Surfactant-enhanced remediation of oil-contaminated soil and groundwater: A review
Oil leakage, which is inevitable in the process of extraction, processing, transportation and storage, seriously undermines the soil and groundwater environment. Surfactants can facilitate the migration and solution of oil contaminants from nonaqueous phase liquid (NAPL) or solid phase to water by r...
Saved in:
Published in | The Science of the total environment Vol. 756; p. 144142 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
20.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Oil leakage, which is inevitable in the process of extraction, processing, transportation and storage, seriously undermines the soil and groundwater environment. Surfactants can facilitate the migration and solution of oil contaminants from nonaqueous phase liquid (NAPL) or solid phase to water by reducing the (air/water) surface tension, (oil/water) interfacial tension and micellar solubilization. They can effectively enhance the hydrodynamic driven remediation technologies by improving the contact efficiency of contaminants and liquid remediation agents or microorganism, and have been widely used to enhance the remediation of oil-contaminated sites. This paper summarizes the characteristics of different types of surfactants such as nonionic, anionic, biological and mixed surfactants, their enhancements to the remediation of oil-contaminated soil and groundwater, and examines the factors influencing surfactant performance. The causes of tailing and rebound effects and the role of surfactants in suppressing them are also discussed. Laboratory researches and actual site remediation practices have shown that various types of surfactants offer diverse options. Biosurfactants and mixed surfactants are superior and worth attention among the surfactants. Using surfactant foams, adding shear-thinning polymers, and combining surfactants with in-situ chemical oxidation are effective ways to resolve tailing and rebound effects. The adsorption of surfactants on soils and aquifer sediments decreases remediation efficiency and may cause secondary pollution, Therefore the adsorption loss should be noticed and minimized.
[Display omitted]
•Surfactant enhanced remediation through mobilization and solubilization effects.•Biosurfactants and mixed surfactants show great application potential.•Co-injection of foams or xanthan improves uniform distribution of surfactants.•Surfactant-enhanced in-situ chemical oxidation eliminates tailing and rebound. |
---|---|
AbstractList | Oil leakage, which is inevitable in the process of extraction, processing, transportation and storage, seriously undermines the soil and groundwater environment. Surfactants can facilitate the migration and solution of oil contaminants from nonaqueous phase liquid (NAPL) or solid phase to water by reducing the (air/water) surface tension, (oil/water) interfacial tension and micellar solubilization. They can effectively enhance the hydrodynamic driven remediation technologies by improving the contact efficiency of contaminants and liquid remediation agents or microorganism, and have been widely used to enhance the remediation of oil-contaminated sites. This paper summarizes the characteristics of different types of surfactants such as nonionic, anionic, biological and mixed surfactants, their enhancements to the remediation of oil-contaminated soil and groundwater, and examines the factors influencing surfactant performance. The causes of tailing and rebound effects and the role of surfactants in suppressing them are also discussed. Laboratory researches and actual site remediation practices have shown that various types of surfactants offer diverse options. Biosurfactants and mixed surfactants are superior and worth attention among the surfactants. Using surfactant foams, adding shear-thinning polymers, and combining surfactants with in-situ chemical oxidation are effective ways to resolve tailing and rebound effects. The adsorption of surfactants on soils and aquifer sediments decreases remediation efficiency and may cause secondary pollution, Therefore the adsorption loss should be noticed and minimized. Oil leakage, which is inevitable in the process of extraction, processing, transportation and storage, seriously undermines the soil and groundwater environment. Surfactants can facilitate the migration and solution of oil contaminants from nonaqueous phase liquid (NAPL) or solid phase to water by reducing the (air/water) surface tension, (oil/water) interfacial tension and micellar solubilization. They can effectively enhance the hydrodynamic driven remediation technologies by improving the contact efficiency of contaminants and liquid remediation agents or microorganism, and have been widely used to enhance the remediation of oil-contaminated sites. This paper summarizes the characteristics of different types of surfactants such as nonionic, anionic, biological and mixed surfactants, their enhancements to the remediation of oil-contaminated soil and groundwater, and examines the factors influencing surfactant performance. The causes of tailing and rebound effects and the role of surfactants in suppressing them are also discussed. Laboratory researches and actual site remediation practices have shown that various types of surfactants offer diverse options. Biosurfactants and mixed surfactants are superior and worth attention among the surfactants. Using surfactant foams, adding shear-thinning polymers, and combining surfactants with in-situ chemical oxidation are effective ways to resolve tailing and rebound effects. The adsorption of surfactants on soils and aquifer sediments decreases remediation efficiency and may cause secondary pollution, Therefore the adsorption loss should be noticed and minimized.Oil leakage, which is inevitable in the process of extraction, processing, transportation and storage, seriously undermines the soil and groundwater environment. Surfactants can facilitate the migration and solution of oil contaminants from nonaqueous phase liquid (NAPL) or solid phase to water by reducing the (air/water) surface tension, (oil/water) interfacial tension and micellar solubilization. They can effectively enhance the hydrodynamic driven remediation technologies by improving the contact efficiency of contaminants and liquid remediation agents or microorganism, and have been widely used to enhance the remediation of oil-contaminated sites. This paper summarizes the characteristics of different types of surfactants such as nonionic, anionic, biological and mixed surfactants, their enhancements to the remediation of oil-contaminated soil and groundwater, and examines the factors influencing surfactant performance. The causes of tailing and rebound effects and the role of surfactants in suppressing them are also discussed. Laboratory researches and actual site remediation practices have shown that various types of surfactants offer diverse options. Biosurfactants and mixed surfactants are superior and worth attention among the surfactants. Using surfactant foams, adding shear-thinning polymers, and combining surfactants with in-situ chemical oxidation are effective ways to resolve tailing and rebound effects. The adsorption of surfactants on soils and aquifer sediments decreases remediation efficiency and may cause secondary pollution, Therefore the adsorption loss should be noticed and minimized. Oil leakage, which is inevitable in the process of extraction, processing, transportation and storage, seriously undermines the soil and groundwater environment. Surfactants can facilitate the migration and solution of oil contaminants from nonaqueous phase liquid (NAPL) or solid phase to water by reducing the (air/water) surface tension, (oil/water) interfacial tension and micellar solubilization. They can effectively enhance the hydrodynamic driven remediation technologies by improving the contact efficiency of contaminants and liquid remediation agents or microorganism, and have been widely used to enhance the remediation of oil-contaminated sites. This paper summarizes the characteristics of different types of surfactants such as nonionic, anionic, biological and mixed surfactants, their enhancements to the remediation of oil-contaminated soil and groundwater, and examines the factors influencing surfactant performance. The causes of tailing and rebound effects and the role of surfactants in suppressing them are also discussed. Laboratory researches and actual site remediation practices have shown that various types of surfactants offer diverse options. Biosurfactants and mixed surfactants are superior and worth attention among the surfactants. Using surfactant foams, adding shear-thinning polymers, and combining surfactants with in-situ chemical oxidation are effective ways to resolve tailing and rebound effects. The adsorption of surfactants on soils and aquifer sediments decreases remediation efficiency and may cause secondary pollution, Therefore the adsorption loss should be noticed and minimized. [Display omitted] •Surfactant enhanced remediation through mobilization and solubilization effects.•Biosurfactants and mixed surfactants show great application potential.•Co-injection of foams or xanthan improves uniform distribution of surfactants.•Surfactant-enhanced in-situ chemical oxidation eliminates tailing and rebound. |
ArticleNumber | 144142 |
Author | Wei, Kun-Hao Liu, Jian-Wu Xiao, Xiao-Long He, Xiao-Song Xu, Shao-Wei Cui, Jun Xi, Bei-Dou Ma, Jie |
Author_xml | – sequence: 1 givenname: Jian-Wu surname: Liu fullname: Liu, Jian-Wu organization: Shandong Provincial Key Laboratory of Oilfield Produced Water Treatment and Environmental Pollution Control, SINOPEC Petroleum Engineering Corporation, Dongying 257026, China – sequence: 2 givenname: Kun-Hao surname: Wei fullname: Wei, Kun-Hao organization: State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China – sequence: 3 givenname: Shao-Wei surname: Xu fullname: Xu, Shao-Wei organization: Shengli Oilfield Company, SINOPEC, Dongying 257026, China – sequence: 4 givenname: Jun surname: Cui fullname: Cui, Jun organization: State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China – sequence: 5 givenname: Jie surname: Ma fullname: Ma, Jie organization: State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China – sequence: 6 givenname: Xiao-Long surname: Xiao fullname: Xiao, Xiao-Long organization: Shandong Provincial Key Laboratory of Oilfield Produced Water Treatment and Environmental Pollution Control, SINOPEC Petroleum Engineering Corporation, Dongying 257026, China – sequence: 7 givenname: Bei-Dou surname: Xi fullname: Xi, Bei-Dou organization: State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China – sequence: 8 givenname: Xiao-Song surname: He fullname: He, Xiao-Song email: hexs82@126.com organization: State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33302075$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1PAyEYhInRaK3-Bd2jl63AsrBr4qExfiUmJn6cCYV3lWYLCqzGfy-11YOXciEZZoZknn207bwDhI4JnhBM-Ol8ErVNPoH7mFBMs8oYYXQLjUgj2pJgyrfRCGPWlC1vxR7aj3GO8xEN2UV7VVXlkKhH6OFxCJ3SSblUgntVToMpAizAWJWsd4XvCm_7UnuX1MI6lfJ7zEqhnClegh-c-cxiOCumOfdh4fMA7XSqj3C4vsfo-ery6eKmvLu_vr2Y3pWaYZZKo3ErOBVdVwMXpiI1axglms64qqpaY9MopojGgighNJ5pzpWpNemwaEE31RidrHrfgn8fICa5sFFD3ysHfoiStg2nNc2lm61MYEwFr9psPVpbh1leQb4Fu1DhS_5Olg3nK4MOPsYAncwkfrZKQdleEiyXiORc_iGSS0RyhSjnxb_87xebk9NVEvKqeemw9MGSmA2gkzTebuz4Bm-1sFE |
CitedBy_id | crossref_primary_10_1016_j_biortech_2024_131458 crossref_primary_10_1016_j_ecoenv_2024_116597 crossref_primary_10_1016_j_jece_2025_115843 crossref_primary_10_1016_j_jenvman_2022_117033 crossref_primary_10_1186_s40643_023_00710_y crossref_primary_10_1016_j_molliq_2021_117197 crossref_primary_10_1016_j_jenvman_2024_120168 crossref_primary_10_1016_j_jece_2024_113820 crossref_primary_10_1016_j_wmb_2024_05_010 crossref_primary_10_1007_s11581_022_04859_y crossref_primary_10_1016_j_eti_2025_104153 crossref_primary_10_1080_09593330_2022_2061381 crossref_primary_10_1016_j_jhazmat_2022_130189 crossref_primary_10_1016_j_jenvman_2021_113983 crossref_primary_10_1016_j_jclepro_2023_136338 crossref_primary_10_1016_j_scitotenv_2024_170242 crossref_primary_10_1080_09593330_2021_1961875 crossref_primary_10_1016_j_cej_2023_141297 crossref_primary_10_1016_j_watres_2024_122698 crossref_primary_10_1016_j_seppur_2023_124919 crossref_primary_10_33073_pjm_2024_012 crossref_primary_10_1016_j_jhazmat_2023_133182 crossref_primary_10_1016_j_jwpe_2023_103610 crossref_primary_10_1016_j_scitotenv_2021_150071 crossref_primary_10_1016_j_jhazmat_2022_130171 crossref_primary_10_1021_acs_est_4c04466 crossref_primary_10_1016_j_jhazmat_2023_132772 crossref_primary_10_3390_su15043148 crossref_primary_10_1080_02726351_2025_2469848 crossref_primary_10_1007_s11783_021_1457_8 crossref_primary_10_1016_j_bej_2022_108496 crossref_primary_10_1016_j_jhydrol_2021_126456 crossref_primary_10_1016_j_colsurfb_2022_112428 crossref_primary_10_1016_j_cis_2022_102774 crossref_primary_10_1016_j_chemosphere_2023_139086 crossref_primary_10_1016_j_scitotenv_2023_168099 crossref_primary_10_1016_j_scitotenv_2024_175225 crossref_primary_10_1016_j_jenvman_2023_118943 crossref_primary_10_3390_w13162186 crossref_primary_10_1016_j_cej_2021_130221 crossref_primary_10_1016_j_psep_2023_05_050 crossref_primary_10_1155_2022_3616050 crossref_primary_10_1016_j_seta_2021_101576 crossref_primary_10_1016_j_chemosphere_2022_135004 crossref_primary_10_1016_j_scitotenv_2022_159186 crossref_primary_10_1016_j_envpol_2022_119569 crossref_primary_10_1016_j_envres_2022_112752 crossref_primary_10_1016_j_jhydrol_2025_132760 crossref_primary_10_1016_j_seppur_2024_126342 crossref_primary_10_1016_j_cej_2024_153834 crossref_primary_10_1016_j_ecoleng_2024_107245 crossref_primary_10_1016_j_scitotenv_2023_164450 crossref_primary_10_1016_j_chemosphere_2022_137389 crossref_primary_10_1016_j_envpol_2021_118511 crossref_primary_10_3389_fmicb_2024_1357302 crossref_primary_10_1007_s12517_022_09747_3 crossref_primary_10_1007_s12303_022_0020_3 crossref_primary_10_1007_s11157_023_09657_0 crossref_primary_10_1016_j_jclepro_2024_144459 crossref_primary_10_1016_j_watres_2023_119844 crossref_primary_10_1021_acs_iecr_2c03722 crossref_primary_10_3390_ijerph19127547 crossref_primary_10_1080_09593330_2021_1884902 crossref_primary_10_1007_s11356_021_17680_3 crossref_primary_10_1016_j_jece_2024_112622 crossref_primary_10_1016_j_scitotenv_2021_147406 crossref_primary_10_1016_j_jenvman_2023_119342 crossref_primary_10_3390_toxics12110773 crossref_primary_10_1007_s11356_024_32501_z crossref_primary_10_5004_dwt_2022_28505 crossref_primary_10_1016_j_chemosphere_2021_132481 crossref_primary_10_1016_j_chemosphere_2022_136869 crossref_primary_10_1007_s10311_022_01506_w crossref_primary_10_1016_j_envres_2022_113830 crossref_primary_10_1016_j_chemosphere_2021_132761 crossref_primary_10_1021_acs_est_4c13344 crossref_primary_10_1080_10916466_2024_2436108 crossref_primary_10_1007_s11270_023_06689_8 crossref_primary_10_1007_s42729_024_01699_9 crossref_primary_10_2166_wst_2023_009 crossref_primary_10_1016_j_cjche_2023_02_015 crossref_primary_10_1002_rem_21767 crossref_primary_10_1007_s11356_023_29991_8 crossref_primary_10_1016_j_jece_2024_115087 crossref_primary_10_3390_w16131775 crossref_primary_10_1002_jsde_12690 crossref_primary_10_3390_su15086514 crossref_primary_10_1021_acs_energyfuels_4c04049 crossref_primary_10_1016_j_colsurfa_2022_130461 crossref_primary_10_53623_idwm_v4i1_442 crossref_primary_10_1016_j_jwpe_2024_105720 crossref_primary_10_1016_j_chemosphere_2023_140251 crossref_primary_10_1016_j_jhazmat_2021_127409 crossref_primary_10_1016_j_scitotenv_2024_173260 crossref_primary_10_1016_j_jece_2025_115768 crossref_primary_10_1016_j_scitotenv_2022_156373 crossref_primary_10_1016_j_seppur_2024_127372 crossref_primary_10_12677_HJSS_2022_102009 crossref_primary_10_1016_j_jclepro_2023_139529 crossref_primary_10_1016_j_jhazmat_2022_130267 crossref_primary_10_1080_10934529_2023_2178788 crossref_primary_10_1016_j_jics_2024_101153 crossref_primary_10_1016_j_watres_2024_122660 crossref_primary_10_1016_j_envpol_2022_119384 crossref_primary_10_1007_s11356_024_31844_x crossref_primary_10_1016_j_envres_2024_120473 crossref_primary_10_1007_s11356_023_26909_2 crossref_primary_10_1016_j_jhydrol_2022_127639 crossref_primary_10_3390_en16247999 crossref_primary_10_1016_j_electacta_2021_138127 crossref_primary_10_3390_app14020582 crossref_primary_10_1021_acs_langmuir_4c03075 crossref_primary_10_3390_molecules27227950 crossref_primary_10_3390_su142416576 crossref_primary_10_1007_s11356_022_22245_z crossref_primary_10_1007_s11270_023_06093_2 crossref_primary_10_1039_D3EN00617D crossref_primary_10_1007_s11707_023_1089_3 crossref_primary_10_1039_D3SE00160A crossref_primary_10_1016_j_colsurfa_2022_128837 crossref_primary_10_1088_1755_1315_1229_1_012039 crossref_primary_10_1016_j_molliq_2023_121242 crossref_primary_10_1016_j_chemosphere_2022_136446 crossref_primary_10_1016_j_jece_2023_110758 crossref_primary_10_1051_e3sconf_202346302029 crossref_primary_10_1016_j_scitotenv_2023_164669 crossref_primary_10_1080_09593330_2024_2366448 crossref_primary_10_1007_s11356_022_19418_1 crossref_primary_10_1007_s11356_022_24734_7 crossref_primary_10_1016_j_envpol_2024_123768 crossref_primary_10_1007_s11242_023_01980_y crossref_primary_10_1007_s13762_023_05372_z crossref_primary_10_1016_j_jclepro_2021_130143 crossref_primary_10_1016_j_scitotenv_2024_173644 crossref_primary_10_1016_j_jenvman_2024_122602 crossref_primary_10_1016_j_jenvman_2024_123899 crossref_primary_10_3390_su17051939 crossref_primary_10_1021_acs_langmuir_4c04293 crossref_primary_10_1007_s11270_023_06394_6 crossref_primary_10_1016_j_chemosphere_2021_129675 crossref_primary_10_1016_j_biteb_2022_100959 crossref_primary_10_1016_j_envpol_2022_120198 crossref_primary_10_1016_j_jece_2023_111419 crossref_primary_10_1002_jsde_12822 crossref_primary_10_1016_j_advwatres_2023_104474 crossref_primary_10_1016_j_jhazmat_2024_135458 crossref_primary_10_3390_w14081182 crossref_primary_10_1007_s11356_021_16257_4 crossref_primary_10_1016_j_watres_2021_117414 crossref_primary_10_1080_10916466_2022_2091595 crossref_primary_10_3390_plants11172250 crossref_primary_10_1002_jsde_12786 crossref_primary_10_1039_D4EN00920G crossref_primary_10_1080_03067319_2022_2135999 crossref_primary_10_1016_j_envres_2023_116884 crossref_primary_10_1016_j_colsurfa_2022_129421 crossref_primary_10_1016_j_scitotenv_2023_169532 crossref_primary_10_1016_j_watres_2024_122673 crossref_primary_10_1016_j_camwa_2024_08_004 crossref_primary_10_1016_j_envpol_2023_122566 crossref_primary_10_1016_j_jhazmat_2024_133781 crossref_primary_10_1007_s10064_024_03709_7 crossref_primary_10_1007_s00128_022_03584_6 crossref_primary_10_1016_j_scitotenv_2021_146636 crossref_primary_10_1016_j_jhazmat_2024_134358 crossref_primary_10_1016_j_jhazmat_2024_134513 crossref_primary_10_1016_j_advwatres_2024_104664 crossref_primary_10_1016_j_cjche_2021_03_031 crossref_primary_10_1016_j_jenvman_2022_115799 crossref_primary_10_1016_j_compgeo_2024_106097 crossref_primary_10_1016_j_jwpe_2023_103505 crossref_primary_10_1039_D2EW00918H crossref_primary_10_1080_09593330_2025_2450558 crossref_primary_10_1007_s10653_023_01797_0 crossref_primary_10_1016_j_clcb_2024_100116 crossref_primary_10_1016_j_jhazmat_2022_128562 crossref_primary_10_1016_j_chemosphere_2021_131750 crossref_primary_10_3390_recycling10010010 crossref_primary_10_1016_j_chemosphere_2022_136145 crossref_primary_10_1016_j_jhydrol_2023_130050 crossref_primary_10_1016_j_scitotenv_2024_173804 crossref_primary_10_1021_acssusresmgt_4c00006 crossref_primary_10_1007_s11356_022_23570_z crossref_primary_10_1016_j_chemgeo_2024_122369 |
Cites_doi | 10.1016/j.jece.2017.11.038 10.1016/j.jhazmat.2011.04.074 10.1016/j.watres.2019.05.043 10.1016/j.jconhyd.2017.07.006 10.1021/es702732g 10.1016/j.jes.2017.06.006 10.1016/j.colsurfa.2019.124117 10.1016/j.cej.2016.12.135 10.1016/j.cej.2015.08.004 10.1016/j.jconhyd.2019.103560 10.1016/j.watres.2007.10.038 10.1007/s11270-020-04649-0 10.1038/nature02130 10.1016/j.eti.2015.09.001 10.1021/acs.iecr.6b03006 10.1016/j.jhazmat.2012.11.028 10.1016/j.jenvman.2019.03.088 10.1021/es204714w 10.1016/j.eti.2019.100363 10.1016/j.chemosphere.2018.08.051 10.1016/S1002-0160(18)60027-X 10.1016/j.jhazmat.2007.10.006 10.1080/09593332708618695 10.1016/j.jhazmat.2008.11.050 10.1016/j.petrol.2020.107612 10.1016/j.jhazmat.2008.03.061 10.1021/es060298e 10.1016/j.jconhyd.2012.05.006 10.1016/j.engfailanal.2006.12.001 10.1023/A:1006634728321 10.1016/j.chemosphere.2020.126620 10.1016/j.jenvman.2019.04.092 10.1016/j.cej.2015.10.006 10.1016/j.watres.2007.08.010 10.1002/wer.1103 10.1016/j.watres.2004.09.012 10.1080/10934529.2012.668106 10.1002/rem.21461 10.1016/j.envpol.2006.05.025 10.1038/srep33266 10.1016/j.colsurfa.2016.07.002 10.1016/j.colsurfa.2004.12.039 10.1016/j.cej.2014.12.019 10.1002/jctb.5485 10.1016/j.envpol.2011.02.001 10.1016/j.jhazmat.2009.01.017 10.1016/j.chemosphere.2017.11.174 10.1016/j.watres.2017.01.029 10.1007/s11356-020-08781-6 10.1016/j.jconhyd.2020.103602 10.1021/acs.est.6b05477 10.1016/j.jconhyd.2013.03.007 10.1016/j.colsurfa.2020.125216 10.1016/j.watres.2007.07.021 10.1007/s12303-011-0029-5 10.1016/j.jconrel.2018.06.007 10.1061/(ASCE)EE.1943-7870.0000616 10.1016/S1002-0160(18)60046-3 10.1016/j.chemosphere.2017.07.098 10.1016/j.chemosphere.2004.07.048 10.1021/es00064a001 10.1111/gwmr.12101 10.1007/s11242-020-01458-1 10.1002/clen.201100609 10.1111/j.1745-6584.2012.00942.x 10.1016/j.jhazmat.2009.08.106 10.1016/j.jconhyd.2016.01.003 10.1021/es200716s 10.1021/ie4041115 10.1016/j.chemosphere.2020.126854 10.1016/j.jare.2019.07.003 10.1021/es405775q 10.1007/s11356-019-06547-3 10.1016/j.eti.2018.02.001 10.1016/j.colsurfa.2014.12.026 10.1016/j.cis.2019.102061 10.1016/j.scitotenv.2017.11.347 10.1016/j.eti.2017.08.004 10.1016/j.colsurfa.2013.02.055 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2020.144142 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 33302075 10_1016_j_scitotenv_2020_144142 S0048969720376737 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAQXK AATTM AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ XPP ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c404t-dc097627ff5e67d31548421c2b6a335c0d8a4a1c071a77c0bc66ad5c1f079ec83 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Thu Jul 10 22:07:08 EDT 2025 Tue Aug 05 10:56:34 EDT 2025 Wed Feb 19 02:29:33 EST 2025 Tue Jul 01 04:24:42 EDT 2025 Thu Apr 24 22:52:15 EDT 2025 Wed Dec 04 16:48:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil Tailing Oil contamination Rebound Groundwater Surfactant |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-dc097627ff5e67d31548421c2b6a335c0d8a4a1c071a77c0bc66ad5c1f079ec83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 33302075 |
PQID | 2470027639 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2986252842 proquest_miscellaneous_2470027639 pubmed_primary_33302075 crossref_citationtrail_10_1016_j_scitotenv_2020_144142 crossref_primary_10_1016_j_scitotenv_2020_144142 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2020_144142 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-20 |
PublicationDateYYYYMMDD | 2021-02-20 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – sequence: 0 name: Elsevier B.V |
References | Iglesias, Sanromán, Pazos (bb0135) 2014; 53 Balseiro-Romero, Monterroso, Casares (bb0015) 2018; 28 Li, Hanlie (bb0195) 2008; 42 Long, Fu, Gao, Li, Chen (bb0230) 2014; 53 Lominchar, Lorenzo, Romero, Santos (bb0225) 2018; 93 Bettahar, Ducreux, Schafer, Dorpe (bb0030) 1999; 37 Brusseau, Carroll, Allen, Baker, DiGuiseppi, Hatton (bb0040) 2011; 45 Lee, Kim, Kim (bb0190) 2011; 15 Wang, Keller (bb0360) 2008; 42 Zhou, Zhu (bb0445) 2008; 42 Bouzid, Maire, Brunol, Caradec, Fatin-Rouge (bb0035) 2017; 5 Huang, Chen (bb0125) 2016; 39 Datta, Tiwari, Pandey (bb0075) 2020; 195 Rosen, Kunjappu (bb0295) 2012 Sharma, Kostarelos, Lenschow, Christensen, de Blanc (bb0300) 2020; 230 Olasanmi, Thring (bb0270) 2020; 21 Wei, Liang, Tong, Guo, Dang (bb0385) 2015; 468 Ren, Zhou, Wang, Peng, Li (bb0280) 2020; 585 Zheng, Gao, Sun, Shi, Xu, Wu (bb0415) 2016; 283 Wei, Liang, Lin, Guo, Dang (bb0380) 2015; 264 Li, Guo, Hu (bb0200) 2016; 286 Robert, Martel, Lefebvre, Lauzon, Morin (bb0285) 2017; 204 Stroo, Leeson, Marqusee, Johnson, Ward, Kavanaugh (bb0325) 2012; 46 Azevedo (bb0010) 2007; 14 Wang, Liu, Peng, Lv (bb0375) 2019; 38 Niu, Yin, Wang, Li, Guo, Li (bb0260) 2020; 39 Silva, Liberatore, John, McCray (bb0315) 2013; 139 Cheng, Zeng, Huang, Yang, Lai, Zhang (bb0060) 2017; 314 Urum, Pekdemir (bb0355) 2004; 57 Jahan, Bodratti, Tsianou, Alexandridis (bb0140) 2020; 275 Karthick, Roy, Chattopadhyay (bb0165) 2019; 243 Chen, Li, Huang (bb0050) 2017; 37 Talvenmaki, Lallukka, Survo, Romantschuk (bb0335) 2019; 26 Javanbakht, Goual (bb0145) 2016; 55 EthicalChem (bb0090) 2020 Dahal, Holcomb, Socci (bb0070) 2016; 26 Hadley, Newell (bb0115) 2012; 50 Sra, Thomson, Barker (bb0320) 2013; 150 Li, Kang, Liu, Wang, Li (bb0210) 2019; 13 Tsai, Kao, Yeh, Liang, Chien (bb0350) 2009; 161 Pei, Zhu, Cai, Shi, Li (bb0275) 2017; 185 Befkadu, Chen (bb0020) 2018; 28 Lee, Kang, Do (bb0185) 2005; 39 Zhou, Wang, Chen, Zhu (bb0455) 2013; 425 Besha, Bekele, Naidu, Chadalavada (bb0025) 2018; 9 Forey, Atteia, Omari, Bertin (bb0100) 2020; 228 Kobayashi, Kaminaga, Navarro, Iimura (bb0175) 2012; 47 O’Connor, Hou, Ok, Song, Sarmah, Li (bb0265) 2018; 283 Logeshwaran, Megharaj, Chadalavada, Bowman, Naidu (bb0220) 2018; 10 Karthick, Chauhan, Krzan, Chattopadhyay (bb0155) 2019; 14 Suchomel, Pennell (bb0330) 2006; 40 Zhang, Mao, Crittenden, Liu, Du (bb0395) 2017; 119 Zhang, Liu, Li, Kan, Tomson (bb0400) 2018; 211 Tatti, Papini, Sappa, Raboni, Arjmand, Viotti (bb0340) 2018; 622–623 Zhong, Szecsody, Oostrom, Truex, Shen, Li (bb0420) 2011; 191 Kim, Lee, Heo, Lee, Yoo, Kim (bb0170) 2019; 91 Zhou, Yang, Lou, Zhu (bb0450) 2011; 159 Hall, Tharakan, Hallock, Cleveland, Jefferson (bb0120) 2003; 426 EthicalChem (bb0085) 2020 Davin, Starren, Deleu, Lognay, Colinet, Fauconnier (bb0080) 2018; 194 Guan, Tang, Nishimura, Katou, Liu, Qing (bb0110) 2018; 64 Li, Sun, Hu, Zhang, Luo, Wu (bb0205) 2016; 48 Mackay, Cherry (bb0245) 1989; 23 Zhong, Oostrom, Truex, Vermeul, Szecsody (bb0425) 2013; 244–245 Zhao, Jiao, Sun, Qin, Bai (bb0410) 2015; 46 Zhang, Feng, Zhang, Dong, Pan (bb0405) 2019; 160 Zhou, Zhu (bb0440) 2007; 147 Alcantara, Gomez, Pazos, Sanroman (bb0005) 2009; 166 Zhong, Zhang, Liu, Yang, Brusseau, Zeng (bb0430) 2016; 6 Ahna, Kima, Woob, Parka (bb0460) 2008; 154 Javanbakht, Goual (bb0150) 2016; 185 Truex, Vermeul, Adamson, Oostrom, Zhong, Mackley (bb0345) 2015; 35 Huo, Liu, Yang, Ahmad, Zhong (bb0130) 2020; 252 Silva, Smith, Munakata-Marr, McCray (bb0310) 2012; 136-137 Cheng, Wong (bb0055) 2006; 27 Wang, Wu, Sun, Wang, Liu (bb0370) 2017; 11 Zhou, Zhu (bb0435) 2005; 255 Lai, Huang, Wei, Chang (bb0180) 2009; 167 Clifton, Dahlen, Johnson (bb0065) 2014; 48 Fleifel, Izadi, Park, Gupta, Lee, Kam (bb0095) 2020; 134 Li, Wu, Zhang, Liu, Wang, Xu (bb0215) 2020; 27 Siegrist, Crimi, Brown (bb0305) 2011 Wei, Ran, He, Zhou, Huangfu, Yu (bb0390) 2020; 254 Cao, Temple, Li, Coulon, Sui (bb0045) 2015; 4 Nasiri, Biria (bb0250) 2020; 603 Gitipour, Hedayati, Madadian (bb0105) 2015; 43 Wang, Peng, Xie, Deng, Deng (bb0365) 2017; 51 Lowry, Sedghi, Goual (bb0235) 2016; 506 Luo, Zeng, Huang, Zhang, Fang, Qu (bb0240) 2010; 173 Rongsayamanont, Tongcumpou, Phasukarratchai (bb0290) 2020; 231 Karthick, Roy, Chattopadhyay (bb0160) 2019; 240 Nguyen, Youssef, McInerney, Sabatini (bb0255) 2008; 42 Huang (10.1016/j.scitotenv.2020.144142_bb0125) 2016; 39 Zhao (10.1016/j.scitotenv.2020.144142_bb0410) 2015; 46 Wang (10.1016/j.scitotenv.2020.144142_bb0360) 2008; 42 Nguyen (10.1016/j.scitotenv.2020.144142_bb0255) 2008; 42 Li (10.1016/j.scitotenv.2020.144142_bb0205) 2016; 48 Gitipour (10.1016/j.scitotenv.2020.144142_bb0105) 2015; 43 Hall (10.1016/j.scitotenv.2020.144142_bb0120) 2003; 426 Nasiri (10.1016/j.scitotenv.2020.144142_bb0250) 2020; 603 Tatti (10.1016/j.scitotenv.2020.144142_bb0340) 2018; 622–623 Zhang (10.1016/j.scitotenv.2020.144142_bb0405) 2019; 160 Balseiro-Romero (10.1016/j.scitotenv.2020.144142_bb0015) 2018; 28 Ren (10.1016/j.scitotenv.2020.144142_bb0280) 2020; 585 Tsai (10.1016/j.scitotenv.2020.144142_bb0350) 2009; 161 Urum (10.1016/j.scitotenv.2020.144142_bb0355) 2004; 57 Wei (10.1016/j.scitotenv.2020.144142_bb0380) 2015; 264 Kim (10.1016/j.scitotenv.2020.144142_bb0170) 2019; 91 Befkadu (10.1016/j.scitotenv.2020.144142_bb0020) 2018; 28 Bouzid (10.1016/j.scitotenv.2020.144142_bb0035) 2017; 5 Silva (10.1016/j.scitotenv.2020.144142_bb0310) 2012; 136-137 Zhong (10.1016/j.scitotenv.2020.144142_bb0430) 2016; 6 Dahal (10.1016/j.scitotenv.2020.144142_bb0070) 2016; 26 Zhou (10.1016/j.scitotenv.2020.144142_bb0445) 2008; 42 Li (10.1016/j.scitotenv.2020.144142_bb0210) 2019; 13 Lee (10.1016/j.scitotenv.2020.144142_bb0190) 2011; 15 Logeshwaran (10.1016/j.scitotenv.2020.144142_bb0220) 2018; 10 Clifton (10.1016/j.scitotenv.2020.144142_bb0065) 2014; 48 Karthick (10.1016/j.scitotenv.2020.144142_bb0155) 2019; 14 Li (10.1016/j.scitotenv.2020.144142_bb0200) 2016; 286 Brusseau (10.1016/j.scitotenv.2020.144142_bb0040) 2011; 45 Long (10.1016/j.scitotenv.2020.144142_bb0230) 2014; 53 Sra (10.1016/j.scitotenv.2020.144142_bb0320) 2013; 150 Chen (10.1016/j.scitotenv.2020.144142_bb0050) 2017; 37 O’Connor (10.1016/j.scitotenv.2020.144142_bb0265) 2018; 283 Cao (10.1016/j.scitotenv.2020.144142_bb0045) 2015; 4 Karthick (10.1016/j.scitotenv.2020.144142_bb0160) 2019; 240 Lee (10.1016/j.scitotenv.2020.144142_bb0185) 2005; 39 Niu (10.1016/j.scitotenv.2020.144142_bb0260) 2020; 39 Besha (10.1016/j.scitotenv.2020.144142_bb0025) 2018; 9 Mackay (10.1016/j.scitotenv.2020.144142_bb0245) 1989; 23 Luo (10.1016/j.scitotenv.2020.144142_bb0240) 2010; 173 Siegrist (10.1016/j.scitotenv.2020.144142_bb0305) 2011 Silva (10.1016/j.scitotenv.2020.144142_bb0315) 2013; 139 Forey (10.1016/j.scitotenv.2020.144142_bb0100) 2020; 228 Kobayashi (10.1016/j.scitotenv.2020.144142_bb0175) 2012; 47 EthicalChem (10.1016/j.scitotenv.2020.144142_bb0090) Lai (10.1016/j.scitotenv.2020.144142_bb0180) 2009; 167 Wang (10.1016/j.scitotenv.2020.144142_bb0370) 2017; 11 Wang (10.1016/j.scitotenv.2020.144142_bb0375) 2019; 38 Fleifel (10.1016/j.scitotenv.2020.144142_bb0095) 2020; 134 Truex (10.1016/j.scitotenv.2020.144142_bb0345) 2015; 35 Zhou (10.1016/j.scitotenv.2020.144142_bb0455) 2013; 425 Azevedo (10.1016/j.scitotenv.2020.144142_bb0010) 2007; 14 Datta (10.1016/j.scitotenv.2020.144142_bb0075) 2020; 195 Talvenmaki (10.1016/j.scitotenv.2020.144142_bb0335) 2019; 26 Zhou (10.1016/j.scitotenv.2020.144142_bb0450) 2011; 159 Guan (10.1016/j.scitotenv.2020.144142_bb0110) 2018; 64 Lowry (10.1016/j.scitotenv.2020.144142_bb0235) 2016; 506 Zhang (10.1016/j.scitotenv.2020.144142_bb0395) 2017; 119 Zhou (10.1016/j.scitotenv.2020.144142_bb0440) 2007; 147 Ahna (10.1016/j.scitotenv.2020.144142_bb0460) 2008; 154 Zhong (10.1016/j.scitotenv.2020.144142_bb0425) 2013; 244–245 Bettahar (10.1016/j.scitotenv.2020.144142_bb0030) 1999; 37 Javanbakht (10.1016/j.scitotenv.2020.144142_bb0150) 2016; 185 Karthick (10.1016/j.scitotenv.2020.144142_bb0165) 2019; 243 Robert (10.1016/j.scitotenv.2020.144142_bb0285) 2017; 204 Zheng (10.1016/j.scitotenv.2020.144142_bb0415) 2016; 283 Zhou (10.1016/j.scitotenv.2020.144142_bb0435) 2005; 255 Cheng (10.1016/j.scitotenv.2020.144142_bb0055) 2006; 27 Wang (10.1016/j.scitotenv.2020.144142_bb0365) 2017; 51 Olasanmi (10.1016/j.scitotenv.2020.144142_bb0270) 2020; 21 Suchomel (10.1016/j.scitotenv.2020.144142_bb0330) 2006; 40 Zhong (10.1016/j.scitotenv.2020.144142_bb0420) 2011; 191 EthicalChem (10.1016/j.scitotenv.2020.144142_bb0085) Zhang (10.1016/j.scitotenv.2020.144142_bb0400) 2018; 211 Wei (10.1016/j.scitotenv.2020.144142_bb0385) 2015; 468 Hadley (10.1016/j.scitotenv.2020.144142_bb0115) 2012; 50 Davin (10.1016/j.scitotenv.2020.144142_bb0080) 2018; 194 Li (10.1016/j.scitotenv.2020.144142_bb0195) 2008; 42 Sharma (10.1016/j.scitotenv.2020.144142_bb0300) 2020; 230 Lominchar (10.1016/j.scitotenv.2020.144142_bb0225) 2018; 93 Pei (10.1016/j.scitotenv.2020.144142_bb0275) 2017; 185 Li (10.1016/j.scitotenv.2020.144142_bb0215) 2020; 27 Stroo (10.1016/j.scitotenv.2020.144142_bb0325) 2012; 46 Jahan (10.1016/j.scitotenv.2020.144142_bb0140) 2020; 275 Rosen (10.1016/j.scitotenv.2020.144142_bb0295) 2012 Huo (10.1016/j.scitotenv.2020.144142_bb0130) 2020; 252 Iglesias (10.1016/j.scitotenv.2020.144142_bb0135) 2014; 53 Rongsayamanont (10.1016/j.scitotenv.2020.144142_bb0290) 2020; 231 Alcantara (10.1016/j.scitotenv.2020.144142_bb0005) 2009; 166 Javanbakht (10.1016/j.scitotenv.2020.144142_bb0145) 2016; 55 Cheng (10.1016/j.scitotenv.2020.144142_bb0060) 2017; 314 Wei (10.1016/j.scitotenv.2020.144142_bb0390) 2020; 254 |
References_xml | – volume: 47 start-page: 1138 year: 2012 end-page: 1145 ident: bb0175 article-title: Application of aqueous saponin on the remediation of polycyclic aromatic hydrocarbons-contaminated soil publication-title: J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. – volume: 585 year: 2020 ident: bb0280 article-title: Treatment mechanism of sludge containing highly viscous heavy oil using biosurfactant publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects – volume: 150 start-page: 35 year: 2013 end-page: 44 ident: bb0320 article-title: Persulfate injection into a gasoline source zone publication-title: J. Contam. Hydrol. – year: 2012 ident: bb0295 article-title: Surfactants and Interfacial Phenomena – volume: 6 year: 2016 ident: bb0430 article-title: Sub-CMC solubilization of dodecane by rhamnolipid in saturated porous media publication-title: Sci. Rep. – volume: 42 start-page: 3381 year: 2008 end-page: 3387 ident: bb0360 article-title: Particle-size dependent sorption and desorption of pesticides within a water-soil-nonionic surfactant system publication-title: Environ. Sci. Technol. – volume: 160 start-page: 29 year: 2019 end-page: 38 ident: bb0405 article-title: Ozone-encapsulated colloidal gas aphrons for in situ and targeting remediation of phenanthrene-contaminated sediment-aquifer publication-title: Water Res. – volume: 5 start-page: 6098 year: 2017 end-page: 6106 ident: bb0035 article-title: Compatibility of surfactants with activated-persulfate for the selective oxidation of PAH in groundwater remediation publication-title: J. Environ. Chem. Eng. – volume: 167 start-page: 609 year: 2009 end-page: 614 ident: bb0180 article-title: Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil publication-title: J. Hazard. Mater. – volume: 42 start-page: 1735 year: 2008 end-page: 1743 ident: bb0255 article-title: Rhamnolipid biosurfactant mixtures for environmental remediation publication-title: Water Res. – volume: 231 start-page: 267 year: 2020 ident: bb0290 article-title: Diesel-contaminated soil washing by mixed nonionic surfactant emulsion and seed germination test publication-title: Water Air Soil Pollut. – volume: 468 start-page: 211 year: 2015 end-page: 218 ident: bb0385 article-title: Enhanced solubilization and desorption of pyrene from soils by saline anionic-nonionic surfactant systems publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects – volume: 211 start-page: 1183 year: 2018 end-page: 1192 ident: bb0400 article-title: Sorption and desorption characteristics of anionic surfactants to soil sediments publication-title: Chemosphere – volume: 147 start-page: 350 year: 2007 end-page: 357 ident: bb0440 article-title: Enhanced desorption of phenanthrene from contaminated soil using anionic/nonionic mixed surfactant publication-title: Environ. Pollut. – volume: 11 start-page: 3239 year: 2017 end-page: 3243 ident: bb0370 article-title: Characterization and effect of washing diesel oil-contaminated aged soil by Tween 80 publication-title: Chinese J. Environ. Eng. – volume: 57 start-page: 1139 year: 2004 end-page: 1150 ident: bb0355 article-title: Evaluation of biosurfactants for crude oil contaminated soil washing publication-title: Chemosphere – year: 2020 ident: bb0085 article-title: SEPR (surfactant enhanced product recovery) pilot test for remediation of creosote at a Louisiana, U.S. superfund site – volume: 275 year: 2020 ident: bb0140 article-title: Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications publication-title: Adv. Colloid Interf. Sci. – volume: 23 start-page: 630 year: 1989 end-page: 636 ident: bb0245 article-title: Groundwater contamination: pump-and-treat remediation publication-title: Environ. Sci. Technol. – volume: 426 start-page: 318 year: 2003 end-page: 322 ident: bb0120 article-title: Hydrocarbons and the evolution of human culture publication-title: Nature – volume: 42 start-page: 101 year: 2008 end-page: 108 ident: bb0445 article-title: Enhanced soil flushing of phenanthrene by anionic-nonionic mixed surfactant publication-title: Water Res. – volume: 50 start-page: 669 year: 2012 end-page: 678 ident: bb0115 article-title: Groundwater remediation: the next 30 years publication-title: Ground Water – volume: 194 start-page: 414 year: 2018 end-page: 421 ident: bb0080 article-title: Could saponins be used to enhance bioremediation of polycyclic aromatic hydrocarbons in aged-contaminated soils? publication-title: Chemosphere – volume: 283 start-page: 200 year: 2018 end-page: 213 ident: bb0265 article-title: Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: a review publication-title: J. Control. Release – volume: 93 start-page: 1270 year: 2018 end-page: 1278 ident: bb0225 article-title: Remediation of soil contaminated by PAHs and TPH using alkaline activated persulfate enhanced by surfactant addition at flow conditions publication-title: J. Chem. Technol. Biotechnol. – volume: 185 start-page: 1112 year: 2017 end-page: 1121 ident: bb0275 article-title: Surfactant flushing remediation of o-dichlorobenzene and p-dichlorobenzene contaminated soil publication-title: Chemosphere – volume: 228 year: 2020 ident: bb0100 article-title: Saponin foam for soil remediation: on the use of polymer or solid particles to enhance foam resistance against oil publication-title: J. Contam. Hydrol. – volume: 252 year: 2020 ident: bb0130 article-title: Surfactant-enhanced aquifer remediation: mechanisms, influences, limitations and the countermeasures publication-title: Chemosphere – volume: 21 start-page: 79 year: 2020 end-page: 90 ident: bb0270 article-title: Evaluating rhamnolipid-enhanced washing as a first step in remediation of drill cuttings and petroleum-contaminated soils publication-title: J. Adv. Res. – volume: 38 start-page: 4012 year: 2019 end-page: 4019 ident: bb0375 article-title: Review on surfactin biosurfactant and its performance of enhanced oil recovery publication-title: Chem. Indust. Eng. Prog. – volume: 53 start-page: 2917 year: 2014 end-page: 2923 ident: bb0135 article-title: Surfactant-enhanced solubilization and simultaneous degradation of phenanthrene in marine sediment by electro-Fenton treatment publication-title: Indust. Eng. Chem. Res. – volume: 45 start-page: 5352 year: 2011 end-page: 5358 ident: bb0040 article-title: Impact of in situ chemical oxidation on contaminant mass discharge: linking source-zone and plume-scale characterizations of remediation performance publication-title: Environ. Sci. Technol. – volume: 13 start-page: 1662 year: 2019 end-page: 1669 ident: bb0210 article-title: Surfactant desorption and purification effect on petroleum contaminated aquifer medium publication-title: Chinese J. Environ. Eng. – volume: 51 start-page: 7055 year: 2017 end-page: 7064 ident: bb0365 article-title: Compatibility of surfactants and thermally activated persulfate for enhanced subsurface remediation publication-title: Environ. Sci. Technol. – volume: 46 start-page: 3969 year: 2015 end-page: 3974 ident: bb0410 article-title: Solubilization of Tween80 on enhanced remediation of naphthalene contaminated groundwater by ground water circulation well publication-title: J. Central South University (Sci. Technol.) – volume: 603 year: 2020 ident: bb0250 article-title: Extraction of the indigenous crude oil dissolved biosurfactants and their potential in enhanced oil recovery publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects – volume: 35 start-page: 34 year: 2015 end-page: 45 ident: bb0345 article-title: Field test of enhanced remedial amendment delivery using a shear-thinning fluid publication-title: Groundwater Monit. Rem. – volume: 255 start-page: 145 year: 2005 end-page: 152 ident: bb0435 article-title: Solubilization of polycyclic aromatic hydrocarbons by anionic–nonionic mixed surfactant publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects – volume: 243 start-page: 187 year: 2019 end-page: 205 ident: bb0165 article-title: A review on the application of chemical surfactant and surfactant foam for remediation of petroleum oil contaminated soil publication-title: J. Environ. Manag. – volume: 48 start-page: 516 year: 2016 end-page: 522 ident: bb0205 article-title: Elution effects of surfactants on petroleum contaminants in soil publication-title: Soils – volume: 161 start-page: 111 year: 2009 end-page: 119 ident: bb0350 article-title: Application of surfactant enhanced permanganate oxidation and bidegradation of trichloroethylene in groundwater publication-title: J. Hazard. Mater. – volume: 37 start-page: 497 year: 2017 end-page: 502 ident: bb0050 article-title: Desorption of petroleum pollutants from soil in presence of surfactants publication-title: Environ. Protect. Chem. Indust. – volume: 244–245 start-page: 160 year: 2013 end-page: 170 ident: bb0425 article-title: Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation publication-title: J. Hazard. Mater. – volume: 191 start-page: 249 year: 2011 end-page: 257 ident: bb0420 article-title: Enhanced remedial amendment delivery to subsurface using shear thinning fluid and aqueous foam publication-title: J. Hazard. Mater. – volume: 139 start-page: 149 year: 2013 end-page: 159 ident: bb0315 article-title: Characterization of bulk fluid and transport properties for simulating polymer-improved aquifer remediation publication-title: J. Environ. Eng. – volume: 37 start-page: 255 year: 1999 end-page: 276 ident: bb0030 article-title: Surfactant enhanced in situ remediation of LNAPL contaminated aquifers: large scale studies on a controlled experimental site publication-title: Transp. Porous Media – volume: 43 start-page: 1419 year: 2015 end-page: 1425 ident: bb0105 article-title: Soil washing for reduction of aromatic and aliphatic contaminants in soil publication-title: Clean-Soil Air Water – volume: 204 start-page: 57 year: 2017 end-page: 65 ident: bb0285 article-title: Impact of heterogeneous properties of soil and LNAPL on surfactant-enhanced capillary desaturation publication-title: J. Contam. Hydrol. – volume: 14 start-page: 978 year: 2007 end-page: 994 ident: bb0010 article-title: Failure analysis of a crude oil pipeline publication-title: Eng. Fail. Anal. – volume: 91 start-page: 739 year: 2019 end-page: 747 ident: bb0170 article-title: Desorption and solubilization of anthracene by a rhamnolipid biosurfactant from Rhodococcus fascians publication-title: Water Environ. Res. – volume: 134 start-page: 565 year: 2020 end-page: 592 ident: bb0095 article-title: Shallow subsurface environmental remediation by using tracer–surfactant–foam processes: history-matching and performance prediction publication-title: Transp. Porous Media – volume: 159 start-page: 1198 year: 2011 end-page: 1204 ident: bb0450 article-title: Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant publication-title: Environ. Pollut. – volume: 48 start-page: 5127 year: 2014 end-page: 5135 ident: bb0065 article-title: Effect of dissolved oxygen manipulation on diffusive emissions from NAPL-impacted low permeability soil layers publication-title: Environ. Sci. Technol. – volume: 39 start-page: 16 year: 2016 end-page: 21 ident: bb0125 article-title: Experimental study on surfactants used in soilwashing for diesel-oil contaminated soil remediation publication-title: Environ. Sci. Technol. – volume: 154 start-page: 153 year: 2008 end-page: 160 ident: bb0460 article-title: Soil washing using various nonionic surfactants and their recovery by selective adsorption with activated carbon publication-title: J. Hazard. Mater. – volume: 28 start-page: 383 year: 2018 end-page: 410 ident: bb0020 article-title: Surfactant-enhanced soil washing for removal of petroleum hydrocarbons from contaminated soils: a review publication-title: Pedosphere – volume: 622–623 start-page: 164 year: 2018 end-page: 171 ident: bb0340 article-title: Contaminant back-diffusion from low-permeability layers as affected by groundwater velocity: a laboratory investigation by box model and image analysis publication-title: Sci. Total Environ. – volume: 28 start-page: 833 year: 2018 end-page: 847 ident: bb0015 article-title: Environmental fate of petroleum hydrocarbons in soil: review of multiphase transport, mass transfer, and natural attenuation processes publication-title: Pedosphere – volume: 64 start-page: 197 year: 2018 end-page: 206 ident: bb0110 article-title: Surfactant-enhanced flushing enhances colloid transport and alters macroporosity in diesel-contaminated soil publication-title: J. Environ. Sci. – volume: 55 start-page: 11736 year: 2016 end-page: 11746 ident: bb0145 article-title: Impact of surfactant structure on NAPL mobilization and solubilization in porous media publication-title: Indust. Eng. Chem. Res. – start-page: 1 year: 2011 end-page: 32 ident: bb0305 article-title: In situ chemical oxidation: technology description and status publication-title: In Situ Chemical Oxidation for Groundwater Remediation – volume: 283 start-page: 595 year: 2016 end-page: 603 ident: bb0415 article-title: Removal of tetrachloroethylene from homogeneous and heterogeneous porous media: combined effects of surfactant solubilization and oxidant degradation publication-title: Chem. Eng. J. – volume: 4 start-page: 227 year: 2015 end-page: 239 ident: bb0045 article-title: Influence of particle size and organic carbon content on distribution and fate of aliphatic and aromatic hydrocarbon fractions in chalks publication-title: Environ. Technol. Innov. – volume: 46 start-page: 6438 year: 2012 end-page: 6447 ident: bb0325 article-title: Chlorinated ethene source remediation: lessons learned publication-title: Environ. Sci. Technol. – volume: 185 start-page: 61 year: 2016 end-page: 73 ident: bb0150 article-title: Mobilization and micellar solubilization of NAPL contaminants in aquifer rocks publication-title: J. Contam. Hydrol. – volume: 264 start-page: 807 year: 2015 end-page: 814 ident: bb0380 article-title: Clay mineral dependent desorption of pyrene from soils by single and mixed anionic–nonionic surfactants publication-title: Chem. Eng. J. – volume: 10 start-page: 175 year: 2018 end-page: 193 ident: bb0220 article-title: Petroleum hydrocarbons (PH) in groundwater aquifers: an overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches publication-title: Environ. Technol. Innov. – volume: 39 start-page: 139 year: 2005 end-page: 146 ident: bb0185 article-title: Application of nonionic surfactant-enhanced in situ flushing to a diesel contaminated site publication-title: Water Res. – volume: 136-137 start-page: 117 year: 2012 end-page: 130 ident: bb0310 article-title: The effect of system variables on in situ sweep-efficiency improvements via viscosity modification publication-title: J. Contam. Hydrol. – volume: 425 start-page: 122 year: 2013 end-page: 128 ident: bb0455 article-title: Enhanced soil washing of phenanthrene by a plant-derived natural biosurfactant, Sapindus saponin publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects – volume: 166 start-page: 462 year: 2009 end-page: 468 ident: bb0005 article-title: PAHs soil decontamination in two steps: desorption and electrochemical treatment publication-title: J. Hazard. Mater. – volume: 286 start-page: 191 year: 2016 end-page: 197 ident: bb0200 article-title: The influence of clay minerals and surfactants on hydrocarbon removal during the washing of petroleum-contaminated soil publication-title: Chem. Eng. J. – volume: 26 start-page: 101 year: 2016 end-page: 108 ident: bb0070 article-title: Surfactant-oxidant co-application for soil and groundwater remediation publication-title: Remediation – year: 2020 ident: bb0090 article-title: SEPR and S-ISCO remediation of MGP gasworks, Sydney Australia – volume: 27 start-page: 23323 year: 2020 end-page: 23330 ident: bb0215 article-title: Effects of soil properties on the remediation of diesel-contaminated soil by Triton X-100-aided washing. Environ publication-title: Sci. Pollut. Res. Int – volume: 39 start-page: 2302 year: 2020 end-page: 2308 ident: bb0260 article-title: Selection of cleansing agents for petroleum-contaminated soil and assessment of their efficiency publication-title: Chinese J. Ecol. – volume: 14 year: 2019 ident: bb0155 article-title: Potential of surfactant foam stabilized by ethylene glycol and allyl alcohol for the remediation of diesel contaminated soil publication-title: Environ. Technol. Innov. – volume: 53 start-page: 1277 year: 2014 end-page: 1280 ident: bb0230 article-title: Removing petroleum polluted soil with biological nonionic surfactant publication-title: Hubei Agricul. Sci. – volume: 9 start-page: 303 year: 2018 end-page: 322 ident: bb0025 article-title: Recent advances in surfactant-enhanced in-situ chemical oxidation for the remediation of non-aqueous phase liquid contaminated soils and aquifers publication-title: Environ. Technol. Innov. – volume: 230 year: 2020 ident: bb0300 article-title: Surfactant flooding makes a comeback: results of a full-scale, field implementation to recover mobilized NAPL publication-title: J. Contam. Hydrol. – volume: 506 start-page: 485 year: 2016 end-page: 494 ident: bb0235 article-title: Molecular simulations of NAPL removal from mineral surfaces using microemulsions and surfactants publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects – volume: 40 start-page: 6110 year: 2006 end-page: 6116 ident: bb0330 article-title: Reductions in contaminant mass discharge following partial mass removal from DNAPL source zones publication-title: Environ. Sci. Technol. – volume: 254 year: 2020 ident: bb0390 article-title: Desorption process and morphological analysis of real polycyclic aromatic hydrocarbons contaminated soil by the heterogemini surfactant and its mixed systems publication-title: Chemosphere – volume: 314 start-page: 98 year: 2017 end-page: 113 ident: bb0060 article-title: Advantages and challenges of Tween 80 surfactant-enhanced technologies for the remediation of soils contaminated with hydrophobic organic compounds publication-title: Chem. Eng. J. – volume: 119 start-page: 114 year: 2017 end-page: 125 ident: bb0395 article-title: Groundwater remediation from the past to the future: a bibliometric analysis publication-title: Water Res. – volume: 26 start-page: 34670 year: 2019 end-page: 34684 ident: bb0335 article-title: Fenton's reaction-based chemical oxidation in suboptimal conditions can lead to mobilization of oil hydrocarbons but also contribute to the total removal of volatile compounds publication-title: Environ. Sci. Pollut. Res. – volume: 173 start-page: 455 year: 2010 end-page: 461 ident: bb0240 article-title: Effect of groups difference in surfactant on solubilization of aqueous phenol using MEUF publication-title: J. Hazard. Mater. – volume: 195 year: 2020 ident: bb0075 article-title: Oil washing proficiency of biosurfactant produced by isolated Bacillus tequilensis MK 729017 from Assam reservoir soil publication-title: J. Pet. Sci. Eng. – volume: 42 start-page: 605 year: 2008 end-page: 614 ident: bb0195 article-title: Combination of surfactant solubilization with permanganate oxidation for DNAPL remediation publication-title: Water Res. – volume: 15 start-page: 313 year: 2011 end-page: 321 ident: bb0190 article-title: In-situ biosurfactant flushing, coupled with a highly pressurized air injection, to remediate the bunker oil contaminated site publication-title: Geosci. J. – volume: 240 start-page: 93 year: 2019 end-page: 107 ident: bb0160 article-title: Comparison of zero-valent iron and iron oxide nanoparticle stabilized alkyl polyglucoside phosphate foams for remediation of diesel-contaminated soils publication-title: J. Environ. Manag. – volume: 27 start-page: 835 year: 2006 end-page: 844 ident: bb0055 article-title: Effect of synthetic surfactants on the solubilization and distribution of PAHs in water/soil-water systems publication-title: Environ. Technol. – volume: 5 start-page: 6098 year: 2017 ident: 10.1016/j.scitotenv.2020.144142_bb0035 article-title: Compatibility of surfactants with activated-persulfate for the selective oxidation of PAH in groundwater remediation publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2017.11.038 – volume: 191 start-page: 249 year: 2011 ident: 10.1016/j.scitotenv.2020.144142_bb0420 article-title: Enhanced remedial amendment delivery to subsurface using shear thinning fluid and aqueous foam publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.04.074 – volume: 160 start-page: 29 year: 2019 ident: 10.1016/j.scitotenv.2020.144142_bb0405 article-title: Ozone-encapsulated colloidal gas aphrons for in situ and targeting remediation of phenanthrene-contaminated sediment-aquifer publication-title: Water Res. doi: 10.1016/j.watres.2019.05.043 – volume: 204 start-page: 57 year: 2017 ident: 10.1016/j.scitotenv.2020.144142_bb0285 article-title: Impact of heterogeneous properties of soil and LNAPL on surfactant-enhanced capillary desaturation publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2017.07.006 – volume: 39 start-page: 2302 year: 2020 ident: 10.1016/j.scitotenv.2020.144142_bb0260 article-title: Selection of cleansing agents for petroleum-contaminated soil and assessment of their efficiency publication-title: Chinese J. Ecol. – volume: 42 start-page: 3381 year: 2008 ident: 10.1016/j.scitotenv.2020.144142_bb0360 article-title: Particle-size dependent sorption and desorption of pesticides within a water-soil-nonionic surfactant system publication-title: Environ. Sci. Technol. doi: 10.1021/es702732g – volume: 64 start-page: 197 year: 2018 ident: 10.1016/j.scitotenv.2020.144142_bb0110 article-title: Surfactant-enhanced flushing enhances colloid transport and alters macroporosity in diesel-contaminated soil publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2017.06.006 – volume: 585 year: 2020 ident: 10.1016/j.scitotenv.2020.144142_bb0280 article-title: Treatment mechanism of sludge containing highly viscous heavy oil using biosurfactant publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects doi: 10.1016/j.colsurfa.2019.124117 – volume: 314 start-page: 98 year: 2017 ident: 10.1016/j.scitotenv.2020.144142_bb0060 article-title: Advantages and challenges of Tween 80 surfactant-enhanced technologies for the remediation of soils contaminated with hydrophobic organic compounds publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.12.135 – volume: 283 start-page: 595 year: 2016 ident: 10.1016/j.scitotenv.2020.144142_bb0415 article-title: Removal of tetrachloroethylene from homogeneous and heterogeneous porous media: combined effects of surfactant solubilization and oxidant degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.08.004 – year: 2012 ident: 10.1016/j.scitotenv.2020.144142_bb0295 – volume: 228 year: 2020 ident: 10.1016/j.scitotenv.2020.144142_bb0100 article-title: Saponin foam for soil remediation: on the use of polymer or solid particles to enhance foam resistance against oil publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2019.103560 – volume: 42 start-page: 1735 year: 2008 ident: 10.1016/j.scitotenv.2020.144142_bb0255 article-title: Rhamnolipid biosurfactant mixtures for environmental remediation publication-title: Water Res. doi: 10.1016/j.watres.2007.10.038 – volume: 231 start-page: 267 year: 2020 ident: 10.1016/j.scitotenv.2020.144142_bb0290 article-title: Diesel-contaminated soil washing by mixed nonionic surfactant emulsion and seed germination test publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-020-04649-0 – volume: 426 start-page: 318 year: 2003 ident: 10.1016/j.scitotenv.2020.144142_bb0120 article-title: Hydrocarbons and the evolution of human culture publication-title: Nature doi: 10.1038/nature02130 – ident: 10.1016/j.scitotenv.2020.144142_bb0085 – volume: 4 start-page: 227 year: 2015 ident: 10.1016/j.scitotenv.2020.144142_bb0045 article-title: Influence of particle size and organic carbon content on distribution and fate of aliphatic and aromatic hydrocarbon fractions in chalks publication-title: Environ. Technol. Innov. doi: 10.1016/j.eti.2015.09.001 – volume: 55 start-page: 11736 year: 2016 ident: 10.1016/j.scitotenv.2020.144142_bb0145 article-title: Impact of surfactant structure on NAPL mobilization and solubilization in porous media publication-title: Indust. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b03006 – volume: 244–245 start-page: 160 year: 2013 ident: 10.1016/j.scitotenv.2020.144142_bb0425 article-title: Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.11.028 – volume: 240 start-page: 93 year: 2019 ident: 10.1016/j.scitotenv.2020.144142_bb0160 article-title: Comparison of zero-valent iron and iron oxide nanoparticle stabilized alkyl polyglucoside phosphate foams for remediation of diesel-contaminated soils publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.03.088 – volume: 46 start-page: 6438 year: 2012 ident: 10.1016/j.scitotenv.2020.144142_bb0325 article-title: Chlorinated ethene source remediation: lessons learned publication-title: Environ. Sci. Technol. doi: 10.1021/es204714w – volume: 14 year: 2019 ident: 10.1016/j.scitotenv.2020.144142_bb0155 article-title: Potential of surfactant foam stabilized by ethylene glycol and allyl alcohol for the remediation of diesel contaminated soil publication-title: Environ. Technol. Innov. doi: 10.1016/j.eti.2019.100363 – volume: 211 start-page: 1183 year: 2018 ident: 10.1016/j.scitotenv.2020.144142_bb0400 article-title: Sorption and desorption characteristics of anionic surfactants to soil sediments publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.08.051 – volume: 28 start-page: 383 year: 2018 ident: 10.1016/j.scitotenv.2020.144142_bb0020 article-title: Surfactant-enhanced soil washing for removal of petroleum hydrocarbons from contaminated soils: a review publication-title: Pedosphere doi: 10.1016/S1002-0160(18)60027-X – volume: 154 start-page: 153 year: 2008 ident: 10.1016/j.scitotenv.2020.144142_bb0460 article-title: Soil washing using various nonionic surfactants and their recovery by selective adsorption with activated carbon publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.10.006 – volume: 27 start-page: 835 year: 2006 ident: 10.1016/j.scitotenv.2020.144142_bb0055 article-title: Effect of synthetic surfactants on the solubilization and distribution of PAHs in water/soil-water systems publication-title: Environ. Technol. doi: 10.1080/09593332708618695 – volume: 53 start-page: 1277 year: 2014 ident: 10.1016/j.scitotenv.2020.144142_bb0230 article-title: Removing petroleum polluted soil with biological nonionic surfactant publication-title: Hubei Agricul. Sci. – volume: 37 start-page: 497 year: 2017 ident: 10.1016/j.scitotenv.2020.144142_bb0050 article-title: Desorption of petroleum pollutants from soil in presence of surfactants publication-title: Environ. Protect. Chem. Indust. – volume: 166 start-page: 462 year: 2009 ident: 10.1016/j.scitotenv.2020.144142_bb0005 article-title: PAHs soil decontamination in two steps: desorption and electrochemical treatment publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.11.050 – volume: 195 year: 2020 ident: 10.1016/j.scitotenv.2020.144142_bb0075 article-title: Oil washing proficiency of biosurfactant produced by isolated Bacillus tequilensis MK 729017 from Assam reservoir soil publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.107612 – volume: 161 start-page: 111 year: 2009 ident: 10.1016/j.scitotenv.2020.144142_bb0350 article-title: Application of surfactant enhanced permanganate oxidation and bidegradation of trichloroethylene in groundwater publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.03.061 – volume: 40 start-page: 6110 year: 2006 ident: 10.1016/j.scitotenv.2020.144142_bb0330 article-title: Reductions in contaminant mass discharge following partial mass removal from DNAPL source zones publication-title: Environ. Sci. Technol. doi: 10.1021/es060298e – volume: 136-137 start-page: 117 year: 2012 ident: 10.1016/j.scitotenv.2020.144142_bb0310 article-title: The effect of system variables on in situ sweep-efficiency improvements via viscosity modification publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2012.05.006 – volume: 14 start-page: 978 year: 2007 ident: 10.1016/j.scitotenv.2020.144142_bb0010 article-title: Failure analysis of a crude oil pipeline publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2006.12.001 – volume: 37 start-page: 255 year: 1999 ident: 10.1016/j.scitotenv.2020.144142_bb0030 article-title: Surfactant enhanced in situ remediation of LNAPL contaminated aquifers: large scale studies on a controlled experimental site publication-title: Transp. Porous Media doi: 10.1023/A:1006634728321 – ident: 10.1016/j.scitotenv.2020.144142_bb0090 – volume: 252 year: 2020 ident: 10.1016/j.scitotenv.2020.144142_bb0130 article-title: Surfactant-enhanced aquifer remediation: mechanisms, influences, limitations and the countermeasures publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126620 – volume: 243 start-page: 187 year: 2019 ident: 10.1016/j.scitotenv.2020.144142_bb0165 article-title: A review on the application of chemical surfactant and surfactant foam for remediation of petroleum oil contaminated soil publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.04.092 – volume: 286 start-page: 191 year: 2016 ident: 10.1016/j.scitotenv.2020.144142_bb0200 article-title: The influence of clay minerals and surfactants on hydrocarbon removal during the washing of petroleum-contaminated soil publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.10.006 – volume: 42 start-page: 605 year: 2008 ident: 10.1016/j.scitotenv.2020.144142_bb0195 article-title: Combination of surfactant solubilization with permanganate oxidation for DNAPL remediation publication-title: Water Res. doi: 10.1016/j.watres.2007.08.010 – start-page: 1 year: 2011 ident: 10.1016/j.scitotenv.2020.144142_bb0305 article-title: In situ chemical oxidation: technology description and status – volume: 91 start-page: 739 year: 2019 ident: 10.1016/j.scitotenv.2020.144142_bb0170 article-title: Desorption and solubilization of anthracene by a rhamnolipid biosurfactant from Rhodococcus fascians publication-title: Water Environ. Res. doi: 10.1002/wer.1103 – volume: 39 start-page: 139 year: 2005 ident: 10.1016/j.scitotenv.2020.144142_bb0185 article-title: Application of nonionic surfactant-enhanced in situ flushing to a diesel contaminated site publication-title: Water Res. doi: 10.1016/j.watres.2004.09.012 – volume: 47 start-page: 1138 year: 2012 ident: 10.1016/j.scitotenv.2020.144142_bb0175 article-title: Application of aqueous saponin on the remediation of polycyclic aromatic hydrocarbons-contaminated soil publication-title: J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. doi: 10.1080/10934529.2012.668106 – volume: 48 start-page: 516 year: 2016 ident: 10.1016/j.scitotenv.2020.144142_bb0205 article-title: Elution effects of surfactants on petroleum contaminants in soil publication-title: Soils – volume: 39 start-page: 16 year: 2016 ident: 10.1016/j.scitotenv.2020.144142_bb0125 article-title: Experimental study on surfactants used in soilwashing for diesel-oil contaminated soil remediation publication-title: Environ. Sci. Technol. – volume: 26 start-page: 101 year: 2016 ident: 10.1016/j.scitotenv.2020.144142_bb0070 article-title: Surfactant-oxidant co-application for soil and groundwater remediation publication-title: Remediation doi: 10.1002/rem.21461 – volume: 147 start-page: 350 year: 2007 ident: 10.1016/j.scitotenv.2020.144142_bb0440 article-title: Enhanced desorption of phenanthrene from contaminated soil using anionic/nonionic mixed surfactant publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2006.05.025 – volume: 6 year: 2016 ident: 10.1016/j.scitotenv.2020.144142_bb0430 article-title: Sub-CMC solubilization of dodecane by rhamnolipid in saturated porous media publication-title: Sci. Rep. doi: 10.1038/srep33266 – volume: 506 start-page: 485 year: 2016 ident: 10.1016/j.scitotenv.2020.144142_bb0235 article-title: Molecular simulations of NAPL removal from mineral surfaces using microemulsions and surfactants publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects doi: 10.1016/j.colsurfa.2016.07.002 – volume: 255 start-page: 145 year: 2005 ident: 10.1016/j.scitotenv.2020.144142_bb0435 article-title: Solubilization of polycyclic aromatic hydrocarbons by anionic–nonionic mixed surfactant publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects doi: 10.1016/j.colsurfa.2004.12.039 – volume: 38 start-page: 4012 year: 2019 ident: 10.1016/j.scitotenv.2020.144142_bb0375 article-title: Review on surfactin biosurfactant and its performance of enhanced oil recovery publication-title: Chem. Indust. Eng. Prog. – volume: 264 start-page: 807 year: 2015 ident: 10.1016/j.scitotenv.2020.144142_bb0380 article-title: Clay mineral dependent desorption of pyrene from soils by single and mixed anionic–nonionic surfactants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.12.019 – volume: 93 start-page: 1270 year: 2018 ident: 10.1016/j.scitotenv.2020.144142_bb0225 article-title: Remediation of soil contaminated by PAHs and TPH using alkaline activated persulfate enhanced by surfactant addition at flow conditions publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.5485 – volume: 159 start-page: 1198 year: 2011 ident: 10.1016/j.scitotenv.2020.144142_bb0450 article-title: Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.02.001 – volume: 167 start-page: 609 year: 2009 ident: 10.1016/j.scitotenv.2020.144142_bb0180 article-title: Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.01.017 – volume: 194 start-page: 414 year: 2018 ident: 10.1016/j.scitotenv.2020.144142_bb0080 article-title: Could saponins be used to enhance bioremediation of polycyclic aromatic hydrocarbons in aged-contaminated soils? publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.11.174 – volume: 119 start-page: 114 year: 2017 ident: 10.1016/j.scitotenv.2020.144142_bb0395 article-title: Groundwater remediation from the past to the future: a bibliometric analysis publication-title: Water Res. doi: 10.1016/j.watres.2017.01.029 – volume: 27 start-page: 23323 year: 2020 ident: 10.1016/j.scitotenv.2020.144142_bb0215 article-title: Effects of soil properties on the remediation of diesel-contaminated soil by Triton X-100-aided washing. Environ publication-title: Sci. Pollut. Res. Int doi: 10.1007/s11356-020-08781-6 – volume: 230 year: 2020 ident: 10.1016/j.scitotenv.2020.144142_bb0300 article-title: Surfactant flooding makes a comeback: results of a full-scale, field implementation to recover mobilized NAPL publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2020.103602 – volume: 51 start-page: 7055 year: 2017 ident: 10.1016/j.scitotenv.2020.144142_bb0365 article-title: Compatibility of surfactants and thermally activated persulfate for enhanced subsurface remediation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05477 – volume: 150 start-page: 35 year: 2013 ident: 10.1016/j.scitotenv.2020.144142_bb0320 article-title: Persulfate injection into a gasoline source zone publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2013.03.007 – volume: 603 year: 2020 ident: 10.1016/j.scitotenv.2020.144142_bb0250 article-title: Extraction of the indigenous crude oil dissolved biosurfactants and their potential in enhanced oil recovery publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects doi: 10.1016/j.colsurfa.2020.125216 – volume: 42 start-page: 101 year: 2008 ident: 10.1016/j.scitotenv.2020.144142_bb0445 article-title: Enhanced soil flushing of phenanthrene by anionic-nonionic mixed surfactant publication-title: Water Res. doi: 10.1016/j.watres.2007.07.021 – volume: 15 start-page: 313 year: 2011 ident: 10.1016/j.scitotenv.2020.144142_bb0190 article-title: In-situ biosurfactant flushing, coupled with a highly pressurized air injection, to remediate the bunker oil contaminated site publication-title: Geosci. J. doi: 10.1007/s12303-011-0029-5 – volume: 283 start-page: 200 year: 2018 ident: 10.1016/j.scitotenv.2020.144142_bb0265 article-title: Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: a review publication-title: J. Control. Release doi: 10.1016/j.jconrel.2018.06.007 – volume: 139 start-page: 149 year: 2013 ident: 10.1016/j.scitotenv.2020.144142_bb0315 article-title: Characterization of bulk fluid and transport properties for simulating polymer-improved aquifer remediation publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)EE.1943-7870.0000616 – volume: 28 start-page: 833 year: 2018 ident: 10.1016/j.scitotenv.2020.144142_bb0015 article-title: Environmental fate of petroleum hydrocarbons in soil: review of multiphase transport, mass transfer, and natural attenuation processes publication-title: Pedosphere doi: 10.1016/S1002-0160(18)60046-3 – volume: 185 start-page: 1112 year: 2017 ident: 10.1016/j.scitotenv.2020.144142_bb0275 article-title: Surfactant flushing remediation of o-dichlorobenzene and p-dichlorobenzene contaminated soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.07.098 – volume: 57 start-page: 1139 year: 2004 ident: 10.1016/j.scitotenv.2020.144142_bb0355 article-title: Evaluation of biosurfactants for crude oil contaminated soil washing publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.07.048 – volume: 23 start-page: 630 year: 1989 ident: 10.1016/j.scitotenv.2020.144142_bb0245 article-title: Groundwater contamination: pump-and-treat remediation publication-title: Environ. Sci. Technol. doi: 10.1021/es00064a001 – volume: 35 start-page: 34 year: 2015 ident: 10.1016/j.scitotenv.2020.144142_bb0345 article-title: Field test of enhanced remedial amendment delivery using a shear-thinning fluid publication-title: Groundwater Monit. Rem. doi: 10.1111/gwmr.12101 – volume: 134 start-page: 565 year: 2020 ident: 10.1016/j.scitotenv.2020.144142_bb0095 article-title: Shallow subsurface environmental remediation by using tracer–surfactant–foam processes: history-matching and performance prediction publication-title: Transp. Porous Media doi: 10.1007/s11242-020-01458-1 – volume: 13 start-page: 1662 year: 2019 ident: 10.1016/j.scitotenv.2020.144142_bb0210 article-title: Surfactant desorption and purification effect on petroleum contaminated aquifer medium publication-title: Chinese J. Environ. Eng. – volume: 43 start-page: 1419 year: 2015 ident: 10.1016/j.scitotenv.2020.144142_bb0105 article-title: Soil washing for reduction of aromatic and aliphatic contaminants in soil publication-title: Clean-Soil Air Water doi: 10.1002/clen.201100609 – volume: 50 start-page: 669 year: 2012 ident: 10.1016/j.scitotenv.2020.144142_bb0115 article-title: Groundwater remediation: the next 30 years publication-title: Ground Water doi: 10.1111/j.1745-6584.2012.00942.x – volume: 173 start-page: 455 year: 2010 ident: 10.1016/j.scitotenv.2020.144142_bb0240 article-title: Effect of groups difference in surfactant on solubilization of aqueous phenol using MEUF publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.08.106 – volume: 185 start-page: 61 year: 2016 ident: 10.1016/j.scitotenv.2020.144142_bb0150 article-title: Mobilization and micellar solubilization of NAPL contaminants in aquifer rocks publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2016.01.003 – volume: 45 start-page: 5352 year: 2011 ident: 10.1016/j.scitotenv.2020.144142_bb0040 article-title: Impact of in situ chemical oxidation on contaminant mass discharge: linking source-zone and plume-scale characterizations of remediation performance publication-title: Environ. Sci. Technol. doi: 10.1021/es200716s – volume: 53 start-page: 2917 year: 2014 ident: 10.1016/j.scitotenv.2020.144142_bb0135 article-title: Surfactant-enhanced solubilization and simultaneous degradation of phenanthrene in marine sediment by electro-Fenton treatment publication-title: Indust. Eng. Chem. Res. doi: 10.1021/ie4041115 – volume: 254 year: 2020 ident: 10.1016/j.scitotenv.2020.144142_bb0390 article-title: Desorption process and morphological analysis of real polycyclic aromatic hydrocarbons contaminated soil by the heterogemini surfactant and its mixed systems publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126854 – volume: 46 start-page: 3969 year: 2015 ident: 10.1016/j.scitotenv.2020.144142_bb0410 article-title: Solubilization of Tween80 on enhanced remediation of naphthalene contaminated groundwater by ground water circulation well publication-title: J. Central South University (Sci. Technol.) – volume: 21 start-page: 79 year: 2020 ident: 10.1016/j.scitotenv.2020.144142_bb0270 article-title: Evaluating rhamnolipid-enhanced washing as a first step in remediation of drill cuttings and petroleum-contaminated soils publication-title: J. Adv. Res. doi: 10.1016/j.jare.2019.07.003 – volume: 48 start-page: 5127 year: 2014 ident: 10.1016/j.scitotenv.2020.144142_bb0065 article-title: Effect of dissolved oxygen manipulation on diffusive emissions from NAPL-impacted low permeability soil layers publication-title: Environ. Sci. Technol. doi: 10.1021/es405775q – volume: 26 start-page: 34670 year: 2019 ident: 10.1016/j.scitotenv.2020.144142_bb0335 article-title: Fenton's reaction-based chemical oxidation in suboptimal conditions can lead to mobilization of oil hydrocarbons but also contribute to the total removal of volatile compounds publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-06547-3 – volume: 10 start-page: 175 year: 2018 ident: 10.1016/j.scitotenv.2020.144142_bb0220 article-title: Petroleum hydrocarbons (PH) in groundwater aquifers: an overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches publication-title: Environ. Technol. Innov. doi: 10.1016/j.eti.2018.02.001 – volume: 468 start-page: 211 year: 2015 ident: 10.1016/j.scitotenv.2020.144142_bb0385 article-title: Enhanced solubilization and desorption of pyrene from soils by saline anionic-nonionic surfactant systems publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects doi: 10.1016/j.colsurfa.2014.12.026 – volume: 275 year: 2020 ident: 10.1016/j.scitotenv.2020.144142_bb0140 article-title: Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications publication-title: Adv. Colloid Interf. Sci. doi: 10.1016/j.cis.2019.102061 – volume: 622–623 start-page: 164 year: 2018 ident: 10.1016/j.scitotenv.2020.144142_bb0340 article-title: Contaminant back-diffusion from low-permeability layers as affected by groundwater velocity: a laboratory investigation by box model and image analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.11.347 – volume: 11 start-page: 3239 year: 2017 ident: 10.1016/j.scitotenv.2020.144142_bb0370 article-title: Characterization and effect of washing diesel oil-contaminated aged soil by Tween 80 publication-title: Chinese J. Environ. Eng. – volume: 9 start-page: 303 year: 2018 ident: 10.1016/j.scitotenv.2020.144142_bb0025 article-title: Recent advances in surfactant-enhanced in-situ chemical oxidation for the remediation of non-aqueous phase liquid contaminated soils and aquifers publication-title: Environ. Technol. Innov. doi: 10.1016/j.eti.2017.08.004 – volume: 425 start-page: 122 year: 2013 ident: 10.1016/j.scitotenv.2020.144142_bb0455 article-title: Enhanced soil washing of phenanthrene by a plant-derived natural biosurfactant, Sapindus saponin publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects doi: 10.1016/j.colsurfa.2013.02.055 |
SSID | ssj0000781 |
Score | 2.6709638 |
SecondaryResourceType | review_article |
Snippet | Oil leakage, which is inevitable in the process of extraction, processing, transportation and storage, seriously undermines the soil and groundwater... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 144142 |
SubjectTerms | adsorption air aquifers biosurfactants environment Environmental Pollution Environmental Restoration and Remediation Groundwater hydrodynamics liquids nonaqueous phase liquids Oil contamination oils oxidation polluted soils pollution Rebound remediation Soil Soil Pollutants - analysis Solubility solubilization surface tension Surface-Active Agents Surfactant Tailing transportation |
Title | Surfactant-enhanced remediation of oil-contaminated soil and groundwater: A review |
URI | https://dx.doi.org/10.1016/j.scitotenv.2020.144142 https://www.ncbi.nlm.nih.gov/pubmed/33302075 https://www.proquest.com/docview/2470027639 https://www.proquest.com/docview/2986252842 |
Volume | 756 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQFVKlqqLb0gItcqVeU7x-JtxWCLTtCg4UBDfLsR11EUrQPkBc-ts7EyeLOFAOPSWy7MTyjD3f2PN5CPlWqtLwPGjcAwiZBIOdOS_hTYDCqEo60WZvODnV4wv580pdrZHDnguDYZXd2p_W9Ha17kr2u9Hcv51OkeMr80IXeI5oMNsKMtilQS3__ucxzAMvs0mnzDCxofaTGC_47qIBbHoHjiJneNA5lPw5C_UcAm0t0fEmedtBSDpKvXxH1mI9IBspqeTDgGwdPXLXoFo3eecD8iZt0dHEPHpPzn4tZ8hrgLHNYv27DQWguF0YkrhoU9FmepNhNLvDiBkAp3QOJdTVgSIdpA73UDg7oCOaKDAfyMXx0fnhOOtSLGReMrnIgmeAR7ipKhW1CQIdGMmHnpfaCaE8C7mTbugBiDhjPCu91i4oP6yYKaLPxRZZr5s6fiLUV1URVB4D-mg6lmUuoxCl5Cw4CaBgm-h-WK3v7h_HNBg3tg80u7YreViUh03y2CZs1fA2XcHxcpODXm72iTZZMBQvN_7aS9rCXMMDFFfHZjm3XBp04wHU_aNOAT6iAqMP3_mY1GTVayEE_Maonf_p3i55zTGuBmn17DNZX8yW8QsAo0W512r-Hnk1-jEZn-JzcnY5-QsNtw9D |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgRShWChtDyNBMfQrB9xUolDBa229HGAVurNOLYjFlVJtQ-qXvhT_EFm4mSrHkoPqLfIih3HY898Hn_jAXhXqlLz3GfkA_CJRIOdWCfxSeCEUZW0os3ecHCYjY7llxN1sgR_-lgYolV2uj_q9FZbdyUb3WhunI3HFOMr8yIr6BxRU7aVjlm5Fy7Ocd82_bj7GYX8nvOd7aNPo6RLLZA4mcpZ4l2KdpjrqlIh014QcJd86HiZWSGUS31upR06NMBWa5eWLsusV25YpboILhfY7h24K1FdUNqED78veSV0e0481kZNgt27QirDH5k1CIZ_4c6Up3SyOpT8OpN4HeRtTd_OI3jYYVa2FYflMSyFegD3YhbLiwGsbl8Gy-FrnbaYDmAl-gRZDHV6Al-_zScUSIHCTEL9o-UeMPJP-jg_WFOxZnyaEH3eEkUH0TCbYgmztWcUf1L7cyycbLItFmNunsLxrQz8KizXTR3WgLmqKrzKg6dNYRbKMpdBiFLy1FuJKGQdsn5YjesuPKe8G6emZ7b9NAt5GJKHifJYh3RR8Sze-XFzlc1ebubK9DVomW6u_LaXtMHFTSc2tg7NfGq41OQ3QBT5j3cK3JQqRBnYzrM4TRa9FkLgZ7R6_j_dewP3R0cH-2Z_93DvBTzgROqhmP70JSzPJvPwClHZrHzdrgIG32972f0F8xBI6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surfactant-enhanced+remediation+of+oil-contaminated+soil+and+groundwater%3A+A+review&rft.jtitle=The+Science+of+the+total+environment&rft.au=Liu%2C+Jian-Wu&rft.au=Wei%2C+Kun-Hao&rft.au=Xu%2C+Shao-Wei&rft.au=Cui%2C+Jun&rft.date=2021-02-20&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.volume=756&rft_id=info:doi/10.1016%2Fj.scitotenv.2020.144142&rft.externalDocID=S0048969720376737 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |