Biomechanical Analysis of Revision Strategies for Rod Fracture in Pedicle Subtraction Osteotomy

Abstract BACKGROUND: Pseudoarthrosis after pedicle subtraction osteotomy (PSO) can require revision surgery due to posterior rod failure, and the stiffness of these revision constructs has not been quantified. OBJECTIVE: To compare the multidirectional bending stiffness of 7 revision strategies foll...

Full description

Saved in:
Bibliographic Details
Published inNeurosurgery Vol. 69; no. 1; pp. 164 - 172
Main Authors Scheer, Justin K, Tang, Jessica A, Deviren, Vedat, Buckley, Jenni M, Pekmezci, Murat, McClellan, R Trigg, Ames, Christopher P
Format Journal Article
LanguageEnglish
Published Hagerstown, MD Oxford University Press 01.07.2011
Lippincott Williams & Wilkins
Wolters Kluwer Health, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract BACKGROUND: Pseudoarthrosis after pedicle subtraction osteotomy (PSO) can require revision surgery due to posterior rod failure, and the stiffness of these revision constructs has not been quantified. OBJECTIVE: To compare the multidirectional bending stiffness of 7 revision strategies following rod failure. METHODS: Seven fresh-frozen human spines (T11-pelvis) were tested as follows: (1) posterior instrumentation from T12-S1 (excluding L3) with iliac fixation and L3 PSO; (2) inline connectors after rod breakage at L3 (L2 screws removed for access); (3) cross-links connecting rods above and below inline connectors; satellite rods (4) parallel, (5) 45° anterior, and (6) 45° posterior to original rods; 45°posterior with cross-links connecting (7) original and (8) satellite rods. Groups 3 to 8 were tested in random order. Nondestructive pure moment flexion-extension (FE), lateral bending (LB), and axial rotation (AR) tests were conducted to 7.5 Nm; 3D motion tracking monitored the primary range of motion. RESULTS: Addition of inline connectors alone restored stiffness in FE and LB (P > .05), but not in AR (P < .05). Satellite rods (groups 4 to 6) restored stiffness in FE and LB (P > .05), but not in AR (P < .05) and were not significantly different from one another (P > .05). The addition of cross-links (groups 3, 7, and 8) restored stiffness in all bending modes (P > .05) and were significantly greater than inline connectors alone in AR (P < .05). CONCLUSION: The results suggest that these revision strategies can restore stiffness without entire rod replacement. Failure of AR stiffness restoration can be mitigated with cross-links. The positioning of the satellite rods is not an important factor in strengthening the revision.
AbstractList BACKGROUND: Pseudoarthrosis after pedicle subtraction osteotomy (PSO) can require revision surgery due to posterior rod failure, and the stiffness of these revision constructs has not been quantified. OBJECTIVE: To compare the multidirectional bending stiffness of 7 revision strategies following rod failure. METHODS: Seven fresh-frozen human spines (T11-pelvis) were tested as follows: (1) posterior instrumentation from T12-S1 (excluding L3) with iliac fixation and L3 PSO; (2) inline connectors after rod breakage at L3 (L2 screws removed for access); (3) cross-links connecting rods above and below inline connectors; satellite rods (4) parallel, (5) 45° anterior, and (6) 45° posterior to original rods; 45°posterior with cross-links connecting (7) original and (8) satellite rods. Groups 3 to 8 were tested in random order. Nondestructive pure moment flexion-extension (FE), lateral bending (LB), and axial rotation (AR) tests were conducted to 7.5 Nm; 3D motion tracking monitored the primary range of motion. RESULTS: Addition of inline connectors alone restored stiffness in FE and LB (P > .05), but not in AR (P < .05). Satellite rods (groups 4 to 6) restored stiffness in FE and LB (P > .05), but not in AR (P < .05) and were not significantly different from one another (P > .05). The addition of cross-links (groups 3, 7, and 8) restored stiffness in all bending modes (P > .05) and were significantly greater than inline connectors alone in AR (P < .05). CONCLUSION: The results suggest that these revision strategies can restore stiffness without entire rod replacement. Failure of AR stiffness restoration can be mitigated with cross-links. The positioning of the satellite rods is not an important factor in strengthening the revision.
Pseudoarthrosis after pedicle subtraction osteotomy (PSO) can require revision surgery due to posterior rod failure, and the stiffness of these revision constructs has not been quantified. To compare the multidirectional bending stiffness of 7 revision strategies following rod failure. Seven fresh-frozen human spines (T11-pelvis) were tested as follows: (1) posterior instrumentation from T12-S1 (excluding L3) with iliac fixation and L3 PSO; (2) inline connectors after rod breakage at L3 (L2 screws removed for access); (3) cross-links connecting rods above and below inline connectors; satellite rods (4) parallel, (5) 45° anterior, and (6) 45° posterior to original rods; 45° posterior with cross-links connecting (7) original and (8) satellite rods. Groups 3 to 8 were tested in random order. Nondestructive pure moment flexion-extension (FE), lateral bending (LB), and axial rotation (AR) tests were conducted to 7.5 Nm; 3D motion tracking monitored the primary range of motion. Addition of inline connectors alone restored stiffness in FE and LB (P > .05), but not in AR (P < .05). Satellite rods (groups 4 to 6) restored stiffness in FE and LB (P > .05), but not in AR (P < .05) and were not significantly different from one another (P > .05). The addition of cross-links (groups 3, 7, and 8) restored stiffness in all bending modes (P > .05) and were significantly greater than inline connectors alone in AR (P < .05). The results suggest that these revision strategies can restore stiffness without entire rod replacement. Failure of AR stiffness restoration can be mitigated with cross-links. The positioning of the satellite rods is not an important factor in strengthening the revision.
Abstract BACKGROUND: Pseudoarthrosis after pedicle subtraction osteotomy (PSO) can require revision surgery due to posterior rod failure, and the stiffness of these revision constructs has not been quantified. OBJECTIVE: To compare the multidirectional bending stiffness of 7 revision strategies following rod failure. METHODS: Seven fresh-frozen human spines (T11-pelvis) were tested as follows: (1) posterior instrumentation from T12-S1 (excluding L3) with iliac fixation and L3 PSO; (2) inline connectors after rod breakage at L3 (L2 screws removed for access); (3) cross-links connecting rods above and below inline connectors; satellite rods (4) parallel, (5) 45° anterior, and (6) 45° posterior to original rods; 45°posterior with cross-links connecting (7) original and (8) satellite rods. Groups 3 to 8 were tested in random order. Nondestructive pure moment flexion-extension (FE), lateral bending (LB), and axial rotation (AR) tests were conducted to 7.5 Nm; 3D motion tracking monitored the primary range of motion. RESULTS: Addition of inline connectors alone restored stiffness in FE and LB (P > .05), but not in AR (P < .05). Satellite rods (groups 4 to 6) restored stiffness in FE and LB (P > .05), but not in AR (P < .05) and were not significantly different from one another (P > .05). The addition of cross-links (groups 3, 7, and 8) restored stiffness in all bending modes (P > .05) and were significantly greater than inline connectors alone in AR (P < .05). CONCLUSION: The results suggest that these revision strategies can restore stiffness without entire rod replacement. Failure of AR stiffness restoration can be mitigated with cross-links. The positioning of the satellite rods is not an important factor in strengthening the revision.
BACKGROUNDPseudoarthrosis after pedicle subtraction osteotomy (PSO) can require revision surgery due to posterior rod failure, and the stiffness of these revision constructs has not been quantified.OBJECTIVETo compare the multidirectional bending stiffness of 7 revision strategies following rod failure.METHODSSeven fresh-frozen human spines (T11-pelvis) were tested as follows: (1) posterior instrumentation from T12-S1 (excluding L3) with iliac fixation and L3 PSO; (2) inline connectors after rod breakage at L3 (L2 screws removed for access); (3) cross-links connecting rods above and below inline connectors; satellite rods (4) parallel, (5) 45° anterior, and (6) 45° posterior to original rods; 45° posterior with cross-links connecting (7) original and (8) satellite rods. Groups 3 to 8 were tested in random order. Nondestructive pure moment flexion-extension (FE), lateral bending (LB), and axial rotation (AR) tests were conducted to 7.5 Nm; 3D motion tracking monitored the primary range of motion.RESULTSAddition of inline connectors alone restored stiffness in FE and LB (P > .05), but not in AR (P < .05). Satellite rods (groups 4 to 6) restored stiffness in FE and LB (P > .05), but not in AR (P < .05) and were not significantly different from one another (P > .05). The addition of cross-links (groups 3, 7, and 8) restored stiffness in all bending modes (P > .05) and were significantly greater than inline connectors alone in AR (P < .05).CONCLUSIONThe results suggest that these revision strategies can restore stiffness without entire rod replacement. Failure of AR stiffness restoration can be mitigated with cross-links. The positioning of the satellite rods is not an important factor in strengthening the revision.
Author Ames, Christopher P
Pekmezci, Murat
McClellan, R Trigg
Deviren, Vedat
Scheer, Justin K
Tang, Jessica A
Buckley, Jenni M
Author_xml – sequence: 1
  givenname: Justin K
  surname: Scheer
  fullname: Scheer, Justin K
  email: jscheer@ucsd.edu
  organization: Biomechanical Testing Facility, Orthopaedic Trauma Institute, San Francisco General Hospital, San Francisco, California
– sequence: 2
  givenname: Jessica A
  surname: Tang
  fullname: Tang, Jessica A
  organization: Biomechanical Testing Facility, Orthopaedic Trauma Institute, San Francisco General Hospital, San Francisco, California
– sequence: 3
  givenname: Vedat
  surname: Deviren
  fullname: Deviren, Vedat
  organization: Biomechanical Testing Facility, Orthopaedic Trauma Institute, San Francisco General Hospital, San Francisco, California
– sequence: 4
  givenname: Jenni M
  surname: Buckley
  fullname: Buckley, Jenni M
  organization: Biomechanical Testing Facility, Orthopaedic Trauma Institute, San Francisco General Hospital, San Francisco, California
– sequence: 5
  givenname: Murat
  surname: Pekmezci
  fullname: Pekmezci, Murat
  organization: Biomechanical Testing Facility, Orthopaedic Trauma Institute, San Francisco General Hospital, San Francisco, California
– sequence: 6
  givenname: R Trigg
  surname: McClellan
  fullname: McClellan, R Trigg
  organization: Biomechanical Testing Facility, Orthopaedic Trauma Institute, San Francisco General Hospital, San Francisco, California
– sequence: 7
  givenname: Christopher P
  surname: Ames
  fullname: Ames, Christopher P
  organization: Biomechanical Testing Facility, Orthopaedic Trauma Institute, San Francisco General Hospital, San Francisco, California
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24258620$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21336218$$D View this record in MEDLINE/PubMed
BookMark eNqNkF1L5DAUhoO46Dj6D0QCIl5V89U2vdRB3QXZWUYF70KSnmqkbcakFebfm2HGXfBqrwInz3s-ngO02_seEDqm5IIyVl7-vnm6IIZQDpxKRhpeML2DJjRnIhNEkF00IVTIjFfF8z46iPGNEFqIUu6hfUZ5wqmcIHXtfAf2VffO6hZf9bpdRRexb_ACPlx0vscPQ9ADvDiIuPEBL3yNb4O2wxgAux7_gdrZFvDDaIZ1eR2ZxwH84LvVIfrR6DbC0fadoqfbm8fZz-x-fvdrdnWf2bTrkEFpQQgrcmJYA4ZX1lSG1lwIWkNdpj-RC0osyFpSRiihptJaaCPzsqiM5FN0vum7DP59hDiozkULbat78GNUsqyKRKbDp-j0G_nmx5DujorxvJAlr0qeKLGhbPAxBmjUMrhOh5WiRK39q-RfffefYifb5qPpoP4b-hKegLMtoGMS3gTdWxf_cYLlsmAkcZcbzo_L_xv9CZ5Gns8
CODEN NRSRDY
CitedBy_id crossref_primary_10_1007_s43390_020_00071_y
crossref_primary_10_1097_MD_0000000000028410
crossref_primary_10_3171_2021_10_SPINE21745
crossref_primary_10_3171_2020_6_SPINE20678
crossref_primary_10_3171_2020_6_SPINE20898
crossref_primary_10_1007_s00586_018_5664_3
crossref_primary_10_1177_21925682231152833
crossref_primary_10_3171_2016_1_SPINE15264
crossref_primary_10_1007_s00586_017_5222_4
crossref_primary_10_1016_j_jspd_2015_06_005
crossref_primary_10_1016_j_wneu_2019_06_096
crossref_primary_10_1007_s00586_014_3295_x
crossref_primary_10_1007_s00586_022_07331_7
crossref_primary_10_1227_neu_0000000000002686
crossref_primary_10_3171_2019_9_SPINE19913
crossref_primary_10_2106_JBJS_21_01172
crossref_primary_10_1227_NEU_0000000000001194
crossref_primary_10_1007_s00132_019_03770_1
crossref_primary_10_1111_os_13738
crossref_primary_10_1590_s1808_185120212003245449
crossref_primary_10_1016_j_wneu_2018_11_052
crossref_primary_10_1097_BRS_0000000000002489
crossref_primary_10_1186_s13018_020_02058_x
crossref_primary_10_1097_BRS_0000000000004328
crossref_primary_10_1016_j_jocn_2020_01_053
crossref_primary_10_1097_BRS_0000000000000556
crossref_primary_10_1177_2192568217699392
crossref_primary_10_1016_j_spinee_2017_08_235
crossref_primary_10_1007_s00586_020_06594_2
crossref_primary_10_3171_2017_5_FOCUS17195
crossref_primary_10_1038_s41598_021_83251_8
crossref_primary_10_1016_j_spinee_2019_01_005
crossref_primary_10_1016_j_semss_2023_101062
crossref_primary_10_1007_s00586_021_06861_w
crossref_primary_10_1016_j_jocn_2019_04_036
crossref_primary_10_1016_j_spinee_2021_05_022
crossref_primary_10_1097_BRS_0000000000003720
crossref_primary_10_1097_BRS_0000000000004435
crossref_primary_10_21823_2311_2905_2018_24_3_65_73
crossref_primary_10_1007_s00586_018_5623_z
crossref_primary_10_1097_BRS_0000000000003723
crossref_primary_10_1227_NEU_0b013e3182672aab
Cites_doi 10.2106/00004623-200403001-00007
10.2106/JBJS.H.00081
10.3340/jkns.2010.47.2.95
10.4184/asj.2009.3.2.113
10.1097/01.BRS.0000090891.60232.70
10.1097/BRS.0b013e318074c3ce
10.2106/00004623-200303000-00009
10.3171/spi.2006.5.1.9
10.1097/00007632-200203150-00010
10.1097/BRS.0b013e31814b8371
10.1097/00007632-200109150-00020
10.3171/foc.2003.15.3.8
10.3171/2009.12.FOCUS09259
10.1016/j.jbiomech.2010.02.004
ContentType Journal Article
Copyright Copyright © 2011 by the Congress of Neurological Surgeons
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 by the Congress of Neurological Surgeons
– notice: 2015 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PQEST
PQQKQ
PQUKI
7X8
DOI 10.1227/NEU.0b013e31820f362a
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Academic Eastern Edition
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1524-4040
EndPage 172
ExternalDocumentID 10_1227_NEU_0b013e31820f362a
21336218
24258620
10.1227/NEU.0b013e31820f362a
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.-D
.55
.Z2
01R
0R~
123
1TH
354
3V.
40H
48X
4Q1
4Q2
4Q3
53G
5RE
5VS
71W
77Y
7O~
7X7
88E
8FI
8FJ
AAAXR
AAIQE
AAKAS
AAPQZ
AARTV
AASOK
AAVAP
AAYEP
ABHFT
ABJNI
ABLJU
ABOCM
ABPPZ
ABPTD
ABUWG
ABZAD
ACDDN
ACGFO
ACGFS
ACILI
ACUTJ
ACWRI
ACXNZ
ADBBV
ADBIZ
ADGZP
ADHKW
ADRTK
ADZCM
AE3
AE6
AEETU
AEMDU
AENEX
AENZO
AETBJ
AEWNT
AFDTB
AFFZL
AFKRA
AFOFC
AFUWQ
AGINI
AGINJ
AHMBA
AHVBC
AJNYG
ALIPV
ALMA_UNASSIGNED_HOLDINGS
APIBT
AWKKM
BAYMD
BCRHZ
BENPR
BOYCO
BPHCQ
BTRTY
BVXVI
C45
CCPQU
CDBKE
CS3
DAKXR
E.X
EBS
ENERS
EX3
F2K
F2L
F2M
F2N
F5P
FECEO
FL-
FLUFQ
FOEOM
FOTVD
FQBLK
FW0
FYUFA
GAUVT
GJXCC
H0~
H13
HMCUK
HZ~
IN~
JF7
JK3
JK8
K8S
KD2
KMI
KOP
KSI
KSN
L-C
L7B
LMP
M1P
MHKGH
N9A
NOYVH
NVLIB
N~7
N~B
O9-
OAG
OAH
OBH
ODA
ODMLO
OHH
OL1
OLB
OLG
OLH
OLU
OLV
OLY
OLZ
OVD
OWU
OWV
OWW
OWX
OWY
OWZ
P2P
PAFKI
PEELM
PQQKQ
PROAC
PSQYO
RLZ
ROX
ROZ
RUSNO
RXW
S4R
SJN
TEORI
TJX
UKHRP
V2I
VVN
W3M
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YAYTL
YCJ
YFH
YKOAZ
YOC
YXANX
ZFV
ZY1
.3C
.GJ
08R
3O-
A9M
AABJS
AABMN
AAGIX
AAHPQ
AAJQQ
AAPBV
AAPXW
AAQKA
AAQQT
AASXQ
AAUGY
AAUQX
ABASU
ABDIG
ABSAR
ACFRR
ACIMA
ACOAL
ADEIU
ADFPA
AFTRI
AHRYX
AIKOY
AIMBJ
AIZYK
AJNWD
AMNEI
AQDSO
AQKUS
ASAOO
ASMCH
ATDFG
AZQFJ
BEYMZ
BS7
BYORX
BYPQX
DPPUQ
EEVPB
EIHJH
EJD
ELUNK
FCALG
IAO
IHR
INH
INR
IPNFZ
IQODW
J5H
JF9
JG8
M18
MBLQV
MBTAY
N4W
N~M
OCUKA
ORVUJ
P-K
R58
RIG
TAF
ZCG
ZGI
ZXP
AAAAV
AAQOH
AASCR
ACLDA
ACXJB
ADHPY
AGKRT
AHOMT
AHQNM
AJZMW
CGR
CUY
CVF
ECM
EIF
ERAAH
HLJTE
NPM
AAYXX
CITATION
7XB
8FK
K9.
PQEST
PQUKI
7X8
ID FETCH-LOGICAL-c404t-e7ce44c450b2feb39cb9b1d3441ded7e4445410ce8d8120101b9aa4ab85769b83
IEDL.DBID 7X7
ISSN 0148-396X
IngestDate Fri Oct 25 08:14:17 EDT 2024
Thu Oct 10 22:04:22 EDT 2024
Thu Sep 12 16:33:22 EDT 2024
Tue Oct 15 23:41:14 EDT 2024
Sun Oct 22 16:09:30 EDT 2023
Wed Sep 11 04:47:43 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Satellite rods
Spine biomechanics
Revision
Spinal rod failure
Pedicle subtraction osteotomy
Spinal deformity
Nervous system diseases
Osteotomy
Spine
Rod
Diseases of the osteoarticular system
Fracture
Trauma
Biomechanics
Subtraction
Surgery
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-e7ce44c450b2feb39cb9b1d3441ded7e4445410ce8d8120101b9aa4ab85769b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21336218
PQID 2356873973
PQPubID 2046368
PageCount 9
ParticipantIDs proquest_miscellaneous_879676921
proquest_journals_2356873973
crossref_primary_10_1227_NEU_0b013e31820f362a
pubmed_primary_21336218
pascalfrancis_primary_24258620
oup_primary_10_1227_NEU_0b013e31820f362a
PublicationCentury 2000
PublicationDate 2011-07-01
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Hagerstown, MD
PublicationPlace_xml – name: Hagerstown, MD
– name: United States
– name: Philadelphia
PublicationTitle Neurosurgery
PublicationTitleAlternate Neurosurgery
PublicationYear 2011
Publisher Oxford University Press
Lippincott Williams & Wilkins
Wolters Kluwer Health, Inc
Publisher_xml – name: Oxford University Press
– name: Lippincott Williams & Wilkins
– name: Wolters Kluwer Health, Inc
References Bridwell (R6-19-20230417) 2003; 28
Yang (R32-19-20230417) 2006; 5
Crawford (R23-19-20230417) 1997; 22
Kim (R3-19-20230417) 2009; 3
Bridwell (R1-19-20230417) 2006; 55
Bridwell (R5-19-20230417) 2004; 86-A
Tsuchiya (R19-19-20230417) 2006; 31
Crawford (R26-19-20230417) 1995; 20
Eguizabal (R24-19-20230417) 2010; 43
Kim (R11-19-20230417) 2007; 32
Gill (R2-19-20230417) 2008; 90
Chang (R28-19-20230417) 2008; 33
Booth (R16-19-20230417) 1999; 24
Berven (R15-19-20230417) 2001; 26
Heary (R17-19-20230417) 2006; 5
Scheer (R25-19-20230417) 2010; 12
Rinella (R31-19-20230417) 2004; 29
Maeda (R30-19-20230417) 2009; 34
Hyun (R8-19-20230417) 2010; 47
Dorward (R7-19-20230417) 2010; 28
Mok (R21-19-20230417) 2009; 34
Wiggins (R14-19-20230417) 2003; 15
Kim (R10-19-20230417) 2002; 27
Ikenaga (R9-19-20230417) 2007; 6
Kim (R18-19-20230417) 2007; 32
Bridwell (R27-19-20230417) 2003; 85-A
References_xml – volume: 86-A
  start-page: 44
  issue: suppl 1
  year: 2004
  ident: R5-19-20230417
  article-title: Pedicle subtraction osteotomy for the treatment of fixed sagittal imbalance. Surgical technique.
  publication-title: J Bone Joint Surg
  doi: 10.2106/00004623-200403001-00007
  contributor:
    fullname: Bridwell
– volume: 55
  start-page: 567
  year: 2006
  ident: R1-19-20230417
  article-title: Causes of sagittal spinal imbalance and assessment of the extent of needed correction.
  publication-title: Instr Course lect
  contributor:
    fullname: Bridwell
– volume: 24
  start-page: 1712
  issue: 16
  year: 1999
  ident: R16-19-20230417
  article-title: Complications and predictive factors for the successful treatment of flatback deformity (fixed sagittal imbalance). Spine (Phila Pa 1976).
  contributor:
    fullname: Booth
– volume: 34
  start-page: 832
  issue: 8
  year: 2009
  ident: R21-19-20230417
  article-title: Reoperation after primary fusion for adult spinal deformity: rate, reason, and timing. Spine (Phila Pa 1976).
  contributor:
    fullname: Mok
– volume: 90
  start-page: 2509
  issue: 11
  year: 2008
  ident: R2-19-20230417
  article-title: Corrective osteotomies in spine surgery.
  publication-title: J Bone Joint Surg
  doi: 10.2106/JBJS.H.00081
  contributor:
    fullname: Gill
– volume: 12
  start-page: 517
  issue: 5
  year: 2010
  ident: R25-19-20230417
  article-title: Optimal reconstruction technique after C-2 corpectomy and spondylectomy: a biomechanical analysis.
  publication-title: J Neurosurg
  contributor:
    fullname: Scheer
– volume: 47
  start-page: 95
  issue: 2
  year: 2010
  ident: R8-19-20230417
  article-title: Clinical outcomes and complications after pedicle subtraction osteotomy for fixed sagittal imbalance patients: a long-term follow-up data.
  publication-title: J Korean Neurosurg Soc
  doi: 10.3340/jkns.2010.47.2.95
  contributor:
    fullname: Hyun
– volume: 6
  start-page: 330
  issue: 4
  year: 2007
  ident: R9-19-20230417
  article-title: Clinical outcomes and complications after pedicle subtraction osteotomy for correction of thoracolumbar kyphosis.
  publication-title: J Neurosurg
  contributor:
    fullname: Ikenaga
– volume: 3
  start-page: 113
  issue: 2
  year: 2009
  ident: R3-19-20230417
  article-title: Osteotomy of the spine to correct the spinal deformity.
  publication-title: Asian Spine J
  doi: 10.4184/asj.2009.3.2.113
  contributor:
    fullname: Kim
– volume: 28
  start-page: 2093
  issue: 18
  year: 2003
  ident: R6-19-20230417
  article-title: Complications and outcomes of pedicle subtraction osteotomies for fixed sagittal imbalance.
  publication-title: Spine
  doi: 10.1097/01.BRS.0000090891.60232.70
  contributor:
    fullname: Bridwell
– volume: 22
  start-page: 559
  issue: 5
  year: 1997
  ident: R23-19-20230417
  article-title: Construction of local vertebral coordinate systems using a digitizing probe. Technical note. Spine (Phila Pa 1976).
  contributor:
    fullname: Crawford
– volume: 32
  start-page: 1641
  issue: 15
  year: 2007
  ident: R18-19-20230417
  article-title: Spinal pseudarthrosis in advanced ankylosing spondylitis with sagittal plane deformity: clinical characteristics and outcome analysis.
  publication-title: Spine
  doi: 10.1097/BRS.0b013e318074c3ce
  contributor:
    fullname: Kim
– volume: 5
  start-page: 1
  issue: 1
  year: 2006
  ident: R17-19-20230417
  article-title: Pedicle subtraction osteotomy in the treatment of chronic, posttraumatic kyphotic deformity.
  publication-title: J Neurosurg
  contributor:
    fullname: Heary
– volume: 20
  start-page: 2097
  issue: 19
  year: 1995
  ident: R26-19-20230417
  article-title: An apparatus for applying pure nonconstraining moments to spine segments in vitro. Spine (Phila Pa 1976).
  contributor:
    fullname: Crawford
– volume: 85-A
  start-page: 454
  issue: 3
  year: 2003
  ident: R27-19-20230417
  article-title: Pedicle subtraction osteotomy for the treatment of fixed sagittal imbalance.
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/00004623-200303000-00009
  contributor:
    fullname: Bridwell
– volume: 5
  start-page: 9
  issue: 1
  year: 2006
  ident: R32-19-20230417
  article-title: Clinical and radiographic outcomes of thoracic and lumbar pedicle subtraction osteotomy for fixed sagittal imbalance.
  publication-title: J Neurosurg Spine
  doi: 10.3171/spi.2006.5.1.9
  contributor:
    fullname: Yang
– volume: 34
  start-page: 2205
  issue: 20
  year: 2009
  ident: R30-19-20230417
  article-title: Long adult spinal deformity fusion to the sacrum using rhBMP-2 versus autogenous iliac crest bone graft. Spine (Phila Pa 1976).
  contributor:
    fullname: Maeda
– volume: 29
  start-page: 318
  issue: 3
  year: 2004
  ident: R31-19-20230417
  article-title: Late complications of adult idiopathic scoliosis primary fusions to L4 and above: the effect of age and distal fusion level. Spine (Phila Pa 1976).
  contributor:
    fullname: Rinella
– volume: 27
  start-page: 612
  issue: 6
  year: 2002
  ident: R10-19-20230417
  article-title: Clinical outcome results of pedicle subtraction osteotomy in ankylosing spondylitis with kyphotic deformity.
  publication-title: Spine
  doi: 10.1097/00007632-200203150-00010
  contributor:
    fullname: Kim
– volume: 32
  start-page: 2189
  issue: 20
  year: 2007
  ident: R11-19-20230417
  article-title: Results of lumbar pedicle subtraction osteotomies for fixed sagittal imbalance: a minimum 5-year follow-up study.
  publication-title: Spine
  doi: 10.1097/BRS.0b013e31814b8371
  contributor:
    fullname: Kim
– volume: 26
  start-page: 2036
  issue: 18
  year: 2001
  ident: R15-19-20230417
  article-title: Management of fixed sagittal plane deformity: results of the transpedicular wedge resection osteotomy.
  publication-title: Spine
  doi: 10.1097/00007632-200109150-00020
  contributor:
    fullname: Berven
– volume: 15
  start-page: E8
  issue: 3
  year: 2003
  ident: R14-19-20230417
  article-title: Management of iatrogenic flat-back syndrome.
  publication-title: Neurosurg Focus
  doi: 10.3171/foc.2003.15.3.8
  contributor:
    fullname: Wiggins
– volume: 33
  start-page: 1470
  issue: 13
  year: 2008
  ident: R28-19-20230417
  article-title: Closing-opening wedge osteotomy for the treatment of sagittal imbalance. Spine (Phila Pa 1976).
  contributor:
    fullname: Chang
– volume: 28
  start-page: E4
  issue: 3
  year: 2010
  ident: R7-19-20230417
  article-title: Osteotomies in the posterior-only treatment of complex adult spinal deformity: a comparative review.
  publication-title: Neurosurg Focus
  doi: 10.3171/2009.12.FOCUS09259
  contributor:
    fullname: Dorward
– volume: 43
  start-page: 1422
  issue: 7
  year: 2010
  ident: R24-19-20230417
  article-title: Pure moment testing for spinal biomechanics applications: fixed versus sliding ring cable-driven test designs.
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2010.02.004
  contributor:
    fullname: Eguizabal
– volume: 31
  start-page: 303
  issue: 3
  year: 2006
  ident: R19-19-20230417
  article-title: Minimum 5-year analysis of L5-S1 fusion using sacropelvic fixation (bilateral S1 and iliac screws) for spinal deformity. Spine (Phila Pa 1976).
  contributor:
    fullname: Tsuchiya
SSID ssj0016478
Score 2.281154
Snippet Abstract BACKGROUND: Pseudoarthrosis after pedicle subtraction osteotomy (PSO) can require revision surgery due to posterior rod failure, and the stiffness of...
Pseudoarthrosis after pedicle subtraction osteotomy (PSO) can require revision surgery due to posterior rod failure, and the stiffness of these revision...
BACKGROUND: Pseudoarthrosis after pedicle subtraction osteotomy (PSO) can require revision surgery due to posterior rod failure, and the stiffness of these...
BACKGROUNDPseudoarthrosis after pedicle subtraction osteotomy (PSO) can require revision surgery due to posterior rod failure, and the stiffness of these...
SourceID proquest
crossref
pubmed
pascalfrancis
oup
SourceType Aggregation Database
Index Database
Publisher
StartPage 164
SubjectTerms Aged
Biological and medical sciences
Biomechanical Phenomena
Bone Screws
Female
Humans
Male
Medical sciences
Middle Aged
Neurosurgery
Osteotomy - methods
Outcome Assessment (Health Care)
Reoperation - methods
Spinal Fractures - surgery
Spinal Fusion - methods
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Title Biomechanical Analysis of Revision Strategies for Rod Fracture in Pedicle Subtraction Osteotomy
URI https://www.ncbi.nlm.nih.gov/pubmed/21336218
https://www.proquest.com/docview/2356873973
https://search.proquest.com/docview/879676921
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB7S5BIooaVJqzQ1e-ihlyWSdi3tnkoTbEKhbjA1-Cb2JeihkmPJh_z7zOhhk0JDzyvtYWZ3Zr7Z-WYAPmt0MjLxJfddU22bCm5EbriW6KuoIbjqWK4_FtndSn5fT9dDwq0ZyipHm9gZal87ypFfp2KaqRy9p_i6eeA0NYpeV4cRGq_gJEnjjEq68vUecFGrLNWXMCoudLYeqHMpwv3FbHXIAaZxiXb8uWvq6W6vN6ZBWZX9kIt_R6GdN5q_gbMhjGTfer2_haNQvYPihrj0ROUlybOx3wirS7YcSORs7EYbGobhKlvWns2JKLXbBva7YjS5AzdkaE_abc95YD_xINRt_efxHFbz2a_bOz4MUOBOxrLlIXdBSiensU1LRM3aWW0TLzAE8sHnuCanMoldUB79PHWbs9oYaaxCFKKtEhdwXNVV-AAMwzIXnPHSKS2VdzY2ZRDSW0SQQts0Aj7Krtj0fTIKwhco6wJlXfwt6wi-oID_89PJMy3sfyK0hIAsjuBqVEsx3MCmOJyXCNh-Ge8OPYiYKtS7plC5pgrfNIngfa_Nw96I3TMMfy5f3vsjnPZJZqrfvYLjdrsLnzBKae2kO4oTOLmZLe6XT0PL48s
link.rule.ids 315,783,787,12068,21400,27936,27937,31731,31732,33756,33757,43322,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6V9gASQiD6WFqKDz30YrFZO1n7VAFqFGgbpKqRcrP8WokDu2l2c-DfM7OPREUCcfauDzP2zHzjmW8ALjQ6GTkKBQ8tqbbLBLcit1xL9FVECK7aLte7-WS2kN-W42WfcKv7ssrBJraGOlSecuQfMzGeqBy9p7haPXKaGkWvq_0IjWdwQDxcNMEgX24BF1Flqa6EUXGhJ8u-dS5DuD-_XuxygFlaoB1_6pq6dreXK1ujrIpuyMXfo9DWG01fw6s-jGSfOr2_gb1YvgXzmXrpqZWXJM8GvhFWFey-byJnAxttrBmGq-y-CmxKjVKbdWQ_SkaTO3BDhvakWXc9D-w7HoSqqX7-OoTF9Prhy4z3AxS4l6lseMx9lNLLceqyAlGz9k67URAYAoUYclyTYzlKfVQB_TyxzTltrbROIQrRTokj2C-rMp4Aw7DMR2-D9EpLFbxLbRGFDA4RpNAuS4APsjOrjifDEL5AWRuUtflT1glcooD_89PzJ1rY_kRoCQFZmsDZoBbT38Da7M5LAmy7jHeHHkRsGatNbVSuqcI3GyVw3Glztzdi9wmGP-_-vfcHeD57uLs1t1_nN6fwoks4Uy3vGew36018jxFL487bY_kb4bXlGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomechanical+Analysis+of+Revision+Strategies+for+Rod+Fracture+in+Pedicle+Subtraction+Osteotomy&rft.jtitle=Neurosurgery&rft.au=Scheer%2C+Justin+K&rft.au=Tang%2C+Jessica+A&rft.au=Deviren%2C+Vedat&rft.au=Buckley%2C+Jenni+M&rft.date=2011-07-01&rft.pub=Oxford+University+Press&rft.issn=0148-396X&rft.eissn=1524-4040&rft.volume=69&rft.issue=1&rft.spage=164&rft.epage=172&rft_id=info:doi/10.1227%2FNEU.0b013e31820f362a&rft.externalDocID=10.1227%2FNEU.0b013e31820f362a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-396X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-396X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-396X&client=summon