A Constrained Optimization Approach to Preserving Prior Knowledge During Incremental Training

In this paper, a supervised neural network training technique based on constrained optimization is developed for preserving prior knowledge of an input-output mapping during repeated incremental training sessions. The prior knowledge, referred to as long-term memory (LTM), is expressed in the form o...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural networks Vol. 19; no. 6; pp. 996 - 1009
Main Authors Ferrari, Silvia, Jensenius, Mark
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.06.2008
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a supervised neural network training technique based on constrained optimization is developed for preserving prior knowledge of an input-output mapping during repeated incremental training sessions. The prior knowledge, referred to as long-term memory (LTM), is expressed in the form of equality constraints obtained by means of an algebraic training technique. Incremental training, which may be used to learn new short-term memories (STMs) online, is then formulated as an error minimization problem subject to equality constraints. The solution of this problem is simplified by implementing an adjoined error gradient that circumvents direct substitution and exploits classical backpropagation. A target application is neural network function approximation in adaptive critic designs. For illustrative purposes, constrained training is implemented to update an adaptive critic flight controller, while preserving prior knowledge of an established performance baseline that consists of classical gain-scheduled controllers. It is shown both analytically and numerically that the LTM is accurately preserved while the controller is repeatedly trained over time to assimilate new STMs.
AbstractList In this paper, a supervised neural network training technique based on constrained optimization is developed for preserving prior knowledge of an input-output mapping during repeated incremental training sessions. The prior knowledge, referred to as long-term memory (LTM), is expressed in the form of equality constraints obtained by means of an algebraic training technique. Incremental training, which may be used to learn new short-term memories (STMs) online, is then formulated as an error minimization problem subject to equality constraints. The solution of this problem is simplified by implementing an adjoined error gradient that circumvents direct substitution and exploits classical backpropagation. A target application is neural network function approximation in adaptive critic designs. For illustrative purposes, constrained training is implemented to update an adaptive critic flight controller, while preserving prior knowledge of an established performance baseline that consists of classical gain-scheduled controllers. It is shown both analytically and numerically that the LTM is accurately preserved while the controller is repeatedly trained over time to assimilate new STMs.
In this paper, a supervised neural network training technique based on constrained optimization is developed for preserving prior knowledge of an input-output mapping during repeated incremental training sessions. The prior knowledge, referred to as long-term memory (LTM), is expressed in the form of equality constraints obtained by means of an algebraic training technique. Incremental training, which may be used to learn new short-term memories (STMs) online, is then formulated as an error minimization problem subject to equality constraints. The solution of this problem is simplified by implementing an adjoined error gradient that circumvents direct substitution and exploits classical backpropagation. A target application is neural network function approximation in adaptive critic designs. For illustrative purposes, constrained training is implemented to update an adaptive critic flight controller, while preserving prior knowledge of an established performance baseline that consists of classical gain-scheduled controllers. It is shown both analytically and numerically that the LTM is accurately preserved while the controller is repeatedly trained over time to assimilate new STMs.In this paper, a supervised neural network training technique based on constrained optimization is developed for preserving prior knowledge of an input-output mapping during repeated incremental training sessions. The prior knowledge, referred to as long-term memory (LTM), is expressed in the form of equality constraints obtained by means of an algebraic training technique. Incremental training, which may be used to learn new short-term memories (STMs) online, is then formulated as an error minimization problem subject to equality constraints. The solution of this problem is simplified by implementing an adjoined error gradient that circumvents direct substitution and exploits classical backpropagation. A target application is neural network function approximation in adaptive critic designs. For illustrative purposes, constrained training is implemented to update an adaptive critic flight controller, while preserving prior knowledge of an established performance baseline that consists of classical gain-scheduled controllers. It is shown both analytically and numerically that the LTM is accurately preserved while the controller is repeatedly trained over time to assimilate new STMs.
Author Ferrari, Silvia
Jensenius, Mark
Author_xml – sequence: 1
  givenname: Silvia
  surname: Ferrari
  fullname: Ferrari, Silvia
  email: sferrari@duke.edu
  organization: Dept. of Mech. Eng. & Mater. Sci., Duke Univ., Durham, NC
– sequence: 2
  givenname: Mark
  surname: Jensenius
  fullname: Jensenius, Mark
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20399228$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18541500$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1v1DAQxS1URD_gzKFSlQtwynac2Il9XC20VFQth-WIolln0rpK7MXOUrV_fR12KRKHnjx6-r3n0bxDtue8I8bec5hxDvp0eXU1KwDqmeaSg3rFDrgWPAfQ5V6aQchcF0W9zw5jvAPgQkL1hu1zJQWXAAfs5zxbeBfHgNZRm12vRzvYRxytd9l8vQ4ezW02-ux7oEjht3U3abQ-ZN-cv--pvaHs8yZM8oUzgQZyI_bZcopL4lv2usM-0rvde8R-nH1ZLr7ml9fnF4v5ZW4EiDE3RrfaFKLo6royLakCqWoJQNWyJKRCmg5VC1iuJGgSSiUVtexWK47Iu_KIfdrmpoV_bSiOzWCjob5HR34Tm5QDGgTIRH58kax5JRWHKoEnO3CzGqht1sEOGB6av6dLwIcdgNFg3wV0xsZnroBSp9OrxJ1uORN8jIG6f1HQTCU2qcRmKrHZlpgc8j-HseOfSqaa-hd8x1ufJaLnX4SotaqgfAJTmKk9
CODEN ITNNEP
CitedBy_id crossref_primary_10_1016_j_neunet_2013_01_015
crossref_primary_10_1063_5_0216197
crossref_primary_10_1142_S0217732321501686
crossref_primary_10_1016_j_measurement_2017_02_038
crossref_primary_10_1016_j_neunet_2020_12_028
crossref_primary_10_1109_TSMCB_2008_924140
crossref_primary_10_1115_1_4044400
crossref_primary_10_1109_TNN_2011_2167348
crossref_primary_10_1109_TNNLS_2013_2277601
crossref_primary_10_1109_TNN_2010_2083684
crossref_primary_10_16882_derim_2019_539794
crossref_primary_10_1109_TIE_2018_2880703
crossref_primary_10_1155_2014_746376
crossref_primary_10_1109_TII_2012_2187914
crossref_primary_10_1016_j_apradiso_2020_109581
crossref_primary_10_1109_TCPMT_2014_2325941
crossref_primary_10_1016_j_apradiso_2022_110162
crossref_primary_10_1002_xrs_2996
crossref_primary_10_1016_j_neucom_2014_11_058
crossref_primary_10_1109_TIE_2017_2674615
crossref_primary_10_1016_j_neucom_2023_02_031
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_35193_bseufbd_884109
crossref_primary_10_1016_j_advwatres_2014_04_021
crossref_primary_10_1109_TIM_2015_2433651
crossref_primary_10_1016_j_measurement_2014_12_011
crossref_primary_10_1109_TNN_2009_2019270
crossref_primary_10_1109_TNN_2010_2045657
crossref_primary_10_1109_JSEN_2021_3080120
crossref_primary_10_1109_TNNLS_2014_2329942
crossref_primary_10_1109_TNN_2008_2008326
crossref_primary_10_1109_TNN_2010_2073482
Cites_doi 10.1109/9.486648
10.1109/TNN.2006.875982
10.1023/A:1018366000512
10.1109/TNN.2004.836233
10.1109/TNN.2006.880581
10.1038/nrn1301
10.1109/TNN.2006.879771
10.2514/3.45471
10.1109/TNN.2003.816054
10.1016/0010-0277(93)90058-4
10.2514/1.12597
10.1109/IJCNN.1999.831153
10.2514/3.20550
10.1109/IJCNN.2001.938469
10.1109/TNN.2007.899229
10.1137/S0895479895283409
10.1109/TNN.2005.853408
10.2514/3.21715
10.1137/S1052623495287022
10.1109/ICNN.1993.298623
10.1080/00207729708929364
10.1109/72.809080
10.1016/0005-1098(95)00120-8
10.2514/2.4929
10.1109/72.548174
10.1109/72.329697
10.1016/S1364-6613(99)01294-2
10.1109/TNN.2006.886354
10.1109/9.751343
10.1109/TNN.2003.813839
10.1109/9780470544785
10.1109/72.728392
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright_xml – notice: 2008 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TNN.2007.915108
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Computer Science
Applied Sciences
EISSN 1941-0093
EndPage 1009
ExternalDocumentID 18541500
20399228
10_1109_TNN_2007_915108
4479860
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
S10
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c404t-cc9d9c242f776cde82ae6de008753eae25cfa8d0a3b509e4883eaa95fbb1aa1f3
IEDL.DBID RIE
ISSN 1045-9227
IngestDate Fri Jul 11 10:24:56 EDT 2025
Fri Jul 11 07:59:24 EDT 2025
Mon Jul 21 06:06:29 EDT 2025
Mon Jul 21 09:15:11 EDT 2025
Tue Jul 01 02:44:35 EDT 2025
Thu Apr 24 23:04:16 EDT 2025
Wed Aug 27 06:28:34 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords Short term
Input output
Adaptive critics
memory
Flight
Updating
Function approximation
incremental training
Adaptive control
Adaptive method
Backpropagation algorithm
Backpropagation
Gradient
knowledge acquisition and retention
exploration
Knowledge acquisition
Minimization
control
Neural network
Long term
Constrained optimization
Supervised learning
sigmoidal neural networks
Equality constraint
interference
online learning
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-cc9d9c242f776cde82ae6de008753eae25cfa8d0a3b509e4883eaa95fbb1aa1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 18541500
PQID 71658106
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_71658106
pascalfrancis_primary_20399228
crossref_primary_10_1109_TNN_2007_915108
crossref_citationtrail_10_1109_TNN_2007_915108
ieee_primary_4479860
proquest_miscellaneous_875090405
pubmed_primary_18541500
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-06-01
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-06-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on neural networks
PublicationTitleAbbrev TNN
PublicationTitleAlternate IEEE Trans Neural Netw
PublicationYear 2008
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref34
stengel (ref28) 1994
ref37
ref14
ref31
ref30
ref11
ref32
ref10
ref1
ref17
ref16
ref19
ref18
bernstein (ref42) 2005
bellman (ref38) 1957
kotani (ref5) 2000
stengel (ref35) 2004
yamakawa (ref2) 1993
ref24
sj berg (ref33) 1995; 31
ferrari (ref15) 2004
ref23
ref26
ref25
lendaris (ref12) 2004
ref20
m ndziuk (ref4) 1999
ref41
ref22
ref44
ref21
bertsekas (ref29) 1996
ref27
jensenius (ref45) 2005
ref8
ref7
howard (ref39) 1960
ref9
magnus (ref43) 1988
ref3
ref6
ref40
stengel (ref36) 1997; 21
References_xml – ident: ref14
  doi: 10.1109/9.486648
– start-page: 114
  year: 2004
  ident: ref12
  publication-title: Learning and Approximate Dynamic Programming
– year: 2005
  ident: ref42
  publication-title: Matrix Mathematics
– ident: ref26
  doi: 10.1109/TNN.2006.875982
– year: 2004
  ident: ref15
  publication-title: Learning and Approximate Dynamic Programming
– ident: ref22
  doi: 10.1023/A:1018366000512
– ident: ref30
  doi: 10.1109/TNN.2004.836233
– ident: ref27
  doi: 10.1109/TNN.2006.880581
– ident: ref6
  doi: 10.1038/nrn1301
– start-page: 347
  year: 2000
  ident: ref5
  article-title: Detection of leakage sound by using modular neural networks
  publication-title: Proc 16th Congr Int Meas Confederat
– ident: ref25
  doi: 10.1109/TNN.2006.879771
– year: 1993
  ident: ref2
  publication-title: Active Data Selection and Subsequent Revision for Sequential Learning
– ident: ref41
  doi: 10.2514/3.45471
– year: 1988
  ident: ref43
  publication-title: Matrix Differential Calculus with Applications in Statistics and Econometrics
– ident: ref8
  doi: 10.1109/TNN.2003.816054
– year: 2005
  ident: ref45
  publication-title: Constrained learning in neural control systems
– ident: ref24
  doi: 10.1016/0010-0277(93)90058-4
– ident: ref17
  doi: 10.2514/1.12597
– start-page: 1319
  year: 1999
  ident: ref4
  article-title: Incremental class learning?An approach to long life and scalable learning
  publication-title: Int Joint Conf Neural Netw
  doi: 10.1109/IJCNN.1999.831153
– ident: ref37
  doi: 10.2514/3.20550
– ident: ref3
  doi: 10.1109/IJCNN.2001.938469
– ident: ref9
  doi: 10.1109/TNN.2007.899229
– ident: ref44
  doi: 10.1137/S0895479895283409
– ident: ref10
  doi: 10.1109/TNN.2005.853408
– ident: ref40
  doi: 10.2514/3.21715
– start-page: 36
  year: 1994
  ident: ref28
  publication-title: Optimal Control and Estimation
– ident: ref21
  doi: 10.1137/S1052623495287022
– ident: ref20
  doi: 10.1109/ICNN.1993.298623
– year: 1960
  ident: ref39
  publication-title: Dynamic Programming and Markov Processes
– year: 2004
  ident: ref35
  publication-title: Flight Dynamics
– year: 1996
  ident: ref29
  publication-title: Constrained Optimization and Lagrange Multiplier Methods
– ident: ref13
  doi: 10.1080/00207729708929364
– ident: ref1
  doi: 10.1109/72.809080
– volume: 31
  start-page: 1691
  year: 1995
  ident: ref33
  article-title: Nonlinear black-box modeling in system identification: A unified overview
  publication-title: Automatica
  doi: 10.1016/0005-1098(95)00120-8
– ident: ref16
  doi: 10.2514/2.4929
– ident: ref23
  doi: 10.1109/72.548174
– ident: ref19
  doi: 10.1109/72.329697
– ident: ref18
  doi: 10.1016/S1364-6613(99)01294-2
– ident: ref34
  doi: 10.1109/TNN.2006.886354
– ident: ref32
  doi: 10.1109/9.751343
– ident: ref11
  doi: 10.1109/TNN.2003.813839
– ident: ref7
  doi: 10.1109/9780470544785
– ident: ref31
  doi: 10.1109/72.728392
– year: 1957
  ident: ref38
  publication-title: Dynamic Programming
– volume: 21
  start-page: 58
  year: 1997
  ident: ref36
  article-title: Design of robust control systems for hypersonic aircraft
  publication-title: J Guid Control Dyn
SSID ssj0014506
Score 2.0981688
Snippet In this paper, a supervised neural network training technique based on constrained optimization is developed for preserving prior knowledge of an input-output...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 996
SubjectTerms Adaptation, Psychological
Adaptive control
Adaptive critics
Algorithms
Applied sciences
Artificial Intelligence
Artificial neural networks
Backpropagation
Biological neural networks
Computer science; control theory; systems
Constraint optimization
Constraints
control
Exact sciences and technology
exploration
Function approximation
Humans
incremental training
Interference
Knowledge
Knowledge acquisition
knowledge acquisition and retention
Learning - physiology
Mathematical analysis
Mathematical models
memory
Neural networks
Neural Networks (Computer)
online learning
Optimization
Preserving
Programmable control
Scanning tunneling microscopy
sigmoidal neural networks
Training
Title A Constrained Optimization Approach to Preserving Prior Knowledge During Incremental Training
URI https://ieeexplore.ieee.org/document/4479860
https://www.ncbi.nlm.nih.gov/pubmed/18541500
https://www.proquest.com/docview/71658106
https://www.proquest.com/docview/875090405
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VnuBAS8LDtJQ9IMQBpxtn1949RkBVgRouqdQLsvblCkFt1DoH-PWdfdgURCRuVrKW1p7xvHbm-wBeWS21sguTN47ynHG0g9JVLreWVUw4q4Xxw8lnq_L0nH284Bc78HachXHOheYzN_OX4SzfdmbjS2XHjFVSlJig38PELc5qjScGjAceTcwueC6LokowPnMqj9erVcQqlOjeaGDoExwdl59qu-OMAruK741UN_h6mshrsT3wDA7oZA_Ohq3HvpNvs02vZ-bXX6iO__ts-_AwRaJkGVXnEey4dgLTZYtZ-NVP8pqE3tBQdJ_A3kD-QJItmMCDO0iGU_iyJJ76MxBOOEs-oyG6ShOeZJlgy0nfEd_x4a1Te4mXX7tr8mmo6ZH3YWCSoMGKJUvc2zrxVzyG85MP63eneWJuyA2jrM-NkVYa9P5NVZXGOlEoV1oX4PMXTrmCm0YJS9VCY8Di0Ijgr0ryRuu5UvNm8QR22651z4AYpqn1y0pdsnJupKgsp4pTq0tR6SaD2SDC2iRYc_-w3-uQ3lBZo_g92WZVR_Fn8Ga84UdE9Ni-dOoFNS5LMsrg6A8dGf8vaID5xfteDkpT49fqj2BU67rNTY3ZKReYhWdAtqwQPoRDy8ozeBrV7fcuk9Y-__e2DuB-bGbxJaJD2O2vN-4FRky9Pgqfyi268BLS
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5V5QAcWkiAhke7B4Q44HTt7NreYwRUgTbhkkq9IGtfrhDURq1zgF_P7MOmICJxs5K1tPaM57Uz3wfw0iihpJnppLaUJ4yjHRS2sIkxrGClNarUbjh5ucoX5-zjBb_YgTfDLIy11jef2am79Gf5ptUbVyo7ZqwQZY4J-h30-zwN01rDmQHjnkkT8wueiCwrIpBPSsXxerUKaIUCHRz1HH0lR9fl5tpuuSPPr-K6I-UNvqA6MFtsDz29CzrZh2W_-dB58nW66dRU__wL1_F_n-4B7MVYlMyD8jyEHduMYDxvMA-_-kFeEd8d6svuI9jv6R9ItAYjuH8Ly3AMn-fEkX96yglryCc0RVdxxpPMI3A56Vriej6cfWou8fJLe01O-6oeeedHJgmarFC0xL2tI4PFIzg_eb9-u0gid0OiGWVdorUwQqP_r4si18aWmbS5sR5Af2alzbiuZWmonCkMWSyaEfxVCl4rlUqZ1rPHsNu0jT0Aopmixi3LVc7yVIuyMJxKTo3Ky0LVE5j2Iqx0BDZ3D_ut8gkOFRWK39FtFlUQ_wReDzd8D5ge25eOnaCGZVFGEzj8Q0eG_zPqgX7xvqNeaSr8Xt0hjGxsu7mpMD_lJebhEyBbVpQuiEPbyifwJKjb711GrX36720dwd3FenlWnX1YnT6De6G1xRWMnsNud72xLzB-6tSh_2x-AS0oFhs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+constrained+optimization+approach+to+preserving+prior+knowledge+during+incremental+training&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Ferrari%2C+Silvia&rft.au=Jensenius%2C+Mark&rft.date=2008-06-01&rft.issn=1045-9227&rft.volume=19&rft.issue=6&rft.spage=996&rft_id=info:doi/10.1109%2FTNN.2007.915108&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon