Identifying canonical and replicable multi‐scale intrinsic connectivity networks in 100k+ resting‐state fMRI datasets
Despite the known benefits of data‐driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter‐subject correspondence limits the clinical utility of rsfMRI and its application to single‐subject analyses. Here, using rsf...
Saved in:
Published in | Human brain mapping Vol. 44; no. 17; pp. 5729 - 5748 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite the known benefits of data‐driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter‐subject correspondence limits the clinical utility of rsfMRI and its application to single‐subject analyses. Here, using rsfMRI data from over 100k individuals across private and public datasets, we identify replicable multi‐spatial‐scale canonical intrinsic connectivity network (ICN) templates via the use of multi‐model‐order independent component analysis (ICA). We also study the feasibility of estimating subject‐specific ICNs via spatially constrained ICA. The results show that the subject‐level ICN estimations vary as a function of the ICN itself, the data length, and the spatial resolution. In general, large‐scale ICNs require less data to achieve specific levels of (within‐ and between‐subject) spatial similarity with their templates. Importantly, increasing data length can reduce an ICN's subject‐level specificity, suggesting longer scans may not always be desirable. We also find a positive linear relationship between data length and spatial smoothness (possibly due to averaging over intrinsic dynamics), suggesting studies examining optimized data length should consider spatial smoothness. Finally, consistency in spatial similarity between ICNs estimated using the full data and subsets across different data lengths suggests lower within‐subject spatial similarity in shorter data is not wholly defined by lower reliability in ICN estimates, but may be an indication of meaningful brain dynamics which average out as data length increases. |
---|---|
AbstractList | Despite the known benefits of data‐driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter‐subject correspondence limits the clinical utility of rsfMRI and its application to single‐subject analyses. Here, using rsfMRI data from over 100k individuals across private and public datasets, we identify replicable multi‐spatial‐scale canonical intrinsic connectivity network (ICN) templates via the use of multi‐model‐order independent component analysis (ICA). We also study the feasibility of estimating subject‐specific ICNs via spatially constrained ICA. The results show that the subject‐level ICN estimations vary as a function of the ICN itself, the data length, and the spatial resolution. In general, large‐scale ICNs require less data to achieve specific levels of (within‐ and between‐subject) spatial similarity with their templates. Importantly, increasing data length can reduce an ICN's subject‐level specificity, suggesting longer scans may not always be desirable. We also find a positive linear relationship between data length and spatial smoothness (possibly due to averaging over intrinsic dynamics), suggesting studies examining optimized data length should consider spatial smoothness. Finally, consistency in spatial similarity between ICNs estimated using the full data and subsets across different data lengths suggests lower within‐subject spatial similarity in shorter data is not wholly defined by lower reliability in ICN estimates, but may be an indication of meaningful brain dynamics which average out as data length increases. Despite the known benefits of data-driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter-subject correspondence limits the clinical utility of rsfMRI and its application to single-subject analyses. Here, using rsfMRI data from over 100k individuals across private and public datasets, we identify replicable multi-spatial-scale canonical intrinsic connectivity network (ICN) templates via the use of multi-model-order independent component analysis (ICA). We also study the feasibility of estimating subject-specific ICNs via spatially constrained ICA. The results show that the subject-level ICN estimations vary as a function of the ICN itself, the data length, and the spatial resolution. In general, large-scale ICNs require less data to achieve specific levels of (within- and between-subject) spatial similarity with their templates. Importantly, increasing data length can reduce an ICN's subject-level specificity, suggesting longer scans may not always be desirable. We also find a positive linear relationship between data length and spatial smoothness (possibly due to averaging over intrinsic dynamics), suggesting studies examining optimized data length should consider spatial smoothness. Finally, consistency in spatial similarity between ICNs estimated using the full data and subsets across different data lengths suggests lower within-subject spatial similarity in shorter data is not wholly defined by lower reliability in ICN estimates, but may be an indication of meaningful brain dynamics which average out as data length increases.Despite the known benefits of data-driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter-subject correspondence limits the clinical utility of rsfMRI and its application to single-subject analyses. Here, using rsfMRI data from over 100k individuals across private and public datasets, we identify replicable multi-spatial-scale canonical intrinsic connectivity network (ICN) templates via the use of multi-model-order independent component analysis (ICA). We also study the feasibility of estimating subject-specific ICNs via spatially constrained ICA. The results show that the subject-level ICN estimations vary as a function of the ICN itself, the data length, and the spatial resolution. In general, large-scale ICNs require less data to achieve specific levels of (within- and between-subject) spatial similarity with their templates. Importantly, increasing data length can reduce an ICN's subject-level specificity, suggesting longer scans may not always be desirable. We also find a positive linear relationship between data length and spatial smoothness (possibly due to averaging over intrinsic dynamics), suggesting studies examining optimized data length should consider spatial smoothness. Finally, consistency in spatial similarity between ICNs estimated using the full data and subsets across different data lengths suggests lower within-subject spatial similarity in shorter data is not wholly defined by lower reliability in ICN estimates, but may be an indication of meaningful brain dynamics which average out as data length increases. Despite the known benefits of data‐driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter‐subject correspondence limits the clinical utility of rsfMRI and its application to single‐subject analyses. Here, using rsfMRI data from over 100k individuals across private and public datasets, we identify replicable multi‐spatial‐scale canonical intrinsic connectivity network (ICN) templates via the use of multi‐model‐order independent component analysis (ICA). We also study the feasibility of estimating subject‐specific ICNs via spatially constrained ICA. The results show that the subject‐level ICN estimations vary as a function of the ICN itself, the data length, and the spatial resolution. In general, large‐scale ICNs require less data to achieve specific levels of (within‐ and between‐subject) spatial similarity with their templates. Importantly, increasing data length can reduce an ICN's subject‐level specificity, suggesting longer scans may not always be desirable. We also find a positive linear relationship between data length and spatial smoothness (possibly due to averaging over intrinsic dynamics), suggesting studies examining optimized data length should consider spatial smoothness. Finally, consistency in spatial similarity between ICNs estimated using the full data and subsets across different data lengths suggests lower within‐subject spatial similarity in shorter data is not wholly defined by lower reliability in ICN estimates, but may be an indication of meaningful brain dynamics which average out as data length increases. Multi‐spatial‐scale intrinsic connectivity networks (ICNs) obtained using rsfMRI data from over 100k individuals across private and public datasets. |
Author | Bustillo, J. R. Sawa, A. Adhikari, B. M. Ishizuka, K. Abbott, C. Kochunov, P. Belger, A. Mueller, B. A. Potkin, S. G. Fu, Z. Preda, A. Mathalon, D. H. Du, Y. Faghiri, A. Sui, J. Calhoun, V. D. Liu, J. Yang, K. DeRamus, T. Osuch, E. A. Pearlson, G. D. Xu, Y. Ford, J. M. Liu, S. Zhuo, C. Rachakonda, S. Adali, T. Chen, J. Faria, A. Theberge, J. Duda, M. van Erp, T. G. M. Iraji, A. Turner, J. A. Zhi, D. Salman, M. Hutchison, K. |
AuthorAffiliation | 8 Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA 10 Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA 16 Department of Psychiatry, Schulich School of Medicine and Dentistry London Health Sciences Centre, Lawson Health Research Institute London Canada 4 Department of Psychiatry University of North Carolina Chapel Hill North Carolina USA 1 Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA 7 Departments of Psychiatry and Neuroscience, School of Medicine Yale University New Haven Connecticut USA 23 School of Computer and Information Technology Shanxi University Taiyuan China 5 Department of Psychiatry University of California San Francisco San Francisco California USA 3 Maryland Psychiatric Research Center, Depa |
AuthorAffiliation_xml | – name: 18 Department of Psychiatry University of Minnesota Minneapolis Minnesota USA – name: 15 Department of Psychology University of Colorado Boulder Colorado USA – name: 7 Departments of Psychiatry and Neuroscience, School of Medicine Yale University New Haven Connecticut USA – name: 13 Departments of Psychiatry, Neuroscience, Biomedical Engineering, Pharmacology, and Genetic Medicine Johns Hopkins University School of Medicine Baltimore Maryland USA – name: 6 San Francisco VA Medical Center San Francisco California USA – name: 11 Department of Psychiatry and Behavioral Sciences University of New Mexico Albuquerque New Mexico USA – name: 20 Tianjin Mental Health Center Nankai University Affiliated Anding Hospital Tianjin China – name: 3 Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine University of Maryland Baltimore Maryland USA – name: 14 Department of Mental Health Johns Hopkins University Bloomberg School of Public Health Baltimore Maryland USA – name: 22 School of Electrical & Computer Engineering Georgia Institute of Technology Atlanta Georgia USA – name: 8 Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA – name: 21 The Department of Psychiatry First Clinical Medical College/First Hospital of Shanxi Medical University Taiyuan China – name: 10 Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA – name: 9 Department of Psychiatry and Behavioral Health Ohio State University Medical Center in Columbus Columbus Ohio USA – name: 2 Department of Computer Science Georgia State University Atlanta Georgia USA – name: 23 School of Computer and Information Technology Shanxi University Taiyuan China – name: 17 Department of Psychiatry (CCA) University of New Mexico Albuquerque New Mexico USA – name: 12 Department of Psychiatry, School of Medicine Johns Hopkins University Baltimore Maryland USA – name: 1 Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA – name: 4 Department of Psychiatry University of North Carolina Chapel Hill North Carolina USA – name: 19 The State Key Lab of Cognitive Neuroscience and Learning Beijing Normal University Beijing China – name: 24 Department of CSEE University of Maryland Baltimore County Baltimore Maryland USA – name: 5 Department of Psychiatry University of California San Francisco San Francisco California USA – name: 16 Department of Psychiatry, Schulich School of Medicine and Dentistry London Health Sciences Centre, Lawson Health Research Institute London Canada |
Author_xml | – sequence: 1 givenname: A. orcidid: 0000-0002-0605-593X surname: Iraji fullname: Iraji, A. organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA, Department of Computer Science Georgia State University Atlanta Georgia USA – sequence: 2 givenname: Z. surname: Fu fullname: Fu, Z. organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA – sequence: 3 givenname: A. orcidid: 0000-0003-1807-6815 surname: Faghiri fullname: Faghiri, A. organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA – sequence: 4 givenname: M. orcidid: 0000-0003-2369-2225 surname: Duda fullname: Duda, M. organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA – sequence: 5 givenname: J. surname: Chen fullname: Chen, J. organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA – sequence: 6 givenname: S. surname: Rachakonda fullname: Rachakonda, S. organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA – sequence: 7 givenname: T. orcidid: 0000-0002-5774-2297 surname: DeRamus fullname: DeRamus, T. organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA – sequence: 8 givenname: P. orcidid: 0000-0003-3656-4281 surname: Kochunov fullname: Kochunov, P. organization: Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine University of Maryland Baltimore Maryland USA – sequence: 9 givenname: B. M. surname: Adhikari fullname: Adhikari, B. M. organization: Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine University of Maryland Baltimore Maryland USA – sequence: 10 givenname: A. surname: Belger fullname: Belger, A. organization: Department of Psychiatry University of North Carolina Chapel Hill North Carolina USA – sequence: 11 givenname: J. M. surname: Ford fullname: Ford, J. M. organization: Department of Psychiatry University of California San Francisco San Francisco California USA, San Francisco VA Medical Center San Francisco California USA – sequence: 12 givenname: D. H. surname: Mathalon fullname: Mathalon, D. H. organization: Department of Psychiatry University of California San Francisco San Francisco California USA, San Francisco VA Medical Center San Francisco California USA – sequence: 13 givenname: G. D. surname: Pearlson fullname: Pearlson, G. D. organization: Departments of Psychiatry and Neuroscience, School of Medicine Yale University New Haven Connecticut USA – sequence: 14 givenname: S. G. surname: Potkin fullname: Potkin, S. G. organization: Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA – sequence: 15 givenname: A. surname: Preda fullname: Preda, A. organization: Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA – sequence: 16 givenname: J. A. surname: Turner fullname: Turner, J. A. organization: Department of Psychiatry and Behavioral Health Ohio State University Medical Center in Columbus Columbus Ohio USA – sequence: 17 givenname: T. G. M. surname: van Erp fullname: van Erp, T. G. M. organization: Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA – sequence: 18 givenname: J. R. surname: Bustillo fullname: Bustillo, J. R. organization: Department of Psychiatry and Behavioral Sciences University of New Mexico Albuquerque New Mexico USA – sequence: 19 givenname: K. surname: Yang fullname: Yang, K. organization: Department of Psychiatry, School of Medicine Johns Hopkins University Baltimore Maryland USA – sequence: 20 givenname: K. surname: Ishizuka fullname: Ishizuka, K. organization: Department of Psychiatry, School of Medicine Johns Hopkins University Baltimore Maryland USA – sequence: 21 givenname: A. orcidid: 0000-0002-1673-002X surname: Faria fullname: Faria, A. organization: Department of Psychiatry, School of Medicine Johns Hopkins University Baltimore Maryland USA – sequence: 22 givenname: A. surname: Sawa fullname: Sawa, A. organization: Departments of Psychiatry, Neuroscience, Biomedical Engineering, Pharmacology, and Genetic Medicine Johns Hopkins University School of Medicine Baltimore Maryland USA, Department of Mental Health Johns Hopkins University Bloomberg School of Public Health Baltimore Maryland USA – sequence: 23 givenname: K. surname: Hutchison fullname: Hutchison, K. organization: Department of Psychology University of Colorado Boulder Colorado USA – sequence: 24 givenname: E. A. surname: Osuch fullname: Osuch, E. A. organization: Department of Psychiatry, Schulich School of Medicine and Dentistry London Health Sciences Centre, Lawson Health Research Institute London Canada – sequence: 25 givenname: J. orcidid: 0000-0001-7578-4469 surname: Theberge fullname: Theberge, J. organization: Department of Psychiatry, Schulich School of Medicine and Dentistry London Health Sciences Centre, Lawson Health Research Institute London Canada – sequence: 26 givenname: C. surname: Abbott fullname: Abbott, C. organization: Department of Psychiatry (CCA) University of New Mexico Albuquerque New Mexico USA – sequence: 27 givenname: B. A. surname: Mueller fullname: Mueller, B. A. organization: Department of Psychiatry University of Minnesota Minneapolis Minnesota USA – sequence: 28 givenname: D. surname: Zhi fullname: Zhi, D. organization: The State Key Lab of Cognitive Neuroscience and Learning Beijing Normal University Beijing China – sequence: 29 givenname: C. orcidid: 0000-0002-3793-550X surname: Zhuo fullname: Zhuo, C. organization: Tianjin Mental Health Center Nankai University Affiliated Anding Hospital Tianjin China – sequence: 30 givenname: S. surname: Liu fullname: Liu, S. organization: The Department of Psychiatry First Clinical Medical College/First Hospital of Shanxi Medical University Taiyuan China – sequence: 31 givenname: Y. surname: Xu fullname: Xu, Y. organization: The Department of Psychiatry First Clinical Medical College/First Hospital of Shanxi Medical University Taiyuan China – sequence: 32 givenname: M. surname: Salman fullname: Salman, M. organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA, School of Electrical & Computer Engineering Georgia Institute of Technology Atlanta Georgia USA – sequence: 33 givenname: J. orcidid: 0000-0002-1724-7523 surname: Liu fullname: Liu, J. organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA, Department of Computer Science Georgia State University Atlanta Georgia USA – sequence: 34 givenname: Y. orcidid: 0000-0002-0079-8177 surname: Du fullname: Du, Y. organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA, School of Computer and Information Technology Shanxi University Taiyuan China – sequence: 35 givenname: J. surname: Sui fullname: Sui, J. organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA, The State Key Lab of Cognitive Neuroscience and Learning Beijing Normal University Beijing China – sequence: 36 givenname: T. surname: Adali fullname: Adali, T. organization: Department of CSEE University of Maryland Baltimore County Baltimore Maryland USA – sequence: 37 givenname: V. D. surname: Calhoun fullname: Calhoun, V. D. organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA, Department of Computer Science Georgia State University Atlanta Georgia USA, Department of Psychiatry, School of Medicine Johns Hopkins University Baltimore Maryland USA, School of Electrical & Computer Engineering Georgia Institute of Technology Atlanta Georgia USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37787573$$D View this record in MEDLINE/PubMed |
BookMark | eNplUdtqFTEUDVKxF33wByTgi0WmTWYyk8xTkVL1QEUQfQ65TZs2kxyTTOW8-Ql-o1_iPrYVrU_JZq29WGuvfbQTU3QIPafkiBLSHl_q-agdGG8foT1KRt4QOnY72__QNyPjdBftl3JFCKU9oU_Qbse54D3v9tBmZV2sftr4eIGNAmFvVMAqWpzdOsCgg8PzEqr_-f1HAcxhH2v2sXiDTYrRmepvfN3g6Oq3lK8L4BhsXb8GhVJBd7tYVXV4-vBpha2qqrhanqLHkwrFPbt7D9CXt2efT9835x_frU7fnDeGEVYbq0dFhKZ27E0n7ChEP42mm5QYeKuItcwNBAAGo-a84wMbqBNWm0nrlg3dATq51V0venbWQNysglxnP6u8kUl5-S8S_aW8SDcSrgdnHFtQeHWnkNPXBTLJ2RfjQlDRpaXIVvCWcg4ugPryAfUqLTlCPmAJNvSMcAqsF39b-uPlvhYgHN8STE6lZDdJ4-GCPm0d-gDW5LZ4CcXL38XDxuGDjXvR_7m_AH5MsfQ |
CitedBy_id | crossref_primary_10_3389_fnins_2025_1484954 crossref_primary_10_1038_s44220_024_00341_y crossref_primary_10_1016_j_biopsych_2023_12_002 crossref_primary_10_1002_hbm_26773 crossref_primary_10_1016_j_neuroimage_2024_120617 crossref_primary_10_1016_j_nicl_2024_103584 crossref_primary_10_1038_s41537_025_00593_2 crossref_primary_10_1038_s41467_024_48781_5 crossref_primary_10_1162_netn_a_00421 crossref_primary_10_52294_001c_129695 |
Cites_doi | 10.1002/hbm.26234 10.1038/nn.4135 10.1002/hbm.20581 10.3389/fnins.2016.00017 10.1016/j.nic.2017.06.012 10.1002/hbm.21170 10.1016/j.nicl.2020.102375 10.1016/j.neuroimage.2004.10.042 10.1109/ICASSP.2014.6853966 10.1016/j.neuroimage.2006.09.032 10.1093/cercor/bhm207 10.1016/j.neuroimage.2016.04.006 10.1098/rstb.2013.0526 10.1016/j.jneumeth.2015.07.013 10.1002/hbm.20721 10.1038/sdata.2017.10 10.1002/hbm.24580 10.1038/s41467-020-15948-9 10.1016/j.tics.2019.12.004 10.1002/hbm.25303 10.3389/fnsys.2011.00002 10.1038/nn.4164 10.1152/jn.00338.2011 10.1109/EMBC46164.2021.9630284 10.1016/j.neuroimage.2016.12.036 10.1002/hbm.24505 10.1162/neco.1995.7.6.1129 10.1093/scan/nsaa114 10.1162/netn_a_00132 10.1016/j.neuroimage.2012.11.008 10.1006/nimg.2001.0921 10.1109/RBME.2012.2211076 10.1002/hbm.20919 10.1038/mp.2013.78 10.1109/TBME.2011.2167149 10.1080/01621459.2019.1679638 10.1176/appi.ajp.2013.12101339 10.1016/j.neuroimage.2019.116366 10.1002/hbm.1048 10.1016/j.neuroimage.2020.117061 10.1016/j.neuroimage.2011.10.010 10.1002/hbm.23086 10.1016/j.neuroimage.2021.118310 10.1002/jmri.21049 10.1007/s41237-019-00086-4 10.1016/j.neuroimage.2013.05.041 10.1126/sciadv.abj0751 10.1016/j.dcn.2018.02.002 10.1162/netn_a_00168 10.1016/j.neuroimage.2021.118332 10.1016/j.neuroimage.2013.05.099 10.1016/j.neuron.2017.06.038 10.1101/2019.12.13.19014902 10.1016/j.neuroimage.2008.10.057 10.1016/j.neuroimage.2015.09.003 10.3389/fnins.2019.01006 10.1109/BIBE52308.2021.9635525 10.1038/sdata.2015.31 10.1016/j.neuron.2017.07.011 10.1162/netn_a_00196 10.1016/j.tics.2013.09.016 10.1002/hbm.23737 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 The Authors. published by Wiley Periodicals LLC. |
Copyright_xml | – notice: 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 The Authors. published by Wiley Periodicals LLC. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.26472 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Technology Research Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Iraji et al |
EISSN | 1097-0193 |
EndPage | 5748 |
ExternalDocumentID | PMC10619392 37787573 10_1002_hbm_26472 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDA NIH HHS grantid: U01 DA041134 – fundername: NIMH NIH HHS grantid: R01 MH118695 – fundername: NIDA NIH HHS grantid: U01 DA041028 – fundername: NIDA NIH HHS grantid: U01 DA051016 – fundername: NIMH NIH HHS grantid: R03 MH096321 – fundername: NCRR NIH HHS grantid: U24 RR021992 – fundername: NIDA NIH HHS grantid: U24 DA041123 – fundername: NIMH NIH HHS grantid: R01 MH123610 – fundername: NIMH NIH HHS grantid: R01 MH117107 – fundername: NIDA NIH HHS grantid: U01 DA051039 – fundername: ; grantid: 1631838; 2112455 – fundername: ; grantid: LHR D1374 – fundername: Georgia State University RISE Award – fundername: ; grantid: WS2249136 – fundername: ; grantid: 1U24RR021992; 1U24RR025736; R01EB006841; R01EB020407; R01MH117107; R01MH118695; R01MH123610 – fundername: ; grantid: FRN 153359 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAFWJ AAHHS AANHP AAONW AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AFBPY AFGKR AFKRA AFPKN AFRAH AFZJQ AGQPQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CITATION CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PHGZM PHGZT PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM WIN |
ID | FETCH-LOGICAL-c404t-db9a08b1d95c38d9885f9c3fa8672a0dd4e6038d4672b77376461e8dbcfbb2463 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 18:36:38 EDT 2025 Fri Jul 11 08:31:25 EDT 2025 Sat Jul 26 02:37:01 EDT 2025 Mon Jul 21 05:53:50 EDT 2025 Thu Apr 24 23:08:27 EDT 2025 Tue Jul 01 01:11:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | functional connectivity (FC) functional templates independent component analysis (ICA) intrinsic connectivity networks (ICNs) |
Language | English |
License | 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c404t-db9a08b1d95c38d9885f9c3fa8672a0dd4e6038d4672b77376461e8dbcfbb2463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0605-593X 0000-0001-7578-4469 0000-0002-1673-002X 0000-0003-3656-4281 0000-0002-1724-7523 0000-0002-0079-8177 0000-0002-5774-2297 0000-0003-2369-2225 0000-0003-1807-6815 0000-0002-3793-550X |
OpenAccessLink | http://dx.doi.org/10.1002/hbm.26472 |
PMID | 37787573 |
PQID | 2884654071 |
PQPubID | 996345 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10619392 proquest_miscellaneous_2872177038 proquest_journals_2884654071 pubmed_primary_37787573 crossref_citationtrail_10_1002_hbm_26472 crossref_primary_10_1002_hbm_26472 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Antonio – name: Hoboken, USA |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 Meng X. (e_1_2_8_56_1) 2021 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Lewandowski K. E. (e_1_2_8_50_1) 2020; 5 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 Gordon E. M. (e_1_2_8_31_1) 2017; 27 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 Iraji A. (e_1_2_8_40_1) 2019 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 HD‐200 Consortium (e_1_2_8_35_1) 2012; 6 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 |
References_xml | – ident: e_1_2_8_25_1 doi: 10.1002/hbm.26234 – volume: 5 start-page: e200002 year: 2020 ident: e_1_2_8_50_1 article-title: Neuroprogression across the early course of psychosis publication-title: Journal of Psychiatry and Brain Science – ident: e_1_2_8_30_1 doi: 10.1038/nn.4135 – ident: e_1_2_8_13_1 doi: 10.1002/hbm.20581 – ident: e_1_2_8_58_1 doi: 10.3389/fnins.2016.00017 – ident: e_1_2_8_12_1 doi: 10.1016/j.nic.2017.06.012 – ident: e_1_2_8_27_1 doi: 10.1002/hbm.21170 – ident: e_1_2_8_23_1 doi: 10.1016/j.nicl.2020.102375 – ident: e_1_2_8_28_1 doi: 10.1016/j.neuroimage.2004.10.042 – ident: e_1_2_8_20_1 doi: 10.1109/ICASSP.2014.6853966 – ident: e_1_2_8_57_1 doi: 10.1016/j.neuroimage.2006.09.032 – ident: e_1_2_8_16_1 doi: 10.1093/cercor/bhm207 – ident: e_1_2_8_37_1 doi: 10.1016/j.neuroimage.2016.04.006 – ident: e_1_2_8_48_1 doi: 10.1098/rstb.2013.0526 – ident: e_1_2_8_46_1 doi: 10.1016/j.jneumeth.2015.07.013 – ident: e_1_2_8_61_1 doi: 10.1002/hbm.20721 – ident: e_1_2_8_18_1 doi: 10.1038/sdata.2017.10 – ident: e_1_2_8_38_1 doi: 10.1002/hbm.24580 – ident: e_1_2_8_52_1 doi: 10.1038/s41467-020-15948-9 – ident: e_1_2_8_43_1 doi: 10.1016/j.tics.2019.12.004 – ident: e_1_2_8_29_1 doi: 10.1002/hbm.25303 – ident: e_1_2_8_2_1 doi: 10.3389/fnsys.2011.00002 – ident: e_1_2_8_66_1 doi: 10.1038/nn.4164 – ident: e_1_2_8_68_1 doi: 10.1152/jn.00338.2011 – ident: e_1_2_8_24_1 doi: 10.1109/EMBC46164.2021.9630284 – ident: e_1_2_8_33_1 doi: 10.1016/j.neuroimage.2016.12.036 – ident: e_1_2_8_42_1 doi: 10.1002/hbm.24505 – ident: e_1_2_8_4_1 doi: 10.1162/neco.1995.7.6.1129 – ident: e_1_2_8_41_1 doi: 10.1093/scan/nsaa114 – ident: e_1_2_8_63_1 doi: 10.1162/netn_a_00132 – ident: e_1_2_8_22_1 doi: 10.1016/j.neuroimage.2012.11.008 – volume-title: Ultra‐high‐order ICA: An exploration of highly resolved data‐driven representation of intrinsic connectivity networks (sparse ICNs). Wavelets and Sparsity XVIII (p. 111380I) year: 2019 ident: e_1_2_8_40_1 – ident: e_1_2_8_10_1 doi: 10.1006/nimg.2001.0921 – ident: e_1_2_8_9_1 doi: 10.1109/RBME.2012.2211076 – ident: e_1_2_8_51_1 doi: 10.1002/hbm.20919 – volume: 27 start-page: 386 year: 2017 ident: e_1_2_8_31_1 article-title: Individual variability of the system‐level organization of the human brain publication-title: Cerebral Cortex – ident: e_1_2_8_19_1 doi: 10.1038/mp.2013.78 – volume: 6 year: 2012 ident: e_1_2_8_35_1 article-title: The ADHD‐200 consortium: A model to advance the translational potential of neuroimaging in clinical neuroscience publication-title: Frontiers in Systems Neuroscience – ident: e_1_2_8_54_1 doi: 10.1109/TBME.2011.2167149 – ident: e_1_2_8_55_1 doi: 10.1080/01621459.2019.1679638 – ident: e_1_2_8_62_1 doi: 10.1176/appi.ajp.2013.12101339 – ident: e_1_2_8_59_1 doi: 10.1016/j.neuroimage.2019.116366 – ident: e_1_2_8_11_1 doi: 10.1002/hbm.1048 – ident: e_1_2_8_34_1 doi: 10.1016/j.neuroimage.2020.117061 – ident: e_1_2_8_3_1 doi: 10.1016/j.neuroimage.2011.10.010 – ident: e_1_2_8_21_1 doi: 10.1002/hbm.23086 – ident: e_1_2_8_67_1 doi: 10.1016/j.neuroimage.2021.118310 – ident: e_1_2_8_44_1 doi: 10.1002/jmri.21049 – ident: e_1_2_8_26_1 doi: 10.1007/s41237-019-00086-4 – ident: e_1_2_8_65_1 doi: 10.1016/j.neuroimage.2013.05.041 – ident: e_1_2_8_64_1 doi: 10.1126/sciadv.abj0751 – volume-title: Multi‐model order ICA: A data‐driven method for evaluating brain functional network connectivity within and between multiple spatial scales year: 2021 ident: e_1_2_8_56_1 – ident: e_1_2_8_45_1 doi: 10.1016/j.dcn.2018.02.002 – ident: e_1_2_8_7_1 doi: 10.1162/netn_a_00168 – ident: e_1_2_8_53_1 doi: 10.1016/j.neuroimage.2021.118332 – ident: e_1_2_8_6_1 doi: 10.1016/j.neuroimage.2013.05.099 – ident: e_1_2_8_8_1 doi: 10.1016/j.neuron.2017.06.038 – ident: e_1_2_8_49_1 doi: 10.1101/2019.12.13.19014902 – ident: e_1_2_8_14_1 doi: 10.1016/j.neuroimage.2008.10.057 – ident: e_1_2_8_47_1 doi: 10.1016/j.neuroimage.2015.09.003 – ident: e_1_2_8_5_1 doi: 10.3389/fnins.2019.01006 – ident: e_1_2_8_17_1 doi: 10.1109/BIBE52308.2021.9635525 – ident: e_1_2_8_36_1 doi: 10.1038/sdata.2015.31 – ident: e_1_2_8_32_1 doi: 10.1016/j.neuron.2017.07.011 – ident: e_1_2_8_39_1 doi: 10.1162/netn_a_00196 – ident: e_1_2_8_60_1 doi: 10.1016/j.tics.2013.09.016 – ident: e_1_2_8_15_1 doi: 10.1002/hbm.23737 |
SSID | ssj0011501 |
Score | 2.549568 |
Snippet | Despite the known benefits of data‐driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual... Despite the known benefits of data-driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5729 |
SubjectTerms | Brain - diagnostic imaging Brain mapping Brain Mapping - methods Datasets Feasibility studies Functional magnetic resonance imaging Humans Independent component analysis Magnetic Resonance Imaging - methods Medical imaging Nerve Net - diagnostic imaging Neural networks Neuroimaging Reproducibility of Results Similarity Smoothness Spatial data Spatial discrimination Spatial resolution |
Title | Identifying canonical and replicable multi‐scale intrinsic connectivity networks in 100k+ resting‐state fMRI datasets |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37787573 https://www.proquest.com/docview/2884654071 https://www.proquest.com/docview/2872177038 https://pubmed.ncbi.nlm.nih.gov/PMC10619392 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe6TUK8INj4UxiVQQghReny38ljx1Z1QKtpbFLFS2Q7yVpEU9SmD-OJjwBfkU_CXZy47Voh4CVKbdd1c7_Yd_bd7wh55Ykgla7MzET6rumBQWBGjpSmn3AuBfeF5BiN3B8EvSvv3dAfNho_V7yWFoVoy29b40r-R6pQBnLFKNl_kKzuFArgHuQLV5AwXP9KxirKVkUqwSOa5jr0f5aW59IYFlW6DGqfhjm0QJ6QYjbOQUDodZ6Xcx5q47nyCS9dZG3Lgony2MDcHRgUrTtA7dTI-hdnBnqXzlNFBVUruOpQQGDiCWPCkfzhWqNvxj-P17ZPPxndhQYQvx6NZ-v1J4uEL3dsq70Jx73l57HF-WfDwxNMUt-MPJWHpZ1WZUgRa6vUifU0rWgiaziylUnXZ9WmSVp9VNydG4uDIpsdiUnbQdL85QpYn_r3Oh_j85Nu_OFs8H6H7DlgecDUuXd8Oji_0EdToEGXVnw97pquynKOdNfrSs6G5XLbAXdFo7m8T-5VpgjtKFw9II003ycHnZwX08kNfU1L5-Dy1GWf3OlXPhgH5GYFdVSjjgLq6BJ1tETdr-8_SrxRjTe6ijda4w3qKeLNoBXa8IuIM4o4ozXOHpKr7unl255ZJfAwpWd5hZmIiFuhsJPIl26YRGHoZ5F0Mx4GzOFWknhpYEEFLNaOYAzWOi-w0zARMhPC8QL3EdmFf5E-ITQQoEZJL8pCX3qJsKOMwZ2bSpsJuA2b5E39xGNZsdtjkpUvseLldmIQTlwKp0le6qZfFaXLtkaHtdji6o2fx04YIv0gaOVN8kJXw3yMh2w8T6cLbMPAyod1FIb0WElZ_4rLGOaPcJskXJO_boBc7-s1-XhUcr7jzk0EtszTP4_rGbm7fA8PyW4xW6TPQWsuRIvssCFrVWhulXtPvwF4bMpj |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+canonical+and+replicable+multi%E2%80%90scale+intrinsic+connectivity+networks+in+100k%2B+resting%E2%80%90state+fMRI+datasets&rft.jtitle=Human+brain+mapping&rft.au=Iraji%2C+A&rft.au=Z+Fu&rft.au=Faghiri%2C+A&rft.au=Duda%2C+M&rft.date=2023-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=44&rft.issue=17&rft.spage=5729&rft.epage=5748&rft_id=info:doi/10.1002%2Fhbm.26472&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |