tziritis, Evangelos
  email: dir.lri@nagref.gr
  organization: Hellenic Agricultural Organization, Soil and Water Resources Institute, 57400 Sindos, Greece
– sequence: 5
  givenname: Konstantinos
  surname: Skordas
  fullname: Skordas, Konstantinos
  email: kskord@apae.uth.gr
  organization: Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fitokou street, 38446 Volos, Greece
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30138884$$D View this record in MEDLINE/PubMed
BookMark eNqFUrtyGyEUZTLOxLKTX0go06wCu6tdKFJ4nOeMZ9K4Z67groWGhTWwVvR_-bAgyU6RRlBQcB73ca7IhQ8eCfnA2ZIz3n3aLpO2OWT0T8uacbFkYlnX_BVZcNHLirO6uyALxlpRyU72l-QqpS0rpxf8DblsGG-EEO2C_PmCyT54Ct5QO04OR_QZsg2ehoEC3ezX0Ro6BoOOriGhoeUr70LlYI-RGtRhnEKyR8qIeRMM1WEuSobubN5Q_J1jUaUOIXrrH-gIemM9JpoDTfM0hZhpRHBVtgVWOrIx-GMZrvj60mY80Eo5O8jF8nEGZ_OeThChGGJMb8nrAVzCd8_vNbn_9vX-9kd19-v7z9ubu0q3rM0VomxkV8YhcFjxZtWiYbyGZi01GIGGGzP0fFgDE20rDheF7CU3ujfQs-aafDzJTjE8zpiyGm3S6Bx4DHNSNeed6FZCrs5DmWwaJhohC_T9M3Rej2jUFO0Ica9edlQAn08AHUNKEQdVVn9cUY5gneJMHTKhtupfJtQhE4oJVTJR-P1__BeL88ybExPLUJ8sxgMOvUZjI-qsTLBnNf4CYcXdFA
CitedBy_id crossref_primary_10_1016_j_ecolind_2024_112413
crossref_primary_10_1016_j_jhydrol_2022_128122
crossref_primary_10_1016_j_jclepro_2020_122576
crossref_primary_10_1007_s41742_024_00668_5
crossref_primary_10_3390_w16142070
crossref_primary_10_1016_j_agwat_2020_106625
crossref_primary_10_1016_j_watres_2019_115350
crossref_primary_10_1016_j_eiar_2020_106499
crossref_primary_10_1016_j_biosystemseng_2021_05_019
crossref_primary_10_1080_03650340_2020_1802013
crossref_primary_10_3390_su14063470
crossref_primary_10_1016_j_atech_2023_100187
crossref_primary_10_1016_j_eswa_2021_116404
crossref_primary_10_1109_ACCESS_2019_2943515
crossref_primary_10_1515_polyeng_2022_0077
crossref_primary_10_1016_j_jhydrol_2023_129207
crossref_primary_10_1007_s11356_023_25937_2
crossref_primary_10_1016_j_ecolind_2023_111030
crossref_primary_10_1016_j_jhydrol_2023_130034
crossref_primary_10_1016_j_scitotenv_2019_134014
crossref_primary_10_1016_j_scitotenv_2020_141618
crossref_primary_10_1016_j_ecoinf_2023_102138
crossref_primary_10_3390_chemosensors9030050
crossref_primary_10_3390_su12135374
crossref_primary_10_1016_j_heliyon_2024_e37965
crossref_primary_10_1016_j_jhydrol_2021_126459
crossref_primary_10_1016_j_dte_2025_100038
crossref_primary_10_1016_j_compag_2018_10_014
crossref_primary_10_1016_j_jwpe_2024_106677
crossref_primary_10_2139_ssrn_3994610
crossref_primary_10_1016_j_eswa_2024_125258
crossref_primary_10_1016_j_envres_2024_118138
crossref_primary_10_1007_s11356_023_30774_4
crossref_primary_10_1038_s41598_024_81574_w
crossref_primary_10_1007_s11600_021_00678_3
crossref_primary_10_3390_w12051476
crossref_primary_10_1007_s12652_020_01900_8
crossref_primary_10_1007_s11356_023_28030_w
crossref_primary_10_1016_j_jhydrol_2018_12_060
crossref_primary_10_1111_1477_8947_12492
crossref_primary_10_1061_JHYEFF_HEENG_5946
crossref_primary_10_3389_fcell_2020_626221
crossref_primary_10_1007_s10668_022_02331_5
crossref_primary_10_1016_j_jhydrol_2019_06_075
crossref_primary_10_1108_CMS_11_2023_0653
crossref_primary_10_3390_w13182558
crossref_primary_10_1007_s11356_020_08287_1
crossref_primary_10_1016_j_jhydrol_2019_03_101
crossref_primary_10_1007_s00477_024_02727_x
crossref_primary_10_2166_wst_2023_211
crossref_primary_10_3390_electronics10222882
crossref_primary_10_1016_j_compstruct_2021_113972
crossref_primary_10_3390_app15031471
crossref_primary_10_1016_j_jhydrol_2024_131767
crossref_primary_10_3390_su14127154
crossref_primary_10_3390_environments9070085
crossref_primary_10_1016_j_scitotenv_2022_154909
crossref_primary_10_1016_j_envpol_2020_115216
crossref_primary_10_1109_JSEN_2022_3222510
crossref_primary_10_7717_peerj_cs_1000
crossref_primary_10_1007_s11356_019_07574_w
crossref_primary_10_1080_03067319_2021_1873316
crossref_primary_10_2166_nh_2018_050
crossref_primary_10_1016_j_compag_2021_106583
crossref_primary_10_1016_j_watres_2022_118040
crossref_primary_10_1016_j_scitotenv_2023_167705
crossref_primary_10_1038_s41598_023_49363_z
crossref_primary_10_1016_j_heliyon_2019_e01822
crossref_primary_10_1111_jwas_12976
crossref_primary_10_1109_ACCESS_2021_3072673
crossref_primary_10_1108_FEBE_07_2021_0036
crossref_primary_10_3390_app10175776
crossref_primary_10_1016_j_jenvman_2024_120495
crossref_primary_10_1155_2022_4488446
crossref_primary_10_1007_s00521_024_09698_8
crossref_primary_10_1016_j_jhydrol_2022_128332
crossref_primary_10_1007_s11356_022_18757_3
crossref_primary_10_1007_s00477_020_01776_2
crossref_primary_10_3390_app9122534
crossref_primary_10_1016_j_measen_2024_101255
crossref_primary_10_1080_19942060_2020_1861987
crossref_primary_10_3390_w14101643
crossref_primary_10_3934_mbe_2021374
crossref_primary_10_1007_s00128_024_03998_4
crossref_primary_10_1002_wer_11092
crossref_primary_10_3390_su14042341
crossref_primary_10_1155_2020_8828664
crossref_primary_10_3390_ijerph18147650
crossref_primary_10_3390_w12010246
crossref_primary_10_1016_j_aquaculture_2021_736724
crossref_primary_10_1007_s00521_019_04079_y
crossref_primary_10_3390_jmse13030536
crossref_primary_10_1016_j_ecoinf_2025_102995
crossref_primary_10_1016_j_enganabound_2022_09_034
crossref_primary_10_3390_app11136238
crossref_primary_10_1016_j_pedsph_2022_06_009
crossref_primary_10_1016_j_scitotenv_2020_139099
crossref_primary_10_1007_s11269_023_03666_y
crossref_primary_10_1016_j_jhydrol_2024_131275
crossref_primary_10_1088_1748_9326_abeeb1
crossref_primary_10_1016_j_psep_2023_06_021
crossref_primary_10_1016_j_jhydrol_2022_128079
crossref_primary_10_1039_D0EW01110J
crossref_primary_10_1016_j_jenvman_2023_117245
crossref_primary_10_1016_j_jssas_2020_08_001
crossref_primary_10_1016_j_ecolind_2019_02_013
crossref_primary_10_3390_rs15071951
crossref_primary_10_1016_j_envpol_2022_120081
crossref_primary_10_3390_w13111547
crossref_primary_10_1039_D4AY01200C
crossref_primary_10_3390_su13031530
crossref_primary_10_1007_s40203_021_00090_1
crossref_primary_10_1016_j_eti_2021_101641
crossref_primary_10_1016_j_jhydrol_2018_11_069
crossref_primary_10_1016_j_scitotenv_2021_149509
crossref_primary_10_1016_j_apenergy_2019_03_089
crossref_primary_10_1007_s10462_022_10199_0
crossref_primary_10_1061__ASCE_CO_1943_7862_0002051
crossref_primary_10_1016_j_scitotenv_2019_134279
crossref_primary_10_1007_s00500_023_08441_0
crossref_primary_10_1016_j_scitotenv_2022_159714
crossref_primary_10_1007_s40996_022_00928_4
crossref_primary_10_1016_j_envpol_2022_119136
crossref_primary_10_1007_s11069_023_06238_w
crossref_primary_10_1016_j_asoc_2021_108036
crossref_primary_10_1016_j_psep_2022_04_020
crossref_primary_10_1038_s41598_024_61910_w
Cites_doi 10.1029/2007RG000228
10.1023/A:1003067115862
10.1111/j.1365-2427.2010.02452.x
10.1016/j.jenvman.2017.02.071
10.1007/s10661-016-5094-9
10.1016/j.neunet.2014.10.001
10.1016/j.scitotenv.2014.09.005
10.1142/S1793536912500252
10.2166/nh.2007.010
10.1016/j.atmosres.2017.06.014
10.1515/jwld-2017-0012
10.1016/j.rser.2017.01.114
10.1016/j.jhydrol.2013.04.052
10.1016/j.jhydrol.2015.05.046
10.1016/j.geoderma.2018.05.035
10.1016/S0925-2312(01)00644-0
10.1016/j.jhydrol.2011.02.021
10.1016/j.jhydrol.2012.06.019
10.1016/j.ecolind.2012.03.030
10.1038/srep27292
10.1016/j.neunet.2013.06.010
10.1007/s00477-016-1265-z
10.1007/s00477-016-1338-z
10.1109/TSP.2013.2288675
10.1002/ep.10317
10.1007/s10750-014-1940-3
10.1016/j.bjbas.2015.11.009
10.1109/LSP.2010.2053356
10.1016/S1006-1266(08)60037-1
10.1016/j.ibiod.2015.02.013
10.1016/j.enconman.2017.10.021
10.1016/j.compag.2018.04.022
10.1016/j.ecoinf.2016.11.012
10.1016/S0893-6080(03)00026-1
10.1007/s11356-017-9283-z
10.1016/j.scitotenv.2017.04.189
10.1016/j.ecolmodel.2009.03.025
10.1190/geo2015-0489.1
10.1007/s00477-017-1394-z
10.1007/s40710-016-0172-0
10.1146/annurev.fluid.31.1.417
10.1080/02723646.1981.10642213
10.3390/e17095965
10.1007/s00170-004-2340-z
10.1016/j.chemosphere.2011.09.048
10.1016/j.apenergy.2018.02.140
10.1016/j.scitotenv.2017.11.185
10.1016/j.atmosenv.2016.03.056
10.1177/0954406215623311
10.1016/j.jhydrol.2014.01.054
10.1029/1998WR900018
10.1016/j.eswa.2010.11.013
10.1007/s00477-016-1213-y
10.1007/s12205-016-0728-6
10.1007/s13042-011-0019-y
10.1016/j.ymssp.2015.02.020
10.1016/j.jhydrol.2009.06.019
10.1016/j.ymssp.2008.11.005
10.1142/S1793536910000422
10.1007/s00477-015-1088-3
10.1016/j.jksues.2014.05.001
10.1002/2013JD020420
10.1061/(ASCE)HE.1943-5584.0001506
10.1016/j.enconman.2017.01.022
10.1016/j.envres.2017.01.035
10.1016/j.proenv.2013.04.040
10.1007/s10584-017-1916-1
10.1016/j.eneco.2007.02.012
10.1007/s10661-014-3719-4
10.1016/j.jhydrol.2010.05.040
10.1061/(ASCE)HY.1943-7900.0001062
10.1016/j.jhydrol.2011.01.017
10.1016/j.apenergy.2016.12.134
10.1016/j.atmosres.2018.07.005
10.1016/S0304-3800(02)00389-7
10.1007/s10750-008-9555-1
10.1016/j.apm.2018.01.014
10.1016/j.asej.2016.08.004
10.1023/A:1018628609742
10.1016/j.jhydrol.2016.09.035
10.1016/j.apenergy.2016.01.130
10.1098/rspa.1998.0193
10.1016/j.advengsoft.2017.09.004
10.1142/S1793536909000047
10.1029/2004JD004873
10.1016/j.jhydrol.2010.10.008
10.1016/j.neucom.2005.12.126
10.1016/j.jhydrol.2018.02.061
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018. Published by Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018. Published by Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2018.08.221
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
EndPage 853
ExternalDocumentID 30138884
10_1016_j_scitotenv_2018_08_221
S0048969718331851
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c404t-ee93966978ef51354ed012a3b9cad8ed1ddf71fba084484848e89791dc7da703
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Fri Sep 05 13:08:53 EDT 2025
Fri Sep 05 09:19:47 EDT 2025
Thu Apr 03 07:04:57 EDT 2025
Thu Apr 24 23:00:57 EDT 2025
Thu Jul 10 07:51:44 EDT 2025
Fri Feb 23 02:46:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Variational mode decomposition
Complementary ensemble empirical mode decomposition with adaptive noise
Environmental monitoring
Small Prespa Lake
Water quality modelling
Extreme machine learning
Language English
License Copyright © 2018. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-ee93966978ef51354ed012a3b9cad8ed1ddf71fba084484848e89791dc7da703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30138884
PQID 2093308389
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2116865895
proquest_miscellaneous_2093308389
pubmed_primary_30138884
crossref_citationtrail_10_1016_j_scitotenv_2018_08_221
crossref_primary_10_1016_j_scitotenv_2018_08_221
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2018_08_221
PublicationCentury 2000
PublicationDate 2019-01-15
PublicationDateYYYYMMDD 2019-01-15
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Barzegar, Asghari Moghaddam, Deo, Fijani, Tziritis (bb0070) 2018; 621
Missaghi, Hondzo, Herb (bb5000) 2017; 141
Barzegar, Asghari Moghaddam, Baghban (bb0050) 2016; 30
Suykens, Vandewalle (bb0405) 1999; 9
Liu, Cao, Chen (bb0300) 2016; 81
Zhang, Lai, Wang (bb0510) 2008; 30
Huang, Zhu, Siew (bb0220) 2006; 70
Li, Li, Wu, Zhu, Yue (bb0280) 2018; 5
Yaseen, Deo, Hilal, Abd, Bueno, Salcedo-Sanz, Nehdi (bb0500) 2018; 115
Huo, He, Su, Xi, Zhu (bb0235) 2013; 18
Wang, Markert, Xiang, Zheng (bb0445) 2015; 60–61
Suykens, De Brabanter, Lukas, Vandewalle (bb0410) 2002; 48
UNDP GEF (bb0430) 2013
Heddam, Kisi (bb0170) 2018; 559
Tziritis (bb0425) 2014; 186
Wu, Chau (bb0465) 2011; 399
Ahmed (bb0005) 2017; 29
Hollis, Stevenson (bb0175) 1997; 351
Legates, McCabe (bb0265) 1999; 35
Niu, Hu, Sun, Liu (bb0325) 2018; 57
Wu, Huang (bb0470) 2009; 1
Bueno-Crespo, García-Laencina, Sancho-Gómez (bb0075) 2013; 48
Ay, Kisi (bb0035) 2017; 21
Noori, Deng, Kiaghadi, Kachoosangi (bb0350) 2016; 142
Colominas, Schlotthauer, Torres, Flandrin (bb0100) 2012; 4
Deo, Tiwari, Adamowski, Quilty (bb0135) 2017; 31
Chen, Mynett (bb0095) 2003; 162
Willmott (bb0460) 1981; 2
Yeh, Shieh, Huang (bb0505) 2010; 2
Huang, Gao (bb0195) 2017; 37
Li, Huang, Xu (bb5015) 2017; 13
Cao, Liu, Wang (bb0080) 2008; 18
Barzegar, Fijani, Asghari Moghaddam, Tziritis (bb0060) 2017; 599–600
Deo, Şahin (bb0115) 2017; 72
Vapnik (bb0435) 2013
Prasad, Deo, Li, Maraseni (bb0370) 2017; 197
Yaseen, Jaafar, Deo, Kisi, Adamowski, Quilty, El-Shafie (bb0495) 2016; 542
Huang, Wang, Lan (bb0225) 2011; 2
Barzegar, Asghari Moghaddam, Adamowski, Ozga-Zielinski (bb0065) 2018; 32
Lei, He, Zi (bb0270) 2009; 23
Hyndman, Kostenko (bb0240) 2007; 6
Barzegar, Asghari Moghaddam, Adamowski, Fijani (bb0055) 2017; 31
Noori, Yeh, Abbasi, Kachoosangi, Moazami (bb0345) 2015; 527
Thevenon, Adatte, Wildi, Poté (bb0415) 2012; 86
Haupt, Pasini, Marzban (bb0155) 2008
Hong, Pai (bb0180) 2006; 28
Loucks, van Beek (bb0305) 2005
Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (bb0205) 1998; 454
Xu, Ma, Liu, Xi, Qian, Zhang, Huo (bb0485) 2015; 102
Huang, Shen, Long (bb0210) 1999; 31
Peng, Zhou, Zhang, Zheng (bb0360) 2017; 153
Huang, Huang, Song, You (bb0230) 2015; 61
Zhu, Wang, Hu, Kong, Liu (bb0520) 2017; 231
Solomatine (bb0400) 2005
Wang, Luo, Grunder, Lin, Guo (bb0450) 2017; 190
Deo, Downs, Parisi, Adamowski, Quilty (bb0130) 2017; 155
Deo, Şahin (bb0110) 2016; 188
Deo, Samui (bb0120) 2017; 22
Li, Zhan, Shen (bb0275) 2015; 17
Pereira, Evsukoff, Ebecken (bb0365) 2009; 220
Lugoli, Garmendia, Lehtinen, Kauppila, Moncheva, Revilla, Roselli, Slabakova, Valencia, Dromph, Basset (bb0310) 2012; 23
Huan, Cao, Qin (bb0190) 2018; 150
Yadav, Ch, Mathur, Adamowski (bb0490) 2017; 32
Ay, Kisi (bb0030) 2014; 511
Carneiro, Nabout, Vieira, Roland, Bini (bb0085) 2014; 740
Heddam, Kisi (bb0165) 2017; 24
Sharma, Sharma, Anthwal (bb0390) 2007; 4
Albrecht, Wolff, Gloer, Wilke (bb0010) 2008; 615
Hu, Wu, Zhang (bb0185) 2007; 38
Wang, Chau, Cheng, Qiu (bb0440) 2009; 374
Niu, Wang, Sun, Li (bb0315) 2016; 134
Wu, Tsai (bb0475) 2011; 38
Kisi (bb5010) 2012; 456–457
Noori, Karbassi, Moghaddamnia, Han, Zokaei-Ashtiani, Farokhnia, Gousheh (bb0335) 2011; 401
RAMSAR (bb0380) 1974
Torres, Colominas, Schlotthauer, Flandrin (bb0420) 2011; 2011
Emberger (bb0150) 1963
Liu, Yan, Tai, Xu, Li (bb0295) 2012; 370
Barzegar, Asghari Moghaddam (bb0040) 2016; 2
Shiri, Kisi (bb0395) 2010; 394
Ali, Deo, Downs, Maraseni (bb0015) 2018; 213
Wu, Chau, Fan (bb0480) 2010; 389
Huang, Zhu, Siew (bb0215) 2004; 2
Liu, Wang, Cui, Lian, Xu (bb0290) 2009
Noori, Abdoli, Ghasrodashti, Ghazizade (bb0330) 2009; 28
Krasnopolsky, Chevallier (bb0260) 2003; 16
Noori, Safavi, Shahrokni (bb0340) 2013; 495
Prasad, Deo, Li, Maraseni (bb0375) 2018; 330
Catherine, Mouillot, Escoffier, Bernard, Troussellier (bb0090) 2010; 55
Rilling, Flandrin, Gonçalves (bb0385) 2003
Dragomiretskiy, Zosso (bb0140) 2014; 62
Deo, Wen, Feng (bb0125) 2016; 168
Park, Cho, Park, Cha, Kim (bb0355) 2015; 502
Zhang, Qu, Zhang, Mao, Ma, Fan (bb0515) 2017; 136
Khadr, Elshemy (bb0250) 2017; 8
El-Otify (bb0145) 2015; 4
Liu, Wang (bb0285) 2010; 17
Coughlin, Tung (bb0105) 2004; 109
Yu, Chen, Hassan, Li (bb5005) 2016; 8
Kassioumis (bb0245) 1991
Heddam (bb0160) 2016; 3
Antico, Schlotthauer, Torres (bb0025) 2014; 119
Al-Musaylh, Deo, Adamowski, Li (bb0020) 2018; 217
Niu, Gan, Sun, Li (bb0320) 2017; 196
Huang, Wu (bb0200) 2008; 46
Barzegar, Adamowski, Asghari Moghaddam (bb0045) 2016; 30
Xu (10.1016/j.scitotenv.2018.08.221_bb0485) 2015; 102
Zhang (10.1016/j.scitotenv.2018.08.221_bb0515) 2017; 136
Deo (10.1016/j.scitotenv.2018.08.221_bb0120) 2017; 22
Zhu (10.1016/j.scitotenv.2018.08.221_bb0520) 2017; 231
Yu (10.1016/j.scitotenv.2018.08.221_bb5005) 2016; 8
Bueno-Crespo (10.1016/j.scitotenv.2018.08.221_bb0075) 2013; 48
Hu (10.1016/j.scitotenv.2018.08.221_bb0185) 2007; 38
Emberger (10.1016/j.scitotenv.2018.08.221_bb0150) 1963
Yadav (10.1016/j.scitotenv.2018.08.221_bb0490) 2017; 32
Huang (10.1016/j.scitotenv.2018.08.221_bb0215) 2004; 2
Huang (10.1016/j.scitotenv.2018.08.221_bb0220) 2006; 70
Khadr (10.1016/j.scitotenv.2018.08.221_bb0250) 2017; 8
Peng (10.1016/j.scitotenv.2018.08.221_bb0360) 2017; 153
Heddam (10.1016/j.scitotenv.2018.08.221_bb0160) 2016; 3
Haupt (10.1016/j.scitotenv.2018.08.221_bb0155) 2008
Deo (10.1016/j.scitotenv.2018.08.221_bb0130) 2017; 155
Thevenon (10.1016/j.scitotenv.2018.08.221_bb0415) 2012; 86
El-Otify (10.1016/j.scitotenv.2018.08.221_bb0145) 2015; 4
RAMSAR (10.1016/j.scitotenv.2018.08.221_bb0380)
Missaghi (10.1016/j.scitotenv.2018.08.221_bb5000) 2017; 141
Heddam (10.1016/j.scitotenv.2018.08.221_bb0170) 2018; 559
Niu (10.1016/j.scitotenv.2018.08.221_bb0325) 2018; 57
Park (10.1016/j.scitotenv.2018.08.221_bb0355) 2015; 502
Albrecht (10.1016/j.scitotenv.2018.08.221_bb0010) 2008; 615
Yaseen (10.1016/j.scitotenv.2018.08.221_bb0500) 2018; 115
Liu (10.1016/j.scitotenv.2018.08.221_bb0295) 2012; 370
Ali (10.1016/j.scitotenv.2018.08.221_bb0015) 2018; 213
Vapnik (10.1016/j.scitotenv.2018.08.221_bb0435) 2013
Barzegar (10.1016/j.scitotenv.2018.08.221_bb0050) 2016; 30
Noori (10.1016/j.scitotenv.2018.08.221_bb0335) 2011; 401
Wu (10.1016/j.scitotenv.2018.08.221_bb0480) 2010; 389
Li (10.1016/j.scitotenv.2018.08.221_bb5015) 2017; 13
Sharma (10.1016/j.scitotenv.2018.08.221_bb0390) 2007; 4
Pereira (10.1016/j.scitotenv.2018.08.221_bb0365) 2009; 220
Chen (10.1016/j.scitotenv.2018.08.221_bb0095) 2003; 162
Carneiro (10.1016/j.scitotenv.2018.08.221_bb0085) 2014; 740
Huan (10.1016/j.scitotenv.2018.08.221_bb0190) 2018; 150
Shiri (10.1016/j.scitotenv.2018.08.221_bb0395) 2010; 394
Willmott (10.1016/j.scitotenv.2018.08.221_bb0460) 1981; 2
Huang (10.1016/j.scitotenv.2018.08.221_bb0230) 2015; 61
Deo (10.1016/j.scitotenv.2018.08.221_bb0135) 2017; 31
Barzegar (10.1016/j.scitotenv.2018.08.221_bb0045) 2016; 30
Torres (10.1016/j.scitotenv.2018.08.221_bb0420) 2011; 2011
Krasnopolsky (10.1016/j.scitotenv.2018.08.221_bb0260) 2003; 16
Huang (10.1016/j.scitotenv.2018.08.221_bb0200) 2008; 46
Zhang (10.1016/j.scitotenv.2018.08.221_bb0510) 2008; 30
Kassioumis (10.1016/j.scitotenv.2018.08.221_bb0245) 1991
UNDP GEF (10.1016/j.scitotenv.2018.08.221_bb0430)
Huang (10.1016/j.scitotenv.2018.08.221_bb0210) 1999; 31
Ay (10.1016/j.scitotenv.2018.08.221_bb0035) 2017; 21
Legates (10.1016/j.scitotenv.2018.08.221_bb0265) 1999; 35
Wang (10.1016/j.scitotenv.2018.08.221_bb0450) 2017; 190
Yeh (10.1016/j.scitotenv.2018.08.221_bb0505) 2010; 2
Colominas (10.1016/j.scitotenv.2018.08.221_bb0100) 2012; 4
Barzegar (10.1016/j.scitotenv.2018.08.221_bb0055) 2017; 31
Solomatine (10.1016/j.scitotenv.2018.08.221_bb0400) 2005
Barzegar (10.1016/j.scitotenv.2018.08.221_bb0040) 2016; 2
Liu (10.1016/j.scitotenv.2018.08.221_bb0300) 2016; 81
Hollis (10.1016/j.scitotenv.2018.08.221_bb0175) 1997; 351
Huo (10.1016/j.scitotenv.2018.08.221_bb0235) 2013; 18
Lugoli (10.1016/j.scitotenv.2018.08.221_bb0310) 2012; 23
Niu (10.1016/j.scitotenv.2018.08.221_bb0320) 2017; 196
Hong (10.1016/j.scitotenv.2018.08.221_bb0180) 2006; 28
Catherine (10.1016/j.scitotenv.2018.08.221_bb0090) 2010; 55
Ahmed (10.1016/j.scitotenv.2018.08.221_bb0005) 2017; 29
Barzegar (10.1016/j.scitotenv.2018.08.221_bb0060) 2017; 599–600
Liu (10.1016/j.scitotenv.2018.08.221_bb0285) 2010; 17
Liu (10.1016/j.scitotenv.2018.08.221_bb0290) 2009
Hyndman (10.1016/j.scitotenv.2018.08.221_bb0240) 2007; 6
Barzegar (10.1016/j.scitotenv.2018.08.221_bb0065) 2018; 32
Coughlin (10.1016/j.scitotenv.2018.08.221_bb0105) 2004; 109
Huang (10.1016/j.scitotenv.2018.08.221_bb0225) 2011; 2
Prasad (10.1016/j.scitotenv.2018.08.221_bb0375) 2018; 330
Li (10.1016/j.scitotenv.2018.08.221_bb0275) 2015; 17
Noori (10.1016/j.scitotenv.2018.08.221_bb0345) 2015; 527
Wu (10.1016/j.scitotenv.2018.08.221_bb0475) 2011; 38
Heddam (10.1016/j.scitotenv.2018.08.221_bb0165) 2017; 24
Deo (10.1016/j.scitotenv.2018.08.221_bb0110) 2016; 188
Antico (10.1016/j.scitotenv.2018.08.221_bb0025) 2014; 119
Lei (10.1016/j.scitotenv.2018.08.221_bb0270) 2009; 23
Suykens (10.1016/j.scitotenv.2018.08.221_bb0405) 1999; 9
Tziritis (10.1016/j.scitotenv.2018.08.221_bb0425) 2014; 186
Barzegar (10.1016/j.scitotenv.2018.08.221_bb0070) 2018; 621
Rilling (10.1016/j.scitotenv.2018.08.221_bb0385) 2003
Suykens (10.1016/j.scitotenv.2018.08.221_bb0410) 2002; 48
Wang (10.1016/j.scitotenv.2018.08.221_bb0440) 2009; 374
Deo (10.1016/j.scitotenv.2018.08.221_bb0115) 2017; 72
Prasad (10.1016/j.scitotenv.2018.08.221_bb0370) 2017; 197
Wu (10.1016/j.scitotenv.2018.08.221_bb0465) 2011; 399
Kisi (10.1016/j.scitotenv.2018.08.221_bb5010) 2012; 456–457
Yaseen (10.1016/j.scitotenv.2018.08.221_bb0495) 2016; 542
Deo (10.1016/j.scitotenv.2018.08.221_bb0125) 2016; 168
Noori (10.1016/j.scitotenv.2018.08.221_bb0340) 2013; 495
Niu (10.1016/j.scitotenv.2018.08.221_bb0315) 2016; 134
Noori (10.1016/j.scitotenv.2018.08.221_bb0330) 2009; 28
Wu (10.1016/j.scitotenv.2018.08.221_bb0470) 2009; 1
Al-Musaylh (10.1016/j.scitotenv.2018.08.221_bb0020) 2018; 217
Wang (10.1016/j.scitotenv.2018.08.221_bb0445) 2015; 60–61
Ay (10.1016/j.scitotenv.2018.08.221_bb0030) 2014; 511
Loucks (10.1016/j.scitotenv.2018.08.221_bb0305) 2005
Noori (10.1016/j.scitotenv.2018.08.221_bb0350) 2016; 142
Huang (10.1016/j.scitotenv.2018.08.221_bb0195) 2017; 37
Li (10.1016/j.scitotenv.2018.08.221_bb0280) 2018; 5
Cao (10.1016/j.scitotenv.2018.08.221_bb0080) 2008; 18
Huang (10.1016/j.scitotenv.2018.08.221_bb0205) 1998; 454
Dragomiretskiy (10.1016/j.scitotenv.2018.08.221_bb0140) 2014; 62
References_xml – year: 2008
  ident: bb0155
  article-title: Artificial Intelligence Methods in the Environmental Sciences
– volume: 599–600
  start-page: 20
  year: 2017
  end-page: 31
  ident: bb0060
  article-title: Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network based models
  publication-title: Sci. Total Environ.
– volume: 29
  start-page: 151
  year: 2017
  end-page: 158
  ident: bb0005
  article-title: Prediction of dissolved oxygen in Surma River by biochemical oxygen demand and chemical oxygen demand using the artificial neural networks (ANNs)
  publication-title: J. King Saud Univ. Eng. Sci.
– year: 2005
  ident: bb0400
  article-title: Data-driven modelling and computational intelligence methods in hydrology
  publication-title: Encyclopedia of Hydrological Sciences
– volume: 30
  start-page: 883
  year: 2016
  end-page: 899
  ident: bb0050
  article-title: A supervised committee machine artificial intelligent for improving DRASTIC method to assess groundwater contamination risk: a case study from Tabriz plain aquifer, Iran
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 16
  start-page: 335
  year: 2003
  end-page: 348
  ident: bb0260
  article-title: Some neural network applications in environmental sciences. Part II: advancing computational efficiency of environmental numerical models
  publication-title: Neural Netw.
– start-page: 764
  year: 2009
  end-page: 768
  ident: bb0290
  article-title: Research on water bloom prediction based on least squares support vector machine
  publication-title: Proceedings of the WRI World Congress on Computer Science and Information Engineering (CSIE '09)
– volume: 72
  start-page: 828
  year: 2017
  end-page: 848
  ident: bb0115
  article-title: Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland
  publication-title: Renew. Sust. Energ. Rev.
– volume: 190
  start-page: 390
  year: 2017
  end-page: 407
  ident: bb0450
  article-title: Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm
  publication-title: Appl. Energy
– volume: 109
  year: 2004
  ident: bb0105
  article-title: Eleven year solar cycle signal throughout the lower atmosphere
  publication-title: J. Geophys. Res.
– volume: 527
  start-page: 833
  year: 2015
  end-page: 843
  ident: bb0345
  article-title: Uncertainty analysis of support vector machine for online prediction of five-day biochemical oxygen demand
  publication-title: J. Hydrol.
– volume: 5
  start-page: 11
  year: 2018
  end-page: 20
  ident: bb0280
  article-title: A hybrid model for dissolved oxygen prediction in aquaculture based on multi-scale features
  publication-title: Inf. Process. Agric.
– volume: 370
  year: 2012
  ident: bb0295
  article-title: Prediction of dissolved oxygen content in aquaculture of
  publication-title: Computer and Computing Technologies in Agriculture V. CCTA 2011. IFIP Advances in Information and Communication Technology
– volume: 31
  start-page: 2705
  year: 2017
  end-page: 2718
  ident: bb0055
  article-title: Comparison of machine learning models for predicting fluoride contamination in groundwater
  publication-title: Stoch. Env. Res. Risk A.
– volume: 141
  start-page: 747
  year: 2017
  end-page: 757
  ident: bb5000
  article-title: Prediction of lake water temperature, dissolved oxygen, and fish habitat under changing climate
  publication-title: Clim. Chang.
– volume: 115
  start-page: 112
  year: 2018
  end-page: 125
  ident: bb0500
  article-title: Predicting compressive strength of lightweight foamed concrete using extreme learning machine model
  publication-title: Adv. Eng. Softw.
– year: 2013
  ident: bb0430
– volume: 17
  start-page: 5965
  year: 2015
  end-page: 5979
  ident: bb0275
  article-title: Friction signal denoising using complete ensemble EMD with adaptive noise and mutual information
  publication-title: Entropy
– volume: 196
  start-page: 110
  year: 2017
  end-page: 118
  ident: bb0320
  article-title: Application of decomposition-ensemble learning paradigm with phase space reconstruction for day-ahead forecasting
  publication-title: J. Environ. Manag.
– volume: 38
  start-page: 235
  year: 2007
  end-page: 248
  ident: bb0185
  article-title: Rainfall–runoff modeling using principal component analysis and neural network
  publication-title: Nord. Hydrol.
– volume: 28
  start-page: 249
  year: 2009
  end-page: 258
  ident: bb0330
  article-title: Prediction of municipal solid waste generation with combination of support vector machine and principal component analysis: a case study of Mashhad
  publication-title: Environ. Prog. Sustain. Energy
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: bb0205
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. A Math. Phys. Eng. Sci.
– volume: 119
  start-page: 1218
  year: 2014
  end-page: 1233
  ident: bb0025
  article-title: Analysis of hydroclimatic variability and trends using a novel empirical mode decomposition: application to the Paraná River basin
  publication-title: J. Geophys. Res. Atmos.
– volume: 2
  start-page: 107
  year: 2011
  end-page: 122
  ident: bb0225
  article-title: Extreme learning machines: a survey
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 23
  start-page: 1327
  year: 2009
  end-page: 1338
  ident: bb0270
  article-title: Application of the EEMD method to rotor fault diagnosis of rotating machinery
  publication-title: Mech. Syst. Signal Process.
– volume: 17
  start-page: 754
  year: 2010
  end-page: 757
  ident: bb0285
  article-title: Ensemble based extreme learning machine
  publication-title: IEEE Signal Process. Lett.
– volume: 2
  year: 2016
  ident: bb0040
  article-title: Combining the advantages of neural networks using the concept of committee machine in the groundwater salinity prediction
  publication-title: Model. Earth Syst. Environ.
– volume: 32
  start-page: 103
  year: 2017
  end-page: 112
  ident: bb0490
  article-title: Assessing the suitability of extreme learning machines (ELM) for groundwater level prediction
  publication-title: J. Water Land Dev.
– volume: 456–457
  start-page: 110
  year: 2012
  end-page: 120
  ident: bb5010
  article-title: Modeling discharge-suspended sediment relationship using least square support vector machine
  publication-title: J. Hydrol.
– volume: 13
  start-page: 8121
  year: 2017
  end-page: 8130
  ident: bb5015
  article-title: EMD-based study of the volatility mechanism in economic growth
  publication-title: Eurasia J. Math. Sci. Technol. Educ.
– volume: 220
  start-page: 1506
  year: 2009
  end-page: 1512
  ident: bb0365
  article-title: Fuzzy modelling of chlorophyll production in a Brazilian upwelling system
  publication-title: Ecol. Model.
– volume: 31
  start-page: 1211
  year: 2017
  end-page: 1240
  ident: bb0135
  article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model
  publication-title: Stoch. Env. Res. Risk A.
– volume: 150
  start-page: 257
  year: 2018
  end-page: 265
  ident: bb0190
  article-title: Prediction of dissolved oxygen in aquaculture based on EEMD and LSSVM optimized by the Bayesian evidence framework
  publication-title: Comput. Electron. Agric.
– year: 1991
  ident: bb0245
  article-title: Prespa National Park Management Plan. Forestry Service, Ministry of Agriculture
– volume: 37
  start-page: 52
  year: 2017
  end-page: 58
  ident: bb0195
  article-title: An ensemble simulation approach for artificial neural network: an example from chlorophyll a simulation in Lake Poyang, China
  publication-title: Ecol. Inform.
– volume: 374
  start-page: 294
  year: 2009
  end-page: 306
  ident: bb0440
  article-title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
  publication-title: J. Hydrol.
– volume: 31
  start-page: 417
  year: 1999
  end-page: 457
  ident: bb0210
  article-title: A new view of nonlinear water waves - the Hilbert spectrum
  publication-title: Ann. Rev. Fluid Mech.
– volume: 18
  start-page: 172
  year: 2008
  end-page: 176
  ident: bb0080
  article-title: A forecasting and forewarning model for methane hazard in working face of coal mine based on LS-SVM
  publication-title: J. China Univ. Min. Technol.
– volume: 32
  start-page: 799
  year: 2018
  end-page: 813
  ident: bb0065
  article-title: Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model
  publication-title: Stoch. Env. Res. Risk A.
– volume: 389
  start-page: 146
  year: 2010
  end-page: 167
  ident: bb0480
  article-title: Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques
  publication-title: J. Hydrol.
– year: 1963
  ident: bb0150
  article-title: Carte Bioclimatique de la Region Mediteraneene
– start-page: 680
  year: 2005
  ident: bb0305
  article-title: Water resources systems planning and management: an introduction to methods, models and applications
  publication-title: Studies and Reports in Hydrology
– volume: 57
  start-page: 163
  year: 2018
  end-page: 178
  ident: bb0325
  article-title: A novel hybrid decomposition-ensemble model based on VMD and HGWO for container throughput forecasting
  publication-title: Appl. Math. Model.
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: bb0220
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– volume: 186
  start-page: 4553
  year: 2014
  end-page: 4568
  ident: bb0425
  article-title: Environmental monitoring of micro Prespa Lake basin (Western Macedonia, Greece): hydrogeochemical characteristics of water resources and quality trends
  publication-title: Environ. Monit. Assess.
– volume: 8
  start-page: 549
  year: 2017
  end-page: 557
  ident: bb0250
  article-title: Data-driven modeling for water quality prediction case study: the drains system associated with Manzala Lake, Egypt
  publication-title: Ain Shams Eng. J.
– volume: 213
  start-page: 450
  year: 2018
  end-page: 464
  ident: bb0015
  article-title: Multi-stage hybridized online sequential extreme learning machine integrated with Markov Chain Monte Carlo copula-bat algorithm for rainfall forecasting
  publication-title: Atmos. Res.
– volume: 22
  year: 2017
  ident: bb0120
  article-title: Forecasting evaporative loss by least-square support-vector regression and evaluation with genetic programming, Gaussian process, and minimax probability machine regression: case study of Brisbane City
  publication-title: J. Hydrol. Eng.
– volume: 740
  start-page: 89
  year: 2014
  end-page: 99
  ident: bb0085
  article-title: Determinants of chlorophyll-a concentration in tropical reservoirs
  publication-title: Hydrobiologia
– volume: 6
  start-page: 12
  year: 2007
  end-page: 15
  ident: bb0240
  article-title: Minimum sample size requirements for seasonal forecasting models
  publication-title: Int. J. Appl. Forecast.
– volume: 401
  start-page: 177
  year: 2011
  end-page: 189
  ident: bb0335
  article-title: Assessment of input variables determination on the SVM model performance using PCA, gamma test, and forward selection techniques for monthly stream flow prediction
  publication-title: J. Hydrol.
– volume: 46
  start-page: 1
  year: 2008
  end-page: 23
  ident: bb0200
  article-title: A review on Hilbert-Huang transform: method and its applications to geophysical studies
  publication-title: Rev. Geophys.
– volume: 217
  start-page: 422
  year: 2018
  end-page: 439
  ident: bb0020
  article-title: Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting
  publication-title: Appl. Energy
– volume: 30
  start-page: 1797
  year: 2016
  end-page: 1819
  ident: bb0045
  article-title: Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-Chay River, Iran
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 8
  start-page: 27292
  year: 2016
  ident: bb5005
  article-title: Dissolved oxygen content prediction in crab culture using a hybrid intelligent method
  publication-title: Sci. Rep.
– volume: 394
  start-page: 486
  year: 2010
  end-page: 493
  ident: bb0395
  article-title: Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model
  publication-title: J. Hydrol.
– volume: 4
  year: 2012
  ident: bb0100
  article-title: Noise-assisted EMD methods in action
  publication-title: Adv. Adapt. Data Anal.
– volume: 4
  start-page: 327
  year: 2015
  end-page: 337
  ident: bb0145
  article-title: Evaluation of the physicochemical and chlorophyll-a conditions of a subtropical aquaculture in Lake Nasser area, Egypt
  publication-title: Beni-Suef Univ. J. Basic Appl. Sci.
– year: 2003
  ident: bb0385
  article-title: On empirical mode decomposition and its algorithms
  publication-title: Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, Jun 2003, Grado, Italy
– volume: 188
  start-page: 90
  year: 2016
  ident: bb0110
  article-title: An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland
  publication-title: Environ. Monit. Assess.
– volume: 2
  start-page: 985
  year: 2004
  end-page: 990
  ident: bb0215
  article-title: Extreme learning machine: a new learning scheme of feedforward neural networks
  publication-title: IEEE. Int. Conf. Neural. Netw. Conf. Proc.
– volume: 48
  start-page: 19
  year: 2013
  end-page: 24
  ident: bb0075
  article-title: Neural architecture design based on extreme learning machine
  publication-title: Neural Netw.
– volume: 23
  start-page: 338
  year: 2012
  end-page: 355
  ident: bb0310
  article-title: Application of a new multi-metric phytoplankton index to assessment of ecological status in marine and transitions waters
  publication-title: Ecol. Indic.
– volume: 48
  start-page: 85
  year: 2002
  end-page: 105
  ident: bb0410
  article-title: Weighted least squares support vector machines: robustness and sparse approximation
  publication-title: Neurocomputing
– volume: 60–61
  start-page: 243
  year: 2015
  end-page: 251
  ident: bb0445
  article-title: Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system
  publication-title: Mech. Syst. Signal Process.
– volume: 330
  start-page: 136
  year: 2018
  end-page: 161
  ident: bb0375
  article-title: Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition
  publication-title: Geoderma
– volume: 495
  start-page: 175
  year: 2013
  end-page: 185
  ident: bb0340
  article-title: A reduced-order adaptive neurofuzzy inference system model as a software sensor for rapid estimation of five-day biochemical oxygen demand
  publication-title: J. Hydrol.
– year: 2013
  ident: bb0435
  article-title: The Nature of Statistical Learning Theory
– volume: 511
  start-page: 279
  year: 2014
  end-page: 289
  ident: bb0030
  article-title: Modelling of chemical oxygen demand by using ANNs, ANFIS and k-means clustering techniques
  publication-title: J. Hydrol.
– volume: 81
  start-page: V365
  year: 2016
  end-page: V378
  ident: bb0300
  article-title: Applications of variational mode decomposition in seismic time-frequency analysis
  publication-title: Geophysics
– year: 1974
  ident: bb0380
  article-title: The RAMSAR convention on wetlands
– volume: 399
  start-page: 394
  year: 2011
  end-page: 409
  ident: bb0465
  article-title: Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis
  publication-title: J. Hydrol.
– volume: 615
  start-page: 157
  year: 2008
  end-page: 167
  ident: bb0010
  article-title: Concurrent evolution of ancient sister lakes and sister species: the freshwater gastropod genus Radix in lakes Ohrid and Prespa
  publication-title: Hydrobiologia
– volume: 231
  start-page: 635
  year: 2017
  end-page: 654
  ident: bb0520
  article-title: Adaptive variational mode decomposition based on artificial fish swarm algorithm for fault diagnosis of rolling bearings
  publication-title: Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.
– volume: 1
  start-page: 1
  year: 2009
  end-page: 41
  ident: bb0470
  article-title: Ensemble empirical mode decomposition: a noise assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
– volume: 621
  start-page: 697
  year: 2018
  end-page: 712
  ident: bb0070
  article-title: Mapping groundwater contamination risk of multiple aquifers using multi-model ensemble of machine learning algorithms
  publication-title: Sci. Total Environ.
– volume: 30
  start-page: 905
  year: 2008
  end-page: 918
  ident: bb0510
  article-title: A new approach for crude oil price analysis based on empirical mode decomposition
  publication-title: Energy Econ.
– volume: 3
  start-page: 909
  year: 2016
  end-page: 937
  ident: bb0160
  article-title: Use of optimally pruned extreme learning machine (OP-ELM) in forecasting dissolved oxygen concentration (DO) several hours in advance: a case study from the Klamath River, Oregon, USA
  publication-title: Environ. Process.
– volume: 21
  start-page: 1631
  year: 2017
  end-page: 1639
  ident: bb0035
  article-title: Estimation of dissolved oxygen by using neural networks and neuro fuzzy computing techniques
  publication-title: KSCE J. Civ. Eng.
– volume: 153
  start-page: 589
  year: 2017
  end-page: 602
  ident: bb0360
  article-title: Multi-step ahead wind speed forecasting using a hybrid model based on two stage decomposition technique and AdaBoost-extreme learning machine
  publication-title: Energy Convers. Manag.
– volume: 559
  start-page: 499
  year: 2018
  end-page: 509
  ident: bb0170
  article-title: Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree
  publication-title: J. Hydrol.
– volume: 155
  start-page: 141
  year: 2017
  end-page: 166
  ident: bb0130
  article-title: Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle
  publication-title: Environ. Res.
– volume: 136
  start-page: 439
  year: 2017
  end-page: 451
  ident: bb0515
  article-title: A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting
  publication-title: Energy Convers. Manag.
– volume: 2
  start-page: 184
  year: 1981
  end-page: 194
  ident: bb0460
  article-title: On the validation of models
  publication-title: Phys. Geogr.
– volume: 24
  start-page: 16702
  year: 2017
  end-page: 16724
  ident: bb0165
  article-title: Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors
  publication-title: Environ. Sci. Pollut. Res.
– volume: 142
  year: 2016
  ident: bb0350
  article-title: How reliable are ANN, ANFIS, and SVM techniques for predicting longitudinal dispersion coefficient in natural rivers?
  publication-title: J. Hydraul. Eng.
– volume: 162
  start-page: 55
  year: 2003
  end-page: 67
  ident: bb0095
  article-title: Integration of data mining techniques and heuristic knowledge in fuzzy logic modelling of eutrophication in Taihu Lake
  publication-title: Ecol. Model.
– volume: 35
  start-page: 233
  year: 1999
  end-page: 241
  ident: bb0265
  article-title: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation
  publication-title: Water Resour. Res.
– volume: 55
  start-page: 2425
  year: 2010
  end-page: 2435
  ident: bb0090
  article-title: Cost effective prediction of the eutrophication status of lakes and reservoirs
  publication-title: Freshw. Biol.
– volume: 18
  start-page: 310
  year: 2013
  end-page: 316
  ident: bb0235
  article-title: Using artificial neural network models for eutrophication prediction
  publication-title: Procedia Environ Sci
– volume: 134
  start-page: 168
  year: 2016
  end-page: 180
  ident: bb0315
  article-title: A novel hybrid decomposition- and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting
  publication-title: Atmos. Environ.
– volume: 28
  start-page: 154
  year: 2006
  end-page: 161
  ident: bb0180
  article-title: Predicting engine reliability by support vector machines
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 61
  start-page: 32
  year: 2015
  end-page: 48
  ident: bb0230
  article-title: Trends in extreme learning machines: a review
  publication-title: Neural Netw.
– volume: 197
  start-page: 42
  year: 2017
  end-page: 63
  ident: bb0370
  article-title: Input selection and performance optimization of ANN-based streamflow forecasts in a drought-prone Murray Darling Basin using IIS and MODWT algorithm
  publication-title: Atmos. Res.
– volume: 2
  start-page: 135
  year: 2010
  end-page: 156
  ident: bb0505
  article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method
  publication-title: Adv. Adapt. Data Anal.
– volume: 102
  start-page: 308
  year: 2015
  end-page: 315
  ident: bb0485
  article-title: Method to predict key factors affecting lake eutrophication – a new approach based on support vector regression model
  publication-title: Int. Biodeterior. Biodegrad.
– volume: 4
  start-page: 80
  year: 2007
  end-page: 84
  ident: bb0390
  article-title: Monitoring phytoplanktonic diversity in the hill stream Chandrabhaga of Garhwal Himalaya
  publication-title: Life Sci. J.
– volume: 542
  start-page: 603
  year: 2016
  end-page: 614
  ident: bb0495
  article-title: Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq
  publication-title: J. Hydrol.
– volume: 2011
  start-page: 4144
  year: 2011
  end-page: 4147
  ident: bb0420
  article-title: A complete ensemble empirical mode decomposition with adaptive noise
  publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague
– volume: 168
  start-page: 568
  year: 2016
  end-page: 593
  ident: bb0125
  article-title: A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset
  publication-title: Appl. Energy
– volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: bb0140
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: bb0405
  article-title: Least squares support vector machine classifiers
  publication-title: Neural. Process. Lett.
– volume: 502
  start-page: 31
  year: 2015
  end-page: 41
  ident: bb0355
  article-title: Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea
  publication-title: Sci. Total Environ.
– volume: 86
  start-page: 468
  year: 2012
  end-page: 476
  ident: bb0415
  article-title: Antibiotic resistant bacteria/genes dissemination in lacustrine sediments highly increased following cultural eutrophication of Lake Geneva (Switzerland)
  publication-title: Chemosphere
– volume: 351
  start-page: 1
  year: 1997
  end-page: 19
  ident: bb0175
  article-title: The physical basis of the Lake Mikri Prespa systems: geology, climate, hydrology and water quality
  publication-title: Hydrobiologia
– volume: 38
  start-page: 6112
  year: 2011
  end-page: 6117
  ident: bb0475
  article-title: Speaker identification system using empirical mode decomposition and an artificial neural network
  publication-title: Expert Syst. Appl.
– volume: 46
  start-page: 1
  issue: 2
  year: 2008
  ident: 10.1016/j.scitotenv.2018.08.221_bb0200
  article-title: A review on Hilbert-Huang transform: method and its applications to geophysical studies
  publication-title: Rev. Geophys.
  doi: 10.1029/2007RG000228
– volume: 351
  start-page: 1
  issue: 1–3
  year: 1997
  ident: 10.1016/j.scitotenv.2018.08.221_bb0175
  article-title: The physical basis of the Lake Mikri Prespa systems: geology, climate, hydrology and water quality
  publication-title: Hydrobiologia
  doi: 10.1023/A:1003067115862
– volume: 55
  start-page: 2425
  issue: 11
  year: 2010
  ident: 10.1016/j.scitotenv.2018.08.221_bb0090
  article-title: Cost effective prediction of the eutrophication status of lakes and reservoirs
  publication-title: Freshw. Biol.
  doi: 10.1111/j.1365-2427.2010.02452.x
– volume: 6
  start-page: 12
  year: 2007
  ident: 10.1016/j.scitotenv.2018.08.221_bb0240
  article-title: Minimum sample size requirements for seasonal forecasting models
  publication-title: Int. J. Appl. Forecast.
– volume: 196
  start-page: 110
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.221_bb0320
  article-title: Application of decomposition-ensemble learning paradigm with phase space reconstruction for day-ahead forecasting
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2017.02.071
– volume: 188
  start-page: 90
  year: 2016
  ident: 10.1016/j.scitotenv.2018.08.221_bb0110
  article-title: An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-016-5094-9
– volume: 61
  start-page: 32
  year: 2015
  ident: 10.1016/j.scitotenv.2018.08.221_bb0230
  article-title: Trends in extreme learning machines: a review
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.10.001
– year: 2013
  ident: 10.1016/j.scitotenv.2018.08.221_bb0435
– volume: 502
  start-page: 31
  year: 2015
  ident: 10.1016/j.scitotenv.2018.08.221_bb0355
  article-title: Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.09.005
– volume: 4
  issue: 4
  year: 2012
  ident: 10.1016/j.scitotenv.2018.08.221_bb0100
  article-title: Noise-assisted EMD methods in action
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536912500252
– volume: 38
  start-page: 235
  issue: 3
  year: 2007
  ident: 10.1016/j.scitotenv.2018.08.221_bb0185
  article-title: Rainfall–runoff modeling using principal component analysis and neural network
  publication-title: Nord. Hydrol.
  doi: 10.2166/nh.2007.010
– volume: 197
  start-page: 42
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.221_bb0370
  article-title: Input selection and performance optimization of ANN-based streamflow forecasts in a drought-prone Murray Darling Basin using IIS and MODWT algorithm
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2017.06.014
– volume: 32
  start-page: 103
  issue: 1
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.221_bb0490
  article-title: Assessing the suitability of extreme learning machines (ELM) for groundwater level prediction
  publication-title: J. Water Land Dev.
  doi: 10.1515/jwld-2017-0012
– volume: 72
  start-page: 828
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.221_bb0115
  article-title: Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2017.01.114
– volume: 495
  start-page: 175
  year: 2013
  ident: 10.1016/j.scitotenv.2018.08.221_bb0340
  article-title: A reduced-order adaptive neurofuzzy inference system model as a software sensor for rapid estimation of five-day biochemical oxygen demand
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.04.052
– volume: 527
  start-page: 833
  year: 2015
  ident: 10.1016/j.scitotenv.2018.08.221_bb0345
  article-title: Uncertainty analysis of support vector machine for online prediction of five-day biochemical oxygen demand
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.05.046
– volume: 330
  start-page: 136
  year: 2018
  ident: 10.1016/j.scitotenv.2018.08.221_bb0375
  article-title: Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.05.035
– volume: 48
  start-page: 85
  issue: 1–4
  year: 2002
  ident: 10.1016/j.scitotenv.2018.08.221_bb0410
  article-title: Weighted least squares support vector machines: robustness and sparse approximation
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00644-0
– volume: 401
  start-page: 177
  year: 2011
  ident: 10.1016/j.scitotenv.2018.08.221_bb0335
  article-title: Assessment of input variables determination on the SVM model performance using PCA, gamma test, and forward selection techniques for monthly stream flow prediction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.02.021
– year: 1963
  ident: 10.1016/j.scitotenv.2018.08.221_bb0150
– ident: 10.1016/j.scitotenv.2018.08.221_bb0430
– volume: 456–457
  start-page: 110
  year: 2012
  ident: 10.1016/j.scitotenv.2018.08.221_bb5010
  article-title: Modeling discharge-suspended sediment relationship using least square support vector machine
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.06.019
– volume: 23
  start-page: 338
  year: 2012
  ident: 10.1016/j.scitotenv.2018.08.221_bb0310
  article-title: Application of a new multi-metric phytoplankton index to assessment of ecological status in marine and transitions waters
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2012.03.030
– volume: 8
  start-page: 27292
  issue: 6
  year: 2016
  ident: 10.1016/j.scitotenv.2018.08.221_bb5005
  article-title: Dissolved oxygen content prediction in crab culture using a hybrid intelligent method
  publication-title: Sci. Rep.
  doi: 10.1038/srep27292
– volume: 48
  start-page: 19
  year: 2013
  ident: 10.1016/j.scitotenv.2018.08.221_bb0075
  article-title: Neural architecture design based on extreme learning machine
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2013.06.010
– volume: 31
  start-page: 1211
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.221_bb0135
  article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-016-1265-z
– volume: 31
  start-page: 2705
  issue: 10
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.221_bb0055
  article-title: Comparison of machine learning models for predicting fluoride contamination in groundwater
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-016-1338-z
– volume: 62
  start-page: 531
  issue: 3
  year: 2014
  ident: 10.1016/j.scitotenv.2018.08.221_bb0140
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 28
  start-page: 249
  year: 2009
  ident: 10.1016/j.scitotenv.2018.08.221_bb0330
  article-title: Prediction of municipal solid waste generation with combination of support vector machine and principal component analysis: a case study of Mashhad
  publication-title: Environ. Prog. Sustain. Energy
  doi: 10.1002/ep.10317
– volume: 740
  start-page: 89
  issue: 1
  year: 2014
  ident: 10.1016/j.scitotenv.2018.08.221_bb0085
  article-title: Determinants of chlorophyll-a concentration in tropical reservoirs
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-014-1940-3
– volume: 4
  start-page: 327
  issue: 4
  year: 2015
  ident: 10.1016/j.scitotenv.2018.08.221_bb0145
  article-title: Evaluation of the physicochemical and chlorophyll-a conditions of a subtropical aquaculture in Lake Nasser area, Egypt
  publication-title: Beni-Suef Univ. J. Basic Appl. Sci.
  doi: 10.1016/j.bjbas.2015.11.009
– volume: 17
  start-page: 754
  issue: 8
  year: 2010
  ident: 10.1016/j.scitotenv.2018.08.221_bb0285
  article-title: Ensemble based extreme learning machine
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2010.2053356
– volume: 18
  start-page: 172
  issue: 2
  year: 2008
  ident: 10.1016/j.scitotenv.2018.08.221_bb0080
  article-title: A forecasting and forewarning model for methane hazard in working face of coal mine based on LS-SVM
  publication-title: J. China Univ. Min. Technol.
  doi: 10.1016/S1006-1266(08)60037-1
– volume: 102
  start-page: 308
  year: 2015
  ident: 10.1016/j.scitotenv.2018.08.221_bb0485
  article-title: Method to predict key factors affecting lake eutrophication – a new approach based on support vector regression model
  publication-title: Int. Biodeterior. Biodegrad.
  doi: 10.1016/j.ibiod.2015.02.013
– volume: 153
  start-page: 589
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.221_bb0360
  article-title: Multi-step ahead wind speed forecasting using a hybrid model based on two stage decomposition technique and AdaBoost-extreme learning machine
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.10.021
– volume: 150
  start-page: 257
  year: 2018
  ident: 10.1016/j.scitotenv.2018.08.221_bb0190
  article-title: Prediction of dissolved oxygen in aquaculture based on EEMD and LSSVM optimized by the Bayesian evidence framework
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.04.022
– volume: 37
  start-page: 52
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.221_bb0195
  article-title: An ensemble simulation approach for artificial neural network: an example from chlorophyll a simulation in Lake Poyang, China
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2016.11.012
– volume: 2
  issue: 26
  year: 2016
  ident: 10.1016/j.scitotenv.2018.08.221_bb0040
  article-title: Combining the advantages of neural networks using the concept of committee machine in the groundwater salinity prediction
  publication-title: Model. Earth Syst. Environ.
– volume: 16
  start-page: 335
  year: 2003
  ident: 10.1016/j.scitotenv.2018.08.221_bb0260
  article-title: Some neural network applications in environmental sciences. Part II: advancing computational efficiency of environmental numerical models
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(03)00026-1
– start-page: 764
  year: 2009
  ident: 10.1016/j.scitotenv.2018.08.221_bb0290
  article-title: Research on water bloom prediction based on least squares support vector machine
– volume: 24
  start-page: 16702
  issue: 20
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.221_bb0165
  article-title: Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-9283-z
– volume: 370
  year: 2012
  ident: 10.1016/j.scitotenv.2018.08.221_bb0295
  article-title: Prediction of dissolved oxygen content in aquaculture of Hyriopsis cumingii using Elman neural network
– volume: 599–600
  start-page: 20
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.221_bb0060
  article-title: Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network based models
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.04.189
– volume: 2011
  start-page: 4144
  year: 2011
  ident: 10.1016/j.scitotenv.2018.08.221_bb0420
  article-title: A complete ensemble empirical mode decomposition with adaptive noise
– volume: 220
  start-page: 1506
  issue: 12
  year: 2009
  ident: 10.1016/j.scitotenv.2018.08.221_bb0365
  article-title: Fuzzy modelling of chlorophyll production in a Brazilian upwelling system
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2009.03.025
– volume: 81
  start-page: V365
  issue: 5
  year: 2016
  ident: 10.1016/j.scitotenv.2018.08.221_bb0300
  article-title: Applications of variational mode decomposition in seismic time-frequency analysis
  publication-title: Geophysics
  doi: 10.1190/geo2015-0489.1
– volume: 32
  start-page: 799
  issue: 3
  year: 2018
  ident: 10.1016/j.scitotenv.2018.08.221_bb0065
  article-title: Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-017-1394-z
– volume: 3
  start-page: 909
  issue: 4
  year: 2016
  ident: 10.1016/j.scitotenv.2018.08.221_bb0160
  article-title: Use of optimally pruned extreme learning machine (OP-ELM) in forecasting dissolved oxygen concentration (DO) several hours in advance: a case study from the Klamath River, Oregon, USA
  publication-title: Environ. Process.
  doi: 10.1007/s40710-016-0172-0
– year: 2008
  ident: 10.1016/j.scitotenv.2018.08.221_bb0155
– volume: 31
  start-page: 417
  year: 1999
  ident: 10.1016/j.scitotenv.2018.08.221_bb0210
  article-title: A new view of nonlinear water waves - the Hilbert spectrum
  publication-title: Ann. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.31.1.417
– year: 1991
  ident: 10.1016/j.scitotenv.2018.08.221_bb0245
– volume: 2
  start-page: 184
  year: 1981
  ident: 10.1016/j.scitotenv.2018.08.221_bb0460
  article-title: On the validation of models
  publication-title: Phys. Geogr.
  doi: 10.1080/02723646.1981.10642213
– volume: 17
  start-page: 5965
  issue: 9
  year: 2015
  ident: 10.1016/j.scitotenv.2018.08.221_bb0275
  article-title: Friction signal denoising using complete ensemble EMD with adaptive noise and mutual information
  publication-title: Entropy
  doi: 10.3390/e17095965
– volume: 28
  start-page: 154
  issue: 1–2
  year: 2006
  ident: 10.1016/j.scitotenv.2018.08.221_bb0180
  article-title: Predicting engine reliability by support vector machines
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-004-2340-z
– volume: 86
  start-page: 468
  issue: 5
  year: 2012
  ident: 10.1016/j.scitotenv.2018.08.221_bb0415
  article-title: Antibiotic resistant bacteria/genes dissemination in lacustrine sediments highly increased following cultural eutrophication of Lake Geneva (Switzerland)
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.09.048
– volume: 217
  start-page: 422
  year: 2018
  ident: 10.1016/j.scitotenv.2018.08.221_bb0020
  article-title: Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.140
– volume: 621
  start-page: 697
  year: 2018
  ident: 10.1016/j.scitotenv.2018.08.221_bb0070
  article-title: Mapping groundwater contamination risk of multiple aquifers using multi-model ensemble of machine learning algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.11.185
– year: 2003
  ident: 10.1016/j.scitotenv.2018.08.221_bb0385
  article-title: On empirical mode decomposition and its algorithms
– volume: 134
  start-page: 168
  year: 2016
  ident: 10.1016/j.scitotenv.2018.08.221_bb0315
  article-title: A novel hybrid decomposition- and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.03.056
– volume: 231
  start-page: 635
  issue: 4
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.221_bb0520
  article-title: Adaptive variational mode decomposition based on artificial fish swarm algorithm for fault diagnosis of rolling bearings
  publication-title: Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.
  doi: 10.1177/0954406215623311
– volume: 511
  start-page: 279
  year: 2014
  ident: 10.1016/j.scitotenv.2018.08.221_bb0030
  article-title: Modelling of chemical oxygen demand by using ANNs, ANFIS and k-means clustering techniques
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.01.054
– volume: 35
  start-page: 233
  issue: 1
  year: 1999
  ident: 10.1016/j.scitotenv.2018.08.221_bb0265
  article-title: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation
  publication-title: Water Resour. Res.
  doi: 10.1029/1998WR900018
– volume: 38
  start-page: 6112
  issue: 5
  year: 2011
  ident: 10.1016/j.scitotenv.2018.08.221_bb0475
  article-title: Speaker identification system using empirical mode decomposition and an artificial neural network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.11.013
– volume: 30
  start-page: 1797
  issue: 7
  year: 2016
  ident: 10.1016/j.scitotenv.2018.08.221_bb0045
  article-title: Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-Chay River, Iran
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-016-1213-y
– volume: 21
  start-page: 1631
  issue: 5
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.221_bb0035
  article-title: Estimation of dissolved oxygen by using neural networks and neuro fuzzy computing techniques
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-016-0728-6
– volume: 2
  start-page: 107
  issue: 2
  year: 2011
  ident: 10.1016/j.scitotenv.2018.08.221_bb0225
  article-title: Extreme learning machines: a survey
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-011-0019-y
– volume: 5
  start-page: 11
  issue: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2018.08.221_bb0280
  article-title: A hybrid model for dissolved oxygen prediction in aquaculture based on multi-scale features
  publication-title: Inf. Process. Agric.
– volume: 60–61
  start-page: 243
  year: 2015
  ident: 10.1016/j.scitotenv.2018.08.221_bb0445
  article-title: Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.02.020
– volume: 2
  start-page: 985
  year: 2004
  ident: 10.1016/j.scitotenv.2018.08.221_bb0215
  article-title: Extreme learning machine: a new learning scheme of feedforward neural networks
  publication-title: IEEE. Int. Conf. Neural. Netw. Conf. Proc.
– volume: 13
  start-page: 8121
  issue: 12
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.221_bb5015
  article-title: EMD-based study of the volatility mechanism in economic growth
  publication-title: Eurasia J. Math. Sci. Technol. Educ.
– volume: 374
  start-page: 294
  issue: 3
  year: 2009
  ident: 10.1016/j.scitotenv.2018.08.221_bb0440
  article-title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.06.019
– volume: 23
  start-page: 1327
  issue: 4
  year: 2009
  ident: 10.1016/j.scitotenv.2018.08.221_bb0270
  article-title: Application of the EEMD method to rotor fault diagnosis of rotating machinery
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2008.11.005
– volume: 2
  start-page: 135
  issue: 2
  year: 2010
  ident: 10.1016/j.scitotenv.2018.08.221_bb0505
  article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536910000422
– start-page: 680
  year: 2005
  ident: 10.1016/j.scitotenv.2018.08.221_bb0305
  article-title: Water resources systems planning and management: an introduction to methods, models and applications
– year: 2005
  ident: 10.1016/j.scitotenv.2018.08.221_bb0400
  article-title: Data-driven modelling and computational intelligence methods in hydrology
– volume: 30
  start-page: 883
  issue: 3
  year: 2016
  ident: 10.1016/j.scitotenv.2018.08.221_bb0050
  article-title: A supervised committee machine artificial intelligent for improving DRASTIC method to assess groundwater contamination risk: a case study from Tabriz plain aquifer, Iran
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-015-1088-3
– volume: 29
  start-page: 151
  issue: 2
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.221_bb0005
  article-title: Prediction of dissolved oxygen in Surma River by biochemical oxygen demand and chemical oxygen demand using the artificial neural networks (ANNs)
  publication-title: J. King Saud Univ. Eng. Sci.
  doi: 10.1016/j.jksues.2014.05.001
– volume: 119
  start-page: 1218
  issue: 3
  year: 2014
  ident: 10.1016/j.scitotenv.2018.08.221_bb0025
  article-title: Analysis of hydroclimatic variability and trends using a novel empirical mode decomposition: application to the Paraná River basin
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2013JD020420
– volume: 22
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.221_bb0120
  article-title: Forecasting evaporative loss by least-square support-vector regression and evaluation with genetic programming, Gaussian process, and minimax probability machine regression: case study of Brisbane City
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0001506
– volume: 136
  start-page: 439
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.221_bb0515
  article-title: A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.01.022
– volume: 155
  start-page: 141
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.221_bb0130
  article-title: Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.01.035
– volume: 18
  start-page: 310
  year: 2013
  ident: 10.1016/j.scitotenv.2018.08.221_bb0235
  article-title: Using artificial neural network models for eutrophication prediction
  publication-title: Procedia Environ Sci
  doi: 10.1016/j.proenv.2013.04.040
– volume: 141
  start-page: 747
  issue: 4
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.221_bb5000
  article-title: Prediction of lake water temperature, dissolved oxygen, and fish habitat under changing climate
  publication-title: Clim. Chang.
  doi: 10.1007/s10584-017-1916-1
– volume: 30
  start-page: 905
  issue: 3
  year: 2008
  ident: 10.1016/j.scitotenv.2018.08.221_bb0510
  article-title: A new approach for crude oil price analysis based on empirical mode decomposition
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2007.02.012
– volume: 186
  start-page: 4553
  issue: 7
  year: 2014
  ident: 10.1016/j.scitotenv.2018.08.221_bb0425
  article-title: Environmental monitoring of micro Prespa Lake basin (Western Macedonia, Greece): hydrogeochemical characteristics of water resources and quality trends
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-014-3719-4
– volume: 389
  start-page: 146
  issue: 1–2
  year: 2010
  ident: 10.1016/j.scitotenv.2018.08.221_bb0480
  article-title: Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.05.040
– volume: 142
  issue: 1
  year: 2016
  ident: 10.1016/j.scitotenv.2018.08.221_bb0350
  article-title: How reliable are ANN, ANFIS, and SVM techniques for predicting longitudinal dispersion coefficient in natural rivers?
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)HY.1943-7900.0001062
– volume: 399
  start-page: 394
  issue: 3–4
  year: 2011
  ident: 10.1016/j.scitotenv.2018.08.221_bb0465
  article-title: Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.01.017
– volume: 190
  start-page: 390
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.221_bb0450
  article-title: Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.12.134
– volume: 213
  start-page: 450
  year: 2018
  ident: 10.1016/j.scitotenv.2018.08.221_bb0015
  article-title: Multi-stage hybridized online sequential extreme learning machine integrated with Markov Chain Monte Carlo copula-bat algorithm for rainfall forecasting
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2018.07.005
– volume: 162
  start-page: 55
  issue: 1–2
  year: 2003
  ident: 10.1016/j.scitotenv.2018.08.221_bb0095
  article-title: Integration of data mining techniques and heuristic knowledge in fuzzy logic modelling of eutrophication in Taihu Lake
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(02)00389-7
– volume: 615
  start-page: 157
  year: 2008
  ident: 10.1016/j.scitotenv.2018.08.221_bb0010
  article-title: Concurrent evolution of ancient sister lakes and sister species: the freshwater gastropod genus Radix in lakes Ohrid and Prespa
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-008-9555-1
– volume: 57
  start-page: 163
  year: 2018
  ident: 10.1016/j.scitotenv.2018.08.221_bb0325
  article-title: A novel hybrid decomposition-ensemble model based on VMD and HGWO for container throughput forecasting
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.01.014
– volume: 4
  start-page: 80
  issue: 1
  year: 2007
  ident: 10.1016/j.scitotenv.2018.08.221_bb0390
  article-title: Monitoring phytoplanktonic diversity in the hill stream Chandrabhaga of Garhwal Himalaya
  publication-title: Life Sci. J.
– volume: 8
  start-page: 549
  issue: 4
  year: 2017
  ident: 10.1016/j.scitotenv.2018.08.221_bb0250
  article-title: Data-driven modeling for water quality prediction case study: the drains system associated with Manzala Lake, Egypt
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2016.08.004
– volume: 9
  start-page: 293
  year: 1999
  ident: 10.1016/j.scitotenv.2018.08.221_bb0405
  article-title: Least squares support vector machine classifiers
  publication-title: Neural. Process. Lett.
  doi: 10.1023/A:1018628609742
– volume: 542
  start-page: 603
  year: 2016
  ident: 10.1016/j.scitotenv.2018.08.221_bb0495
  article-title: Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.09.035
– volume: 168
  start-page: 568
  year: 2016
  ident: 10.1016/j.scitotenv.2018.08.221_bb0125
  article-title: A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.01.130
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 10.1016/j.scitotenv.2018.08.221_bb0205
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 115
  start-page: 112
  year: 2018
  ident: 10.1016/j.scitotenv.2018.08.221_bb0500
  article-title: Predicting compressive strength of lightweight foamed concrete using extreme learning machine model
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.09.004
– volume: 1
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.scitotenv.2018.08.221_bb0470
  article-title: Ensemble empirical mode decomposition: a noise assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– volume: 109
  year: 2004
  ident: 10.1016/j.scitotenv.2018.08.221_bb0105
  article-title: Eleven year solar cycle signal throughout the lower atmosphere
  publication-title: J. Geophys. Res.
  doi: 10.1029/2004JD004873
– volume: 394
  start-page: 486
  year: 2010
  ident: 10.1016/j.scitotenv.2018.08.221_bb0395
  article-title: Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.10.008
– ident: 10.1016/j.scitotenv.2018.08.221_bb0380
– volume: 70
  start-page: 489
  year: 2006
  ident: 10.1016/j.scitotenv.2018.08.221_bb0220
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 559
  start-page: 499
  year: 2018
  ident: 10.1016/j.scitotenv.2018.08.221_bb0170
  article-title: Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.02.061
SSID ssj0000781
Score 2.6037884
Snippet Accurate prediction of water quality parameters plays a crucial and decisive role in environmental monitoring, ecological systems sustainability, human health,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 839
SubjectTerms aquaculture
autocorrelation
chlorophyll
Complementary ensemble empirical mode decomposition with adaptive noise
data collection
dissolved oxygen
Environmental monitoring
Extreme machine learning
human health
lakes
prediction
Small Prespa Lake
support vector machines
Variational mode decomposition
water quality
Water quality modelling
Title Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters
URI https://dx.doi.org/10.1016/j.scitotenv.2018.08.221
https://www.ncbi.nlm.nih.gov/pubmed/30138884
https://www.proquest.com/docview/2093308389
https://www.proquest.com/docview/2116865895
Volume 648
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELamISQkhKAwKD-mQ-LVLGlcx-ZtGpsKFXtAQ-wtcmKbFbVJtaSb-rK_jj-Muzjp1IexB9SHqq0dnerz3efzd3eMfZCpFyOf5DzHNeVCq4Ibr1PukyiP8Izt7Iiykb-dyskP8fV8fL7DjvpcGKJVdrY_2PTWWnffHHT_5sFyNqMcX6G01GhcE0oBbjPYRUr18z_e3NI8qJhNuGXGjY2jtzhe-NymQmx6RRwvRbU8R6P4Lg91FwJtPdHJU_akg5BwGKR8xnZcOWAPQ1PJ9YDtHd_mruGwbvPWA_Y4hOggZB49Z38-t-wNMKWF2aLnkdNCQeXBwMWasrmg7ZUD5O0s4E_NdcXnBoE6WEd89I70BaEVNRTVCp9kgeK7gIafwo_Qtab4BYuWuulqaCqoV0vC_oCodc6pxT24LcEXrbWhsCOJc42Y-BJCCugaqGD5gog89Qt2dnJ8djThXVMHXohINNw5neARCw-vzo_jZCycRR9pklwXxipnY2t9GvvcRApPjvRySqc6tkVqDZqnPbZbVqV7xQC1y2vl0oJglTTCCFlIJ4tIe22VkkMm-3XMiq7gOfXdmGc9s-13tlGAjBQgi1SGCjBk0WbiMtT8uH_Kp15Rsi31zdAz3T_5fa9aGW5uurExpatWNQ6ieJNCUPmPMXEsFeJIPR6yl0EvN1IndA-tlHj9P-K9YY_wE7HqeDx-y3aby5V7h0isyffbrbbPHhx-mU5O6X36_ef0L36rPN8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELamIQTShKAwKD8PiVezpHESmzc0NhXY9lSkvVlObI-iNqnWdFNf-Ov4w7iLk059GHtAfWvsyIrPd9-dv7tj7EOWezHyScEL3FMulCy58SrnPomKCH1sZ0eUjXx6lo1_iG_n6fkOO-xzYYhW2en-oNNbbd39c9B9zYPFdEo5vkKqTKFyTSgFGF2geyJNchLtj79veB5UzSZcM-PJxuFbJC98cVMjOL0ikpekYp6jUXybiboNgram6Pgxe9RhSPgclvmE7bhqwO6HrpLrAds_uklew2Hd6V0O2F6I0UFIPXrK_nxp6RtgKgvTeU8kp52C2oOBn2tK54K2WQ6QubOAj5rrms8MInWwjgjpHesLQi9qKOsVvskCBXgBNT_FH6HrTXEB85a76ZbQ1LBcLQj8A8LWGace9-C2Fj5v1Q3FHWk51wiKLyHkgK6BKpbPicmzfMYmx0eTwzHvujrwUkSi4c6pBH0s9F6dT-MkFc6ikTRJoUpjpbOxtT6PfWEiia4j_ZxUuYptmVuD-mmf7VZ15V4wQPHySrq8JFyVGWFEVmYuKyPllZUyG7Ks30dddhXPqfHGTPfUtl96IwCaBEBHUqMADFm0mbgIRT_unvKpFxS9Jb8aTdPdk9_3oqXxdNOVjalcvVriIAo4SUSV_xgTx5lEIKnSIXse5HKz6oQuoqUUL_9nee_Yg_Hk9ESffD37_oo9xCdEseNx-prtNpcr9wZhWVO8bY_dX5BHPNI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+implementation+of+a+hybrid+model+based+on+two-layer+decomposition+method+coupled+with+extreme+learning+machines+to+support+real-time+environmental+monitoring+of+water+quality+parameters&rft.jtitle=The+Science+of+the+total+environment&rft.au=Fijani%2C+Elham&rft.au=Barzegar%2C+Rahim&rft.au=Deo%2C+Ravinesh&rft.au=Tziritis%2C+Evangelos&rft.date=2019-01-15&rft.issn=0048-9697&rft.volume=648&rft.spage=839&rft.epage=853&rft_id=info:doi/10.1016%2Fj.scitotenv.2018.08.221&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2018_08_221
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon