Surfactant-enhanced remediation of oil-contaminated soil and groundwater: A review

Oil leakage, which is inevitable in the process of extraction, processing, transportation and storage, seriously undermines the soil and groundwater environment. Surfactants can facilitate the migration and solution of oil contaminants from nonaqueous phase liquid (NAPL) or solid phase to water by r...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 756; p. 144142
Main Authors Liu, Jian-Wu, Wei, Kun-Hao, Xu, Shao-Wei, Cui, Jun, Ma, Jie, Xiao, Xiao-Long, Xi, Bei-Dou, He, Xiao-Song
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 20.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Oil leakage, which is inevitable in the process of extraction, processing, transportation and storage, seriously undermines the soil and groundwater environment. Surfactants can facilitate the migration and solution of oil contaminants from nonaqueous phase liquid (NAPL) or solid phase to water by reducing the (air/water) surface tension, (oil/water) interfacial tension and micellar solubilization. They can effectively enhance the hydrodynamic driven remediation technologies by improving the contact efficiency of contaminants and liquid remediation agents or microorganism, and have been widely used to enhance the remediation of oil-contaminated sites. This paper summarizes the characteristics of different types of surfactants such as nonionic, anionic, biological and mixed surfactants, their enhancements to the remediation of oil-contaminated soil and groundwater, and examines the factors influencing surfactant performance. The causes of tailing and rebound effects and the role of surfactants in suppressing them are also discussed. Laboratory researches and actual site remediation practices have shown that various types of surfactants offer diverse options. Biosurfactants and mixed surfactants are superior and worth attention among the surfactants. Using surfactant foams, adding shear-thinning polymers, and combining surfactants with in-situ chemical oxidation are effective ways to resolve tailing and rebound effects. The adsorption of surfactants on soils and aquifer sediments decreases remediation efficiency and may cause secondary pollution, Therefore the adsorption loss should be noticed and minimized. [Display omitted] •Surfactant enhanced remediation through mobilization and solubilization effects.•Biosurfactants and mixed surfactants show great application potential.•Co-injection of foams or xanthan improves uniform distribution of surfactants.•Surfactant-enhanced in-situ chemical oxidation eliminates tailing and rebound.
AbstractList Oil leakage, which is inevitable in the process of extraction, processing, transportation and storage, seriously undermines the soil and groundwater environment. Surfactants can facilitate the migration and solution of oil contaminants from nonaqueous phase liquid (NAPL) or solid phase to water by reducing the (air/water) surface tension, (oil/water) interfacial tension and micellar solubilization. They can effectively enhance the hydrodynamic driven remediation technologies by improving the contact efficiency of contaminants and liquid remediation agents or microorganism, and have been widely used to enhance the remediation of oil-contaminated sites. This paper summarizes the characteristics of different types of surfactants such as nonionic, anionic, biological and mixed surfactants, their enhancements to the remediation of oil-contaminated soil and groundwater, and examines the factors influencing surfactant performance. The causes of tailing and rebound effects and the role of surfactants in suppressing them are also discussed. Laboratory researches and actual site remediation practices have shown that various types of surfactants offer diverse options. Biosurfactants and mixed surfactants are superior and worth attention among the surfactants. Using surfactant foams, adding shear-thinning polymers, and combining surfactants with in-situ chemical oxidation are effective ways to resolve tailing and rebound effects. The adsorption of surfactants on soils and aquifer sediments decreases remediation efficiency and may cause secondary pollution, Therefore the adsorption loss should be noticed and minimized.
Oil leakage, which is inevitable in the process of extraction, processing, transportation and storage, seriously undermines the soil and groundwater environment. Surfactants can facilitate the migration and solution of oil contaminants from nonaqueous phase liquid (NAPL) or solid phase to water by reducing the (air/water) surface tension, (oil/water) interfacial tension and micellar solubilization. They can effectively enhance the hydrodynamic driven remediation technologies by improving the contact efficiency of contaminants and liquid remediation agents or microorganism, and have been widely used to enhance the remediation of oil-contaminated sites. This paper summarizes the characteristics of different types of surfactants such as nonionic, anionic, biological and mixed surfactants, their enhancements to the remediation of oil-contaminated soil and groundwater, and examines the factors influencing surfactant performance. The causes of tailing and rebound effects and the role of surfactants in suppressing them are also discussed. Laboratory researches and actual site remediation practices have shown that various types of surfactants offer diverse options. Biosurfactants and mixed surfactants are superior and worth attention among the surfactants. Using surfactant foams, adding shear-thinning polymers, and combining surfactants with in-situ chemical oxidation are effective ways to resolve tailing and rebound effects. The adsorption of surfactants on soils and aquifer sediments decreases remediation efficiency and may cause secondary pollution, Therefore the adsorption loss should be noticed and minimized.Oil leakage, which is inevitable in the process of extraction, processing, transportation and storage, seriously undermines the soil and groundwater environment. Surfactants can facilitate the migration and solution of oil contaminants from nonaqueous phase liquid (NAPL) or solid phase to water by reducing the (air/water) surface tension, (oil/water) interfacial tension and micellar solubilization. They can effectively enhance the hydrodynamic driven remediation technologies by improving the contact efficiency of contaminants and liquid remediation agents or microorganism, and have been widely used to enhance the remediation of oil-contaminated sites. This paper summarizes the characteristics of different types of surfactants such as nonionic, anionic, biological and mixed surfactants, their enhancements to the remediation of oil-contaminated soil and groundwater, and examines the factors influencing surfactant performance. The causes of tailing and rebound effects and the role of surfactants in suppressing them are also discussed. Laboratory researches and actual site remediation practices have shown that various types of surfactants offer diverse options. Biosurfactants and mixed surfactants are superior and worth attention among the surfactants. Using surfactant foams, adding shear-thinning polymers, and combining surfactants with in-situ chemical oxidation are effective ways to resolve tailing and rebound effects. The adsorption of surfactants on soils and aquifer sediments decreases remediation efficiency and may cause secondary pollution, Therefore the adsorption loss should be noticed and minimized.
Oil leakage, which is inevitable in the process of extraction, processing, transportation and storage, seriously undermines the soil and groundwater environment. Surfactants can facilitate the migration and solution of oil contaminants from nonaqueous phase liquid (NAPL) or solid phase to water by reducing the (air/water) surface tension, (oil/water) interfacial tension and micellar solubilization. They can effectively enhance the hydrodynamic driven remediation technologies by improving the contact efficiency of contaminants and liquid remediation agents or microorganism, and have been widely used to enhance the remediation of oil-contaminated sites. This paper summarizes the characteristics of different types of surfactants such as nonionic, anionic, biological and mixed surfactants, their enhancements to the remediation of oil-contaminated soil and groundwater, and examines the factors influencing surfactant performance. The causes of tailing and rebound effects and the role of surfactants in suppressing them are also discussed. Laboratory researches and actual site remediation practices have shown that various types of surfactants offer diverse options. Biosurfactants and mixed surfactants are superior and worth attention among the surfactants. Using surfactant foams, adding shear-thinning polymers, and combining surfactants with in-situ chemical oxidation are effective ways to resolve tailing and rebound effects. The adsorption of surfactants on soils and aquifer sediments decreases remediation efficiency and may cause secondary pollution, Therefore the adsorption loss should be noticed and minimized. [Display omitted] •Surfactant enhanced remediation through mobilization and solubilization effects.•Biosurfactants and mixed surfactants show great application potential.•Co-injection of foams or xanthan improves uniform distribution of surfactants.•Surfactant-enhanced in-situ chemical oxidation eliminates tailing and rebound.
ArticleNumber 144142
Author Wei, Kun-Hao
Liu, Jian-Wu
Xiao, Xiao-Long
He, Xiao-Song
Xu, Shao-Wei
Cui, Jun
Xi, Bei-Dou
Ma, Jie
Author_xml – sequence: 1
  givenname: Jian-Wu
  surname: Liu
  fullname: Liu, Jian-Wu
  organization: Shandong Provincial Key Laboratory of Oilfield Produced Water Treatment and Environmental Pollution Control, SINOPEC Petroleum Engineering Corporation, Dongying 257026, China
– sequence: 2
  givenname: Kun-Hao
  surname: Wei
  fullname: Wei, Kun-Hao
  organization: State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
– sequence: 3
  givenname: Shao-Wei
  surname: Xu
  fullname: Xu, Shao-Wei
  organization: Shengli Oilfield Company, SINOPEC, Dongying 257026, China
– sequence: 4
  givenname: Jun
  surname: Cui
  fullname: Cui, Jun
  organization: State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
– sequence: 5
  givenname: Jie
  surname: Ma
  fullname: Ma, Jie
  organization: State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
– sequence: 6
  givenname: Xiao-Long
  surname: Xiao
  fullname: Xiao, Xiao-Long
  organization: Shandong Provincial Key Laboratory of Oilfield Produced Water Treatment and Environmental Pollution Control, SINOPEC Petroleum Engineering Corporation, Dongying 257026, China
– sequence: 7
  givenname: Bei-Dou
  surname: Xi
  fullname: Xi, Bei-Dou
  organization: State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
– sequence: 8
  givenname: Xiao-Song
  surname: He
  fullname: He, Xiao-Song
  email: hexs82@126.com
  organization: State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33302075$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1PAyEYhInRaK3-Bd2jl63AsrBr4qExfiUmJn6cCYV3lWYLCqzGfy-11YOXciEZZoZknn207bwDhI4JnhBM-Ol8ErVNPoH7mFBMs8oYYXQLjUgj2pJgyrfRCGPWlC1vxR7aj3GO8xEN2UV7VVXlkKhH6OFxCJ3SSblUgntVToMpAizAWJWsd4XvCm_7UnuX1MI6lfJ7zEqhnClegh-c-cxiOCumOfdh4fMA7XSqj3C4vsfo-ery6eKmvLu_vr2Y3pWaYZZKo3ErOBVdVwMXpiI1axglms64qqpaY9MopojGgighNJ5pzpWpNemwaEE31RidrHrfgn8fICa5sFFD3ysHfoiStg2nNc2lm61MYEwFr9psPVpbh1leQb4Fu1DhS_5Olg3nK4MOPsYAncwkfrZKQdleEiyXiORc_iGSS0RyhSjnxb_87xebk9NVEvKqeemw9MGSmA2gkzTebuz4Bm-1sFE
CitedBy_id crossref_primary_10_1016_j_biortech_2024_131458
crossref_primary_10_1016_j_ecoenv_2024_116597
crossref_primary_10_1016_j_jece_2025_115843
crossref_primary_10_1016_j_jenvman_2022_117033
crossref_primary_10_1186_s40643_023_00710_y
crossref_primary_10_1016_j_molliq_2021_117197
crossref_primary_10_1016_j_jenvman_2024_120168
crossref_primary_10_1016_j_jece_2024_113820
crossref_primary_10_1016_j_wmb_2024_05_010
crossref_primary_10_1007_s11581_022_04859_y
crossref_primary_10_1016_j_eti_2025_104153
crossref_primary_10_1080_09593330_2022_2061381
crossref_primary_10_1016_j_jhazmat_2022_130189
crossref_primary_10_1016_j_jenvman_2021_113983
crossref_primary_10_1016_j_jclepro_2023_136338
crossref_primary_10_1016_j_scitotenv_2024_170242
crossref_primary_10_1080_09593330_2021_1961875
crossref_primary_10_1016_j_cej_2023_141297
crossref_primary_10_1016_j_watres_2024_122698
crossref_primary_10_1016_j_seppur_2023_124919
crossref_primary_10_33073_pjm_2024_012
crossref_primary_10_1016_j_jhazmat_2023_133182
crossref_primary_10_1016_j_jwpe_2023_103610
crossref_primary_10_1016_j_scitotenv_2021_150071
crossref_primary_10_1016_j_jhazmat_2022_130171
crossref_primary_10_1021_acs_est_4c04466
crossref_primary_10_1016_j_jhazmat_2023_132772
crossref_primary_10_3390_su15043148
crossref_primary_10_1080_02726351_2025_2469848
crossref_primary_10_1007_s11783_021_1457_8
crossref_primary_10_1016_j_bej_2022_108496
crossref_primary_10_1016_j_jhydrol_2021_126456
crossref_primary_10_1016_j_colsurfb_2022_112428
crossref_primary_10_1016_j_cis_2022_102774
crossref_primary_10_1016_j_chemosphere_2023_139086
crossref_primary_10_1016_j_scitotenv_2023_168099
crossref_primary_10_1016_j_scitotenv_2024_175225
crossref_primary_10_1016_j_jenvman_2023_118943
crossref_primary_10_3390_w13162186
crossref_primary_10_1016_j_cej_2021_130221
crossref_primary_10_1016_j_psep_2023_05_050
crossref_primary_10_1155_2022_3616050
crossref_primary_10_1016_j_seta_2021_101576
crossref_primary_10_1016_j_chemosphere_2022_135004
crossref_primary_10_1016_j_scitotenv_2022_159186
crossref_primary_10_1016_j_envpol_2022_119569
crossref_primary_10_1016_j_envres_2022_112752
crossref_primary_10_1016_j_jhydrol_2025_132760
crossref_primary_10_1016_j_seppur_2024_126342
crossref_primary_10_1016_j_cej_2024_153834
crossref_primary_10_1016_j_ecoleng_2024_107245
crossref_primary_10_1016_j_scitotenv_2023_164450
crossref_primary_10_1016_j_chemosphere_2022_137389
crossref_primary_10_1016_j_envpol_2021_118511
crossref_primary_10_3389_fmicb_2024_1357302
crossref_primary_10_1007_s12517_022_09747_3
crossref_primary_10_1007_s12303_022_0020_3
crossref_primary_10_1007_s11157_023_09657_0
crossref_primary_10_1016_j_jclepro_2024_144459
crossref_primary_10_1016_j_watres_2023_119844
crossref_primary_10_1021_acs_iecr_2c03722
crossref_primary_10_3390_ijerph19127547
crossref_primary_10_1080_09593330_2021_1884902
crossref_primary_10_1007_s11356_021_17680_3
crossref_primary_10_1016_j_jece_2024_112622
crossref_primary_10_1016_j_scitotenv_2021_147406
crossref_primary_10_1016_j_jenvman_2023_119342
crossref_primary_10_3390_toxics12110773
crossref_primary_10_1007_s11356_024_32501_z
crossref_primary_10_5004_dwt_2022_28505
crossref_primary_10_1016_j_chemosphere_2021_132481
crossref_primary_10_1016_j_chemosphere_2022_136869
crossref_primary_10_1007_s10311_022_01506_w
crossref_primary_10_1016_j_envres_2022_113830
crossref_primary_10_1016_j_chemosphere_2021_132761
crossref_primary_10_1021_acs_est_4c13344
crossref_primary_10_1080_10916466_2024_2436108
crossref_primary_10_1007_s11270_023_06689_8
crossref_primary_10_1007_s42729_024_01699_9
crossref_primary_10_2166_wst_2023_009
crossref_primary_10_1016_j_cjche_2023_02_015
crossref_primary_10_1002_rem_21767
crossref_primary_10_1007_s11356_023_29991_8
crossref_primary_10_1016_j_jece_2024_115087
crossref_primary_10_3390_w16131775
crossref_primary_10_1002_jsde_12690
crossref_primary_10_3390_su15086514
crossref_primary_10_1021_acs_energyfuels_4c04049
crossref_primary_10_1016_j_colsurfa_2022_130461
crossref_primary_10_53623_idwm_v4i1_442
crossref_primary_10_1016_j_jwpe_2024_105720
crossref_primary_10_1016_j_chemosphere_2023_140251
crossref_primary_10_1016_j_jhazmat_2021_127409
crossref_primary_10_1016_j_scitotenv_2024_173260
crossref_primary_10_1016_j_jece_2025_115768
crossref_primary_10_1016_j_scitotenv_2022_156373
crossref_primary_10_1016_j_seppur_2024_127372
crossref_primary_10_12677_HJSS_2022_102009
crossref_primary_10_1016_j_jclepro_2023_139529
crossref_primary_10_1016_j_jhazmat_2022_130267
crossref_primary_10_1080_10934529_2023_2178788
crossref_primary_10_1016_j_jics_2024_101153
crossref_primary_10_1016_j_watres_2024_122660
crossref_primary_10_1016_j_envpol_2022_119384
crossref_primary_10_1007_s11356_024_31844_x
crossref_primary_10_1016_j_envres_2024_120473
crossref_primary_10_1007_s11356_023_26909_2
crossref_primary_10_1016_j_jhydrol_2022_127639
crossref_primary_10_3390_en16247999
crossref_primary_10_1016_j_electacta_2021_138127
crossref_primary_10_3390_app14020582
crossref_primary_10_1021_acs_langmuir_4c03075
crossref_primary_10_3390_molecules27227950
crossref_primary_10_3390_su142416576
crossref_primary_10_1007_s11356_022_22245_z
crossref_primary_10_1007_s11270_023_06093_2
crossref_primary_10_1039_D3EN00617D
crossref_primary_10_1007_s11707_023_1089_3
crossref_primary_10_1039_D3SE00160A
crossref_primary_10_1016_j_colsurfa_2022_128837
crossref_primary_10_1088_1755_1315_1229_1_012039
crossref_primary_10_1016_j_molliq_2023_121242
crossref_primary_10_1016_j_chemosphere_2022_136446
crossref_primary_10_1016_j_jece_2023_110758
crossref_primary_10_1051_e3sconf_202346302029
crossref_primary_10_1016_j_scitotenv_2023_164669
crossref_primary_10_1080_09593330_2024_2366448
crossref_primary_10_1007_s11356_022_19418_1
crossref_primary_10_1007_s11356_022_24734_7
crossref_primary_10_1016_j_envpol_2024_123768
crossref_primary_10_1007_s11242_023_01980_y
crossref_primary_10_1007_s13762_023_05372_z
crossref_primary_10_1016_j_jclepro_2021_130143
crossref_primary_10_1016_j_scitotenv_2024_173644
crossref_primary_10_1016_j_jenvman_2024_122602
crossref_primary_10_1016_j_jenvman_2024_123899
crossref_primary_10_3390_su17051939
crossref_primary_10_1021_acs_langmuir_4c04293
crossref_primary_10_1007_s11270_023_06394_6
crossref_primary_10_1016_j_chemosphere_2021_129675
crossref_primary_10_1016_j_biteb_2022_100959
crossref_primary_10_1016_j_envpol_2022_120198
crossref_primary_10_1016_j_jece_2023_111419
crossref_primary_10_1002_jsde_12822
crossref_primary_10_1016_j_advwatres_2023_104474
crossref_primary_10_1016_j_jhazmat_2024_135458
crossref_primary_10_3390_w14081182
crossref_primary_10_1007_s11356_021_16257_4
crossref_primary_10_1016_j_watres_2021_117414
crossref_primary_10_1080_10916466_2022_2091595
crossref_primary_10_3390_plants11172250
crossref_primary_10_1002_jsde_12786
crossref_primary_10_1039_D4EN00920G
crossref_primary_10_1080_03067319_2022_2135999
crossref_primary_10_1016_j_envres_2023_116884
crossref_primary_10_1016_j_colsurfa_2022_129421
crossref_primary_10_1016_j_scitotenv_2023_169532
crossref_primary_10_1016_j_watres_2024_122673
crossref_primary_10_1016_j_camwa_2024_08_004
crossref_primary_10_1016_j_envpol_2023_122566
crossref_primary_10_1016_j_jhazmat_2024_133781
crossref_primary_10_1007_s10064_024_03709_7
crossref_primary_10_1007_s00128_022_03584_6
crossref_primary_10_1016_j_scitotenv_2021_146636
crossref_primary_10_1016_j_jhazmat_2024_134358
crossref_primary_10_1016_j_jhazmat_2024_134513
crossref_primary_10_1016_j_advwatres_2024_104664
crossref_primary_10_1016_j_cjche_2021_03_031
crossref_primary_10_1016_j_jenvman_2022_115799
crossref_primary_10_1016_j_compgeo_2024_106097
crossref_primary_10_1016_j_jwpe_2023_103505
crossref_primary_10_1039_D2EW00918H
crossref_primary_10_1080_09593330_2025_2450558
crossref_primary_10_1007_s10653_023_01797_0
crossref_primary_10_1016_j_clcb_2024_100116
crossref_primary_10_1016_j_jhazmat_2022_128562
crossref_primary_10_1016_j_chemosphere_2021_131750
crossref_primary_10_3390_recycling10010010
crossref_primary_10_1016_j_chemosphere_2022_136145
crossref_primary_10_1016_j_jhydrol_2023_130050
crossref_primary_10_1016_j_scitotenv_2024_173804
crossref_primary_10_1021_acssusresmgt_4c00006
crossref_primary_10_1007_s11356_022_23570_z
crossref_primary_10_1016_j_chemgeo_2024_122369
Cites_doi 10.1016/j.jece.2017.11.038
10.1016/j.jhazmat.2011.04.074
10.1016/j.watres.2019.05.043
10.1016/j.jconhyd.2017.07.006
10.1021/es702732g
10.1016/j.jes.2017.06.006
10.1016/j.colsurfa.2019.124117
10.1016/j.cej.2016.12.135
10.1016/j.cej.2015.08.004
10.1016/j.jconhyd.2019.103560
10.1016/j.watres.2007.10.038
10.1007/s11270-020-04649-0
10.1038/nature02130
10.1016/j.eti.2015.09.001
10.1021/acs.iecr.6b03006
10.1016/j.jhazmat.2012.11.028
10.1016/j.jenvman.2019.03.088
10.1021/es204714w
10.1016/j.eti.2019.100363
10.1016/j.chemosphere.2018.08.051
10.1016/S1002-0160(18)60027-X
10.1016/j.jhazmat.2007.10.006
10.1080/09593332708618695
10.1016/j.jhazmat.2008.11.050
10.1016/j.petrol.2020.107612
10.1016/j.jhazmat.2008.03.061
10.1021/es060298e
10.1016/j.jconhyd.2012.05.006
10.1016/j.engfailanal.2006.12.001
10.1023/A:1006634728321
10.1016/j.chemosphere.2020.126620
10.1016/j.jenvman.2019.04.092
10.1016/j.cej.2015.10.006
10.1016/j.watres.2007.08.010
10.1002/wer.1103
10.1016/j.watres.2004.09.012
10.1080/10934529.2012.668106
10.1002/rem.21461
10.1016/j.envpol.2006.05.025
10.1038/srep33266
10.1016/j.colsurfa.2016.07.002
10.1016/j.colsurfa.2004.12.039
10.1016/j.cej.2014.12.019
10.1002/jctb.5485
10.1016/j.envpol.2011.02.001
10.1016/j.jhazmat.2009.01.017
10.1016/j.chemosphere.2017.11.174
10.1016/j.watres.2017.01.029
10.1007/s11356-020-08781-6
10.1016/j.jconhyd.2020.103602
10.1021/acs.est.6b05477
10.1016/j.jconhyd.2013.03.007
10.1016/j.colsurfa.2020.125216
10.1016/j.watres.2007.07.021
10.1007/s12303-011-0029-5
10.1016/j.jconrel.2018.06.007
10.1061/(ASCE)EE.1943-7870.0000616
10.1016/S1002-0160(18)60046-3
10.1016/j.chemosphere.2017.07.098
10.1016/j.chemosphere.2004.07.048
10.1021/es00064a001
10.1111/gwmr.12101
10.1007/s11242-020-01458-1
10.1002/clen.201100609
10.1111/j.1745-6584.2012.00942.x
10.1016/j.jhazmat.2009.08.106
10.1016/j.jconhyd.2016.01.003
10.1021/es200716s
10.1021/ie4041115
10.1016/j.chemosphere.2020.126854
10.1016/j.jare.2019.07.003
10.1021/es405775q
10.1007/s11356-019-06547-3
10.1016/j.eti.2018.02.001
10.1016/j.colsurfa.2014.12.026
10.1016/j.cis.2019.102061
10.1016/j.scitotenv.2017.11.347
10.1016/j.eti.2017.08.004
10.1016/j.colsurfa.2013.02.055
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2020.144142
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 33302075
10_1016_j_scitotenv_2020_144142
S0048969720376737
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAQXK
AATTM
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c404t-dc097627ff5e67d31548421c2b6a335c0d8a4a1c071a77c0bc66ad5c1f079ec83
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Thu Jul 10 22:07:08 EDT 2025
Tue Aug 05 10:56:34 EDT 2025
Wed Feb 19 02:29:33 EST 2025
Tue Jul 01 04:24:42 EDT 2025
Thu Apr 24 22:52:15 EDT 2025
Wed Dec 04 16:48:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soil
Tailing
Oil contamination
Rebound
Groundwater
Surfactant
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-dc097627ff5e67d31548421c2b6a335c0d8a4a1c071a77c0bc66ad5c1f079ec83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 33302075
PQID 2470027639
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2986252842
proquest_miscellaneous_2470027639
pubmed_primary_33302075
crossref_citationtrail_10_1016_j_scitotenv_2020_144142
crossref_primary_10_1016_j_scitotenv_2020_144142
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2020_144142
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-20
PublicationDateYYYYMMDD 2021-02-20
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-20
  day: 20
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – sequence: 0
  name: Elsevier B.V
References Iglesias, Sanromán, Pazos (bb0135) 2014; 53
Balseiro-Romero, Monterroso, Casares (bb0015) 2018; 28
Li, Hanlie (bb0195) 2008; 42
Long, Fu, Gao, Li, Chen (bb0230) 2014; 53
Lominchar, Lorenzo, Romero, Santos (bb0225) 2018; 93
Bettahar, Ducreux, Schafer, Dorpe (bb0030) 1999; 37
Brusseau, Carroll, Allen, Baker, DiGuiseppi, Hatton (bb0040) 2011; 45
Lee, Kim, Kim (bb0190) 2011; 15
Wang, Keller (bb0360) 2008; 42
Zhou, Zhu (bb0445) 2008; 42
Bouzid, Maire, Brunol, Caradec, Fatin-Rouge (bb0035) 2017; 5
Huang, Chen (bb0125) 2016; 39
Datta, Tiwari, Pandey (bb0075) 2020; 195
Rosen, Kunjappu (bb0295) 2012
Sharma, Kostarelos, Lenschow, Christensen, de Blanc (bb0300) 2020; 230
Olasanmi, Thring (bb0270) 2020; 21
Wei, Liang, Tong, Guo, Dang (bb0385) 2015; 468
Ren, Zhou, Wang, Peng, Li (bb0280) 2020; 585
Zheng, Gao, Sun, Shi, Xu, Wu (bb0415) 2016; 283
Wei, Liang, Lin, Guo, Dang (bb0380) 2015; 264
Li, Guo, Hu (bb0200) 2016; 286
Robert, Martel, Lefebvre, Lauzon, Morin (bb0285) 2017; 204
Stroo, Leeson, Marqusee, Johnson, Ward, Kavanaugh (bb0325) 2012; 46
Azevedo (bb0010) 2007; 14
Wang, Liu, Peng, Lv (bb0375) 2019; 38
Niu, Yin, Wang, Li, Guo, Li (bb0260) 2020; 39
Silva, Liberatore, John, McCray (bb0315) 2013; 139
Cheng, Zeng, Huang, Yang, Lai, Zhang (bb0060) 2017; 314
Urum, Pekdemir (bb0355) 2004; 57
Jahan, Bodratti, Tsianou, Alexandridis (bb0140) 2020; 275
Karthick, Roy, Chattopadhyay (bb0165) 2019; 243
Chen, Li, Huang (bb0050) 2017; 37
Talvenmaki, Lallukka, Survo, Romantschuk (bb0335) 2019; 26
Javanbakht, Goual (bb0145) 2016; 55
EthicalChem (bb0090) 2020
Dahal, Holcomb, Socci (bb0070) 2016; 26
Hadley, Newell (bb0115) 2012; 50
Sra, Thomson, Barker (bb0320) 2013; 150
Li, Kang, Liu, Wang, Li (bb0210) 2019; 13
Tsai, Kao, Yeh, Liang, Chien (bb0350) 2009; 161
Pei, Zhu, Cai, Shi, Li (bb0275) 2017; 185
Befkadu, Chen (bb0020) 2018; 28
Lee, Kang, Do (bb0185) 2005; 39
Zhou, Wang, Chen, Zhu (bb0455) 2013; 425
Besha, Bekele, Naidu, Chadalavada (bb0025) 2018; 9
Forey, Atteia, Omari, Bertin (bb0100) 2020; 228
Kobayashi, Kaminaga, Navarro, Iimura (bb0175) 2012; 47
O’Connor, Hou, Ok, Song, Sarmah, Li (bb0265) 2018; 283
Logeshwaran, Megharaj, Chadalavada, Bowman, Naidu (bb0220) 2018; 10
Karthick, Chauhan, Krzan, Chattopadhyay (bb0155) 2019; 14
Suchomel, Pennell (bb0330) 2006; 40
Zhang, Mao, Crittenden, Liu, Du (bb0395) 2017; 119
Zhang, Liu, Li, Kan, Tomson (bb0400) 2018; 211
Tatti, Papini, Sappa, Raboni, Arjmand, Viotti (bb0340) 2018; 622–623
Zhong, Szecsody, Oostrom, Truex, Shen, Li (bb0420) 2011; 191
Kim, Lee, Heo, Lee, Yoo, Kim (bb0170) 2019; 91
Zhou, Yang, Lou, Zhu (bb0450) 2011; 159
Hall, Tharakan, Hallock, Cleveland, Jefferson (bb0120) 2003; 426
EthicalChem (bb0085) 2020
Davin, Starren, Deleu, Lognay, Colinet, Fauconnier (bb0080) 2018; 194
Guan, Tang, Nishimura, Katou, Liu, Qing (bb0110) 2018; 64
Li, Sun, Hu, Zhang, Luo, Wu (bb0205) 2016; 48
Mackay, Cherry (bb0245) 1989; 23
Zhong, Oostrom, Truex, Vermeul, Szecsody (bb0425) 2013; 244–245
Zhao, Jiao, Sun, Qin, Bai (bb0410) 2015; 46
Zhang, Feng, Zhang, Dong, Pan (bb0405) 2019; 160
Zhou, Zhu (bb0440) 2007; 147
Alcantara, Gomez, Pazos, Sanroman (bb0005) 2009; 166
Zhong, Zhang, Liu, Yang, Brusseau, Zeng (bb0430) 2016; 6
Ahna, Kima, Woob, Parka (bb0460) 2008; 154
Javanbakht, Goual (bb0150) 2016; 185
Truex, Vermeul, Adamson, Oostrom, Zhong, Mackley (bb0345) 2015; 35
Huo, Liu, Yang, Ahmad, Zhong (bb0130) 2020; 252
Silva, Smith, Munakata-Marr, McCray (bb0310) 2012; 136-137
Cheng, Wong (bb0055) 2006; 27
Wang, Wu, Sun, Wang, Liu (bb0370) 2017; 11
Zhou, Zhu (bb0435) 2005; 255
Lai, Huang, Wei, Chang (bb0180) 2009; 167
Clifton, Dahlen, Johnson (bb0065) 2014; 48
Fleifel, Izadi, Park, Gupta, Lee, Kam (bb0095) 2020; 134
Li, Wu, Zhang, Liu, Wang, Xu (bb0215) 2020; 27
Siegrist, Crimi, Brown (bb0305) 2011
Wei, Ran, He, Zhou, Huangfu, Yu (bb0390) 2020; 254
Cao, Temple, Li, Coulon, Sui (bb0045) 2015; 4
Nasiri, Biria (bb0250) 2020; 603
Gitipour, Hedayati, Madadian (bb0105) 2015; 43
Wang, Peng, Xie, Deng, Deng (bb0365) 2017; 51
Lowry, Sedghi, Goual (bb0235) 2016; 506
Luo, Zeng, Huang, Zhang, Fang, Qu (bb0240) 2010; 173
Rongsayamanont, Tongcumpou, Phasukarratchai (bb0290) 2020; 231
Karthick, Roy, Chattopadhyay (bb0160) 2019; 240
Nguyen, Youssef, McInerney, Sabatini (bb0255) 2008; 42
Huang (10.1016/j.scitotenv.2020.144142_bb0125) 2016; 39
Zhao (10.1016/j.scitotenv.2020.144142_bb0410) 2015; 46
Wang (10.1016/j.scitotenv.2020.144142_bb0360) 2008; 42
Nguyen (10.1016/j.scitotenv.2020.144142_bb0255) 2008; 42
Li (10.1016/j.scitotenv.2020.144142_bb0205) 2016; 48
Gitipour (10.1016/j.scitotenv.2020.144142_bb0105) 2015; 43
Hall (10.1016/j.scitotenv.2020.144142_bb0120) 2003; 426
Nasiri (10.1016/j.scitotenv.2020.144142_bb0250) 2020; 603
Tatti (10.1016/j.scitotenv.2020.144142_bb0340) 2018; 622–623
Zhang (10.1016/j.scitotenv.2020.144142_bb0405) 2019; 160
Balseiro-Romero (10.1016/j.scitotenv.2020.144142_bb0015) 2018; 28
Ren (10.1016/j.scitotenv.2020.144142_bb0280) 2020; 585
Tsai (10.1016/j.scitotenv.2020.144142_bb0350) 2009; 161
Urum (10.1016/j.scitotenv.2020.144142_bb0355) 2004; 57
Wei (10.1016/j.scitotenv.2020.144142_bb0380) 2015; 264
Kim (10.1016/j.scitotenv.2020.144142_bb0170) 2019; 91
Befkadu (10.1016/j.scitotenv.2020.144142_bb0020) 2018; 28
Bouzid (10.1016/j.scitotenv.2020.144142_bb0035) 2017; 5
Silva (10.1016/j.scitotenv.2020.144142_bb0310) 2012; 136-137
Zhong (10.1016/j.scitotenv.2020.144142_bb0430) 2016; 6
Dahal (10.1016/j.scitotenv.2020.144142_bb0070) 2016; 26
Zhou (10.1016/j.scitotenv.2020.144142_bb0445) 2008; 42
Li (10.1016/j.scitotenv.2020.144142_bb0210) 2019; 13
Lee (10.1016/j.scitotenv.2020.144142_bb0190) 2011; 15
Logeshwaran (10.1016/j.scitotenv.2020.144142_bb0220) 2018; 10
Clifton (10.1016/j.scitotenv.2020.144142_bb0065) 2014; 48
Karthick (10.1016/j.scitotenv.2020.144142_bb0155) 2019; 14
Li (10.1016/j.scitotenv.2020.144142_bb0200) 2016; 286
Brusseau (10.1016/j.scitotenv.2020.144142_bb0040) 2011; 45
Long (10.1016/j.scitotenv.2020.144142_bb0230) 2014; 53
Sra (10.1016/j.scitotenv.2020.144142_bb0320) 2013; 150
Chen (10.1016/j.scitotenv.2020.144142_bb0050) 2017; 37
O’Connor (10.1016/j.scitotenv.2020.144142_bb0265) 2018; 283
Cao (10.1016/j.scitotenv.2020.144142_bb0045) 2015; 4
Karthick (10.1016/j.scitotenv.2020.144142_bb0160) 2019; 240
Lee (10.1016/j.scitotenv.2020.144142_bb0185) 2005; 39
Niu (10.1016/j.scitotenv.2020.144142_bb0260) 2020; 39
Besha (10.1016/j.scitotenv.2020.144142_bb0025) 2018; 9
Mackay (10.1016/j.scitotenv.2020.144142_bb0245) 1989; 23
Luo (10.1016/j.scitotenv.2020.144142_bb0240) 2010; 173
Siegrist (10.1016/j.scitotenv.2020.144142_bb0305) 2011
Silva (10.1016/j.scitotenv.2020.144142_bb0315) 2013; 139
Forey (10.1016/j.scitotenv.2020.144142_bb0100) 2020; 228
Kobayashi (10.1016/j.scitotenv.2020.144142_bb0175) 2012; 47
EthicalChem (10.1016/j.scitotenv.2020.144142_bb0090)
Lai (10.1016/j.scitotenv.2020.144142_bb0180) 2009; 167
Wang (10.1016/j.scitotenv.2020.144142_bb0370) 2017; 11
Wang (10.1016/j.scitotenv.2020.144142_bb0375) 2019; 38
Fleifel (10.1016/j.scitotenv.2020.144142_bb0095) 2020; 134
Truex (10.1016/j.scitotenv.2020.144142_bb0345) 2015; 35
Zhou (10.1016/j.scitotenv.2020.144142_bb0455) 2013; 425
Azevedo (10.1016/j.scitotenv.2020.144142_bb0010) 2007; 14
Datta (10.1016/j.scitotenv.2020.144142_bb0075) 2020; 195
Talvenmaki (10.1016/j.scitotenv.2020.144142_bb0335) 2019; 26
Zhou (10.1016/j.scitotenv.2020.144142_bb0450) 2011; 159
Guan (10.1016/j.scitotenv.2020.144142_bb0110) 2018; 64
Lowry (10.1016/j.scitotenv.2020.144142_bb0235) 2016; 506
Zhang (10.1016/j.scitotenv.2020.144142_bb0395) 2017; 119
Zhou (10.1016/j.scitotenv.2020.144142_bb0440) 2007; 147
Ahna (10.1016/j.scitotenv.2020.144142_bb0460) 2008; 154
Zhong (10.1016/j.scitotenv.2020.144142_bb0425) 2013; 244–245
Bettahar (10.1016/j.scitotenv.2020.144142_bb0030) 1999; 37
Javanbakht (10.1016/j.scitotenv.2020.144142_bb0150) 2016; 185
Karthick (10.1016/j.scitotenv.2020.144142_bb0165) 2019; 243
Robert (10.1016/j.scitotenv.2020.144142_bb0285) 2017; 204
Zheng (10.1016/j.scitotenv.2020.144142_bb0415) 2016; 283
Zhou (10.1016/j.scitotenv.2020.144142_bb0435) 2005; 255
Cheng (10.1016/j.scitotenv.2020.144142_bb0055) 2006; 27
Wang (10.1016/j.scitotenv.2020.144142_bb0365) 2017; 51
Olasanmi (10.1016/j.scitotenv.2020.144142_bb0270) 2020; 21
Suchomel (10.1016/j.scitotenv.2020.144142_bb0330) 2006; 40
Zhong (10.1016/j.scitotenv.2020.144142_bb0420) 2011; 191
EthicalChem (10.1016/j.scitotenv.2020.144142_bb0085)
Zhang (10.1016/j.scitotenv.2020.144142_bb0400) 2018; 211
Wei (10.1016/j.scitotenv.2020.144142_bb0385) 2015; 468
Hadley (10.1016/j.scitotenv.2020.144142_bb0115) 2012; 50
Davin (10.1016/j.scitotenv.2020.144142_bb0080) 2018; 194
Li (10.1016/j.scitotenv.2020.144142_bb0195) 2008; 42
Sharma (10.1016/j.scitotenv.2020.144142_bb0300) 2020; 230
Lominchar (10.1016/j.scitotenv.2020.144142_bb0225) 2018; 93
Pei (10.1016/j.scitotenv.2020.144142_bb0275) 2017; 185
Li (10.1016/j.scitotenv.2020.144142_bb0215) 2020; 27
Stroo (10.1016/j.scitotenv.2020.144142_bb0325) 2012; 46
Jahan (10.1016/j.scitotenv.2020.144142_bb0140) 2020; 275
Rosen (10.1016/j.scitotenv.2020.144142_bb0295) 2012
Huo (10.1016/j.scitotenv.2020.144142_bb0130) 2020; 252
Iglesias (10.1016/j.scitotenv.2020.144142_bb0135) 2014; 53
Rongsayamanont (10.1016/j.scitotenv.2020.144142_bb0290) 2020; 231
Alcantara (10.1016/j.scitotenv.2020.144142_bb0005) 2009; 166
Javanbakht (10.1016/j.scitotenv.2020.144142_bb0145) 2016; 55
Cheng (10.1016/j.scitotenv.2020.144142_bb0060) 2017; 314
Wei (10.1016/j.scitotenv.2020.144142_bb0390) 2020; 254
References_xml – volume: 47
  start-page: 1138
  year: 2012
  end-page: 1145
  ident: bb0175
  article-title: Application of aqueous saponin on the remediation of polycyclic aromatic hydrocarbons-contaminated soil
  publication-title: J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng.
– volume: 585
  year: 2020
  ident: bb0280
  article-title: Treatment mechanism of sludge containing highly viscous heavy oil using biosurfactant
  publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects
– volume: 150
  start-page: 35
  year: 2013
  end-page: 44
  ident: bb0320
  article-title: Persulfate injection into a gasoline source zone
  publication-title: J. Contam. Hydrol.
– year: 2012
  ident: bb0295
  article-title: Surfactants and Interfacial Phenomena
– volume: 6
  year: 2016
  ident: bb0430
  article-title: Sub-CMC solubilization of dodecane by rhamnolipid in saturated porous media
  publication-title: Sci. Rep.
– volume: 42
  start-page: 3381
  year: 2008
  end-page: 3387
  ident: bb0360
  article-title: Particle-size dependent sorption and desorption of pesticides within a water-soil-nonionic surfactant system
  publication-title: Environ. Sci. Technol.
– volume: 160
  start-page: 29
  year: 2019
  end-page: 38
  ident: bb0405
  article-title: Ozone-encapsulated colloidal gas aphrons for in situ and targeting remediation of phenanthrene-contaminated sediment-aquifer
  publication-title: Water Res.
– volume: 5
  start-page: 6098
  year: 2017
  end-page: 6106
  ident: bb0035
  article-title: Compatibility of surfactants with activated-persulfate for the selective oxidation of PAH in groundwater remediation
  publication-title: J. Environ. Chem. Eng.
– volume: 167
  start-page: 609
  year: 2009
  end-page: 614
  ident: bb0180
  article-title: Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil
  publication-title: J. Hazard. Mater.
– volume: 42
  start-page: 1735
  year: 2008
  end-page: 1743
  ident: bb0255
  article-title: Rhamnolipid biosurfactant mixtures for environmental remediation
  publication-title: Water Res.
– volume: 231
  start-page: 267
  year: 2020
  ident: bb0290
  article-title: Diesel-contaminated soil washing by mixed nonionic surfactant emulsion and seed germination test
  publication-title: Water Air Soil Pollut.
– volume: 468
  start-page: 211
  year: 2015
  end-page: 218
  ident: bb0385
  article-title: Enhanced solubilization and desorption of pyrene from soils by saline anionic-nonionic surfactant systems
  publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects
– volume: 211
  start-page: 1183
  year: 2018
  end-page: 1192
  ident: bb0400
  article-title: Sorption and desorption characteristics of anionic surfactants to soil sediments
  publication-title: Chemosphere
– volume: 147
  start-page: 350
  year: 2007
  end-page: 357
  ident: bb0440
  article-title: Enhanced desorption of phenanthrene from contaminated soil using anionic/nonionic mixed surfactant
  publication-title: Environ. Pollut.
– volume: 11
  start-page: 3239
  year: 2017
  end-page: 3243
  ident: bb0370
  article-title: Characterization and effect of washing diesel oil-contaminated aged soil by Tween 80
  publication-title: Chinese J. Environ. Eng.
– volume: 57
  start-page: 1139
  year: 2004
  end-page: 1150
  ident: bb0355
  article-title: Evaluation of biosurfactants for crude oil contaminated soil washing
  publication-title: Chemosphere
– year: 2020
  ident: bb0085
  article-title: SEPR (surfactant enhanced product recovery) pilot test for remediation of creosote at a Louisiana, U.S. superfund site
– volume: 275
  year: 2020
  ident: bb0140
  article-title: Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications
  publication-title: Adv. Colloid Interf. Sci.
– volume: 23
  start-page: 630
  year: 1989
  end-page: 636
  ident: bb0245
  article-title: Groundwater contamination: pump-and-treat remediation
  publication-title: Environ. Sci. Technol.
– volume: 426
  start-page: 318
  year: 2003
  end-page: 322
  ident: bb0120
  article-title: Hydrocarbons and the evolution of human culture
  publication-title: Nature
– volume: 42
  start-page: 101
  year: 2008
  end-page: 108
  ident: bb0445
  article-title: Enhanced soil flushing of phenanthrene by anionic-nonionic mixed surfactant
  publication-title: Water Res.
– volume: 50
  start-page: 669
  year: 2012
  end-page: 678
  ident: bb0115
  article-title: Groundwater remediation: the next 30 years
  publication-title: Ground Water
– volume: 194
  start-page: 414
  year: 2018
  end-page: 421
  ident: bb0080
  article-title: Could saponins be used to enhance bioremediation of polycyclic aromatic hydrocarbons in aged-contaminated soils?
  publication-title: Chemosphere
– volume: 283
  start-page: 200
  year: 2018
  end-page: 213
  ident: bb0265
  article-title: Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: a review
  publication-title: J. Control. Release
– volume: 93
  start-page: 1270
  year: 2018
  end-page: 1278
  ident: bb0225
  article-title: Remediation of soil contaminated by PAHs and TPH using alkaline activated persulfate enhanced by surfactant addition at flow conditions
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 185
  start-page: 1112
  year: 2017
  end-page: 1121
  ident: bb0275
  article-title: Surfactant flushing remediation of o-dichlorobenzene and p-dichlorobenzene contaminated soil
  publication-title: Chemosphere
– volume: 228
  year: 2020
  ident: bb0100
  article-title: Saponin foam for soil remediation: on the use of polymer or solid particles to enhance foam resistance against oil
  publication-title: J. Contam. Hydrol.
– volume: 252
  year: 2020
  ident: bb0130
  article-title: Surfactant-enhanced aquifer remediation: mechanisms, influences, limitations and the countermeasures
  publication-title: Chemosphere
– volume: 21
  start-page: 79
  year: 2020
  end-page: 90
  ident: bb0270
  article-title: Evaluating rhamnolipid-enhanced washing as a first step in remediation of drill cuttings and petroleum-contaminated soils
  publication-title: J. Adv. Res.
– volume: 38
  start-page: 4012
  year: 2019
  end-page: 4019
  ident: bb0375
  article-title: Review on surfactin biosurfactant and its performance of enhanced oil recovery
  publication-title: Chem. Indust. Eng. Prog.
– volume: 53
  start-page: 2917
  year: 2014
  end-page: 2923
  ident: bb0135
  article-title: Surfactant-enhanced solubilization and simultaneous degradation of phenanthrene in marine sediment by electro-Fenton treatment
  publication-title: Indust. Eng. Chem. Res.
– volume: 45
  start-page: 5352
  year: 2011
  end-page: 5358
  ident: bb0040
  article-title: Impact of in situ chemical oxidation on contaminant mass discharge: linking source-zone and plume-scale characterizations of remediation performance
  publication-title: Environ. Sci. Technol.
– volume: 13
  start-page: 1662
  year: 2019
  end-page: 1669
  ident: bb0210
  article-title: Surfactant desorption and purification effect on petroleum contaminated aquifer medium
  publication-title: Chinese J. Environ. Eng.
– volume: 51
  start-page: 7055
  year: 2017
  end-page: 7064
  ident: bb0365
  article-title: Compatibility of surfactants and thermally activated persulfate for enhanced subsurface remediation
  publication-title: Environ. Sci. Technol.
– volume: 46
  start-page: 3969
  year: 2015
  end-page: 3974
  ident: bb0410
  article-title: Solubilization of Tween80 on enhanced remediation of naphthalene contaminated groundwater by ground water circulation well
  publication-title: J. Central South University (Sci. Technol.)
– volume: 603
  year: 2020
  ident: bb0250
  article-title: Extraction of the indigenous crude oil dissolved biosurfactants and their potential in enhanced oil recovery
  publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects
– volume: 35
  start-page: 34
  year: 2015
  end-page: 45
  ident: bb0345
  article-title: Field test of enhanced remedial amendment delivery using a shear-thinning fluid
  publication-title: Groundwater Monit. Rem.
– volume: 255
  start-page: 145
  year: 2005
  end-page: 152
  ident: bb0435
  article-title: Solubilization of polycyclic aromatic hydrocarbons by anionic–nonionic mixed surfactant
  publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects
– volume: 243
  start-page: 187
  year: 2019
  end-page: 205
  ident: bb0165
  article-title: A review on the application of chemical surfactant and surfactant foam for remediation of petroleum oil contaminated soil
  publication-title: J. Environ. Manag.
– volume: 48
  start-page: 516
  year: 2016
  end-page: 522
  ident: bb0205
  article-title: Elution effects of surfactants on petroleum contaminants in soil
  publication-title: Soils
– volume: 161
  start-page: 111
  year: 2009
  end-page: 119
  ident: bb0350
  article-title: Application of surfactant enhanced permanganate oxidation and bidegradation of trichloroethylene in groundwater
  publication-title: J. Hazard. Mater.
– volume: 37
  start-page: 497
  year: 2017
  end-page: 502
  ident: bb0050
  article-title: Desorption of petroleum pollutants from soil in presence of surfactants
  publication-title: Environ. Protect. Chem. Indust.
– volume: 244–245
  start-page: 160
  year: 2013
  end-page: 170
  ident: bb0425
  article-title: Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation
  publication-title: J. Hazard. Mater.
– volume: 191
  start-page: 249
  year: 2011
  end-page: 257
  ident: bb0420
  article-title: Enhanced remedial amendment delivery to subsurface using shear thinning fluid and aqueous foam
  publication-title: J. Hazard. Mater.
– volume: 139
  start-page: 149
  year: 2013
  end-page: 159
  ident: bb0315
  article-title: Characterization of bulk fluid and transport properties for simulating polymer-improved aquifer remediation
  publication-title: J. Environ. Eng.
– volume: 37
  start-page: 255
  year: 1999
  end-page: 276
  ident: bb0030
  article-title: Surfactant enhanced in situ remediation of LNAPL contaminated aquifers: large scale studies on a controlled experimental site
  publication-title: Transp. Porous Media
– volume: 43
  start-page: 1419
  year: 2015
  end-page: 1425
  ident: bb0105
  article-title: Soil washing for reduction of aromatic and aliphatic contaminants in soil
  publication-title: Clean-Soil Air Water
– volume: 204
  start-page: 57
  year: 2017
  end-page: 65
  ident: bb0285
  article-title: Impact of heterogeneous properties of soil and LNAPL on surfactant-enhanced capillary desaturation
  publication-title: J. Contam. Hydrol.
– volume: 14
  start-page: 978
  year: 2007
  end-page: 994
  ident: bb0010
  article-title: Failure analysis of a crude oil pipeline
  publication-title: Eng. Fail. Anal.
– volume: 91
  start-page: 739
  year: 2019
  end-page: 747
  ident: bb0170
  article-title: Desorption and solubilization of anthracene by a rhamnolipid biosurfactant from Rhodococcus fascians
  publication-title: Water Environ. Res.
– volume: 134
  start-page: 565
  year: 2020
  end-page: 592
  ident: bb0095
  article-title: Shallow subsurface environmental remediation by using tracer–surfactant–foam processes: history-matching and performance prediction
  publication-title: Transp. Porous Media
– volume: 159
  start-page: 1198
  year: 2011
  end-page: 1204
  ident: bb0450
  article-title: Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant
  publication-title: Environ. Pollut.
– volume: 48
  start-page: 5127
  year: 2014
  end-page: 5135
  ident: bb0065
  article-title: Effect of dissolved oxygen manipulation on diffusive emissions from NAPL-impacted low permeability soil layers
  publication-title: Environ. Sci. Technol.
– volume: 39
  start-page: 16
  year: 2016
  end-page: 21
  ident: bb0125
  article-title: Experimental study on surfactants used in soilwashing for diesel-oil contaminated soil remediation
  publication-title: Environ. Sci. Technol.
– volume: 154
  start-page: 153
  year: 2008
  end-page: 160
  ident: bb0460
  article-title: Soil washing using various nonionic surfactants and their recovery by selective adsorption with activated carbon
  publication-title: J. Hazard. Mater.
– volume: 28
  start-page: 383
  year: 2018
  end-page: 410
  ident: bb0020
  article-title: Surfactant-enhanced soil washing for removal of petroleum hydrocarbons from contaminated soils: a review
  publication-title: Pedosphere
– volume: 622–623
  start-page: 164
  year: 2018
  end-page: 171
  ident: bb0340
  article-title: Contaminant back-diffusion from low-permeability layers as affected by groundwater velocity: a laboratory investigation by box model and image analysis
  publication-title: Sci. Total Environ.
– volume: 28
  start-page: 833
  year: 2018
  end-page: 847
  ident: bb0015
  article-title: Environmental fate of petroleum hydrocarbons in soil: review of multiphase transport, mass transfer, and natural attenuation processes
  publication-title: Pedosphere
– volume: 64
  start-page: 197
  year: 2018
  end-page: 206
  ident: bb0110
  article-title: Surfactant-enhanced flushing enhances colloid transport and alters macroporosity in diesel-contaminated soil
  publication-title: J. Environ. Sci.
– volume: 55
  start-page: 11736
  year: 2016
  end-page: 11746
  ident: bb0145
  article-title: Impact of surfactant structure on NAPL mobilization and solubilization in porous media
  publication-title: Indust. Eng. Chem. Res.
– start-page: 1
  year: 2011
  end-page: 32
  ident: bb0305
  article-title: In situ chemical oxidation: technology description and status
  publication-title: In Situ Chemical Oxidation for Groundwater Remediation
– volume: 283
  start-page: 595
  year: 2016
  end-page: 603
  ident: bb0415
  article-title: Removal of tetrachloroethylene from homogeneous and heterogeneous porous media: combined effects of surfactant solubilization and oxidant degradation
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 227
  year: 2015
  end-page: 239
  ident: bb0045
  article-title: Influence of particle size and organic carbon content on distribution and fate of aliphatic and aromatic hydrocarbon fractions in chalks
  publication-title: Environ. Technol. Innov.
– volume: 46
  start-page: 6438
  year: 2012
  end-page: 6447
  ident: bb0325
  article-title: Chlorinated ethene source remediation: lessons learned
  publication-title: Environ. Sci. Technol.
– volume: 185
  start-page: 61
  year: 2016
  end-page: 73
  ident: bb0150
  article-title: Mobilization and micellar solubilization of NAPL contaminants in aquifer rocks
  publication-title: J. Contam. Hydrol.
– volume: 264
  start-page: 807
  year: 2015
  end-page: 814
  ident: bb0380
  article-title: Clay mineral dependent desorption of pyrene from soils by single and mixed anionic–nonionic surfactants
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 175
  year: 2018
  end-page: 193
  ident: bb0220
  article-title: Petroleum hydrocarbons (PH) in groundwater aquifers: an overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches
  publication-title: Environ. Technol. Innov.
– volume: 39
  start-page: 139
  year: 2005
  end-page: 146
  ident: bb0185
  article-title: Application of nonionic surfactant-enhanced in situ flushing to a diesel contaminated site
  publication-title: Water Res.
– volume: 136-137
  start-page: 117
  year: 2012
  end-page: 130
  ident: bb0310
  article-title: The effect of system variables on in situ sweep-efficiency improvements via viscosity modification
  publication-title: J. Contam. Hydrol.
– volume: 425
  start-page: 122
  year: 2013
  end-page: 128
  ident: bb0455
  article-title: Enhanced soil washing of phenanthrene by a plant-derived natural biosurfactant, Sapindus saponin
  publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects
– volume: 166
  start-page: 462
  year: 2009
  end-page: 468
  ident: bb0005
  article-title: PAHs soil decontamination in two steps: desorption and electrochemical treatment
  publication-title: J. Hazard. Mater.
– volume: 286
  start-page: 191
  year: 2016
  end-page: 197
  ident: bb0200
  article-title: The influence of clay minerals and surfactants on hydrocarbon removal during the washing of petroleum-contaminated soil
  publication-title: Chem. Eng. J.
– volume: 26
  start-page: 101
  year: 2016
  end-page: 108
  ident: bb0070
  article-title: Surfactant-oxidant co-application for soil and groundwater remediation
  publication-title: Remediation
– year: 2020
  ident: bb0090
  article-title: SEPR and S-ISCO remediation of MGP gasworks, Sydney Australia
– volume: 27
  start-page: 23323
  year: 2020
  end-page: 23330
  ident: bb0215
  article-title: Effects of soil properties on the remediation of diesel-contaminated soil by Triton X-100-aided washing. Environ
  publication-title: Sci. Pollut. Res. Int
– volume: 39
  start-page: 2302
  year: 2020
  end-page: 2308
  ident: bb0260
  article-title: Selection of cleansing agents for petroleum-contaminated soil and assessment of their efficiency
  publication-title: Chinese J. Ecol.
– volume: 14
  year: 2019
  ident: bb0155
  article-title: Potential of surfactant foam stabilized by ethylene glycol and allyl alcohol for the remediation of diesel contaminated soil
  publication-title: Environ. Technol. Innov.
– volume: 53
  start-page: 1277
  year: 2014
  end-page: 1280
  ident: bb0230
  article-title: Removing petroleum polluted soil with biological nonionic surfactant
  publication-title: Hubei Agricul. Sci.
– volume: 9
  start-page: 303
  year: 2018
  end-page: 322
  ident: bb0025
  article-title: Recent advances in surfactant-enhanced in-situ chemical oxidation for the remediation of non-aqueous phase liquid contaminated soils and aquifers
  publication-title: Environ. Technol. Innov.
– volume: 230
  year: 2020
  ident: bb0300
  article-title: Surfactant flooding makes a comeback: results of a full-scale, field implementation to recover mobilized NAPL
  publication-title: J. Contam. Hydrol.
– volume: 506
  start-page: 485
  year: 2016
  end-page: 494
  ident: bb0235
  article-title: Molecular simulations of NAPL removal from mineral surfaces using microemulsions and surfactants
  publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects
– volume: 40
  start-page: 6110
  year: 2006
  end-page: 6116
  ident: bb0330
  article-title: Reductions in contaminant mass discharge following partial mass removal from DNAPL source zones
  publication-title: Environ. Sci. Technol.
– volume: 254
  year: 2020
  ident: bb0390
  article-title: Desorption process and morphological analysis of real polycyclic aromatic hydrocarbons contaminated soil by the heterogemini surfactant and its mixed systems
  publication-title: Chemosphere
– volume: 314
  start-page: 98
  year: 2017
  end-page: 113
  ident: bb0060
  article-title: Advantages and challenges of Tween 80 surfactant-enhanced technologies for the remediation of soils contaminated with hydrophobic organic compounds
  publication-title: Chem. Eng. J.
– volume: 119
  start-page: 114
  year: 2017
  end-page: 125
  ident: bb0395
  article-title: Groundwater remediation from the past to the future: a bibliometric analysis
  publication-title: Water Res.
– volume: 26
  start-page: 34670
  year: 2019
  end-page: 34684
  ident: bb0335
  article-title: Fenton's reaction-based chemical oxidation in suboptimal conditions can lead to mobilization of oil hydrocarbons but also contribute to the total removal of volatile compounds
  publication-title: Environ. Sci. Pollut. Res.
– volume: 173
  start-page: 455
  year: 2010
  end-page: 461
  ident: bb0240
  article-title: Effect of groups difference in surfactant on solubilization of aqueous phenol using MEUF
  publication-title: J. Hazard. Mater.
– volume: 195
  year: 2020
  ident: bb0075
  article-title: Oil washing proficiency of biosurfactant produced by isolated Bacillus tequilensis MK 729017 from Assam reservoir soil
  publication-title: J. Pet. Sci. Eng.
– volume: 42
  start-page: 605
  year: 2008
  end-page: 614
  ident: bb0195
  article-title: Combination of surfactant solubilization with permanganate oxidation for DNAPL remediation
  publication-title: Water Res.
– volume: 15
  start-page: 313
  year: 2011
  end-page: 321
  ident: bb0190
  article-title: In-situ biosurfactant flushing, coupled with a highly pressurized air injection, to remediate the bunker oil contaminated site
  publication-title: Geosci. J.
– volume: 240
  start-page: 93
  year: 2019
  end-page: 107
  ident: bb0160
  article-title: Comparison of zero-valent iron and iron oxide nanoparticle stabilized alkyl polyglucoside phosphate foams for remediation of diesel-contaminated soils
  publication-title: J. Environ. Manag.
– volume: 27
  start-page: 835
  year: 2006
  end-page: 844
  ident: bb0055
  article-title: Effect of synthetic surfactants on the solubilization and distribution of PAHs in water/soil-water systems
  publication-title: Environ. Technol.
– volume: 5
  start-page: 6098
  year: 2017
  ident: 10.1016/j.scitotenv.2020.144142_bb0035
  article-title: Compatibility of surfactants with activated-persulfate for the selective oxidation of PAH in groundwater remediation
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2017.11.038
– volume: 191
  start-page: 249
  year: 2011
  ident: 10.1016/j.scitotenv.2020.144142_bb0420
  article-title: Enhanced remedial amendment delivery to subsurface using shear thinning fluid and aqueous foam
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.04.074
– volume: 160
  start-page: 29
  year: 2019
  ident: 10.1016/j.scitotenv.2020.144142_bb0405
  article-title: Ozone-encapsulated colloidal gas aphrons for in situ and targeting remediation of phenanthrene-contaminated sediment-aquifer
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.05.043
– volume: 204
  start-page: 57
  year: 2017
  ident: 10.1016/j.scitotenv.2020.144142_bb0285
  article-title: Impact of heterogeneous properties of soil and LNAPL on surfactant-enhanced capillary desaturation
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2017.07.006
– volume: 39
  start-page: 2302
  year: 2020
  ident: 10.1016/j.scitotenv.2020.144142_bb0260
  article-title: Selection of cleansing agents for petroleum-contaminated soil and assessment of their efficiency
  publication-title: Chinese J. Ecol.
– volume: 42
  start-page: 3381
  year: 2008
  ident: 10.1016/j.scitotenv.2020.144142_bb0360
  article-title: Particle-size dependent sorption and desorption of pesticides within a water-soil-nonionic surfactant system
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es702732g
– volume: 64
  start-page: 197
  year: 2018
  ident: 10.1016/j.scitotenv.2020.144142_bb0110
  article-title: Surfactant-enhanced flushing enhances colloid transport and alters macroporosity in diesel-contaminated soil
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2017.06.006
– volume: 585
  year: 2020
  ident: 10.1016/j.scitotenv.2020.144142_bb0280
  article-title: Treatment mechanism of sludge containing highly viscous heavy oil using biosurfactant
  publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects
  doi: 10.1016/j.colsurfa.2019.124117
– volume: 314
  start-page: 98
  year: 2017
  ident: 10.1016/j.scitotenv.2020.144142_bb0060
  article-title: Advantages and challenges of Tween 80 surfactant-enhanced technologies for the remediation of soils contaminated with hydrophobic organic compounds
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.12.135
– volume: 283
  start-page: 595
  year: 2016
  ident: 10.1016/j.scitotenv.2020.144142_bb0415
  article-title: Removal of tetrachloroethylene from homogeneous and heterogeneous porous media: combined effects of surfactant solubilization and oxidant degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.08.004
– year: 2012
  ident: 10.1016/j.scitotenv.2020.144142_bb0295
– volume: 228
  year: 2020
  ident: 10.1016/j.scitotenv.2020.144142_bb0100
  article-title: Saponin foam for soil remediation: on the use of polymer or solid particles to enhance foam resistance against oil
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2019.103560
– volume: 42
  start-page: 1735
  year: 2008
  ident: 10.1016/j.scitotenv.2020.144142_bb0255
  article-title: Rhamnolipid biosurfactant mixtures for environmental remediation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.10.038
– volume: 231
  start-page: 267
  year: 2020
  ident: 10.1016/j.scitotenv.2020.144142_bb0290
  article-title: Diesel-contaminated soil washing by mixed nonionic surfactant emulsion and seed germination test
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-020-04649-0
– volume: 426
  start-page: 318
  year: 2003
  ident: 10.1016/j.scitotenv.2020.144142_bb0120
  article-title: Hydrocarbons and the evolution of human culture
  publication-title: Nature
  doi: 10.1038/nature02130
– ident: 10.1016/j.scitotenv.2020.144142_bb0085
– volume: 4
  start-page: 227
  year: 2015
  ident: 10.1016/j.scitotenv.2020.144142_bb0045
  article-title: Influence of particle size and organic carbon content on distribution and fate of aliphatic and aromatic hydrocarbon fractions in chalks
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/j.eti.2015.09.001
– volume: 55
  start-page: 11736
  year: 2016
  ident: 10.1016/j.scitotenv.2020.144142_bb0145
  article-title: Impact of surfactant structure on NAPL mobilization and solubilization in porous media
  publication-title: Indust. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.6b03006
– volume: 244–245
  start-page: 160
  year: 2013
  ident: 10.1016/j.scitotenv.2020.144142_bb0425
  article-title: Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.11.028
– volume: 240
  start-page: 93
  year: 2019
  ident: 10.1016/j.scitotenv.2020.144142_bb0160
  article-title: Comparison of zero-valent iron and iron oxide nanoparticle stabilized alkyl polyglucoside phosphate foams for remediation of diesel-contaminated soils
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.03.088
– volume: 46
  start-page: 6438
  year: 2012
  ident: 10.1016/j.scitotenv.2020.144142_bb0325
  article-title: Chlorinated ethene source remediation: lessons learned
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es204714w
– volume: 14
  year: 2019
  ident: 10.1016/j.scitotenv.2020.144142_bb0155
  article-title: Potential of surfactant foam stabilized by ethylene glycol and allyl alcohol for the remediation of diesel contaminated soil
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/j.eti.2019.100363
– volume: 211
  start-page: 1183
  year: 2018
  ident: 10.1016/j.scitotenv.2020.144142_bb0400
  article-title: Sorption and desorption characteristics of anionic surfactants to soil sediments
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.08.051
– volume: 28
  start-page: 383
  year: 2018
  ident: 10.1016/j.scitotenv.2020.144142_bb0020
  article-title: Surfactant-enhanced soil washing for removal of petroleum hydrocarbons from contaminated soils: a review
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(18)60027-X
– volume: 154
  start-page: 153
  year: 2008
  ident: 10.1016/j.scitotenv.2020.144142_bb0460
  article-title: Soil washing using various nonionic surfactants and their recovery by selective adsorption with activated carbon
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.10.006
– volume: 27
  start-page: 835
  year: 2006
  ident: 10.1016/j.scitotenv.2020.144142_bb0055
  article-title: Effect of synthetic surfactants on the solubilization and distribution of PAHs in water/soil-water systems
  publication-title: Environ. Technol.
  doi: 10.1080/09593332708618695
– volume: 53
  start-page: 1277
  year: 2014
  ident: 10.1016/j.scitotenv.2020.144142_bb0230
  article-title: Removing petroleum polluted soil with biological nonionic surfactant
  publication-title: Hubei Agricul. Sci.
– volume: 37
  start-page: 497
  year: 2017
  ident: 10.1016/j.scitotenv.2020.144142_bb0050
  article-title: Desorption of petroleum pollutants from soil in presence of surfactants
  publication-title: Environ. Protect. Chem. Indust.
– volume: 166
  start-page: 462
  year: 2009
  ident: 10.1016/j.scitotenv.2020.144142_bb0005
  article-title: PAHs soil decontamination in two steps: desorption and electrochemical treatment
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.11.050
– volume: 195
  year: 2020
  ident: 10.1016/j.scitotenv.2020.144142_bb0075
  article-title: Oil washing proficiency of biosurfactant produced by isolated Bacillus tequilensis MK 729017 from Assam reservoir soil
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.107612
– volume: 161
  start-page: 111
  year: 2009
  ident: 10.1016/j.scitotenv.2020.144142_bb0350
  article-title: Application of surfactant enhanced permanganate oxidation and bidegradation of trichloroethylene in groundwater
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.03.061
– volume: 40
  start-page: 6110
  year: 2006
  ident: 10.1016/j.scitotenv.2020.144142_bb0330
  article-title: Reductions in contaminant mass discharge following partial mass removal from DNAPL source zones
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es060298e
– volume: 136-137
  start-page: 117
  year: 2012
  ident: 10.1016/j.scitotenv.2020.144142_bb0310
  article-title: The effect of system variables on in situ sweep-efficiency improvements via viscosity modification
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2012.05.006
– volume: 14
  start-page: 978
  year: 2007
  ident: 10.1016/j.scitotenv.2020.144142_bb0010
  article-title: Failure analysis of a crude oil pipeline
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2006.12.001
– volume: 37
  start-page: 255
  year: 1999
  ident: 10.1016/j.scitotenv.2020.144142_bb0030
  article-title: Surfactant enhanced in situ remediation of LNAPL contaminated aquifers: large scale studies on a controlled experimental site
  publication-title: Transp. Porous Media
  doi: 10.1023/A:1006634728321
– ident: 10.1016/j.scitotenv.2020.144142_bb0090
– volume: 252
  year: 2020
  ident: 10.1016/j.scitotenv.2020.144142_bb0130
  article-title: Surfactant-enhanced aquifer remediation: mechanisms, influences, limitations and the countermeasures
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126620
– volume: 243
  start-page: 187
  year: 2019
  ident: 10.1016/j.scitotenv.2020.144142_bb0165
  article-title: A review on the application of chemical surfactant and surfactant foam for remediation of petroleum oil contaminated soil
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.04.092
– volume: 286
  start-page: 191
  year: 2016
  ident: 10.1016/j.scitotenv.2020.144142_bb0200
  article-title: The influence of clay minerals and surfactants on hydrocarbon removal during the washing of petroleum-contaminated soil
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.10.006
– volume: 42
  start-page: 605
  year: 2008
  ident: 10.1016/j.scitotenv.2020.144142_bb0195
  article-title: Combination of surfactant solubilization with permanganate oxidation for DNAPL remediation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.08.010
– start-page: 1
  year: 2011
  ident: 10.1016/j.scitotenv.2020.144142_bb0305
  article-title: In situ chemical oxidation: technology description and status
– volume: 91
  start-page: 739
  year: 2019
  ident: 10.1016/j.scitotenv.2020.144142_bb0170
  article-title: Desorption and solubilization of anthracene by a rhamnolipid biosurfactant from Rhodococcus fascians
  publication-title: Water Environ. Res.
  doi: 10.1002/wer.1103
– volume: 39
  start-page: 139
  year: 2005
  ident: 10.1016/j.scitotenv.2020.144142_bb0185
  article-title: Application of nonionic surfactant-enhanced in situ flushing to a diesel contaminated site
  publication-title: Water Res.
  doi: 10.1016/j.watres.2004.09.012
– volume: 47
  start-page: 1138
  year: 2012
  ident: 10.1016/j.scitotenv.2020.144142_bb0175
  article-title: Application of aqueous saponin on the remediation of polycyclic aromatic hydrocarbons-contaminated soil
  publication-title: J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng.
  doi: 10.1080/10934529.2012.668106
– volume: 48
  start-page: 516
  year: 2016
  ident: 10.1016/j.scitotenv.2020.144142_bb0205
  article-title: Elution effects of surfactants on petroleum contaminants in soil
  publication-title: Soils
– volume: 39
  start-page: 16
  year: 2016
  ident: 10.1016/j.scitotenv.2020.144142_bb0125
  article-title: Experimental study on surfactants used in soilwashing for diesel-oil contaminated soil remediation
  publication-title: Environ. Sci. Technol.
– volume: 26
  start-page: 101
  year: 2016
  ident: 10.1016/j.scitotenv.2020.144142_bb0070
  article-title: Surfactant-oxidant co-application for soil and groundwater remediation
  publication-title: Remediation
  doi: 10.1002/rem.21461
– volume: 147
  start-page: 350
  year: 2007
  ident: 10.1016/j.scitotenv.2020.144142_bb0440
  article-title: Enhanced desorption of phenanthrene from contaminated soil using anionic/nonionic mixed surfactant
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2006.05.025
– volume: 6
  year: 2016
  ident: 10.1016/j.scitotenv.2020.144142_bb0430
  article-title: Sub-CMC solubilization of dodecane by rhamnolipid in saturated porous media
  publication-title: Sci. Rep.
  doi: 10.1038/srep33266
– volume: 506
  start-page: 485
  year: 2016
  ident: 10.1016/j.scitotenv.2020.144142_bb0235
  article-title: Molecular simulations of NAPL removal from mineral surfaces using microemulsions and surfactants
  publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects
  doi: 10.1016/j.colsurfa.2016.07.002
– volume: 255
  start-page: 145
  year: 2005
  ident: 10.1016/j.scitotenv.2020.144142_bb0435
  article-title: Solubilization of polycyclic aromatic hydrocarbons by anionic–nonionic mixed surfactant
  publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects
  doi: 10.1016/j.colsurfa.2004.12.039
– volume: 38
  start-page: 4012
  year: 2019
  ident: 10.1016/j.scitotenv.2020.144142_bb0375
  article-title: Review on surfactin biosurfactant and its performance of enhanced oil recovery
  publication-title: Chem. Indust. Eng. Prog.
– volume: 264
  start-page: 807
  year: 2015
  ident: 10.1016/j.scitotenv.2020.144142_bb0380
  article-title: Clay mineral dependent desorption of pyrene from soils by single and mixed anionic–nonionic surfactants
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.12.019
– volume: 93
  start-page: 1270
  year: 2018
  ident: 10.1016/j.scitotenv.2020.144142_bb0225
  article-title: Remediation of soil contaminated by PAHs and TPH using alkaline activated persulfate enhanced by surfactant addition at flow conditions
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.5485
– volume: 159
  start-page: 1198
  year: 2011
  ident: 10.1016/j.scitotenv.2020.144142_bb0450
  article-title: Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.02.001
– volume: 167
  start-page: 609
  year: 2009
  ident: 10.1016/j.scitotenv.2020.144142_bb0180
  article-title: Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.01.017
– volume: 194
  start-page: 414
  year: 2018
  ident: 10.1016/j.scitotenv.2020.144142_bb0080
  article-title: Could saponins be used to enhance bioremediation of polycyclic aromatic hydrocarbons in aged-contaminated soils?
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.11.174
– volume: 119
  start-page: 114
  year: 2017
  ident: 10.1016/j.scitotenv.2020.144142_bb0395
  article-title: Groundwater remediation from the past to the future: a bibliometric analysis
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.01.029
– volume: 27
  start-page: 23323
  year: 2020
  ident: 10.1016/j.scitotenv.2020.144142_bb0215
  article-title: Effects of soil properties on the remediation of diesel-contaminated soil by Triton X-100-aided washing. Environ
  publication-title: Sci. Pollut. Res. Int
  doi: 10.1007/s11356-020-08781-6
– volume: 230
  year: 2020
  ident: 10.1016/j.scitotenv.2020.144142_bb0300
  article-title: Surfactant flooding makes a comeback: results of a full-scale, field implementation to recover mobilized NAPL
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2020.103602
– volume: 51
  start-page: 7055
  year: 2017
  ident: 10.1016/j.scitotenv.2020.144142_bb0365
  article-title: Compatibility of surfactants and thermally activated persulfate for enhanced subsurface remediation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b05477
– volume: 150
  start-page: 35
  year: 2013
  ident: 10.1016/j.scitotenv.2020.144142_bb0320
  article-title: Persulfate injection into a gasoline source zone
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2013.03.007
– volume: 603
  year: 2020
  ident: 10.1016/j.scitotenv.2020.144142_bb0250
  article-title: Extraction of the indigenous crude oil dissolved biosurfactants and their potential in enhanced oil recovery
  publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects
  doi: 10.1016/j.colsurfa.2020.125216
– volume: 42
  start-page: 101
  year: 2008
  ident: 10.1016/j.scitotenv.2020.144142_bb0445
  article-title: Enhanced soil flushing of phenanthrene by anionic-nonionic mixed surfactant
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.07.021
– volume: 15
  start-page: 313
  year: 2011
  ident: 10.1016/j.scitotenv.2020.144142_bb0190
  article-title: In-situ biosurfactant flushing, coupled with a highly pressurized air injection, to remediate the bunker oil contaminated site
  publication-title: Geosci. J.
  doi: 10.1007/s12303-011-0029-5
– volume: 283
  start-page: 200
  year: 2018
  ident: 10.1016/j.scitotenv.2020.144142_bb0265
  article-title: Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: a review
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2018.06.007
– volume: 139
  start-page: 149
  year: 2013
  ident: 10.1016/j.scitotenv.2020.144142_bb0315
  article-title: Characterization of bulk fluid and transport properties for simulating polymer-improved aquifer remediation
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)EE.1943-7870.0000616
– volume: 28
  start-page: 833
  year: 2018
  ident: 10.1016/j.scitotenv.2020.144142_bb0015
  article-title: Environmental fate of petroleum hydrocarbons in soil: review of multiphase transport, mass transfer, and natural attenuation processes
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(18)60046-3
– volume: 185
  start-page: 1112
  year: 2017
  ident: 10.1016/j.scitotenv.2020.144142_bb0275
  article-title: Surfactant flushing remediation of o-dichlorobenzene and p-dichlorobenzene contaminated soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.07.098
– volume: 57
  start-page: 1139
  year: 2004
  ident: 10.1016/j.scitotenv.2020.144142_bb0355
  article-title: Evaluation of biosurfactants for crude oil contaminated soil washing
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.07.048
– volume: 23
  start-page: 630
  year: 1989
  ident: 10.1016/j.scitotenv.2020.144142_bb0245
  article-title: Groundwater contamination: pump-and-treat remediation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00064a001
– volume: 35
  start-page: 34
  year: 2015
  ident: 10.1016/j.scitotenv.2020.144142_bb0345
  article-title: Field test of enhanced remedial amendment delivery using a shear-thinning fluid
  publication-title: Groundwater Monit. Rem.
  doi: 10.1111/gwmr.12101
– volume: 134
  start-page: 565
  year: 2020
  ident: 10.1016/j.scitotenv.2020.144142_bb0095
  article-title: Shallow subsurface environmental remediation by using tracer–surfactant–foam processes: history-matching and performance prediction
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-020-01458-1
– volume: 13
  start-page: 1662
  year: 2019
  ident: 10.1016/j.scitotenv.2020.144142_bb0210
  article-title: Surfactant desorption and purification effect on petroleum contaminated aquifer medium
  publication-title: Chinese J. Environ. Eng.
– volume: 43
  start-page: 1419
  year: 2015
  ident: 10.1016/j.scitotenv.2020.144142_bb0105
  article-title: Soil washing for reduction of aromatic and aliphatic contaminants in soil
  publication-title: Clean-Soil Air Water
  doi: 10.1002/clen.201100609
– volume: 50
  start-page: 669
  year: 2012
  ident: 10.1016/j.scitotenv.2020.144142_bb0115
  article-title: Groundwater remediation: the next 30 years
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2012.00942.x
– volume: 173
  start-page: 455
  year: 2010
  ident: 10.1016/j.scitotenv.2020.144142_bb0240
  article-title: Effect of groups difference in surfactant on solubilization of aqueous phenol using MEUF
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.08.106
– volume: 185
  start-page: 61
  year: 2016
  ident: 10.1016/j.scitotenv.2020.144142_bb0150
  article-title: Mobilization and micellar solubilization of NAPL contaminants in aquifer rocks
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2016.01.003
– volume: 45
  start-page: 5352
  year: 2011
  ident: 10.1016/j.scitotenv.2020.144142_bb0040
  article-title: Impact of in situ chemical oxidation on contaminant mass discharge: linking source-zone and plume-scale characterizations of remediation performance
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es200716s
– volume: 53
  start-page: 2917
  year: 2014
  ident: 10.1016/j.scitotenv.2020.144142_bb0135
  article-title: Surfactant-enhanced solubilization and simultaneous degradation of phenanthrene in marine sediment by electro-Fenton treatment
  publication-title: Indust. Eng. Chem. Res.
  doi: 10.1021/ie4041115
– volume: 254
  year: 2020
  ident: 10.1016/j.scitotenv.2020.144142_bb0390
  article-title: Desorption process and morphological analysis of real polycyclic aromatic hydrocarbons contaminated soil by the heterogemini surfactant and its mixed systems
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126854
– volume: 46
  start-page: 3969
  year: 2015
  ident: 10.1016/j.scitotenv.2020.144142_bb0410
  article-title: Solubilization of Tween80 on enhanced remediation of naphthalene contaminated groundwater by ground water circulation well
  publication-title: J. Central South University (Sci. Technol.)
– volume: 21
  start-page: 79
  year: 2020
  ident: 10.1016/j.scitotenv.2020.144142_bb0270
  article-title: Evaluating rhamnolipid-enhanced washing as a first step in remediation of drill cuttings and petroleum-contaminated soils
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2019.07.003
– volume: 48
  start-page: 5127
  year: 2014
  ident: 10.1016/j.scitotenv.2020.144142_bb0065
  article-title: Effect of dissolved oxygen manipulation on diffusive emissions from NAPL-impacted low permeability soil layers
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es405775q
– volume: 26
  start-page: 34670
  year: 2019
  ident: 10.1016/j.scitotenv.2020.144142_bb0335
  article-title: Fenton's reaction-based chemical oxidation in suboptimal conditions can lead to mobilization of oil hydrocarbons but also contribute to the total removal of volatile compounds
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-06547-3
– volume: 10
  start-page: 175
  year: 2018
  ident: 10.1016/j.scitotenv.2020.144142_bb0220
  article-title: Petroleum hydrocarbons (PH) in groundwater aquifers: an overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/j.eti.2018.02.001
– volume: 468
  start-page: 211
  year: 2015
  ident: 10.1016/j.scitotenv.2020.144142_bb0385
  article-title: Enhanced solubilization and desorption of pyrene from soils by saline anionic-nonionic surfactant systems
  publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects
  doi: 10.1016/j.colsurfa.2014.12.026
– volume: 275
  year: 2020
  ident: 10.1016/j.scitotenv.2020.144142_bb0140
  article-title: Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications
  publication-title: Adv. Colloid Interf. Sci.
  doi: 10.1016/j.cis.2019.102061
– volume: 622–623
  start-page: 164
  year: 2018
  ident: 10.1016/j.scitotenv.2020.144142_bb0340
  article-title: Contaminant back-diffusion from low-permeability layers as affected by groundwater velocity: a laboratory investigation by box model and image analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.11.347
– volume: 11
  start-page: 3239
  year: 2017
  ident: 10.1016/j.scitotenv.2020.144142_bb0370
  article-title: Characterization and effect of washing diesel oil-contaminated aged soil by Tween 80
  publication-title: Chinese J. Environ. Eng.
– volume: 9
  start-page: 303
  year: 2018
  ident: 10.1016/j.scitotenv.2020.144142_bb0025
  article-title: Recent advances in surfactant-enhanced in-situ chemical oxidation for the remediation of non-aqueous phase liquid contaminated soils and aquifers
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/j.eti.2017.08.004
– volume: 425
  start-page: 122
  year: 2013
  ident: 10.1016/j.scitotenv.2020.144142_bb0455
  article-title: Enhanced soil washing of phenanthrene by a plant-derived natural biosurfactant, Sapindus saponin
  publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects
  doi: 10.1016/j.colsurfa.2013.02.055
SSID ssj0000781
Score 2.6709638
SecondaryResourceType review_article
Snippet Oil leakage, which is inevitable in the process of extraction, processing, transportation and storage, seriously undermines the soil and groundwater...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 144142
SubjectTerms adsorption
air
aquifers
biosurfactants
environment
Environmental Pollution
Environmental Restoration and Remediation
Groundwater
hydrodynamics
liquids
nonaqueous phase liquids
Oil contamination
oils
oxidation
polluted soils
pollution
Rebound
remediation
Soil
Soil Pollutants - analysis
Solubility
solubilization
surface tension
Surface-Active Agents
Surfactant
Tailing
transportation
Title Surfactant-enhanced remediation of oil-contaminated soil and groundwater: A review
URI https://dx.doi.org/10.1016/j.scitotenv.2020.144142
https://www.ncbi.nlm.nih.gov/pubmed/33302075
https://www.proquest.com/docview/2470027639
https://www.proquest.com/docview/2986252842
Volume 756
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQFVKlqqLb0gItcqVeU7x-JtxWCLTtCg4UBDfLsR11EUrQPkBc-ts7EyeLOFAOPSWy7MTyjD3f2PN5CPlWqtLwPGjcAwiZBIOdOS_hTYDCqEo60WZvODnV4wv580pdrZHDnguDYZXd2p_W9Ha17kr2u9Hcv51OkeMr80IXeI5oMNsKMtilQS3__ucxzAMvs0mnzDCxofaTGC_47qIBbHoHjiJneNA5lPw5C_UcAm0t0fEmedtBSDpKvXxH1mI9IBspqeTDgGwdPXLXoFo3eecD8iZt0dHEPHpPzn4tZ8hrgLHNYv27DQWguF0YkrhoU9FmepNhNLvDiBkAp3QOJdTVgSIdpA73UDg7oCOaKDAfyMXx0fnhOOtSLGReMrnIgmeAR7ipKhW1CQIdGMmHnpfaCaE8C7mTbugBiDhjPCu91i4oP6yYKaLPxRZZr5s6fiLUV1URVB4D-mg6lmUuoxCl5Cw4CaBgm-h-WK3v7h_HNBg3tg80u7YreViUh03y2CZs1fA2XcHxcpODXm72iTZZMBQvN_7aS9rCXMMDFFfHZjm3XBp04wHU_aNOAT6iAqMP3_mY1GTVayEE_Maonf_p3i55zTGuBmn17DNZX8yW8QsAo0W512r-Hnk1-jEZn-JzcnY5-QsNtw9D
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgRShWChtDyNBMfQrB9xUolDBa229HGAVurNOLYjFlVJtQ-qXvhT_EFm4mSrHkoPqLfIih3HY898Hn_jAXhXqlLz3GfkA_CJRIOdWCfxSeCEUZW0os3ecHCYjY7llxN1sgR_-lgYolV2uj_q9FZbdyUb3WhunI3HFOMr8yIr6BxRU7aVjlm5Fy7Ocd82_bj7GYX8nvOd7aNPo6RLLZA4mcpZ4l2KdpjrqlIh014QcJd86HiZWSGUS31upR06NMBWa5eWLsusV25YpboILhfY7h24K1FdUNqED78veSV0e0481kZNgt27QirDH5k1CIZ_4c6Up3SyOpT8OpN4HeRtTd_OI3jYYVa2FYflMSyFegD3YhbLiwGsbl8Gy-FrnbaYDmAl-gRZDHV6Al-_zScUSIHCTEL9o-UeMPJP-jg_WFOxZnyaEH3eEkUH0TCbYgmztWcUf1L7cyycbLItFmNunsLxrQz8KizXTR3WgLmqKrzKg6dNYRbKMpdBiFLy1FuJKGQdsn5YjesuPKe8G6emZ7b9NAt5GJKHifJYh3RR8Sze-XFzlc1ebubK9DVomW6u_LaXtMHFTSc2tg7NfGq41OQ3QBT5j3cK3JQqRBnYzrM4TRa9FkLgZ7R6_j_dewP3R0cH-2Z_93DvBTzgROqhmP70JSzPJvPwClHZrHzdrgIG32972f0F8xBI6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surfactant-enhanced+remediation+of+oil-contaminated+soil+and+groundwater%3A+A+review&rft.jtitle=The+Science+of+the+total+environment&rft.au=Liu%2C+Jian-Wu&rft.au=Wei%2C+Kun-Hao&rft.au=Xu%2C+Shao-Wei&rft.au=Cui%2C+Jun&rft.date=2021-02-20&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.volume=756&rft_id=info:doi/10.1016%2Fj.scitotenv.2020.144142&rft.externalDocID=S0048969720376737
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon