Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters
Accurate prediction of water quality parameters plays a crucial and decisive role in environmental monitoring, ecological systems sustainability, human health, aquaculture and improved agricultural practices. In this study a new hybrid two-layer decomposition model based on the complete ensemble emp...
Saved in:
Published in | The Science of the total environment Vol. 648; pp. 839 - 853 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.01.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0048-9697 1879-1026 1879-1026 |
DOI | 10.1016/j.scitotenv.2018.08.221 |
Cover
Loading…
Abstract | Accurate prediction of water quality parameters plays a crucial and decisive role in environmental monitoring, ecological systems sustainability, human health, aquaculture and improved agricultural practices. In this study a new hybrid two-layer decomposition model based on the complete ensemble empirical mode decomposition algorithm with adaptive noise (CEEMDAN) and the variational mode decomposition (VMD) algorithm coupled with extreme learning machines (ELM) and also least square support vector machine (LSSVM) was designed to support real-time environmental monitoring of water quality parameters, i.e. chlorophyll-a (Chl-a) and dissolved oxygen (DO) in a Lake reservoir. Daily measurements of Chl-a and DO for June 2012–May 2013 were employed where the partial autocorrelation function was applied to screen the relevant inputs for the model construction. The variables were then split into training, validation and testing subsets where the first stage of the model testing captured the superiority of the ELM over the LSSVM algorithm. To improve these standalone predictive models, a second stage implemented a two-layer decomposition with the model inputs decomposed in the form of high and low frequency oscillations, represented by the intrinsic mode function (IMF) through the CEEMDAN algorithm. The highest frequency component, IMF1 was further decomposed with the VMD algorithm to segregate key model input features, leading to a two-layer hybrid VMD-CEEMDAN model. The VMD-CEEMDAN-ELM model was able to reduce the root mean square and the mean absolute error by about 14.04% and 7.12% for the Chl-a estimation and about 5.33% and 4.30% for the DO estimation, respectively, compared with the standalone counterparts. Overall, the developed methodology demonstrates the robustness of the two-phase VMD-CEEMDAN-ELM model in identifying and analyzing critical water quality parameters with a limited set of model construction data over daily horizons, and thus, to actively support environmental monitoring tasks, especially in case of high-frequency, and relatively complex, real-time datasets.
[Display omitted]
•Designing a new hybrid framework for the water quality parameters (e.g. Chl-a and DO) estimation in the Prespa Lake•Incorporating a hybrid two-layer decomposition using CEEMDAN and VMD algorithms with LSSVM and ELM models•Improving the performance of the machine learning based water quality parameter estimation models |
---|---|
AbstractList | Accurate prediction of water quality parameters plays a crucial and decisive role in environmental monitoring, ecological systems sustainability, human health, aquaculture and improved agricultural practices. In this study a new hybrid two-layer decomposition model based on the complete ensemble empirical mode decomposition algorithm with adaptive noise (CEEMDAN) and the variational mode decomposition (VMD) algorithm coupled with extreme learning machines (ELM) and also least square support vector machine (LSSVM) was designed to support real-time environmental monitoring of water quality parameters, i.e. chlorophyll-a (Chl-a) and dissolved oxygen (DO) in a Lake reservoir. Daily measurements of Chl-a and DO for June 2012-May 2013 were employed where the partial autocorrelation function was applied to screen the relevant inputs for the model construction. The variables were then split into training, validation and testing subsets where the first stage of the model testing captured the superiority of the ELM over the LSSVM algorithm. To improve these standalone predictive models, a second stage implemented a two-layer decomposition with the model inputs decomposed in the form of high and low frequency oscillations, represented by the intrinsic mode function (IMF) through the CEEMDAN algorithm. The highest frequency component, IMF1 was further decomposed with the VMD algorithm to segregate key model input features, leading to a two-layer hybrid VMD-CEEMDAN model. The VMD-CEEMDAN-ELM model was able to reduce the root mean square and the mean absolute error by about 14.04% and 7.12% for the Chl-a estimation and about 5.33% and 4.30% for the DO estimation, respectively, compared with the standalone counterparts. Overall, the developed methodology demonstrates the robustness of the two-phase VMD-CEEMDAN-ELM model in identifying and analyzing critical water quality parameters with a limited set of model construction data over daily horizons, and thus, to actively support environmental monitoring tasks, especially in case of high-frequency, and relatively complex, real-time datasets. Accurate prediction of water quality parameters plays a crucial and decisive role in environmental monitoring, ecological systems sustainability, human health, aquaculture and improved agricultural practices. In this study a new hybrid two-layer decomposition model based on the complete ensemble empirical mode decomposition algorithm with adaptive noise (CEEMDAN) and the variational mode decomposition (VMD) algorithm coupled with extreme learning machines (ELM) and also least square support vector machine (LSSVM) was designed to support real-time environmental monitoring of water quality parameters, i.e. chlorophyll-a (Chl-a) and dissolved oxygen (DO) in a Lake reservoir. Daily measurements of Chl-a and DO for June 2012-May 2013 were employed where the partial autocorrelation function was applied to screen the relevant inputs for the model construction. The variables were then split into training, validation and testing subsets where the first stage of the model testing captured the superiority of the ELM over the LSSVM algorithm. To improve these standalone predictive models, a second stage implemented a two-layer decomposition with the model inputs decomposed in the form of high and low frequency oscillations, represented by the intrinsic mode function (IMF) through the CEEMDAN algorithm. The highest frequency component, IMF1 was further decomposed with the VMD algorithm to segregate key model input features, leading to a two-layer hybrid VMD-CEEMDAN model. The VMD-CEEMDAN-ELM model was able to reduce the root mean square and the mean absolute error by about 14.04% and 7.12% for the Chl-a estimation and about 5.33% and 4.30% for the DO estimation, respectively, compared with the standalone counterparts. Overall, the developed methodology demonstrates the robustness of the two-phase VMD-CEEMDAN-ELM model in identifying and analyzing critical water quality parameters with a limited set of model construction data over daily horizons, and thus, to actively support environmental monitoring tasks, especially in case of high-frequency, and relatively complex, real-time datasets.Accurate prediction of water quality parameters plays a crucial and decisive role in environmental monitoring, ecological systems sustainability, human health, aquaculture and improved agricultural practices. In this study a new hybrid two-layer decomposition model based on the complete ensemble empirical mode decomposition algorithm with adaptive noise (CEEMDAN) and the variational mode decomposition (VMD) algorithm coupled with extreme learning machines (ELM) and also least square support vector machine (LSSVM) was designed to support real-time environmental monitoring of water quality parameters, i.e. chlorophyll-a (Chl-a) and dissolved oxygen (DO) in a Lake reservoir. Daily measurements of Chl-a and DO for June 2012-May 2013 were employed where the partial autocorrelation function was applied to screen the relevant inputs for the model construction. The variables were then split into training, validation and testing subsets where the first stage of the model testing captured the superiority of the ELM over the LSSVM algorithm. To improve these standalone predictive models, a second stage implemented a two-layer decomposition with the model inputs decomposed in the form of high and low frequency oscillations, represented by the intrinsic mode function (IMF) through the CEEMDAN algorithm. The highest frequency component, IMF1 was further decomposed with the VMD algorithm to segregate key model input features, leading to a two-layer hybrid VMD-CEEMDAN model. The VMD-CEEMDAN-ELM model was able to reduce the root mean square and the mean absolute error by about 14.04% and 7.12% for the Chl-a estimation and about 5.33% and 4.30% for the DO estimation, respectively, compared with the standalone counterparts. Overall, the developed methodology demonstrates the robustness of the two-phase VMD-CEEMDAN-ELM model in identifying and analyzing critical water quality parameters with a limited set of model construction data over daily horizons, and thus, to actively support environmental monitoring tasks, especially in case of high-frequency, and relatively complex, real-time datasets. Accurate prediction of water quality parameters plays a crucial and decisive role in environmental monitoring, ecological systems sustainability, human health, aquaculture and improved agricultural practices. In this study a new hybrid two-layer decomposition model based on the complete ensemble empirical mode decomposition algorithm with adaptive noise (CEEMDAN) and the variational mode decomposition (VMD) algorithm coupled with extreme learning machines (ELM) and also least square support vector machine (LSSVM) was designed to support real-time environmental monitoring of water quality parameters, i.e. chlorophyll-a (Chl-a) and dissolved oxygen (DO) in a Lake reservoir. Daily measurements of Chl-a and DO for June 2012–May 2013 were employed where the partial autocorrelation function was applied to screen the relevant inputs for the model construction. The variables were then split into training, validation and testing subsets where the first stage of the model testing captured the superiority of the ELM over the LSSVM algorithm. To improve these standalone predictive models, a second stage implemented a two-layer decomposition with the model inputs decomposed in the form of high and low frequency oscillations, represented by the intrinsic mode function (IMF) through the CEEMDAN algorithm. The highest frequency component, IMF1 was further decomposed with the VMD algorithm to segregate key model input features, leading to a two-layer hybrid VMD-CEEMDAN model. The VMD-CEEMDAN-ELM model was able to reduce the root mean square and the mean absolute error by about 14.04% and 7.12% for the Chl-a estimation and about 5.33% and 4.30% for the DO estimation, respectively, compared with the standalone counterparts. Overall, the developed methodology demonstrates the robustness of the two-phase VMD-CEEMDAN-ELM model in identifying and analyzing critical water quality parameters with a limited set of model construction data over daily horizons, and thus, to actively support environmental monitoring tasks, especially in case of high-frequency, and relatively complex, real-time datasets. [Display omitted] •Designing a new hybrid framework for the water quality parameters (e.g. Chl-a and DO) estimation in the Prespa Lake•Incorporating a hybrid two-layer decomposition using CEEMDAN and VMD algorithms with LSSVM and ELM models•Improving the performance of the machine learning based water quality parameter estimation models |
Author | Fijani, Elham Tziritis, Evangelos Barzegar, Rahim Skordas, Konstantinos Deo, Ravinesh |
Author_xml | – sequence: 1 givenname: Elham surname: Fijani fullname: Fijani, Elham email: efijani@ut.ac.ir organization: School of Geology, College of Science, University of Tehran, Tehran, Iran – sequence: 2 givenname: Rahim surname: Barzegar fullname: Barzegar, Rahim email: rm.barzegar@tabrizu.ac.ir organization: Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran – sequence: 3 givenname: Ravinesh surname: Deo fullname: Deo, Ravinesh email: ravinesh.Deo@usq.edu.au organization: School of Agricultural Computational and Environmental Sciences, International Centre for Applied Climate Sciences, Institute of Agriculture and Environment, University of Southern Queensland, Springfield, Australia – sequence: 4 givenname: Evangelos surname: Tziritis fullname: Tziritis, Evangelos email: dir.lri@nagref.gr organization: Hellenic Agricultural Organization, Soil and Water Resources Institute, 57400 Sindos, Greece – sequence: 5 givenname: Konstantinos surname: Skordas fullname: Skordas, Konstantinos email: kskord@apae.uth.gr organization: Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fitokou street, 38446 Volos, Greece |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30138884$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUrtyGyEUZTLOxLKTX0go06wCu6tdKFJ4nOeMZ9K4Z67groWGhTWwVvR_-bAgyU6RRlBQcB73ca7IhQ8eCfnA2ZIz3n3aLpO2OWT0T8uacbFkYlnX_BVZcNHLirO6uyALxlpRyU72l-QqpS0rpxf8DblsGG-EEO2C_PmCyT54Ct5QO04OR_QZsg2ehoEC3ezX0Ro6BoOOriGhoeUr70LlYI-RGtRhnEKyR8qIeRMM1WEuSobubN5Q_J1jUaUOIXrrH-gIemM9JpoDTfM0hZhpRHBVtgVWOrIx-GMZrvj60mY80Eo5O8jF8nEGZ_OeThChGGJMb8nrAVzCd8_vNbn_9vX-9kd19-v7z9ubu0q3rM0VomxkV8YhcFjxZtWiYbyGZi01GIGGGzP0fFgDE20rDheF7CU3ujfQs-aafDzJTjE8zpiyGm3S6Bx4DHNSNeed6FZCrs5DmWwaJhohC_T9M3Rej2jUFO0Ica9edlQAn08AHUNKEQdVVn9cUY5gneJMHTKhtupfJtQhE4oJVTJR-P1__BeL88ybExPLUJ8sxgMOvUZjI-qsTLBnNf4CYcXdFA |
CitedBy_id | crossref_primary_10_1016_j_ecolind_2024_112413 crossref_primary_10_1016_j_jhydrol_2022_128122 crossref_primary_10_1016_j_jclepro_2020_122576 crossref_primary_10_1007_s41742_024_00668_5 crossref_primary_10_3390_w16142070 crossref_primary_10_1016_j_agwat_2020_106625 crossref_primary_10_1016_j_watres_2019_115350 crossref_primary_10_1016_j_eiar_2020_106499 crossref_primary_10_1016_j_biosystemseng_2021_05_019 crossref_primary_10_1080_03650340_2020_1802013 crossref_primary_10_3390_su14063470 crossref_primary_10_1016_j_atech_2023_100187 crossref_primary_10_1016_j_eswa_2021_116404 crossref_primary_10_1109_ACCESS_2019_2943515 crossref_primary_10_1515_polyeng_2022_0077 crossref_primary_10_1016_j_jhydrol_2023_129207 crossref_primary_10_1007_s11356_023_25937_2 crossref_primary_10_1016_j_ecolind_2023_111030 crossref_primary_10_1016_j_jhydrol_2023_130034 crossref_primary_10_1016_j_scitotenv_2019_134014 crossref_primary_10_1016_j_scitotenv_2020_141618 crossref_primary_10_1016_j_ecoinf_2023_102138 crossref_primary_10_3390_chemosensors9030050 crossref_primary_10_3390_su12135374 crossref_primary_10_1016_j_heliyon_2024_e37965 crossref_primary_10_1016_j_jhydrol_2021_126459 crossref_primary_10_1016_j_dte_2025_100038 crossref_primary_10_1016_j_compag_2018_10_014 crossref_primary_10_1016_j_jwpe_2024_106677 crossref_primary_10_2139_ssrn_3994610 crossref_primary_10_1016_j_eswa_2024_125258 crossref_primary_10_1016_j_envres_2024_118138 crossref_primary_10_1007_s11356_023_30774_4 crossref_primary_10_1038_s41598_024_81574_w crossref_primary_10_1007_s11600_021_00678_3 crossref_primary_10_3390_w12051476 crossref_primary_10_1007_s12652_020_01900_8 crossref_primary_10_1007_s11356_023_28030_w crossref_primary_10_1016_j_jhydrol_2018_12_060 crossref_primary_10_1111_1477_8947_12492 crossref_primary_10_1061_JHYEFF_HEENG_5946 crossref_primary_10_3389_fcell_2020_626221 crossref_primary_10_1007_s10668_022_02331_5 crossref_primary_10_1016_j_jhydrol_2019_06_075 crossref_primary_10_1108_CMS_11_2023_0653 crossref_primary_10_3390_w13182558 crossref_primary_10_1007_s11356_020_08287_1 crossref_primary_10_1016_j_jhydrol_2019_03_101 crossref_primary_10_1007_s00477_024_02727_x crossref_primary_10_2166_wst_2023_211 crossref_primary_10_3390_electronics10222882 crossref_primary_10_1016_j_compstruct_2021_113972 crossref_primary_10_3390_app15031471 crossref_primary_10_1016_j_jhydrol_2024_131767 crossref_primary_10_3390_su14127154 crossref_primary_10_3390_environments9070085 crossref_primary_10_1016_j_scitotenv_2022_154909 crossref_primary_10_1016_j_envpol_2020_115216 crossref_primary_10_1109_JSEN_2022_3222510 crossref_primary_10_7717_peerj_cs_1000 crossref_primary_10_1007_s11356_019_07574_w crossref_primary_10_1080_03067319_2021_1873316 crossref_primary_10_2166_nh_2018_050 crossref_primary_10_1016_j_compag_2021_106583 crossref_primary_10_1016_j_watres_2022_118040 crossref_primary_10_1016_j_scitotenv_2023_167705 crossref_primary_10_1038_s41598_023_49363_z crossref_primary_10_1016_j_heliyon_2019_e01822 crossref_primary_10_1111_jwas_12976 crossref_primary_10_1109_ACCESS_2021_3072673 crossref_primary_10_1108_FEBE_07_2021_0036 crossref_primary_10_3390_app10175776 crossref_primary_10_1016_j_jenvman_2024_120495 crossref_primary_10_1155_2022_4488446 crossref_primary_10_1007_s00521_024_09698_8 crossref_primary_10_1016_j_jhydrol_2022_128332 crossref_primary_10_1007_s11356_022_18757_3 crossref_primary_10_1007_s00477_020_01776_2 crossref_primary_10_3390_app9122534 crossref_primary_10_1016_j_measen_2024_101255 crossref_primary_10_1080_19942060_2020_1861987 crossref_primary_10_3390_w14101643 crossref_primary_10_3934_mbe_2021374 crossref_primary_10_1007_s00128_024_03998_4 crossref_primary_10_1002_wer_11092 crossref_primary_10_3390_su14042341 crossref_primary_10_1155_2020_8828664 crossref_primary_10_3390_ijerph18147650 crossref_primary_10_3390_w12010246 crossref_primary_10_1016_j_aquaculture_2021_736724 crossref_primary_10_1007_s00521_019_04079_y crossref_primary_10_3390_jmse13030536 crossref_primary_10_1016_j_ecoinf_2025_102995 crossref_primary_10_1016_j_enganabound_2022_09_034 crossref_primary_10_3390_app11136238 crossref_primary_10_1016_j_pedsph_2022_06_009 crossref_primary_10_1016_j_scitotenv_2020_139099 crossref_primary_10_1007_s11269_023_03666_y crossref_primary_10_1016_j_jhydrol_2024_131275 crossref_primary_10_1088_1748_9326_abeeb1 crossref_primary_10_1016_j_psep_2023_06_021 crossref_primary_10_1016_j_jhydrol_2022_128079 crossref_primary_10_1039_D0EW01110J crossref_primary_10_1016_j_jenvman_2023_117245 crossref_primary_10_1016_j_jssas_2020_08_001 crossref_primary_10_1016_j_ecolind_2019_02_013 crossref_primary_10_3390_rs15071951 crossref_primary_10_1016_j_envpol_2022_120081 crossref_primary_10_3390_w13111547 crossref_primary_10_1039_D4AY01200C crossref_primary_10_3390_su13031530 crossref_primary_10_1007_s40203_021_00090_1 crossref_primary_10_1016_j_eti_2021_101641 crossref_primary_10_1016_j_jhydrol_2018_11_069 crossref_primary_10_1016_j_scitotenv_2021_149509 crossref_primary_10_1016_j_apenergy_2019_03_089 crossref_primary_10_1007_s10462_022_10199_0 crossref_primary_10_1061__ASCE_CO_1943_7862_0002051 crossref_primary_10_1016_j_scitotenv_2019_134279 crossref_primary_10_1007_s00500_023_08441_0 crossref_primary_10_1016_j_scitotenv_2022_159714 crossref_primary_10_1007_s40996_022_00928_4 crossref_primary_10_1016_j_envpol_2022_119136 crossref_primary_10_1007_s11069_023_06238_w crossref_primary_10_1016_j_asoc_2021_108036 crossref_primary_10_1016_j_psep_2022_04_020 crossref_primary_10_1038_s41598_024_61910_w |
Cites_doi | 10.1029/2007RG000228 10.1023/A:1003067115862 10.1111/j.1365-2427.2010.02452.x 10.1016/j.jenvman.2017.02.071 10.1007/s10661-016-5094-9 10.1016/j.neunet.2014.10.001 10.1016/j.scitotenv.2014.09.005 10.1142/S1793536912500252 10.2166/nh.2007.010 10.1016/j.atmosres.2017.06.014 10.1515/jwld-2017-0012 10.1016/j.rser.2017.01.114 10.1016/j.jhydrol.2013.04.052 10.1016/j.jhydrol.2015.05.046 10.1016/j.geoderma.2018.05.035 10.1016/S0925-2312(01)00644-0 10.1016/j.jhydrol.2011.02.021 10.1016/j.jhydrol.2012.06.019 10.1016/j.ecolind.2012.03.030 10.1038/srep27292 10.1016/j.neunet.2013.06.010 10.1007/s00477-016-1265-z 10.1007/s00477-016-1338-z 10.1109/TSP.2013.2288675 10.1002/ep.10317 10.1007/s10750-014-1940-3 10.1016/j.bjbas.2015.11.009 10.1109/LSP.2010.2053356 10.1016/S1006-1266(08)60037-1 10.1016/j.ibiod.2015.02.013 10.1016/j.enconman.2017.10.021 10.1016/j.compag.2018.04.022 10.1016/j.ecoinf.2016.11.012 10.1016/S0893-6080(03)00026-1 10.1007/s11356-017-9283-z 10.1016/j.scitotenv.2017.04.189 10.1016/j.ecolmodel.2009.03.025 10.1190/geo2015-0489.1 10.1007/s00477-017-1394-z 10.1007/s40710-016-0172-0 10.1146/annurev.fluid.31.1.417 10.1080/02723646.1981.10642213 10.3390/e17095965 10.1007/s00170-004-2340-z 10.1016/j.chemosphere.2011.09.048 10.1016/j.apenergy.2018.02.140 10.1016/j.scitotenv.2017.11.185 10.1016/j.atmosenv.2016.03.056 10.1177/0954406215623311 10.1016/j.jhydrol.2014.01.054 10.1029/1998WR900018 10.1016/j.eswa.2010.11.013 10.1007/s00477-016-1213-y 10.1007/s12205-016-0728-6 10.1007/s13042-011-0019-y 10.1016/j.ymssp.2015.02.020 10.1016/j.jhydrol.2009.06.019 10.1016/j.ymssp.2008.11.005 10.1142/S1793536910000422 10.1007/s00477-015-1088-3 10.1016/j.jksues.2014.05.001 10.1002/2013JD020420 10.1061/(ASCE)HE.1943-5584.0001506 10.1016/j.enconman.2017.01.022 10.1016/j.envres.2017.01.035 10.1016/j.proenv.2013.04.040 10.1007/s10584-017-1916-1 10.1016/j.eneco.2007.02.012 10.1007/s10661-014-3719-4 10.1016/j.jhydrol.2010.05.040 10.1061/(ASCE)HY.1943-7900.0001062 10.1016/j.jhydrol.2011.01.017 10.1016/j.apenergy.2016.12.134 10.1016/j.atmosres.2018.07.005 10.1016/S0304-3800(02)00389-7 10.1007/s10750-008-9555-1 10.1016/j.apm.2018.01.014 10.1016/j.asej.2016.08.004 10.1023/A:1018628609742 10.1016/j.jhydrol.2016.09.035 10.1016/j.apenergy.2016.01.130 10.1098/rspa.1998.0193 10.1016/j.advengsoft.2017.09.004 10.1142/S1793536909000047 10.1029/2004JD004873 10.1016/j.jhydrol.2010.10.008 10.1016/j.neucom.2005.12.126 10.1016/j.jhydrol.2018.02.061 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018. Published by Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018. Published by Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2018.08.221 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
EndPage | 853 |
ExternalDocumentID | 30138884 10_1016_j_scitotenv_2018_08_221 S0048969718331851 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW SSH WUQ XPP ZXP ZY4 NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c404t-ee93966978ef51354ed012a3b9cad8ed1ddf71fba084484848e89791dc7da703 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Fri Sep 05 13:08:53 EDT 2025 Fri Sep 05 09:19:47 EDT 2025 Thu Apr 03 07:04:57 EDT 2025 Thu Apr 24 23:00:57 EDT 2025 Thu Jul 10 07:51:44 EDT 2025 Fri Feb 23 02:46:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Variational mode decomposition Complementary ensemble empirical mode decomposition with adaptive noise Environmental monitoring Small Prespa Lake Water quality modelling Extreme machine learning |
Language | English |
License | Copyright © 2018. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-ee93966978ef51354ed012a3b9cad8ed1ddf71fba084484848e89791dc7da703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 30138884 |
PQID | 2093308389 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2116865895 proquest_miscellaneous_2093308389 pubmed_primary_30138884 crossref_citationtrail_10_1016_j_scitotenv_2018_08_221 crossref_primary_10_1016_j_scitotenv_2018_08_221 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2018_08_221 |
PublicationCentury | 2000 |
PublicationDate | 2019-01-15 |
PublicationDateYYYYMMDD | 2019-01-15 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Barzegar, Asghari Moghaddam, Deo, Fijani, Tziritis (bb0070) 2018; 621 Missaghi, Hondzo, Herb (bb5000) 2017; 141 Barzegar, Asghari Moghaddam, Baghban (bb0050) 2016; 30 Suykens, Vandewalle (bb0405) 1999; 9 Liu, Cao, Chen (bb0300) 2016; 81 Zhang, Lai, Wang (bb0510) 2008; 30 Huang, Zhu, Siew (bb0220) 2006; 70 Li, Li, Wu, Zhu, Yue (bb0280) 2018; 5 Yaseen, Deo, Hilal, Abd, Bueno, Salcedo-Sanz, Nehdi (bb0500) 2018; 115 Huo, He, Su, Xi, Zhu (bb0235) 2013; 18 Wang, Markert, Xiang, Zheng (bb0445) 2015; 60–61 Suykens, De Brabanter, Lukas, Vandewalle (bb0410) 2002; 48 UNDP GEF (bb0430) 2013 Heddam, Kisi (bb0170) 2018; 559 Tziritis (bb0425) 2014; 186 Wu, Chau (bb0465) 2011; 399 Ahmed (bb0005) 2017; 29 Hollis, Stevenson (bb0175) 1997; 351 Legates, McCabe (bb0265) 1999; 35 Niu, Hu, Sun, Liu (bb0325) 2018; 57 Wu, Huang (bb0470) 2009; 1 Bueno-Crespo, García-Laencina, Sancho-Gómez (bb0075) 2013; 48 Ay, Kisi (bb0035) 2017; 21 Noori, Deng, Kiaghadi, Kachoosangi (bb0350) 2016; 142 Colominas, Schlotthauer, Torres, Flandrin (bb0100) 2012; 4 Deo, Tiwari, Adamowski, Quilty (bb0135) 2017; 31 Chen, Mynett (bb0095) 2003; 162 Willmott (bb0460) 1981; 2 Yeh, Shieh, Huang (bb0505) 2010; 2 Huang, Gao (bb0195) 2017; 37 Li, Huang, Xu (bb5015) 2017; 13 Cao, Liu, Wang (bb0080) 2008; 18 Barzegar, Fijani, Asghari Moghaddam, Tziritis (bb0060) 2017; 599–600 Deo, Şahin (bb0115) 2017; 72 Vapnik (bb0435) 2013 Prasad, Deo, Li, Maraseni (bb0370) 2017; 197 Yaseen, Jaafar, Deo, Kisi, Adamowski, Quilty, El-Shafie (bb0495) 2016; 542 Huang, Wang, Lan (bb0225) 2011; 2 Barzegar, Asghari Moghaddam, Adamowski, Ozga-Zielinski (bb0065) 2018; 32 Lei, He, Zi (bb0270) 2009; 23 Hyndman, Kostenko (bb0240) 2007; 6 Barzegar, Asghari Moghaddam, Adamowski, Fijani (bb0055) 2017; 31 Noori, Yeh, Abbasi, Kachoosangi, Moazami (bb0345) 2015; 527 Thevenon, Adatte, Wildi, Poté (bb0415) 2012; 86 Haupt, Pasini, Marzban (bb0155) 2008 Hong, Pai (bb0180) 2006; 28 Loucks, van Beek (bb0305) 2005 Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (bb0205) 1998; 454 Xu, Ma, Liu, Xi, Qian, Zhang, Huo (bb0485) 2015; 102 Huang, Shen, Long (bb0210) 1999; 31 Peng, Zhou, Zhang, Zheng (bb0360) 2017; 153 Huang, Huang, Song, You (bb0230) 2015; 61 Zhu, Wang, Hu, Kong, Liu (bb0520) 2017; 231 Solomatine (bb0400) 2005 Wang, Luo, Grunder, Lin, Guo (bb0450) 2017; 190 Deo, Downs, Parisi, Adamowski, Quilty (bb0130) 2017; 155 Deo, Şahin (bb0110) 2016; 188 Deo, Samui (bb0120) 2017; 22 Li, Zhan, Shen (bb0275) 2015; 17 Pereira, Evsukoff, Ebecken (bb0365) 2009; 220 Lugoli, Garmendia, Lehtinen, Kauppila, Moncheva, Revilla, Roselli, Slabakova, Valencia, Dromph, Basset (bb0310) 2012; 23 Huan, Cao, Qin (bb0190) 2018; 150 Yadav, Ch, Mathur, Adamowski (bb0490) 2017; 32 Ay, Kisi (bb0030) 2014; 511 Carneiro, Nabout, Vieira, Roland, Bini (bb0085) 2014; 740 Heddam, Kisi (bb0165) 2017; 24 Sharma, Sharma, Anthwal (bb0390) 2007; 4 Albrecht, Wolff, Gloer, Wilke (bb0010) 2008; 615 Hu, Wu, Zhang (bb0185) 2007; 38 Wang, Chau, Cheng, Qiu (bb0440) 2009; 374 Niu, Wang, Sun, Li (bb0315) 2016; 134 Wu, Tsai (bb0475) 2011; 38 Kisi (bb5010) 2012; 456–457 Noori, Karbassi, Moghaddamnia, Han, Zokaei-Ashtiani, Farokhnia, Gousheh (bb0335) 2011; 401 RAMSAR (bb0380) 1974 Torres, Colominas, Schlotthauer, Flandrin (bb0420) 2011; 2011 Emberger (bb0150) 1963 Liu, Yan, Tai, Xu, Li (bb0295) 2012; 370 Barzegar, Asghari Moghaddam (bb0040) 2016; 2 Shiri, Kisi (bb0395) 2010; 394 Ali, Deo, Downs, Maraseni (bb0015) 2018; 213 Wu, Chau, Fan (bb0480) 2010; 389 Huang, Zhu, Siew (bb0215) 2004; 2 Liu, Wang, Cui, Lian, Xu (bb0290) 2009 Noori, Abdoli, Ghasrodashti, Ghazizade (bb0330) 2009; 28 Krasnopolsky, Chevallier (bb0260) 2003; 16 Noori, Safavi, Shahrokni (bb0340) 2013; 495 Prasad, Deo, Li, Maraseni (bb0375) 2018; 330 Catherine, Mouillot, Escoffier, Bernard, Troussellier (bb0090) 2010; 55 Rilling, Flandrin, Gonçalves (bb0385) 2003 Dragomiretskiy, Zosso (bb0140) 2014; 62 Deo, Wen, Feng (bb0125) 2016; 168 Park, Cho, Park, Cha, Kim (bb0355) 2015; 502 Zhang, Qu, Zhang, Mao, Ma, Fan (bb0515) 2017; 136 Khadr, Elshemy (bb0250) 2017; 8 El-Otify (bb0145) 2015; 4 Liu, Wang (bb0285) 2010; 17 Coughlin, Tung (bb0105) 2004; 109 Yu, Chen, Hassan, Li (bb5005) 2016; 8 Kassioumis (bb0245) 1991 Heddam (bb0160) 2016; 3 Antico, Schlotthauer, Torres (bb0025) 2014; 119 Al-Musaylh, Deo, Adamowski, Li (bb0020) 2018; 217 Niu, Gan, Sun, Li (bb0320) 2017; 196 Huang, Wu (bb0200) 2008; 46 Barzegar, Adamowski, Asghari Moghaddam (bb0045) 2016; 30 Xu (10.1016/j.scitotenv.2018.08.221_bb0485) 2015; 102 Zhang (10.1016/j.scitotenv.2018.08.221_bb0515) 2017; 136 Deo (10.1016/j.scitotenv.2018.08.221_bb0120) 2017; 22 Zhu (10.1016/j.scitotenv.2018.08.221_bb0520) 2017; 231 Yu (10.1016/j.scitotenv.2018.08.221_bb5005) 2016; 8 Bueno-Crespo (10.1016/j.scitotenv.2018.08.221_bb0075) 2013; 48 Hu (10.1016/j.scitotenv.2018.08.221_bb0185) 2007; 38 Emberger (10.1016/j.scitotenv.2018.08.221_bb0150) 1963 Yadav (10.1016/j.scitotenv.2018.08.221_bb0490) 2017; 32 Huang (10.1016/j.scitotenv.2018.08.221_bb0215) 2004; 2 Huang (10.1016/j.scitotenv.2018.08.221_bb0220) 2006; 70 Khadr (10.1016/j.scitotenv.2018.08.221_bb0250) 2017; 8 Peng (10.1016/j.scitotenv.2018.08.221_bb0360) 2017; 153 Heddam (10.1016/j.scitotenv.2018.08.221_bb0160) 2016; 3 Haupt (10.1016/j.scitotenv.2018.08.221_bb0155) 2008 Deo (10.1016/j.scitotenv.2018.08.221_bb0130) 2017; 155 Thevenon (10.1016/j.scitotenv.2018.08.221_bb0415) 2012; 86 El-Otify (10.1016/j.scitotenv.2018.08.221_bb0145) 2015; 4 RAMSAR (10.1016/j.scitotenv.2018.08.221_bb0380) Missaghi (10.1016/j.scitotenv.2018.08.221_bb5000) 2017; 141 Heddam (10.1016/j.scitotenv.2018.08.221_bb0170) 2018; 559 Niu (10.1016/j.scitotenv.2018.08.221_bb0325) 2018; 57 Park (10.1016/j.scitotenv.2018.08.221_bb0355) 2015; 502 Albrecht (10.1016/j.scitotenv.2018.08.221_bb0010) 2008; 615 Yaseen (10.1016/j.scitotenv.2018.08.221_bb0500) 2018; 115 Liu (10.1016/j.scitotenv.2018.08.221_bb0295) 2012; 370 Ali (10.1016/j.scitotenv.2018.08.221_bb0015) 2018; 213 Vapnik (10.1016/j.scitotenv.2018.08.221_bb0435) 2013 Barzegar (10.1016/j.scitotenv.2018.08.221_bb0050) 2016; 30 Noori (10.1016/j.scitotenv.2018.08.221_bb0335) 2011; 401 Wu (10.1016/j.scitotenv.2018.08.221_bb0480) 2010; 389 Li (10.1016/j.scitotenv.2018.08.221_bb5015) 2017; 13 Sharma (10.1016/j.scitotenv.2018.08.221_bb0390) 2007; 4 Pereira (10.1016/j.scitotenv.2018.08.221_bb0365) 2009; 220 Chen (10.1016/j.scitotenv.2018.08.221_bb0095) 2003; 162 Carneiro (10.1016/j.scitotenv.2018.08.221_bb0085) 2014; 740 Huan (10.1016/j.scitotenv.2018.08.221_bb0190) 2018; 150 Shiri (10.1016/j.scitotenv.2018.08.221_bb0395) 2010; 394 Willmott (10.1016/j.scitotenv.2018.08.221_bb0460) 1981; 2 Huang (10.1016/j.scitotenv.2018.08.221_bb0230) 2015; 61 Deo (10.1016/j.scitotenv.2018.08.221_bb0135) 2017; 31 Barzegar (10.1016/j.scitotenv.2018.08.221_bb0045) 2016; 30 Torres (10.1016/j.scitotenv.2018.08.221_bb0420) 2011; 2011 Krasnopolsky (10.1016/j.scitotenv.2018.08.221_bb0260) 2003; 16 Huang (10.1016/j.scitotenv.2018.08.221_bb0200) 2008; 46 Zhang (10.1016/j.scitotenv.2018.08.221_bb0510) 2008; 30 Kassioumis (10.1016/j.scitotenv.2018.08.221_bb0245) 1991 UNDP GEF (10.1016/j.scitotenv.2018.08.221_bb0430) Huang (10.1016/j.scitotenv.2018.08.221_bb0210) 1999; 31 Ay (10.1016/j.scitotenv.2018.08.221_bb0035) 2017; 21 Legates (10.1016/j.scitotenv.2018.08.221_bb0265) 1999; 35 Wang (10.1016/j.scitotenv.2018.08.221_bb0450) 2017; 190 Yeh (10.1016/j.scitotenv.2018.08.221_bb0505) 2010; 2 Colominas (10.1016/j.scitotenv.2018.08.221_bb0100) 2012; 4 Barzegar (10.1016/j.scitotenv.2018.08.221_bb0055) 2017; 31 Solomatine (10.1016/j.scitotenv.2018.08.221_bb0400) 2005 Barzegar (10.1016/j.scitotenv.2018.08.221_bb0040) 2016; 2 Liu (10.1016/j.scitotenv.2018.08.221_bb0300) 2016; 81 Hollis (10.1016/j.scitotenv.2018.08.221_bb0175) 1997; 351 Huo (10.1016/j.scitotenv.2018.08.221_bb0235) 2013; 18 Lugoli (10.1016/j.scitotenv.2018.08.221_bb0310) 2012; 23 Niu (10.1016/j.scitotenv.2018.08.221_bb0320) 2017; 196 Hong (10.1016/j.scitotenv.2018.08.221_bb0180) 2006; 28 Catherine (10.1016/j.scitotenv.2018.08.221_bb0090) 2010; 55 Ahmed (10.1016/j.scitotenv.2018.08.221_bb0005) 2017; 29 Barzegar (10.1016/j.scitotenv.2018.08.221_bb0060) 2017; 599–600 Liu (10.1016/j.scitotenv.2018.08.221_bb0285) 2010; 17 Liu (10.1016/j.scitotenv.2018.08.221_bb0290) 2009 Hyndman (10.1016/j.scitotenv.2018.08.221_bb0240) 2007; 6 Barzegar (10.1016/j.scitotenv.2018.08.221_bb0065) 2018; 32 Coughlin (10.1016/j.scitotenv.2018.08.221_bb0105) 2004; 109 Huang (10.1016/j.scitotenv.2018.08.221_bb0225) 2011; 2 Prasad (10.1016/j.scitotenv.2018.08.221_bb0375) 2018; 330 Li (10.1016/j.scitotenv.2018.08.221_bb0275) 2015; 17 Noori (10.1016/j.scitotenv.2018.08.221_bb0345) 2015; 527 Wu (10.1016/j.scitotenv.2018.08.221_bb0475) 2011; 38 Heddam (10.1016/j.scitotenv.2018.08.221_bb0165) 2017; 24 Deo (10.1016/j.scitotenv.2018.08.221_bb0110) 2016; 188 Antico (10.1016/j.scitotenv.2018.08.221_bb0025) 2014; 119 Lei (10.1016/j.scitotenv.2018.08.221_bb0270) 2009; 23 Suykens (10.1016/j.scitotenv.2018.08.221_bb0405) 1999; 9 Tziritis (10.1016/j.scitotenv.2018.08.221_bb0425) 2014; 186 Barzegar (10.1016/j.scitotenv.2018.08.221_bb0070) 2018; 621 Rilling (10.1016/j.scitotenv.2018.08.221_bb0385) 2003 Suykens (10.1016/j.scitotenv.2018.08.221_bb0410) 2002; 48 Wang (10.1016/j.scitotenv.2018.08.221_bb0440) 2009; 374 Deo (10.1016/j.scitotenv.2018.08.221_bb0115) 2017; 72 Prasad (10.1016/j.scitotenv.2018.08.221_bb0370) 2017; 197 Wu (10.1016/j.scitotenv.2018.08.221_bb0465) 2011; 399 Kisi (10.1016/j.scitotenv.2018.08.221_bb5010) 2012; 456–457 Yaseen (10.1016/j.scitotenv.2018.08.221_bb0495) 2016; 542 Deo (10.1016/j.scitotenv.2018.08.221_bb0125) 2016; 168 Noori (10.1016/j.scitotenv.2018.08.221_bb0340) 2013; 495 Niu (10.1016/j.scitotenv.2018.08.221_bb0315) 2016; 134 Noori (10.1016/j.scitotenv.2018.08.221_bb0330) 2009; 28 Wu (10.1016/j.scitotenv.2018.08.221_bb0470) 2009; 1 Al-Musaylh (10.1016/j.scitotenv.2018.08.221_bb0020) 2018; 217 Wang (10.1016/j.scitotenv.2018.08.221_bb0445) 2015; 60–61 Ay (10.1016/j.scitotenv.2018.08.221_bb0030) 2014; 511 Loucks (10.1016/j.scitotenv.2018.08.221_bb0305) 2005 Noori (10.1016/j.scitotenv.2018.08.221_bb0350) 2016; 142 Huang (10.1016/j.scitotenv.2018.08.221_bb0195) 2017; 37 Li (10.1016/j.scitotenv.2018.08.221_bb0280) 2018; 5 Cao (10.1016/j.scitotenv.2018.08.221_bb0080) 2008; 18 Huang (10.1016/j.scitotenv.2018.08.221_bb0205) 1998; 454 Dragomiretskiy (10.1016/j.scitotenv.2018.08.221_bb0140) 2014; 62 |
References_xml | – year: 2008 ident: bb0155 article-title: Artificial Intelligence Methods in the Environmental Sciences – volume: 599–600 start-page: 20 year: 2017 end-page: 31 ident: bb0060 article-title: Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network based models publication-title: Sci. Total Environ. – volume: 29 start-page: 151 year: 2017 end-page: 158 ident: bb0005 article-title: Prediction of dissolved oxygen in Surma River by biochemical oxygen demand and chemical oxygen demand using the artificial neural networks (ANNs) publication-title: J. King Saud Univ. Eng. Sci. – year: 2005 ident: bb0400 article-title: Data-driven modelling and computational intelligence methods in hydrology publication-title: Encyclopedia of Hydrological Sciences – volume: 30 start-page: 883 year: 2016 end-page: 899 ident: bb0050 article-title: A supervised committee machine artificial intelligent for improving DRASTIC method to assess groundwater contamination risk: a case study from Tabriz plain aquifer, Iran publication-title: Stoch. Environ. Res. Risk Assess. – volume: 16 start-page: 335 year: 2003 end-page: 348 ident: bb0260 article-title: Some neural network applications in environmental sciences. Part II: advancing computational efficiency of environmental numerical models publication-title: Neural Netw. – start-page: 764 year: 2009 end-page: 768 ident: bb0290 article-title: Research on water bloom prediction based on least squares support vector machine publication-title: Proceedings of the WRI World Congress on Computer Science and Information Engineering (CSIE '09) – volume: 72 start-page: 828 year: 2017 end-page: 848 ident: bb0115 article-title: Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland publication-title: Renew. Sust. Energ. Rev. – volume: 190 start-page: 390 year: 2017 end-page: 407 ident: bb0450 article-title: Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm publication-title: Appl. Energy – volume: 109 year: 2004 ident: bb0105 article-title: Eleven year solar cycle signal throughout the lower atmosphere publication-title: J. Geophys. Res. – volume: 527 start-page: 833 year: 2015 end-page: 843 ident: bb0345 article-title: Uncertainty analysis of support vector machine for online prediction of five-day biochemical oxygen demand publication-title: J. Hydrol. – volume: 5 start-page: 11 year: 2018 end-page: 20 ident: bb0280 article-title: A hybrid model for dissolved oxygen prediction in aquaculture based on multi-scale features publication-title: Inf. Process. Agric. – volume: 370 year: 2012 ident: bb0295 article-title: Prediction of dissolved oxygen content in aquaculture of publication-title: Computer and Computing Technologies in Agriculture V. CCTA 2011. IFIP Advances in Information and Communication Technology – volume: 31 start-page: 2705 year: 2017 end-page: 2718 ident: bb0055 article-title: Comparison of machine learning models for predicting fluoride contamination in groundwater publication-title: Stoch. Env. Res. Risk A. – volume: 141 start-page: 747 year: 2017 end-page: 757 ident: bb5000 article-title: Prediction of lake water temperature, dissolved oxygen, and fish habitat under changing climate publication-title: Clim. Chang. – volume: 115 start-page: 112 year: 2018 end-page: 125 ident: bb0500 article-title: Predicting compressive strength of lightweight foamed concrete using extreme learning machine model publication-title: Adv. Eng. Softw. – year: 2013 ident: bb0430 – volume: 17 start-page: 5965 year: 2015 end-page: 5979 ident: bb0275 article-title: Friction signal denoising using complete ensemble EMD with adaptive noise and mutual information publication-title: Entropy – volume: 196 start-page: 110 year: 2017 end-page: 118 ident: bb0320 article-title: Application of decomposition-ensemble learning paradigm with phase space reconstruction for day-ahead forecasting publication-title: J. Environ. Manag. – volume: 38 start-page: 235 year: 2007 end-page: 248 ident: bb0185 article-title: Rainfall–runoff modeling using principal component analysis and neural network publication-title: Nord. Hydrol. – volume: 28 start-page: 249 year: 2009 end-page: 258 ident: bb0330 article-title: Prediction of municipal solid waste generation with combination of support vector machine and principal component analysis: a case study of Mashhad publication-title: Environ. Prog. Sustain. Energy – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: bb0205 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. – volume: 119 start-page: 1218 year: 2014 end-page: 1233 ident: bb0025 article-title: Analysis of hydroclimatic variability and trends using a novel empirical mode decomposition: application to the Paraná River basin publication-title: J. Geophys. Res. Atmos. – volume: 2 start-page: 107 year: 2011 end-page: 122 ident: bb0225 article-title: Extreme learning machines: a survey publication-title: Int. J. Mach. Learn. Cybern. – volume: 23 start-page: 1327 year: 2009 end-page: 1338 ident: bb0270 article-title: Application of the EEMD method to rotor fault diagnosis of rotating machinery publication-title: Mech. Syst. Signal Process. – volume: 17 start-page: 754 year: 2010 end-page: 757 ident: bb0285 article-title: Ensemble based extreme learning machine publication-title: IEEE Signal Process. Lett. – volume: 2 year: 2016 ident: bb0040 article-title: Combining the advantages of neural networks using the concept of committee machine in the groundwater salinity prediction publication-title: Model. Earth Syst. Environ. – volume: 32 start-page: 103 year: 2017 end-page: 112 ident: bb0490 article-title: Assessing the suitability of extreme learning machines (ELM) for groundwater level prediction publication-title: J. Water Land Dev. – volume: 456–457 start-page: 110 year: 2012 end-page: 120 ident: bb5010 article-title: Modeling discharge-suspended sediment relationship using least square support vector machine publication-title: J. Hydrol. – volume: 13 start-page: 8121 year: 2017 end-page: 8130 ident: bb5015 article-title: EMD-based study of the volatility mechanism in economic growth publication-title: Eurasia J. Math. Sci. Technol. Educ. – volume: 220 start-page: 1506 year: 2009 end-page: 1512 ident: bb0365 article-title: Fuzzy modelling of chlorophyll production in a Brazilian upwelling system publication-title: Ecol. Model. – volume: 31 start-page: 1211 year: 2017 end-page: 1240 ident: bb0135 article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model publication-title: Stoch. Env. Res. Risk A. – volume: 150 start-page: 257 year: 2018 end-page: 265 ident: bb0190 article-title: Prediction of dissolved oxygen in aquaculture based on EEMD and LSSVM optimized by the Bayesian evidence framework publication-title: Comput. Electron. Agric. – year: 1991 ident: bb0245 article-title: Prespa National Park Management Plan. Forestry Service, Ministry of Agriculture – volume: 37 start-page: 52 year: 2017 end-page: 58 ident: bb0195 article-title: An ensemble simulation approach for artificial neural network: an example from chlorophyll a simulation in Lake Poyang, China publication-title: Ecol. Inform. – volume: 374 start-page: 294 year: 2009 end-page: 306 ident: bb0440 article-title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series publication-title: J. Hydrol. – volume: 31 start-page: 417 year: 1999 end-page: 457 ident: bb0210 article-title: A new view of nonlinear water waves - the Hilbert spectrum publication-title: Ann. Rev. Fluid Mech. – volume: 18 start-page: 172 year: 2008 end-page: 176 ident: bb0080 article-title: A forecasting and forewarning model for methane hazard in working face of coal mine based on LS-SVM publication-title: J. China Univ. Min. Technol. – volume: 32 start-page: 799 year: 2018 end-page: 813 ident: bb0065 article-title: Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model publication-title: Stoch. Env. Res. Risk A. – volume: 389 start-page: 146 year: 2010 end-page: 167 ident: bb0480 article-title: Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques publication-title: J. Hydrol. – year: 1963 ident: bb0150 article-title: Carte Bioclimatique de la Region Mediteraneene – start-page: 680 year: 2005 ident: bb0305 article-title: Water resources systems planning and management: an introduction to methods, models and applications publication-title: Studies and Reports in Hydrology – volume: 57 start-page: 163 year: 2018 end-page: 178 ident: bb0325 article-title: A novel hybrid decomposition-ensemble model based on VMD and HGWO for container throughput forecasting publication-title: Appl. Math. Model. – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: bb0220 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – volume: 186 start-page: 4553 year: 2014 end-page: 4568 ident: bb0425 article-title: Environmental monitoring of micro Prespa Lake basin (Western Macedonia, Greece): hydrogeochemical characteristics of water resources and quality trends publication-title: Environ. Monit. Assess. – volume: 8 start-page: 549 year: 2017 end-page: 557 ident: bb0250 article-title: Data-driven modeling for water quality prediction case study: the drains system associated with Manzala Lake, Egypt publication-title: Ain Shams Eng. J. – volume: 213 start-page: 450 year: 2018 end-page: 464 ident: bb0015 article-title: Multi-stage hybridized online sequential extreme learning machine integrated with Markov Chain Monte Carlo copula-bat algorithm for rainfall forecasting publication-title: Atmos. Res. – volume: 22 year: 2017 ident: bb0120 article-title: Forecasting evaporative loss by least-square support-vector regression and evaluation with genetic programming, Gaussian process, and minimax probability machine regression: case study of Brisbane City publication-title: J. Hydrol. Eng. – volume: 740 start-page: 89 year: 2014 end-page: 99 ident: bb0085 article-title: Determinants of chlorophyll-a concentration in tropical reservoirs publication-title: Hydrobiologia – volume: 6 start-page: 12 year: 2007 end-page: 15 ident: bb0240 article-title: Minimum sample size requirements for seasonal forecasting models publication-title: Int. J. Appl. Forecast. – volume: 401 start-page: 177 year: 2011 end-page: 189 ident: bb0335 article-title: Assessment of input variables determination on the SVM model performance using PCA, gamma test, and forward selection techniques for monthly stream flow prediction publication-title: J. Hydrol. – volume: 46 start-page: 1 year: 2008 end-page: 23 ident: bb0200 article-title: A review on Hilbert-Huang transform: method and its applications to geophysical studies publication-title: Rev. Geophys. – volume: 217 start-page: 422 year: 2018 end-page: 439 ident: bb0020 article-title: Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting publication-title: Appl. Energy – volume: 30 start-page: 1797 year: 2016 end-page: 1819 ident: bb0045 article-title: Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-Chay River, Iran publication-title: Stoch. Environ. Res. Risk Assess. – volume: 8 start-page: 27292 year: 2016 ident: bb5005 article-title: Dissolved oxygen content prediction in crab culture using a hybrid intelligent method publication-title: Sci. Rep. – volume: 394 start-page: 486 year: 2010 end-page: 493 ident: bb0395 article-title: Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model publication-title: J. Hydrol. – volume: 4 year: 2012 ident: bb0100 article-title: Noise-assisted EMD methods in action publication-title: Adv. Adapt. Data Anal. – volume: 4 start-page: 327 year: 2015 end-page: 337 ident: bb0145 article-title: Evaluation of the physicochemical and chlorophyll-a conditions of a subtropical aquaculture in Lake Nasser area, Egypt publication-title: Beni-Suef Univ. J. Basic Appl. Sci. – year: 2003 ident: bb0385 article-title: On empirical mode decomposition and its algorithms publication-title: Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, Jun 2003, Grado, Italy – volume: 188 start-page: 90 year: 2016 ident: bb0110 article-title: An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland publication-title: Environ. Monit. Assess. – volume: 2 start-page: 985 year: 2004 end-page: 990 ident: bb0215 article-title: Extreme learning machine: a new learning scheme of feedforward neural networks publication-title: IEEE. Int. Conf. Neural. Netw. Conf. Proc. – volume: 48 start-page: 19 year: 2013 end-page: 24 ident: bb0075 article-title: Neural architecture design based on extreme learning machine publication-title: Neural Netw. – volume: 23 start-page: 338 year: 2012 end-page: 355 ident: bb0310 article-title: Application of a new multi-metric phytoplankton index to assessment of ecological status in marine and transitions waters publication-title: Ecol. Indic. – volume: 48 start-page: 85 year: 2002 end-page: 105 ident: bb0410 article-title: Weighted least squares support vector machines: robustness and sparse approximation publication-title: Neurocomputing – volume: 60–61 start-page: 243 year: 2015 end-page: 251 ident: bb0445 article-title: Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system publication-title: Mech. Syst. Signal Process. – volume: 330 start-page: 136 year: 2018 end-page: 161 ident: bb0375 article-title: Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition publication-title: Geoderma – volume: 495 start-page: 175 year: 2013 end-page: 185 ident: bb0340 article-title: A reduced-order adaptive neurofuzzy inference system model as a software sensor for rapid estimation of five-day biochemical oxygen demand publication-title: J. Hydrol. – year: 2013 ident: bb0435 article-title: The Nature of Statistical Learning Theory – volume: 511 start-page: 279 year: 2014 end-page: 289 ident: bb0030 article-title: Modelling of chemical oxygen demand by using ANNs, ANFIS and k-means clustering techniques publication-title: J. Hydrol. – volume: 81 start-page: V365 year: 2016 end-page: V378 ident: bb0300 article-title: Applications of variational mode decomposition in seismic time-frequency analysis publication-title: Geophysics – year: 1974 ident: bb0380 article-title: The RAMSAR convention on wetlands – volume: 399 start-page: 394 year: 2011 end-page: 409 ident: bb0465 article-title: Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis publication-title: J. Hydrol. – volume: 615 start-page: 157 year: 2008 end-page: 167 ident: bb0010 article-title: Concurrent evolution of ancient sister lakes and sister species: the freshwater gastropod genus Radix in lakes Ohrid and Prespa publication-title: Hydrobiologia – volume: 231 start-page: 635 year: 2017 end-page: 654 ident: bb0520 article-title: Adaptive variational mode decomposition based on artificial fish swarm algorithm for fault diagnosis of rolling bearings publication-title: Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. – volume: 1 start-page: 1 year: 2009 end-page: 41 ident: bb0470 article-title: Ensemble empirical mode decomposition: a noise assisted data analysis method publication-title: Adv. Adapt. Data Anal. – volume: 621 start-page: 697 year: 2018 end-page: 712 ident: bb0070 article-title: Mapping groundwater contamination risk of multiple aquifers using multi-model ensemble of machine learning algorithms publication-title: Sci. Total Environ. – volume: 30 start-page: 905 year: 2008 end-page: 918 ident: bb0510 article-title: A new approach for crude oil price analysis based on empirical mode decomposition publication-title: Energy Econ. – volume: 3 start-page: 909 year: 2016 end-page: 937 ident: bb0160 article-title: Use of optimally pruned extreme learning machine (OP-ELM) in forecasting dissolved oxygen concentration (DO) several hours in advance: a case study from the Klamath River, Oregon, USA publication-title: Environ. Process. – volume: 21 start-page: 1631 year: 2017 end-page: 1639 ident: bb0035 article-title: Estimation of dissolved oxygen by using neural networks and neuro fuzzy computing techniques publication-title: KSCE J. Civ. Eng. – volume: 153 start-page: 589 year: 2017 end-page: 602 ident: bb0360 article-title: Multi-step ahead wind speed forecasting using a hybrid model based on two stage decomposition technique and AdaBoost-extreme learning machine publication-title: Energy Convers. Manag. – volume: 559 start-page: 499 year: 2018 end-page: 509 ident: bb0170 article-title: Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree publication-title: J. Hydrol. – volume: 155 start-page: 141 year: 2017 end-page: 166 ident: bb0130 article-title: Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle publication-title: Environ. Res. – volume: 136 start-page: 439 year: 2017 end-page: 451 ident: bb0515 article-title: A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting publication-title: Energy Convers. Manag. – volume: 2 start-page: 184 year: 1981 end-page: 194 ident: bb0460 article-title: On the validation of models publication-title: Phys. Geogr. – volume: 24 start-page: 16702 year: 2017 end-page: 16724 ident: bb0165 article-title: Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors publication-title: Environ. Sci. Pollut. Res. – volume: 142 year: 2016 ident: bb0350 article-title: How reliable are ANN, ANFIS, and SVM techniques for predicting longitudinal dispersion coefficient in natural rivers? publication-title: J. Hydraul. Eng. – volume: 162 start-page: 55 year: 2003 end-page: 67 ident: bb0095 article-title: Integration of data mining techniques and heuristic knowledge in fuzzy logic modelling of eutrophication in Taihu Lake publication-title: Ecol. Model. – volume: 35 start-page: 233 year: 1999 end-page: 241 ident: bb0265 article-title: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation publication-title: Water Resour. Res. – volume: 55 start-page: 2425 year: 2010 end-page: 2435 ident: bb0090 article-title: Cost effective prediction of the eutrophication status of lakes and reservoirs publication-title: Freshw. Biol. – volume: 18 start-page: 310 year: 2013 end-page: 316 ident: bb0235 article-title: Using artificial neural network models for eutrophication prediction publication-title: Procedia Environ Sci – volume: 134 start-page: 168 year: 2016 end-page: 180 ident: bb0315 article-title: A novel hybrid decomposition- and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting publication-title: Atmos. Environ. – volume: 28 start-page: 154 year: 2006 end-page: 161 ident: bb0180 article-title: Predicting engine reliability by support vector machines publication-title: Int. J. Adv. Manuf. Technol. – volume: 61 start-page: 32 year: 2015 end-page: 48 ident: bb0230 article-title: Trends in extreme learning machines: a review publication-title: Neural Netw. – volume: 197 start-page: 42 year: 2017 end-page: 63 ident: bb0370 article-title: Input selection and performance optimization of ANN-based streamflow forecasts in a drought-prone Murray Darling Basin using IIS and MODWT algorithm publication-title: Atmos. Res. – volume: 2 start-page: 135 year: 2010 end-page: 156 ident: bb0505 article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method publication-title: Adv. Adapt. Data Anal. – volume: 102 start-page: 308 year: 2015 end-page: 315 ident: bb0485 article-title: Method to predict key factors affecting lake eutrophication – a new approach based on support vector regression model publication-title: Int. Biodeterior. Biodegrad. – volume: 4 start-page: 80 year: 2007 end-page: 84 ident: bb0390 article-title: Monitoring phytoplanktonic diversity in the hill stream Chandrabhaga of Garhwal Himalaya publication-title: Life Sci. J. – volume: 542 start-page: 603 year: 2016 end-page: 614 ident: bb0495 article-title: Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq publication-title: J. Hydrol. – volume: 2011 start-page: 4144 year: 2011 end-page: 4147 ident: bb0420 article-title: A complete ensemble empirical mode decomposition with adaptive noise publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague – volume: 168 start-page: 568 year: 2016 end-page: 593 ident: bb0125 article-title: A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset publication-title: Appl. Energy – volume: 62 start-page: 531 year: 2014 end-page: 544 ident: bb0140 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: bb0405 article-title: Least squares support vector machine classifiers publication-title: Neural. Process. Lett. – volume: 502 start-page: 31 year: 2015 end-page: 41 ident: bb0355 article-title: Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea publication-title: Sci. Total Environ. – volume: 86 start-page: 468 year: 2012 end-page: 476 ident: bb0415 article-title: Antibiotic resistant bacteria/genes dissemination in lacustrine sediments highly increased following cultural eutrophication of Lake Geneva (Switzerland) publication-title: Chemosphere – volume: 351 start-page: 1 year: 1997 end-page: 19 ident: bb0175 article-title: The physical basis of the Lake Mikri Prespa systems: geology, climate, hydrology and water quality publication-title: Hydrobiologia – volume: 38 start-page: 6112 year: 2011 end-page: 6117 ident: bb0475 article-title: Speaker identification system using empirical mode decomposition and an artificial neural network publication-title: Expert Syst. Appl. – volume: 46 start-page: 1 issue: 2 year: 2008 ident: 10.1016/j.scitotenv.2018.08.221_bb0200 article-title: A review on Hilbert-Huang transform: method and its applications to geophysical studies publication-title: Rev. Geophys. doi: 10.1029/2007RG000228 – volume: 351 start-page: 1 issue: 1–3 year: 1997 ident: 10.1016/j.scitotenv.2018.08.221_bb0175 article-title: The physical basis of the Lake Mikri Prespa systems: geology, climate, hydrology and water quality publication-title: Hydrobiologia doi: 10.1023/A:1003067115862 – volume: 55 start-page: 2425 issue: 11 year: 2010 ident: 10.1016/j.scitotenv.2018.08.221_bb0090 article-title: Cost effective prediction of the eutrophication status of lakes and reservoirs publication-title: Freshw. Biol. doi: 10.1111/j.1365-2427.2010.02452.x – volume: 6 start-page: 12 year: 2007 ident: 10.1016/j.scitotenv.2018.08.221_bb0240 article-title: Minimum sample size requirements for seasonal forecasting models publication-title: Int. J. Appl. Forecast. – volume: 196 start-page: 110 year: 2017 ident: 10.1016/j.scitotenv.2018.08.221_bb0320 article-title: Application of decomposition-ensemble learning paradigm with phase space reconstruction for day-ahead forecasting publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2017.02.071 – volume: 188 start-page: 90 year: 2016 ident: 10.1016/j.scitotenv.2018.08.221_bb0110 article-title: An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-016-5094-9 – volume: 61 start-page: 32 year: 2015 ident: 10.1016/j.scitotenv.2018.08.221_bb0230 article-title: Trends in extreme learning machines: a review publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.10.001 – year: 2013 ident: 10.1016/j.scitotenv.2018.08.221_bb0435 – volume: 502 start-page: 31 year: 2015 ident: 10.1016/j.scitotenv.2018.08.221_bb0355 article-title: Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.09.005 – volume: 4 issue: 4 year: 2012 ident: 10.1016/j.scitotenv.2018.08.221_bb0100 article-title: Noise-assisted EMD methods in action publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536912500252 – volume: 38 start-page: 235 issue: 3 year: 2007 ident: 10.1016/j.scitotenv.2018.08.221_bb0185 article-title: Rainfall–runoff modeling using principal component analysis and neural network publication-title: Nord. Hydrol. doi: 10.2166/nh.2007.010 – volume: 197 start-page: 42 year: 2017 ident: 10.1016/j.scitotenv.2018.08.221_bb0370 article-title: Input selection and performance optimization of ANN-based streamflow forecasts in a drought-prone Murray Darling Basin using IIS and MODWT algorithm publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2017.06.014 – volume: 32 start-page: 103 issue: 1 year: 2017 ident: 10.1016/j.scitotenv.2018.08.221_bb0490 article-title: Assessing the suitability of extreme learning machines (ELM) for groundwater level prediction publication-title: J. Water Land Dev. doi: 10.1515/jwld-2017-0012 – volume: 72 start-page: 828 year: 2017 ident: 10.1016/j.scitotenv.2018.08.221_bb0115 article-title: Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2017.01.114 – volume: 495 start-page: 175 year: 2013 ident: 10.1016/j.scitotenv.2018.08.221_bb0340 article-title: A reduced-order adaptive neurofuzzy inference system model as a software sensor for rapid estimation of five-day biochemical oxygen demand publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.04.052 – volume: 527 start-page: 833 year: 2015 ident: 10.1016/j.scitotenv.2018.08.221_bb0345 article-title: Uncertainty analysis of support vector machine for online prediction of five-day biochemical oxygen demand publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.05.046 – volume: 330 start-page: 136 year: 2018 ident: 10.1016/j.scitotenv.2018.08.221_bb0375 article-title: Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition publication-title: Geoderma doi: 10.1016/j.geoderma.2018.05.035 – volume: 48 start-page: 85 issue: 1–4 year: 2002 ident: 10.1016/j.scitotenv.2018.08.221_bb0410 article-title: Weighted least squares support vector machines: robustness and sparse approximation publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00644-0 – volume: 401 start-page: 177 year: 2011 ident: 10.1016/j.scitotenv.2018.08.221_bb0335 article-title: Assessment of input variables determination on the SVM model performance using PCA, gamma test, and forward selection techniques for monthly stream flow prediction publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.02.021 – year: 1963 ident: 10.1016/j.scitotenv.2018.08.221_bb0150 – ident: 10.1016/j.scitotenv.2018.08.221_bb0430 – volume: 456–457 start-page: 110 year: 2012 ident: 10.1016/j.scitotenv.2018.08.221_bb5010 article-title: Modeling discharge-suspended sediment relationship using least square support vector machine publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.06.019 – volume: 23 start-page: 338 year: 2012 ident: 10.1016/j.scitotenv.2018.08.221_bb0310 article-title: Application of a new multi-metric phytoplankton index to assessment of ecological status in marine and transitions waters publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2012.03.030 – volume: 8 start-page: 27292 issue: 6 year: 2016 ident: 10.1016/j.scitotenv.2018.08.221_bb5005 article-title: Dissolved oxygen content prediction in crab culture using a hybrid intelligent method publication-title: Sci. Rep. doi: 10.1038/srep27292 – volume: 48 start-page: 19 year: 2013 ident: 10.1016/j.scitotenv.2018.08.221_bb0075 article-title: Neural architecture design based on extreme learning machine publication-title: Neural Netw. doi: 10.1016/j.neunet.2013.06.010 – volume: 31 start-page: 1211 year: 2017 ident: 10.1016/j.scitotenv.2018.08.221_bb0135 article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-016-1265-z – volume: 31 start-page: 2705 issue: 10 year: 2017 ident: 10.1016/j.scitotenv.2018.08.221_bb0055 article-title: Comparison of machine learning models for predicting fluoride contamination in groundwater publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-016-1338-z – volume: 62 start-page: 531 issue: 3 year: 2014 ident: 10.1016/j.scitotenv.2018.08.221_bb0140 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – volume: 28 start-page: 249 year: 2009 ident: 10.1016/j.scitotenv.2018.08.221_bb0330 article-title: Prediction of municipal solid waste generation with combination of support vector machine and principal component analysis: a case study of Mashhad publication-title: Environ. Prog. Sustain. Energy doi: 10.1002/ep.10317 – volume: 740 start-page: 89 issue: 1 year: 2014 ident: 10.1016/j.scitotenv.2018.08.221_bb0085 article-title: Determinants of chlorophyll-a concentration in tropical reservoirs publication-title: Hydrobiologia doi: 10.1007/s10750-014-1940-3 – volume: 4 start-page: 327 issue: 4 year: 2015 ident: 10.1016/j.scitotenv.2018.08.221_bb0145 article-title: Evaluation of the physicochemical and chlorophyll-a conditions of a subtropical aquaculture in Lake Nasser area, Egypt publication-title: Beni-Suef Univ. J. Basic Appl. Sci. doi: 10.1016/j.bjbas.2015.11.009 – volume: 17 start-page: 754 issue: 8 year: 2010 ident: 10.1016/j.scitotenv.2018.08.221_bb0285 article-title: Ensemble based extreme learning machine publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2010.2053356 – volume: 18 start-page: 172 issue: 2 year: 2008 ident: 10.1016/j.scitotenv.2018.08.221_bb0080 article-title: A forecasting and forewarning model for methane hazard in working face of coal mine based on LS-SVM publication-title: J. China Univ. Min. Technol. doi: 10.1016/S1006-1266(08)60037-1 – volume: 102 start-page: 308 year: 2015 ident: 10.1016/j.scitotenv.2018.08.221_bb0485 article-title: Method to predict key factors affecting lake eutrophication – a new approach based on support vector regression model publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2015.02.013 – volume: 153 start-page: 589 year: 2017 ident: 10.1016/j.scitotenv.2018.08.221_bb0360 article-title: Multi-step ahead wind speed forecasting using a hybrid model based on two stage decomposition technique and AdaBoost-extreme learning machine publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.10.021 – volume: 150 start-page: 257 year: 2018 ident: 10.1016/j.scitotenv.2018.08.221_bb0190 article-title: Prediction of dissolved oxygen in aquaculture based on EEMD and LSSVM optimized by the Bayesian evidence framework publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.04.022 – volume: 37 start-page: 52 year: 2017 ident: 10.1016/j.scitotenv.2018.08.221_bb0195 article-title: An ensemble simulation approach for artificial neural network: an example from chlorophyll a simulation in Lake Poyang, China publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2016.11.012 – volume: 2 issue: 26 year: 2016 ident: 10.1016/j.scitotenv.2018.08.221_bb0040 article-title: Combining the advantages of neural networks using the concept of committee machine in the groundwater salinity prediction publication-title: Model. Earth Syst. Environ. – volume: 16 start-page: 335 year: 2003 ident: 10.1016/j.scitotenv.2018.08.221_bb0260 article-title: Some neural network applications in environmental sciences. Part II: advancing computational efficiency of environmental numerical models publication-title: Neural Netw. doi: 10.1016/S0893-6080(03)00026-1 – start-page: 764 year: 2009 ident: 10.1016/j.scitotenv.2018.08.221_bb0290 article-title: Research on water bloom prediction based on least squares support vector machine – volume: 24 start-page: 16702 issue: 20 year: 2017 ident: 10.1016/j.scitotenv.2018.08.221_bb0165 article-title: Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-9283-z – volume: 370 year: 2012 ident: 10.1016/j.scitotenv.2018.08.221_bb0295 article-title: Prediction of dissolved oxygen content in aquaculture of Hyriopsis cumingii using Elman neural network – volume: 599–600 start-page: 20 year: 2017 ident: 10.1016/j.scitotenv.2018.08.221_bb0060 article-title: Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network based models publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.04.189 – volume: 2011 start-page: 4144 year: 2011 ident: 10.1016/j.scitotenv.2018.08.221_bb0420 article-title: A complete ensemble empirical mode decomposition with adaptive noise – volume: 220 start-page: 1506 issue: 12 year: 2009 ident: 10.1016/j.scitotenv.2018.08.221_bb0365 article-title: Fuzzy modelling of chlorophyll production in a Brazilian upwelling system publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2009.03.025 – volume: 81 start-page: V365 issue: 5 year: 2016 ident: 10.1016/j.scitotenv.2018.08.221_bb0300 article-title: Applications of variational mode decomposition in seismic time-frequency analysis publication-title: Geophysics doi: 10.1190/geo2015-0489.1 – volume: 32 start-page: 799 issue: 3 year: 2018 ident: 10.1016/j.scitotenv.2018.08.221_bb0065 article-title: Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-017-1394-z – volume: 3 start-page: 909 issue: 4 year: 2016 ident: 10.1016/j.scitotenv.2018.08.221_bb0160 article-title: Use of optimally pruned extreme learning machine (OP-ELM) in forecasting dissolved oxygen concentration (DO) several hours in advance: a case study from the Klamath River, Oregon, USA publication-title: Environ. Process. doi: 10.1007/s40710-016-0172-0 – year: 2008 ident: 10.1016/j.scitotenv.2018.08.221_bb0155 – volume: 31 start-page: 417 year: 1999 ident: 10.1016/j.scitotenv.2018.08.221_bb0210 article-title: A new view of nonlinear water waves - the Hilbert spectrum publication-title: Ann. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.31.1.417 – year: 1991 ident: 10.1016/j.scitotenv.2018.08.221_bb0245 – volume: 2 start-page: 184 year: 1981 ident: 10.1016/j.scitotenv.2018.08.221_bb0460 article-title: On the validation of models publication-title: Phys. Geogr. doi: 10.1080/02723646.1981.10642213 – volume: 17 start-page: 5965 issue: 9 year: 2015 ident: 10.1016/j.scitotenv.2018.08.221_bb0275 article-title: Friction signal denoising using complete ensemble EMD with adaptive noise and mutual information publication-title: Entropy doi: 10.3390/e17095965 – volume: 28 start-page: 154 issue: 1–2 year: 2006 ident: 10.1016/j.scitotenv.2018.08.221_bb0180 article-title: Predicting engine reliability by support vector machines publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-004-2340-z – volume: 86 start-page: 468 issue: 5 year: 2012 ident: 10.1016/j.scitotenv.2018.08.221_bb0415 article-title: Antibiotic resistant bacteria/genes dissemination in lacustrine sediments highly increased following cultural eutrophication of Lake Geneva (Switzerland) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.09.048 – volume: 217 start-page: 422 year: 2018 ident: 10.1016/j.scitotenv.2018.08.221_bb0020 article-title: Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.02.140 – volume: 621 start-page: 697 year: 2018 ident: 10.1016/j.scitotenv.2018.08.221_bb0070 article-title: Mapping groundwater contamination risk of multiple aquifers using multi-model ensemble of machine learning algorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.11.185 – year: 2003 ident: 10.1016/j.scitotenv.2018.08.221_bb0385 article-title: On empirical mode decomposition and its algorithms – volume: 134 start-page: 168 year: 2016 ident: 10.1016/j.scitotenv.2018.08.221_bb0315 article-title: A novel hybrid decomposition- and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.03.056 – volume: 231 start-page: 635 issue: 4 year: 2017 ident: 10.1016/j.scitotenv.2018.08.221_bb0520 article-title: Adaptive variational mode decomposition based on artificial fish swarm algorithm for fault diagnosis of rolling bearings publication-title: Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. doi: 10.1177/0954406215623311 – volume: 511 start-page: 279 year: 2014 ident: 10.1016/j.scitotenv.2018.08.221_bb0030 article-title: Modelling of chemical oxygen demand by using ANNs, ANFIS and k-means clustering techniques publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.01.054 – volume: 35 start-page: 233 issue: 1 year: 1999 ident: 10.1016/j.scitotenv.2018.08.221_bb0265 article-title: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation publication-title: Water Resour. Res. doi: 10.1029/1998WR900018 – volume: 38 start-page: 6112 issue: 5 year: 2011 ident: 10.1016/j.scitotenv.2018.08.221_bb0475 article-title: Speaker identification system using empirical mode decomposition and an artificial neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.11.013 – volume: 30 start-page: 1797 issue: 7 year: 2016 ident: 10.1016/j.scitotenv.2018.08.221_bb0045 article-title: Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-Chay River, Iran publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-016-1213-y – volume: 21 start-page: 1631 issue: 5 year: 2017 ident: 10.1016/j.scitotenv.2018.08.221_bb0035 article-title: Estimation of dissolved oxygen by using neural networks and neuro fuzzy computing techniques publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-016-0728-6 – volume: 2 start-page: 107 issue: 2 year: 2011 ident: 10.1016/j.scitotenv.2018.08.221_bb0225 article-title: Extreme learning machines: a survey publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-011-0019-y – volume: 5 start-page: 11 issue: 1 year: 2018 ident: 10.1016/j.scitotenv.2018.08.221_bb0280 article-title: A hybrid model for dissolved oxygen prediction in aquaculture based on multi-scale features publication-title: Inf. Process. Agric. – volume: 60–61 start-page: 243 year: 2015 ident: 10.1016/j.scitotenv.2018.08.221_bb0445 article-title: Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.02.020 – volume: 2 start-page: 985 year: 2004 ident: 10.1016/j.scitotenv.2018.08.221_bb0215 article-title: Extreme learning machine: a new learning scheme of feedforward neural networks publication-title: IEEE. Int. Conf. Neural. Netw. Conf. Proc. – volume: 13 start-page: 8121 issue: 12 year: 2017 ident: 10.1016/j.scitotenv.2018.08.221_bb5015 article-title: EMD-based study of the volatility mechanism in economic growth publication-title: Eurasia J. Math. Sci. Technol. Educ. – volume: 374 start-page: 294 issue: 3 year: 2009 ident: 10.1016/j.scitotenv.2018.08.221_bb0440 article-title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.06.019 – volume: 23 start-page: 1327 issue: 4 year: 2009 ident: 10.1016/j.scitotenv.2018.08.221_bb0270 article-title: Application of the EEMD method to rotor fault diagnosis of rotating machinery publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2008.11.005 – volume: 2 start-page: 135 issue: 2 year: 2010 ident: 10.1016/j.scitotenv.2018.08.221_bb0505 article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536910000422 – start-page: 680 year: 2005 ident: 10.1016/j.scitotenv.2018.08.221_bb0305 article-title: Water resources systems planning and management: an introduction to methods, models and applications – year: 2005 ident: 10.1016/j.scitotenv.2018.08.221_bb0400 article-title: Data-driven modelling and computational intelligence methods in hydrology – volume: 30 start-page: 883 issue: 3 year: 2016 ident: 10.1016/j.scitotenv.2018.08.221_bb0050 article-title: A supervised committee machine artificial intelligent for improving DRASTIC method to assess groundwater contamination risk: a case study from Tabriz plain aquifer, Iran publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-015-1088-3 – volume: 29 start-page: 151 issue: 2 year: 2017 ident: 10.1016/j.scitotenv.2018.08.221_bb0005 article-title: Prediction of dissolved oxygen in Surma River by biochemical oxygen demand and chemical oxygen demand using the artificial neural networks (ANNs) publication-title: J. King Saud Univ. Eng. Sci. doi: 10.1016/j.jksues.2014.05.001 – volume: 119 start-page: 1218 issue: 3 year: 2014 ident: 10.1016/j.scitotenv.2018.08.221_bb0025 article-title: Analysis of hydroclimatic variability and trends using a novel empirical mode decomposition: application to the Paraná River basin publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2013JD020420 – volume: 22 year: 2017 ident: 10.1016/j.scitotenv.2018.08.221_bb0120 article-title: Forecasting evaporative loss by least-square support-vector regression and evaluation with genetic programming, Gaussian process, and minimax probability machine regression: case study of Brisbane City publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0001506 – volume: 136 start-page: 439 year: 2017 ident: 10.1016/j.scitotenv.2018.08.221_bb0515 article-title: A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.01.022 – volume: 155 start-page: 141 year: 2017 ident: 10.1016/j.scitotenv.2018.08.221_bb0130 article-title: Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle publication-title: Environ. Res. doi: 10.1016/j.envres.2017.01.035 – volume: 18 start-page: 310 year: 2013 ident: 10.1016/j.scitotenv.2018.08.221_bb0235 article-title: Using artificial neural network models for eutrophication prediction publication-title: Procedia Environ Sci doi: 10.1016/j.proenv.2013.04.040 – volume: 141 start-page: 747 issue: 4 year: 2017 ident: 10.1016/j.scitotenv.2018.08.221_bb5000 article-title: Prediction of lake water temperature, dissolved oxygen, and fish habitat under changing climate publication-title: Clim. Chang. doi: 10.1007/s10584-017-1916-1 – volume: 30 start-page: 905 issue: 3 year: 2008 ident: 10.1016/j.scitotenv.2018.08.221_bb0510 article-title: A new approach for crude oil price analysis based on empirical mode decomposition publication-title: Energy Econ. doi: 10.1016/j.eneco.2007.02.012 – volume: 186 start-page: 4553 issue: 7 year: 2014 ident: 10.1016/j.scitotenv.2018.08.221_bb0425 article-title: Environmental monitoring of micro Prespa Lake basin (Western Macedonia, Greece): hydrogeochemical characteristics of water resources and quality trends publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-014-3719-4 – volume: 389 start-page: 146 issue: 1–2 year: 2010 ident: 10.1016/j.scitotenv.2018.08.221_bb0480 article-title: Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.05.040 – volume: 142 issue: 1 year: 2016 ident: 10.1016/j.scitotenv.2018.08.221_bb0350 article-title: How reliable are ANN, ANFIS, and SVM techniques for predicting longitudinal dispersion coefficient in natural rivers? publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)HY.1943-7900.0001062 – volume: 399 start-page: 394 issue: 3–4 year: 2011 ident: 10.1016/j.scitotenv.2018.08.221_bb0465 article-title: Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.01.017 – volume: 190 start-page: 390 year: 2017 ident: 10.1016/j.scitotenv.2018.08.221_bb0450 article-title: Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.12.134 – volume: 213 start-page: 450 year: 2018 ident: 10.1016/j.scitotenv.2018.08.221_bb0015 article-title: Multi-stage hybridized online sequential extreme learning machine integrated with Markov Chain Monte Carlo copula-bat algorithm for rainfall forecasting publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2018.07.005 – volume: 162 start-page: 55 issue: 1–2 year: 2003 ident: 10.1016/j.scitotenv.2018.08.221_bb0095 article-title: Integration of data mining techniques and heuristic knowledge in fuzzy logic modelling of eutrophication in Taihu Lake publication-title: Ecol. Model. doi: 10.1016/S0304-3800(02)00389-7 – volume: 615 start-page: 157 year: 2008 ident: 10.1016/j.scitotenv.2018.08.221_bb0010 article-title: Concurrent evolution of ancient sister lakes and sister species: the freshwater gastropod genus Radix in lakes Ohrid and Prespa publication-title: Hydrobiologia doi: 10.1007/s10750-008-9555-1 – volume: 57 start-page: 163 year: 2018 ident: 10.1016/j.scitotenv.2018.08.221_bb0325 article-title: A novel hybrid decomposition-ensemble model based on VMD and HGWO for container throughput forecasting publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2018.01.014 – volume: 4 start-page: 80 issue: 1 year: 2007 ident: 10.1016/j.scitotenv.2018.08.221_bb0390 article-title: Monitoring phytoplanktonic diversity in the hill stream Chandrabhaga of Garhwal Himalaya publication-title: Life Sci. J. – volume: 8 start-page: 549 issue: 4 year: 2017 ident: 10.1016/j.scitotenv.2018.08.221_bb0250 article-title: Data-driven modeling for water quality prediction case study: the drains system associated with Manzala Lake, Egypt publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2016.08.004 – volume: 9 start-page: 293 year: 1999 ident: 10.1016/j.scitotenv.2018.08.221_bb0405 article-title: Least squares support vector machine classifiers publication-title: Neural. Process. Lett. doi: 10.1023/A:1018628609742 – volume: 542 start-page: 603 year: 2016 ident: 10.1016/j.scitotenv.2018.08.221_bb0495 article-title: Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.09.035 – volume: 168 start-page: 568 year: 2016 ident: 10.1016/j.scitotenv.2018.08.221_bb0125 article-title: A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.01.130 – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: 10.1016/j.scitotenv.2018.08.221_bb0205 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 115 start-page: 112 year: 2018 ident: 10.1016/j.scitotenv.2018.08.221_bb0500 article-title: Predicting compressive strength of lightweight foamed concrete using extreme learning machine model publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.09.004 – volume: 1 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.scitotenv.2018.08.221_bb0470 article-title: Ensemble empirical mode decomposition: a noise assisted data analysis method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536909000047 – volume: 109 year: 2004 ident: 10.1016/j.scitotenv.2018.08.221_bb0105 article-title: Eleven year solar cycle signal throughout the lower atmosphere publication-title: J. Geophys. Res. doi: 10.1029/2004JD004873 – volume: 394 start-page: 486 year: 2010 ident: 10.1016/j.scitotenv.2018.08.221_bb0395 article-title: Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.10.008 – ident: 10.1016/j.scitotenv.2018.08.221_bb0380 – volume: 70 start-page: 489 year: 2006 ident: 10.1016/j.scitotenv.2018.08.221_bb0220 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 559 start-page: 499 year: 2018 ident: 10.1016/j.scitotenv.2018.08.221_bb0170 article-title: Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.02.061 |
SSID | ssj0000781 |
Score | 2.6037884 |
Snippet | Accurate prediction of water quality parameters plays a crucial and decisive role in environmental monitoring, ecological systems sustainability, human health,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 839 |
SubjectTerms | aquaculture autocorrelation chlorophyll Complementary ensemble empirical mode decomposition with adaptive noise data collection dissolved oxygen Environmental monitoring Extreme machine learning human health lakes prediction Small Prespa Lake support vector machines Variational mode decomposition water quality Water quality modelling |
Title | Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters |
URI | https://dx.doi.org/10.1016/j.scitotenv.2018.08.221 https://www.ncbi.nlm.nih.gov/pubmed/30138884 https://www.proquest.com/docview/2093308389 https://www.proquest.com/docview/2116865895 |
Volume | 648 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELamISQkhKAwKD-mQ-LVLGlcx-ZtGpsKFXtAQ-wtcmKbFbVJtaSb-rK_jj-Muzjp1IexB9SHqq0dnerz3efzd3eMfZCpFyOf5DzHNeVCq4Ibr1PukyiP8Izt7Iiykb-dyskP8fV8fL7DjvpcGKJVdrY_2PTWWnffHHT_5sFyNqMcX6G01GhcE0oBbjPYRUr18z_e3NI8qJhNuGXGjY2jtzhe-NymQmx6RRwvRbU8R6P4Lg91FwJtPdHJU_akg5BwGKR8xnZcOWAPQ1PJ9YDtHd_mruGwbvPWA_Y4hOggZB49Z38-t-wNMKWF2aLnkdNCQeXBwMWasrmg7ZUD5O0s4E_NdcXnBoE6WEd89I70BaEVNRTVCp9kgeK7gIafwo_Qtab4BYuWuulqaCqoV0vC_oCodc6pxT24LcEXrbWhsCOJc42Y-BJCCugaqGD5gog89Qt2dnJ8djThXVMHXohINNw5neARCw-vzo_jZCycRR9pklwXxipnY2t9GvvcRApPjvRySqc6tkVqDZqnPbZbVqV7xQC1y2vl0oJglTTCCFlIJ4tIe22VkkMm-3XMiq7gOfXdmGc9s-13tlGAjBQgi1SGCjBk0WbiMtT8uH_Kp15Rsi31zdAz3T_5fa9aGW5uurExpatWNQ6ieJNCUPmPMXEsFeJIPR6yl0EvN1IndA-tlHj9P-K9YY_wE7HqeDx-y3aby5V7h0isyffbrbbPHhx-mU5O6X36_ef0L36rPN8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELamIQTShKAwKD8PiVezpHESmzc0NhXY9lSkvVlObI-iNqnWdFNf-Ov4w7iLk059GHtAfWvsyIrPd9-dv7tj7EOWezHyScEL3FMulCy58SrnPomKCH1sZ0eUjXx6lo1_iG_n6fkOO-xzYYhW2en-oNNbbd39c9B9zYPFdEo5vkKqTKFyTSgFGF2geyJNchLtj79veB5UzSZcM-PJxuFbJC98cVMjOL0ikpekYp6jUXybiboNgram6Pgxe9RhSPgclvmE7bhqwO6HrpLrAds_uklew2Hd6V0O2F6I0UFIPXrK_nxp6RtgKgvTeU8kp52C2oOBn2tK54K2WQ6QubOAj5rrms8MInWwjgjpHesLQi9qKOsVvskCBXgBNT_FH6HrTXEB85a76ZbQ1LBcLQj8A8LWGace9-C2Fj5v1Q3FHWk51wiKLyHkgK6BKpbPicmzfMYmx0eTwzHvujrwUkSi4c6pBH0s9F6dT-MkFc6ikTRJoUpjpbOxtT6PfWEiia4j_ZxUuYptmVuD-mmf7VZ15V4wQPHySrq8JFyVGWFEVmYuKyPllZUyG7Ks30dddhXPqfHGTPfUtl96IwCaBEBHUqMADFm0mbgIRT_unvKpFxS9Jb8aTdPdk9_3oqXxdNOVjalcvVriIAo4SUSV_xgTx5lEIKnSIXse5HKz6oQuoqUUL_9nee_Yg_Hk9ESffD37_oo9xCdEseNx-prtNpcr9wZhWVO8bY_dX5BHPNI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+implementation+of+a+hybrid+model+based+on+two-layer+decomposition+method+coupled+with+extreme+learning+machines+to+support+real-time+environmental+monitoring+of+water+quality+parameters&rft.jtitle=The+Science+of+the+total+environment&rft.au=Fijani%2C+Elham&rft.au=Barzegar%2C+Rahim&rft.au=Deo%2C+Ravinesh&rft.au=Tziritis%2C+Evangelos&rft.date=2019-01-15&rft.issn=0048-9697&rft.volume=648&rft.spage=839&rft.epage=853&rft_id=info:doi/10.1016%2Fj.scitotenv.2018.08.221&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2018_08_221 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |