Identifying canonical and replicable multi‐scale intrinsic connectivity networks in 100k+ resting‐state fMRI datasets

Despite the known benefits of data‐driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter‐subject correspondence limits the clinical utility of rsfMRI and its application to single‐subject analyses. Here, using rsf...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 44; no. 17; pp. 5729 - 5748
Main Authors Iraji, A., Fu, Z., Faghiri, A., Duda, M., Chen, J., Rachakonda, S., DeRamus, T., Kochunov, P., Adhikari, B. M., Belger, A., Ford, J. M., Mathalon, D. H., Pearlson, G. D., Potkin, S. G., Preda, A., Turner, J. A., van Erp, T. G. M., Bustillo, J. R., Yang, K., Ishizuka, K., Faria, A., Sawa, A., Hutchison, K., Osuch, E. A., Theberge, J., Abbott, C., Mueller, B. A., Zhi, D., Zhuo, C., Liu, S., Xu, Y., Salman, M., Liu, J., Du, Y., Sui, J., Adali, T., Calhoun, V. D.
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite the known benefits of data‐driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter‐subject correspondence limits the clinical utility of rsfMRI and its application to single‐subject analyses. Here, using rsfMRI data from over 100k individuals across private and public datasets, we identify replicable multi‐spatial‐scale canonical intrinsic connectivity network (ICN) templates via the use of multi‐model‐order independent component analysis (ICA). We also study the feasibility of estimating subject‐specific ICNs via spatially constrained ICA. The results show that the subject‐level ICN estimations vary as a function of the ICN itself, the data length, and the spatial resolution. In general, large‐scale ICNs require less data to achieve specific levels of (within‐ and between‐subject) spatial similarity with their templates. Importantly, increasing data length can reduce an ICN's subject‐level specificity, suggesting longer scans may not always be desirable. We also find a positive linear relationship between data length and spatial smoothness (possibly due to averaging over intrinsic dynamics), suggesting studies examining optimized data length should consider spatial smoothness. Finally, consistency in spatial similarity between ICNs estimated using the full data and subsets across different data lengths suggests lower within‐subject spatial similarity in shorter data is not wholly defined by lower reliability in ICN estimates, but may be an indication of meaningful brain dynamics which average out as data length increases.
AbstractList Despite the known benefits of data‐driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter‐subject correspondence limits the clinical utility of rsfMRI and its application to single‐subject analyses. Here, using rsfMRI data from over 100k individuals across private and public datasets, we identify replicable multi‐spatial‐scale canonical intrinsic connectivity network (ICN) templates via the use of multi‐model‐order independent component analysis (ICA). We also study the feasibility of estimating subject‐specific ICNs via spatially constrained ICA. The results show that the subject‐level ICN estimations vary as a function of the ICN itself, the data length, and the spatial resolution. In general, large‐scale ICNs require less data to achieve specific levels of (within‐ and between‐subject) spatial similarity with their templates. Importantly, increasing data length can reduce an ICN's subject‐level specificity, suggesting longer scans may not always be desirable. We also find a positive linear relationship between data length and spatial smoothness (possibly due to averaging over intrinsic dynamics), suggesting studies examining optimized data length should consider spatial smoothness. Finally, consistency in spatial similarity between ICNs estimated using the full data and subsets across different data lengths suggests lower within‐subject spatial similarity in shorter data is not wholly defined by lower reliability in ICN estimates, but may be an indication of meaningful brain dynamics which average out as data length increases.
Despite the known benefits of data-driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter-subject correspondence limits the clinical utility of rsfMRI and its application to single-subject analyses. Here, using rsfMRI data from over 100k individuals across private and public datasets, we identify replicable multi-spatial-scale canonical intrinsic connectivity network (ICN) templates via the use of multi-model-order independent component analysis (ICA). We also study the feasibility of estimating subject-specific ICNs via spatially constrained ICA. The results show that the subject-level ICN estimations vary as a function of the ICN itself, the data length, and the spatial resolution. In general, large-scale ICNs require less data to achieve specific levels of (within- and between-subject) spatial similarity with their templates. Importantly, increasing data length can reduce an ICN's subject-level specificity, suggesting longer scans may not always be desirable. We also find a positive linear relationship between data length and spatial smoothness (possibly due to averaging over intrinsic dynamics), suggesting studies examining optimized data length should consider spatial smoothness. Finally, consistency in spatial similarity between ICNs estimated using the full data and subsets across different data lengths suggests lower within-subject spatial similarity in shorter data is not wholly defined by lower reliability in ICN estimates, but may be an indication of meaningful brain dynamics which average out as data length increases.Despite the known benefits of data-driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter-subject correspondence limits the clinical utility of rsfMRI and its application to single-subject analyses. Here, using rsfMRI data from over 100k individuals across private and public datasets, we identify replicable multi-spatial-scale canonical intrinsic connectivity network (ICN) templates via the use of multi-model-order independent component analysis (ICA). We also study the feasibility of estimating subject-specific ICNs via spatially constrained ICA. The results show that the subject-level ICN estimations vary as a function of the ICN itself, the data length, and the spatial resolution. In general, large-scale ICNs require less data to achieve specific levels of (within- and between-subject) spatial similarity with their templates. Importantly, increasing data length can reduce an ICN's subject-level specificity, suggesting longer scans may not always be desirable. We also find a positive linear relationship between data length and spatial smoothness (possibly due to averaging over intrinsic dynamics), suggesting studies examining optimized data length should consider spatial smoothness. Finally, consistency in spatial similarity between ICNs estimated using the full data and subsets across different data lengths suggests lower within-subject spatial similarity in shorter data is not wholly defined by lower reliability in ICN estimates, but may be an indication of meaningful brain dynamics which average out as data length increases.
Despite the known benefits of data‐driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter‐subject correspondence limits the clinical utility of rsfMRI and its application to single‐subject analyses. Here, using rsfMRI data from over 100k individuals across private and public datasets, we identify replicable multi‐spatial‐scale canonical intrinsic connectivity network (ICN) templates via the use of multi‐model‐order independent component analysis (ICA). We also study the feasibility of estimating subject‐specific ICNs via spatially constrained ICA. The results show that the subject‐level ICN estimations vary as a function of the ICN itself, the data length, and the spatial resolution. In general, large‐scale ICNs require less data to achieve specific levels of (within‐ and between‐subject) spatial similarity with their templates. Importantly, increasing data length can reduce an ICN's subject‐level specificity, suggesting longer scans may not always be desirable. We also find a positive linear relationship between data length and spatial smoothness (possibly due to averaging over intrinsic dynamics), suggesting studies examining optimized data length should consider spatial smoothness. Finally, consistency in spatial similarity between ICNs estimated using the full data and subsets across different data lengths suggests lower within‐subject spatial similarity in shorter data is not wholly defined by lower reliability in ICN estimates, but may be an indication of meaningful brain dynamics which average out as data length increases. Multi‐spatial‐scale intrinsic connectivity networks (ICNs) obtained using rsfMRI data from over 100k individuals across private and public datasets.
Author Bustillo, J. R.
Sawa, A.
Adhikari, B. M.
Ishizuka, K.
Abbott, C.
Kochunov, P.
Belger, A.
Mueller, B. A.
Potkin, S. G.
Fu, Z.
Preda, A.
Mathalon, D. H.
Du, Y.
Faghiri, A.
Sui, J.
Calhoun, V. D.
Liu, J.
Yang, K.
DeRamus, T.
Osuch, E. A.
Pearlson, G. D.
Xu, Y.
Ford, J. M.
Liu, S.
Zhuo, C.
Rachakonda, S.
Adali, T.
Chen, J.
Faria, A.
Theberge, J.
Duda, M.
van Erp, T. G. M.
Iraji, A.
Turner, J. A.
Zhi, D.
Salman, M.
Hutchison, K.
AuthorAffiliation 8 Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA
10 Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA
16 Department of Psychiatry, Schulich School of Medicine and Dentistry London Health Sciences Centre, Lawson Health Research Institute London Canada
4 Department of Psychiatry University of North Carolina Chapel Hill North Carolina USA
1 Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA
7 Departments of Psychiatry and Neuroscience, School of Medicine Yale University New Haven Connecticut USA
23 School of Computer and Information Technology Shanxi University Taiyuan China
5 Department of Psychiatry University of California San Francisco San Francisco California USA
3 Maryland Psychiatric Research Center, Depa
AuthorAffiliation_xml – name: 18 Department of Psychiatry University of Minnesota Minneapolis Minnesota USA
– name: 15 Department of Psychology University of Colorado Boulder Colorado USA
– name: 7 Departments of Psychiatry and Neuroscience, School of Medicine Yale University New Haven Connecticut USA
– name: 13 Departments of Psychiatry, Neuroscience, Biomedical Engineering, Pharmacology, and Genetic Medicine Johns Hopkins University School of Medicine Baltimore Maryland USA
– name: 6 San Francisco VA Medical Center San Francisco California USA
– name: 11 Department of Psychiatry and Behavioral Sciences University of New Mexico Albuquerque New Mexico USA
– name: 20 Tianjin Mental Health Center Nankai University Affiliated Anding Hospital Tianjin China
– name: 3 Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine University of Maryland Baltimore Maryland USA
– name: 14 Department of Mental Health Johns Hopkins University Bloomberg School of Public Health Baltimore Maryland USA
– name: 22 School of Electrical & Computer Engineering Georgia Institute of Technology Atlanta Georgia USA
– name: 8 Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA
– name: 21 The Department of Psychiatry First Clinical Medical College/First Hospital of Shanxi Medical University Taiyuan China
– name: 10 Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA
– name: 9 Department of Psychiatry and Behavioral Health Ohio State University Medical Center in Columbus Columbus Ohio USA
– name: 2 Department of Computer Science Georgia State University Atlanta Georgia USA
– name: 23 School of Computer and Information Technology Shanxi University Taiyuan China
– name: 17 Department of Psychiatry (CCA) University of New Mexico Albuquerque New Mexico USA
– name: 12 Department of Psychiatry, School of Medicine Johns Hopkins University Baltimore Maryland USA
– name: 1 Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA
– name: 4 Department of Psychiatry University of North Carolina Chapel Hill North Carolina USA
– name: 19 The State Key Lab of Cognitive Neuroscience and Learning Beijing Normal University Beijing China
– name: 24 Department of CSEE University of Maryland Baltimore County Baltimore Maryland USA
– name: 5 Department of Psychiatry University of California San Francisco San Francisco California USA
– name: 16 Department of Psychiatry, Schulich School of Medicine and Dentistry London Health Sciences Centre, Lawson Health Research Institute London Canada
Author_xml – sequence: 1
  givenname: A.
  orcidid: 0000-0002-0605-593X
  surname: Iraji
  fullname: Iraji, A.
  organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA, Department of Computer Science Georgia State University Atlanta Georgia USA
– sequence: 2
  givenname: Z.
  surname: Fu
  fullname: Fu, Z.
  organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA
– sequence: 3
  givenname: A.
  orcidid: 0000-0003-1807-6815
  surname: Faghiri
  fullname: Faghiri, A.
  organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA
– sequence: 4
  givenname: M.
  orcidid: 0000-0003-2369-2225
  surname: Duda
  fullname: Duda, M.
  organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA
– sequence: 5
  givenname: J.
  surname: Chen
  fullname: Chen, J.
  organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA
– sequence: 6
  givenname: S.
  surname: Rachakonda
  fullname: Rachakonda, S.
  organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA
– sequence: 7
  givenname: T.
  orcidid: 0000-0002-5774-2297
  surname: DeRamus
  fullname: DeRamus, T.
  organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA
– sequence: 8
  givenname: P.
  orcidid: 0000-0003-3656-4281
  surname: Kochunov
  fullname: Kochunov, P.
  organization: Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine University of Maryland Baltimore Maryland USA
– sequence: 9
  givenname: B. M.
  surname: Adhikari
  fullname: Adhikari, B. M.
  organization: Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine University of Maryland Baltimore Maryland USA
– sequence: 10
  givenname: A.
  surname: Belger
  fullname: Belger, A.
  organization: Department of Psychiatry University of North Carolina Chapel Hill North Carolina USA
– sequence: 11
  givenname: J. M.
  surname: Ford
  fullname: Ford, J. M.
  organization: Department of Psychiatry University of California San Francisco San Francisco California USA, San Francisco VA Medical Center San Francisco California USA
– sequence: 12
  givenname: D. H.
  surname: Mathalon
  fullname: Mathalon, D. H.
  organization: Department of Psychiatry University of California San Francisco San Francisco California USA, San Francisco VA Medical Center San Francisco California USA
– sequence: 13
  givenname: G. D.
  surname: Pearlson
  fullname: Pearlson, G. D.
  organization: Departments of Psychiatry and Neuroscience, School of Medicine Yale University New Haven Connecticut USA
– sequence: 14
  givenname: S. G.
  surname: Potkin
  fullname: Potkin, S. G.
  organization: Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA
– sequence: 15
  givenname: A.
  surname: Preda
  fullname: Preda, A.
  organization: Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA
– sequence: 16
  givenname: J. A.
  surname: Turner
  fullname: Turner, J. A.
  organization: Department of Psychiatry and Behavioral Health Ohio State University Medical Center in Columbus Columbus Ohio USA
– sequence: 17
  givenname: T. G. M.
  surname: van Erp
  fullname: van Erp, T. G. M.
  organization: Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA
– sequence: 18
  givenname: J. R.
  surname: Bustillo
  fullname: Bustillo, J. R.
  organization: Department of Psychiatry and Behavioral Sciences University of New Mexico Albuquerque New Mexico USA
– sequence: 19
  givenname: K.
  surname: Yang
  fullname: Yang, K.
  organization: Department of Psychiatry, School of Medicine Johns Hopkins University Baltimore Maryland USA
– sequence: 20
  givenname: K.
  surname: Ishizuka
  fullname: Ishizuka, K.
  organization: Department of Psychiatry, School of Medicine Johns Hopkins University Baltimore Maryland USA
– sequence: 21
  givenname: A.
  orcidid: 0000-0002-1673-002X
  surname: Faria
  fullname: Faria, A.
  organization: Department of Psychiatry, School of Medicine Johns Hopkins University Baltimore Maryland USA
– sequence: 22
  givenname: A.
  surname: Sawa
  fullname: Sawa, A.
  organization: Departments of Psychiatry, Neuroscience, Biomedical Engineering, Pharmacology, and Genetic Medicine Johns Hopkins University School of Medicine Baltimore Maryland USA, Department of Mental Health Johns Hopkins University Bloomberg School of Public Health Baltimore Maryland USA
– sequence: 23
  givenname: K.
  surname: Hutchison
  fullname: Hutchison, K.
  organization: Department of Psychology University of Colorado Boulder Colorado USA
– sequence: 24
  givenname: E. A.
  surname: Osuch
  fullname: Osuch, E. A.
  organization: Department of Psychiatry, Schulich School of Medicine and Dentistry London Health Sciences Centre, Lawson Health Research Institute London Canada
– sequence: 25
  givenname: J.
  orcidid: 0000-0001-7578-4469
  surname: Theberge
  fullname: Theberge, J.
  organization: Department of Psychiatry, Schulich School of Medicine and Dentistry London Health Sciences Centre, Lawson Health Research Institute London Canada
– sequence: 26
  givenname: C.
  surname: Abbott
  fullname: Abbott, C.
  organization: Department of Psychiatry (CCA) University of New Mexico Albuquerque New Mexico USA
– sequence: 27
  givenname: B. A.
  surname: Mueller
  fullname: Mueller, B. A.
  organization: Department of Psychiatry University of Minnesota Minneapolis Minnesota USA
– sequence: 28
  givenname: D.
  surname: Zhi
  fullname: Zhi, D.
  organization: The State Key Lab of Cognitive Neuroscience and Learning Beijing Normal University Beijing China
– sequence: 29
  givenname: C.
  orcidid: 0000-0002-3793-550X
  surname: Zhuo
  fullname: Zhuo, C.
  organization: Tianjin Mental Health Center Nankai University Affiliated Anding Hospital Tianjin China
– sequence: 30
  givenname: S.
  surname: Liu
  fullname: Liu, S.
  organization: The Department of Psychiatry First Clinical Medical College/First Hospital of Shanxi Medical University Taiyuan China
– sequence: 31
  givenname: Y.
  surname: Xu
  fullname: Xu, Y.
  organization: The Department of Psychiatry First Clinical Medical College/First Hospital of Shanxi Medical University Taiyuan China
– sequence: 32
  givenname: M.
  surname: Salman
  fullname: Salman, M.
  organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA, School of Electrical & Computer Engineering Georgia Institute of Technology Atlanta Georgia USA
– sequence: 33
  givenname: J.
  orcidid: 0000-0002-1724-7523
  surname: Liu
  fullname: Liu, J.
  organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA, Department of Computer Science Georgia State University Atlanta Georgia USA
– sequence: 34
  givenname: Y.
  orcidid: 0000-0002-0079-8177
  surname: Du
  fullname: Du, Y.
  organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA, School of Computer and Information Technology Shanxi University Taiyuan China
– sequence: 35
  givenname: J.
  surname: Sui
  fullname: Sui, J.
  organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA, The State Key Lab of Cognitive Neuroscience and Learning Beijing Normal University Beijing China
– sequence: 36
  givenname: T.
  surname: Adali
  fullname: Adali, T.
  organization: Department of CSEE University of Maryland Baltimore County Baltimore Maryland USA
– sequence: 37
  givenname: V. D.
  surname: Calhoun
  fullname: Calhoun, V. D.
  organization: Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University Georgia Institute of Technology, and Emory University Atlanta Georgia USA, Department of Computer Science Georgia State University Atlanta Georgia USA, Department of Psychiatry, School of Medicine Johns Hopkins University Baltimore Maryland USA, School of Electrical & Computer Engineering Georgia Institute of Technology Atlanta Georgia USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37787573$$D View this record in MEDLINE/PubMed
BookMark eNplUdtqFTEUDVKxF33wByTgi0WmTWYyk8xTkVL1QEUQfQ65TZs2kxyTTOW8-Ql-o1_iPrYVrU_JZq29WGuvfbQTU3QIPafkiBLSHl_q-agdGG8foT1KRt4QOnY72__QNyPjdBftl3JFCKU9oU_Qbse54D3v9tBmZV2sftr4eIGNAmFvVMAqWpzdOsCgg8PzEqr_-f1HAcxhH2v2sXiDTYrRmepvfN3g6Oq3lK8L4BhsXb8GhVJBd7tYVXV4-vBpha2qqrhanqLHkwrFPbt7D9CXt2efT9835x_frU7fnDeGEVYbq0dFhKZ27E0n7ChEP42mm5QYeKuItcwNBAAGo-a84wMbqBNWm0nrlg3dATq51V0venbWQNysglxnP6u8kUl5-S8S_aW8SDcSrgdnHFtQeHWnkNPXBTLJ2RfjQlDRpaXIVvCWcg4ugPryAfUqLTlCPmAJNvSMcAqsF39b-uPlvhYgHN8STE6lZDdJ4-GCPm0d-gDW5LZ4CcXL38XDxuGDjXvR_7m_AH5MsfQ
CitedBy_id crossref_primary_10_3389_fnins_2025_1484954
crossref_primary_10_1038_s44220_024_00341_y
crossref_primary_10_1016_j_biopsych_2023_12_002
crossref_primary_10_1002_hbm_26773
crossref_primary_10_1016_j_neuroimage_2024_120617
crossref_primary_10_1016_j_nicl_2024_103584
crossref_primary_10_1038_s41537_025_00593_2
crossref_primary_10_1038_s41467_024_48781_5
crossref_primary_10_1162_netn_a_00421
crossref_primary_10_52294_001c_129695
Cites_doi 10.1002/hbm.26234
10.1038/nn.4135
10.1002/hbm.20581
10.3389/fnins.2016.00017
10.1016/j.nic.2017.06.012
10.1002/hbm.21170
10.1016/j.nicl.2020.102375
10.1016/j.neuroimage.2004.10.042
10.1109/ICASSP.2014.6853966
10.1016/j.neuroimage.2006.09.032
10.1093/cercor/bhm207
10.1016/j.neuroimage.2016.04.006
10.1098/rstb.2013.0526
10.1016/j.jneumeth.2015.07.013
10.1002/hbm.20721
10.1038/sdata.2017.10
10.1002/hbm.24580
10.1038/s41467-020-15948-9
10.1016/j.tics.2019.12.004
10.1002/hbm.25303
10.3389/fnsys.2011.00002
10.1038/nn.4164
10.1152/jn.00338.2011
10.1109/EMBC46164.2021.9630284
10.1016/j.neuroimage.2016.12.036
10.1002/hbm.24505
10.1162/neco.1995.7.6.1129
10.1093/scan/nsaa114
10.1162/netn_a_00132
10.1016/j.neuroimage.2012.11.008
10.1006/nimg.2001.0921
10.1109/RBME.2012.2211076
10.1002/hbm.20919
10.1038/mp.2013.78
10.1109/TBME.2011.2167149
10.1080/01621459.2019.1679638
10.1176/appi.ajp.2013.12101339
10.1016/j.neuroimage.2019.116366
10.1002/hbm.1048
10.1016/j.neuroimage.2020.117061
10.1016/j.neuroimage.2011.10.010
10.1002/hbm.23086
10.1016/j.neuroimage.2021.118310
10.1002/jmri.21049
10.1007/s41237-019-00086-4
10.1016/j.neuroimage.2013.05.041
10.1126/sciadv.abj0751
10.1016/j.dcn.2018.02.002
10.1162/netn_a_00168
10.1016/j.neuroimage.2021.118332
10.1016/j.neuroimage.2013.05.099
10.1016/j.neuron.2017.06.038
10.1101/2019.12.13.19014902
10.1016/j.neuroimage.2008.10.057
10.1016/j.neuroimage.2015.09.003
10.3389/fnins.2019.01006
10.1109/BIBE52308.2021.9635525
10.1038/sdata.2015.31
10.1016/j.neuron.2017.07.011
10.1162/netn_a_00196
10.1016/j.tics.2013.09.016
10.1002/hbm.23737
ContentType Journal Article
Copyright 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 The Authors. published by Wiley Periodicals LLC.
Copyright_xml – notice: 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 The Authors. published by Wiley Periodicals LLC.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.26472
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Technology Research Database
CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Iraji et al
EISSN 1097-0193
EndPage 5748
ExternalDocumentID PMC10619392
37787573
10_1002_hbm_26472
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: U01 DA041134
– fundername: NIMH NIH HHS
  grantid: R01 MH118695
– fundername: NIDA NIH HHS
  grantid: U01 DA041028
– fundername: NIDA NIH HHS
  grantid: U01 DA051016
– fundername: NIMH NIH HHS
  grantid: R03 MH096321
– fundername: NCRR NIH HHS
  grantid: U24 RR021992
– fundername: NIDA NIH HHS
  grantid: U24 DA041123
– fundername: NIMH NIH HHS
  grantid: R01 MH123610
– fundername: NIMH NIH HHS
  grantid: R01 MH117107
– fundername: NIDA NIH HHS
  grantid: U01 DA051039
– fundername: ;
  grantid: 1631838; 2112455
– fundername: ;
  grantid: LHR D1374
– fundername: Georgia State University RISE Award
– fundername: ;
  grantid: WS2249136
– fundername: ;
  grantid: 1U24RR021992; 1U24RR025736; R01EB006841; R01EB020407; R01MH117107; R01MH118695; R01MH123610
– fundername: ;
  grantid: FRN 153359
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAHHS
AANHP
AAONW
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AFBPY
AFGKR
AFKRA
AFPKN
AFRAH
AFZJQ
AGQPQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
WIN
ID FETCH-LOGICAL-c404t-db9a08b1d95c38d9885f9c3fa8672a0dd4e6038d4672b77376461e8dbcfbb2463
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:36:38 EDT 2025
Fri Jul 11 08:31:25 EDT 2025
Sat Jul 26 02:37:01 EDT 2025
Mon Jul 21 05:53:50 EDT 2025
Thu Apr 24 23:08:27 EDT 2025
Tue Jul 01 01:11:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords functional connectivity (FC)
functional templates
independent component analysis (ICA)
intrinsic connectivity networks (ICNs)
Language English
License 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c404t-db9a08b1d95c38d9885f9c3fa8672a0dd4e6038d4672b77376461e8dbcfbb2463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0605-593X
0000-0001-7578-4469
0000-0002-1673-002X
0000-0003-3656-4281
0000-0002-1724-7523
0000-0002-0079-8177
0000-0002-5774-2297
0000-0003-2369-2225
0000-0003-1807-6815
0000-0002-3793-550X
OpenAccessLink http://dx.doi.org/10.1002/hbm.26472
PMID 37787573
PQID 2884654071
PQPubID 996345
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10619392
proquest_miscellaneous_2872177038
proquest_journals_2884654071
pubmed_primary_37787573
crossref_citationtrail_10_1002_hbm_26472
crossref_primary_10_1002_hbm_26472
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Antonio
– name: Hoboken, USA
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
Meng X. (e_1_2_8_56_1) 2021
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Lewandowski K. E. (e_1_2_8_50_1) 2020; 5
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
Gordon E. M. (e_1_2_8_31_1) 2017; 27
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
Iraji A. (e_1_2_8_40_1) 2019
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
HD‐200 Consortium (e_1_2_8_35_1) 2012; 6
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
References_xml – ident: e_1_2_8_25_1
  doi: 10.1002/hbm.26234
– volume: 5
  start-page: e200002
  year: 2020
  ident: e_1_2_8_50_1
  article-title: Neuroprogression across the early course of psychosis
  publication-title: Journal of Psychiatry and Brain Science
– ident: e_1_2_8_30_1
  doi: 10.1038/nn.4135
– ident: e_1_2_8_13_1
  doi: 10.1002/hbm.20581
– ident: e_1_2_8_58_1
  doi: 10.3389/fnins.2016.00017
– ident: e_1_2_8_12_1
  doi: 10.1016/j.nic.2017.06.012
– ident: e_1_2_8_27_1
  doi: 10.1002/hbm.21170
– ident: e_1_2_8_23_1
  doi: 10.1016/j.nicl.2020.102375
– ident: e_1_2_8_28_1
  doi: 10.1016/j.neuroimage.2004.10.042
– ident: e_1_2_8_20_1
  doi: 10.1109/ICASSP.2014.6853966
– ident: e_1_2_8_57_1
  doi: 10.1016/j.neuroimage.2006.09.032
– ident: e_1_2_8_16_1
  doi: 10.1093/cercor/bhm207
– ident: e_1_2_8_37_1
  doi: 10.1016/j.neuroimage.2016.04.006
– ident: e_1_2_8_48_1
  doi: 10.1098/rstb.2013.0526
– ident: e_1_2_8_46_1
  doi: 10.1016/j.jneumeth.2015.07.013
– ident: e_1_2_8_61_1
  doi: 10.1002/hbm.20721
– ident: e_1_2_8_18_1
  doi: 10.1038/sdata.2017.10
– ident: e_1_2_8_38_1
  doi: 10.1002/hbm.24580
– ident: e_1_2_8_52_1
  doi: 10.1038/s41467-020-15948-9
– ident: e_1_2_8_43_1
  doi: 10.1016/j.tics.2019.12.004
– ident: e_1_2_8_29_1
  doi: 10.1002/hbm.25303
– ident: e_1_2_8_2_1
  doi: 10.3389/fnsys.2011.00002
– ident: e_1_2_8_66_1
  doi: 10.1038/nn.4164
– ident: e_1_2_8_68_1
  doi: 10.1152/jn.00338.2011
– ident: e_1_2_8_24_1
  doi: 10.1109/EMBC46164.2021.9630284
– ident: e_1_2_8_33_1
  doi: 10.1016/j.neuroimage.2016.12.036
– ident: e_1_2_8_42_1
  doi: 10.1002/hbm.24505
– ident: e_1_2_8_4_1
  doi: 10.1162/neco.1995.7.6.1129
– ident: e_1_2_8_41_1
  doi: 10.1093/scan/nsaa114
– ident: e_1_2_8_63_1
  doi: 10.1162/netn_a_00132
– ident: e_1_2_8_22_1
  doi: 10.1016/j.neuroimage.2012.11.008
– volume-title: Ultra‐high‐order ICA: An exploration of highly resolved data‐driven representation of intrinsic connectivity networks (sparse ICNs). Wavelets and Sparsity XVIII (p. 111380I)
  year: 2019
  ident: e_1_2_8_40_1
– ident: e_1_2_8_10_1
  doi: 10.1006/nimg.2001.0921
– ident: e_1_2_8_9_1
  doi: 10.1109/RBME.2012.2211076
– ident: e_1_2_8_51_1
  doi: 10.1002/hbm.20919
– volume: 27
  start-page: 386
  year: 2017
  ident: e_1_2_8_31_1
  article-title: Individual variability of the system‐level organization of the human brain
  publication-title: Cerebral Cortex
– ident: e_1_2_8_19_1
  doi: 10.1038/mp.2013.78
– volume: 6
  year: 2012
  ident: e_1_2_8_35_1
  article-title: The ADHD‐200 consortium: A model to advance the translational potential of neuroimaging in clinical neuroscience
  publication-title: Frontiers in Systems Neuroscience
– ident: e_1_2_8_54_1
  doi: 10.1109/TBME.2011.2167149
– ident: e_1_2_8_55_1
  doi: 10.1080/01621459.2019.1679638
– ident: e_1_2_8_62_1
  doi: 10.1176/appi.ajp.2013.12101339
– ident: e_1_2_8_59_1
  doi: 10.1016/j.neuroimage.2019.116366
– ident: e_1_2_8_11_1
  doi: 10.1002/hbm.1048
– ident: e_1_2_8_34_1
  doi: 10.1016/j.neuroimage.2020.117061
– ident: e_1_2_8_3_1
  doi: 10.1016/j.neuroimage.2011.10.010
– ident: e_1_2_8_21_1
  doi: 10.1002/hbm.23086
– ident: e_1_2_8_67_1
  doi: 10.1016/j.neuroimage.2021.118310
– ident: e_1_2_8_44_1
  doi: 10.1002/jmri.21049
– ident: e_1_2_8_26_1
  doi: 10.1007/s41237-019-00086-4
– ident: e_1_2_8_65_1
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: e_1_2_8_64_1
  doi: 10.1126/sciadv.abj0751
– volume-title: Multi‐model order ICA: A data‐driven method for evaluating brain functional network connectivity within and between multiple spatial scales
  year: 2021
  ident: e_1_2_8_56_1
– ident: e_1_2_8_45_1
  doi: 10.1016/j.dcn.2018.02.002
– ident: e_1_2_8_7_1
  doi: 10.1162/netn_a_00168
– ident: e_1_2_8_53_1
  doi: 10.1016/j.neuroimage.2021.118332
– ident: e_1_2_8_6_1
  doi: 10.1016/j.neuroimage.2013.05.099
– ident: e_1_2_8_8_1
  doi: 10.1016/j.neuron.2017.06.038
– ident: e_1_2_8_49_1
  doi: 10.1101/2019.12.13.19014902
– ident: e_1_2_8_14_1
  doi: 10.1016/j.neuroimage.2008.10.057
– ident: e_1_2_8_47_1
  doi: 10.1016/j.neuroimage.2015.09.003
– ident: e_1_2_8_5_1
  doi: 10.3389/fnins.2019.01006
– ident: e_1_2_8_17_1
  doi: 10.1109/BIBE52308.2021.9635525
– ident: e_1_2_8_36_1
  doi: 10.1038/sdata.2015.31
– ident: e_1_2_8_32_1
  doi: 10.1016/j.neuron.2017.07.011
– ident: e_1_2_8_39_1
  doi: 10.1162/netn_a_00196
– ident: e_1_2_8_60_1
  doi: 10.1016/j.tics.2013.09.016
– ident: e_1_2_8_15_1
  doi: 10.1002/hbm.23737
SSID ssj0011501
Score 2.549568
Snippet Despite the known benefits of data‐driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual...
Despite the known benefits of data-driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5729
SubjectTerms Brain - diagnostic imaging
Brain mapping
Brain Mapping - methods
Datasets
Feasibility studies
Functional magnetic resonance imaging
Humans
Independent component analysis
Magnetic Resonance Imaging - methods
Medical imaging
Nerve Net - diagnostic imaging
Neural networks
Neuroimaging
Reproducibility of Results
Similarity
Smoothness
Spatial data
Spatial discrimination
Spatial resolution
Title Identifying canonical and replicable multi‐scale intrinsic connectivity networks in 100k+ resting‐state fMRI datasets
URI https://www.ncbi.nlm.nih.gov/pubmed/37787573
https://www.proquest.com/docview/2884654071
https://www.proquest.com/docview/2872177038
https://pubmed.ncbi.nlm.nih.gov/PMC10619392
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe6TUK8INj4UxiVQQghReny38ljx1Z1QKtpbFLFS2Q7yVpEU9SmD-OJjwBfkU_CXZy47Voh4CVKbdd1c7_Yd_bd7wh55Ykgla7MzET6rumBQWBGjpSmn3AuBfeF5BiN3B8EvSvv3dAfNho_V7yWFoVoy29b40r-R6pQBnLFKNl_kKzuFArgHuQLV5AwXP9KxirKVkUqwSOa5jr0f5aW59IYFlW6DGqfhjm0QJ6QYjbOQUDodZ6Xcx5q47nyCS9dZG3Lgony2MDcHRgUrTtA7dTI-hdnBnqXzlNFBVUruOpQQGDiCWPCkfzhWqNvxj-P17ZPPxndhQYQvx6NZ-v1J4uEL3dsq70Jx73l57HF-WfDwxNMUt-MPJWHpZ1WZUgRa6vUifU0rWgiaziylUnXZ9WmSVp9VNydG4uDIpsdiUnbQdL85QpYn_r3Oh_j85Nu_OFs8H6H7DlgecDUuXd8Oji_0EdToEGXVnw97pquynKOdNfrSs6G5XLbAXdFo7m8T-5VpgjtKFw9II003ycHnZwX08kNfU1L5-Dy1GWf3OlXPhgH5GYFdVSjjgLq6BJ1tETdr-8_SrxRjTe6ijda4w3qKeLNoBXa8IuIM4o4ozXOHpKr7unl255ZJfAwpWd5hZmIiFuhsJPIl26YRGHoZ5F0Mx4GzOFWknhpYEEFLNaOYAzWOi-w0zARMhPC8QL3EdmFf5E-ITQQoEZJL8pCX3qJsKOMwZ2bSpsJuA2b5E39xGNZsdtjkpUvseLldmIQTlwKp0le6qZfFaXLtkaHtdji6o2fx04YIv0gaOVN8kJXw3yMh2w8T6cLbMPAyod1FIb0WElZ_4rLGOaPcJskXJO_boBc7-s1-XhUcr7jzk0EtszTP4_rGbm7fA8PyW4xW6TPQWsuRIvssCFrVWhulXtPvwF4bMpj
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+canonical+and+replicable+multi%E2%80%90scale+intrinsic+connectivity+networks+in+100k%2B+resting%E2%80%90state+fMRI+datasets&rft.jtitle=Human+brain+mapping&rft.au=Iraji%2C+A&rft.au=Z+Fu&rft.au=Faghiri%2C+A&rft.au=Duda%2C+M&rft.date=2023-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=44&rft.issue=17&rft.spage=5729&rft.epage=5748&rft_id=info:doi/10.1002%2Fhbm.26472&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon