A Constrained Optimization Approach to Preserving Prior Knowledge During Incremental Training
In this paper, a supervised neural network training technique based on constrained optimization is developed for preserving prior knowledge of an input-output mapping during repeated incremental training sessions. The prior knowledge, referred to as long-term memory (LTM), is expressed in the form o...
Saved in:
Published in | IEEE transactions on neural networks Vol. 19; no. 6; pp. 996 - 1009 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.06.2008
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a supervised neural network training technique based on constrained optimization is developed for preserving prior knowledge of an input-output mapping during repeated incremental training sessions. The prior knowledge, referred to as long-term memory (LTM), is expressed in the form of equality constraints obtained by means of an algebraic training technique. Incremental training, which may be used to learn new short-term memories (STMs) online, is then formulated as an error minimization problem subject to equality constraints. The solution of this problem is simplified by implementing an adjoined error gradient that circumvents direct substitution and exploits classical backpropagation. A target application is neural network function approximation in adaptive critic designs. For illustrative purposes, constrained training is implemented to update an adaptive critic flight controller, while preserving prior knowledge of an established performance baseline that consists of classical gain-scheduled controllers. It is shown both analytically and numerically that the LTM is accurately preserved while the controller is repeatedly trained over time to assimilate new STMs. |
---|---|
AbstractList | In this paper, a supervised neural network training technique based on constrained optimization is developed for preserving prior knowledge of an input-output mapping during repeated incremental training sessions. The prior knowledge, referred to as long-term memory (LTM), is expressed in the form of equality constraints obtained by means of an algebraic training technique. Incremental training, which may be used to learn new short-term memories (STMs) online, is then formulated as an error minimization problem subject to equality constraints. The solution of this problem is simplified by implementing an adjoined error gradient that circumvents direct substitution and exploits classical backpropagation. A target application is neural network function approximation in adaptive critic designs. For illustrative purposes, constrained training is implemented to update an adaptive critic flight controller, while preserving prior knowledge of an established performance baseline that consists of classical gain-scheduled controllers. It is shown both analytically and numerically that the LTM is accurately preserved while the controller is repeatedly trained over time to assimilate new STMs. In this paper, a supervised neural network training technique based on constrained optimization is developed for preserving prior knowledge of an input-output mapping during repeated incremental training sessions. The prior knowledge, referred to as long-term memory (LTM), is expressed in the form of equality constraints obtained by means of an algebraic training technique. Incremental training, which may be used to learn new short-term memories (STMs) online, is then formulated as an error minimization problem subject to equality constraints. The solution of this problem is simplified by implementing an adjoined error gradient that circumvents direct substitution and exploits classical backpropagation. A target application is neural network function approximation in adaptive critic designs. For illustrative purposes, constrained training is implemented to update an adaptive critic flight controller, while preserving prior knowledge of an established performance baseline that consists of classical gain-scheduled controllers. It is shown both analytically and numerically that the LTM is accurately preserved while the controller is repeatedly trained over time to assimilate new STMs.In this paper, a supervised neural network training technique based on constrained optimization is developed for preserving prior knowledge of an input-output mapping during repeated incremental training sessions. The prior knowledge, referred to as long-term memory (LTM), is expressed in the form of equality constraints obtained by means of an algebraic training technique. Incremental training, which may be used to learn new short-term memories (STMs) online, is then formulated as an error minimization problem subject to equality constraints. The solution of this problem is simplified by implementing an adjoined error gradient that circumvents direct substitution and exploits classical backpropagation. A target application is neural network function approximation in adaptive critic designs. For illustrative purposes, constrained training is implemented to update an adaptive critic flight controller, while preserving prior knowledge of an established performance baseline that consists of classical gain-scheduled controllers. It is shown both analytically and numerically that the LTM is accurately preserved while the controller is repeatedly trained over time to assimilate new STMs. |
Author | Ferrari, Silvia Jensenius, Mark |
Author_xml | – sequence: 1 givenname: Silvia surname: Ferrari fullname: Ferrari, Silvia email: sferrari@duke.edu organization: Dept. of Mech. Eng. & Mater. Sci., Duke Univ., Durham, NC – sequence: 2 givenname: Mark surname: Jensenius fullname: Jensenius, Mark |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20399228$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18541500$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1v1DAQxS1URD_gzKFSlQtwynac2Il9XC20VFQth-WIolln0rpK7MXOUrV_fR12KRKHnjx6-r3n0bxDtue8I8bec5hxDvp0eXU1KwDqmeaSg3rFDrgWPAfQ5V6aQchcF0W9zw5jvAPgQkL1hu1zJQWXAAfs5zxbeBfHgNZRm12vRzvYRxytd9l8vQ4ezW02-ux7oEjht3U3abQ-ZN-cv--pvaHs8yZM8oUzgQZyI_bZcopL4lv2usM-0rvde8R-nH1ZLr7ml9fnF4v5ZW4EiDE3RrfaFKLo6royLakCqWoJQNWyJKRCmg5VC1iuJGgSSiUVtexWK47Iu_KIfdrmpoV_bSiOzWCjob5HR34Tm5QDGgTIRH58kax5JRWHKoEnO3CzGqht1sEOGB6av6dLwIcdgNFg3wV0xsZnroBSp9OrxJ1uORN8jIG6f1HQTCU2qcRmKrHZlpgc8j-HseOfSqaa-hd8x1ufJaLnX4SotaqgfAJTmKk9 |
CODEN | ITNNEP |
CitedBy_id | crossref_primary_10_1016_j_neunet_2013_01_015 crossref_primary_10_1063_5_0216197 crossref_primary_10_1142_S0217732321501686 crossref_primary_10_1016_j_measurement_2017_02_038 crossref_primary_10_1016_j_neunet_2020_12_028 crossref_primary_10_1109_TSMCB_2008_924140 crossref_primary_10_1115_1_4044400 crossref_primary_10_1109_TNN_2011_2167348 crossref_primary_10_1109_TNNLS_2013_2277601 crossref_primary_10_1109_TNN_2010_2083684 crossref_primary_10_16882_derim_2019_539794 crossref_primary_10_1109_TIE_2018_2880703 crossref_primary_10_1155_2014_746376 crossref_primary_10_1109_TII_2012_2187914 crossref_primary_10_1016_j_apradiso_2020_109581 crossref_primary_10_1109_TCPMT_2014_2325941 crossref_primary_10_1016_j_apradiso_2022_110162 crossref_primary_10_1002_xrs_2996 crossref_primary_10_1016_j_neucom_2014_11_058 crossref_primary_10_1109_TIE_2017_2674615 crossref_primary_10_1016_j_neucom_2023_02_031 crossref_primary_10_1007_s00466_023_02434_4 crossref_primary_10_35193_bseufbd_884109 crossref_primary_10_1016_j_advwatres_2014_04_021 crossref_primary_10_1109_TIM_2015_2433651 crossref_primary_10_1016_j_measurement_2014_12_011 crossref_primary_10_1109_TNN_2009_2019270 crossref_primary_10_1109_TNN_2010_2045657 crossref_primary_10_1109_JSEN_2021_3080120 crossref_primary_10_1109_TNNLS_2014_2329942 crossref_primary_10_1109_TNN_2008_2008326 crossref_primary_10_1109_TNN_2010_2073482 |
Cites_doi | 10.1109/9.486648 10.1109/TNN.2006.875982 10.1023/A:1018366000512 10.1109/TNN.2004.836233 10.1109/TNN.2006.880581 10.1038/nrn1301 10.1109/TNN.2006.879771 10.2514/3.45471 10.1109/TNN.2003.816054 10.1016/0010-0277(93)90058-4 10.2514/1.12597 10.1109/IJCNN.1999.831153 10.2514/3.20550 10.1109/IJCNN.2001.938469 10.1109/TNN.2007.899229 10.1137/S0895479895283409 10.1109/TNN.2005.853408 10.2514/3.21715 10.1137/S1052623495287022 10.1109/ICNN.1993.298623 10.1080/00207729708929364 10.1109/72.809080 10.1016/0005-1098(95)00120-8 10.2514/2.4929 10.1109/72.548174 10.1109/72.329697 10.1016/S1364-6613(99)01294-2 10.1109/TNN.2006.886354 10.1109/9.751343 10.1109/TNN.2003.813839 10.1109/9780470544785 10.1109/72.728392 |
ContentType | Journal Article |
Copyright | 2008 INIST-CNRS |
Copyright_xml | – notice: 2008 INIST-CNRS |
DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TNN.2007.915108 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Computer Science Applied Sciences |
EISSN | 1941-0093 |
EndPage | 1009 |
ExternalDocumentID | 18541500 20399228 10_1109_TNN_2007_915108 4479860 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS S10 TAE TN5 VH1 AAYOK AAYXX CITATION RIG IQODW CGR CUY CVF ECM EIF NPM 7X8 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c404t-cc9d9c242f776cde82ae6de008753eae25cfa8d0a3b509e4883eaa95fbb1aa1f3 |
IEDL.DBID | RIE |
ISSN | 1045-9227 |
IngestDate | Fri Jul 11 10:24:56 EDT 2025 Fri Jul 11 07:59:24 EDT 2025 Mon Jul 21 06:06:29 EDT 2025 Mon Jul 21 09:15:11 EDT 2025 Tue Jul 01 02:44:35 EDT 2025 Thu Apr 24 23:04:16 EDT 2025 Wed Aug 27 06:28:34 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Keywords | Short term Input output Adaptive critics memory Flight Updating Function approximation incremental training Adaptive control Adaptive method Backpropagation algorithm Backpropagation Gradient knowledge acquisition and retention exploration Knowledge acquisition Minimization control Neural network Long term Constrained optimization Supervised learning sigmoidal neural networks Equality constraint interference online learning |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-cc9d9c242f776cde82ae6de008753eae25cfa8d0a3b509e4883eaa95fbb1aa1f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 18541500 |
PQID | 71658106 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_71658106 pascalfrancis_primary_20399228 crossref_primary_10_1109_TNN_2007_915108 crossref_citationtrail_10_1109_TNN_2007_915108 ieee_primary_4479860 proquest_miscellaneous_875090405 pubmed_primary_18541500 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-06-01 |
PublicationDateYYYYMMDD | 2008-06-01 |
PublicationDate_xml | – month: 06 year: 2008 text: 2008-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States |
PublicationTitle | IEEE transactions on neural networks |
PublicationTitleAbbrev | TNN |
PublicationTitleAlternate | IEEE Trans Neural Netw |
PublicationYear | 2008 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
References | ref13 ref34 stengel (ref28) 1994 ref37 ref14 ref31 ref30 ref11 ref32 ref10 ref1 ref17 ref16 ref19 ref18 bernstein (ref42) 2005 bellman (ref38) 1957 kotani (ref5) 2000 stengel (ref35) 2004 yamakawa (ref2) 1993 ref24 sj berg (ref33) 1995; 31 ferrari (ref15) 2004 ref23 ref26 ref25 lendaris (ref12) 2004 ref20 m ndziuk (ref4) 1999 ref41 ref22 ref44 ref21 bertsekas (ref29) 1996 ref27 jensenius (ref45) 2005 ref8 ref7 howard (ref39) 1960 ref9 magnus (ref43) 1988 ref3 ref6 ref40 stengel (ref36) 1997; 21 |
References_xml | – ident: ref14 doi: 10.1109/9.486648 – start-page: 114 year: 2004 ident: ref12 publication-title: Learning and Approximate Dynamic Programming – year: 2005 ident: ref42 publication-title: Matrix Mathematics – ident: ref26 doi: 10.1109/TNN.2006.875982 – year: 2004 ident: ref15 publication-title: Learning and Approximate Dynamic Programming – ident: ref22 doi: 10.1023/A:1018366000512 – ident: ref30 doi: 10.1109/TNN.2004.836233 – ident: ref27 doi: 10.1109/TNN.2006.880581 – ident: ref6 doi: 10.1038/nrn1301 – start-page: 347 year: 2000 ident: ref5 article-title: Detection of leakage sound by using modular neural networks publication-title: Proc 16th Congr Int Meas Confederat – ident: ref25 doi: 10.1109/TNN.2006.879771 – year: 1993 ident: ref2 publication-title: Active Data Selection and Subsequent Revision for Sequential Learning – ident: ref41 doi: 10.2514/3.45471 – year: 1988 ident: ref43 publication-title: Matrix Differential Calculus with Applications in Statistics and Econometrics – ident: ref8 doi: 10.1109/TNN.2003.816054 – year: 2005 ident: ref45 publication-title: Constrained learning in neural control systems – ident: ref24 doi: 10.1016/0010-0277(93)90058-4 – ident: ref17 doi: 10.2514/1.12597 – start-page: 1319 year: 1999 ident: ref4 article-title: Incremental class learning?An approach to long life and scalable learning publication-title: Int Joint Conf Neural Netw doi: 10.1109/IJCNN.1999.831153 – ident: ref37 doi: 10.2514/3.20550 – ident: ref3 doi: 10.1109/IJCNN.2001.938469 – ident: ref9 doi: 10.1109/TNN.2007.899229 – ident: ref44 doi: 10.1137/S0895479895283409 – ident: ref10 doi: 10.1109/TNN.2005.853408 – ident: ref40 doi: 10.2514/3.21715 – start-page: 36 year: 1994 ident: ref28 publication-title: Optimal Control and Estimation – ident: ref21 doi: 10.1137/S1052623495287022 – ident: ref20 doi: 10.1109/ICNN.1993.298623 – year: 1960 ident: ref39 publication-title: Dynamic Programming and Markov Processes – year: 2004 ident: ref35 publication-title: Flight Dynamics – year: 1996 ident: ref29 publication-title: Constrained Optimization and Lagrange Multiplier Methods – ident: ref13 doi: 10.1080/00207729708929364 – ident: ref1 doi: 10.1109/72.809080 – volume: 31 start-page: 1691 year: 1995 ident: ref33 article-title: Nonlinear black-box modeling in system identification: A unified overview publication-title: Automatica doi: 10.1016/0005-1098(95)00120-8 – ident: ref16 doi: 10.2514/2.4929 – ident: ref23 doi: 10.1109/72.548174 – ident: ref19 doi: 10.1109/72.329697 – ident: ref18 doi: 10.1016/S1364-6613(99)01294-2 – ident: ref34 doi: 10.1109/TNN.2006.886354 – ident: ref32 doi: 10.1109/9.751343 – ident: ref11 doi: 10.1109/TNN.2003.813839 – ident: ref7 doi: 10.1109/9780470544785 – ident: ref31 doi: 10.1109/72.728392 – year: 1957 ident: ref38 publication-title: Dynamic Programming – volume: 21 start-page: 58 year: 1997 ident: ref36 article-title: Design of robust control systems for hypersonic aircraft publication-title: J Guid Control Dyn |
SSID | ssj0014506 |
Score | 2.0981688 |
Snippet | In this paper, a supervised neural network training technique based on constrained optimization is developed for preserving prior knowledge of an input-output... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 996 |
SubjectTerms | Adaptation, Psychological Adaptive control Adaptive critics Algorithms Applied sciences Artificial Intelligence Artificial neural networks Backpropagation Biological neural networks Computer science; control theory; systems Constraint optimization Constraints control Exact sciences and technology exploration Function approximation Humans incremental training Interference Knowledge Knowledge acquisition knowledge acquisition and retention Learning - physiology Mathematical analysis Mathematical models memory Neural networks Neural Networks (Computer) online learning Optimization Preserving Programmable control Scanning tunneling microscopy sigmoidal neural networks Training |
Title | A Constrained Optimization Approach to Preserving Prior Knowledge During Incremental Training |
URI | https://ieeexplore.ieee.org/document/4479860 https://www.ncbi.nlm.nih.gov/pubmed/18541500 https://www.proquest.com/docview/71658106 https://www.proquest.com/docview/875090405 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VnuBAS8LDtJQ9IMQBpxtn1949RkBVgRouqdQLsvblCkFt1DoH-PWdfdgURCRuVrKW1p7xvHbm-wBeWS21sguTN47ynHG0g9JVLreWVUw4q4Xxw8lnq_L0nH284Bc78HachXHOheYzN_OX4SzfdmbjS2XHjFVSlJig38PELc5qjScGjAceTcwueC6LokowPnMqj9erVcQqlOjeaGDoExwdl59qu-OMAruK741UN_h6mshrsT3wDA7oZA_Ohq3HvpNvs02vZ-bXX6iO__ts-_AwRaJkGVXnEey4dgLTZYtZ-NVP8pqE3tBQdJ_A3kD-QJItmMCDO0iGU_iyJJ76MxBOOEs-oyG6ShOeZJlgy0nfEd_x4a1Te4mXX7tr8mmo6ZH3YWCSoMGKJUvc2zrxVzyG85MP63eneWJuyA2jrM-NkVYa9P5NVZXGOlEoV1oX4PMXTrmCm0YJS9VCY8Di0Ijgr0ryRuu5UvNm8QR22651z4AYpqn1y0pdsnJupKgsp4pTq0tR6SaD2SDC2iRYc_-w3-uQ3lBZo_g92WZVR_Fn8Ga84UdE9Ni-dOoFNS5LMsrg6A8dGf8vaID5xfteDkpT49fqj2BU67rNTY3ZKReYhWdAtqwQPoRDy8ozeBrV7fcuk9Y-__e2DuB-bGbxJaJD2O2vN-4FRky9Pgqfyi268BLS |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5V5QAcWkiAhke7B4Q44HTt7NreYwRUgTbhkkq9IGtfrhDURq1zgF_P7MOmICJxs5K1tPaM57Uz3wfw0iihpJnppLaUJ4yjHRS2sIkxrGClNarUbjh5ucoX5-zjBb_YgTfDLIy11jef2am79Gf5ptUbVyo7ZqwQZY4J-h30-zwN01rDmQHjnkkT8wueiCwrIpBPSsXxerUKaIUCHRz1HH0lR9fl5tpuuSPPr-K6I-UNvqA6MFtsDz29CzrZh2W_-dB58nW66dRU__wL1_F_n-4B7MVYlMyD8jyEHduMYDxvMA-_-kFeEd8d6svuI9jv6R9ItAYjuH8Ly3AMn-fEkX96yglryCc0RVdxxpPMI3A56Vriej6cfWou8fJLe01O-6oeeedHJgmarFC0xL2tI4PFIzg_eb9-u0gid0OiGWVdorUwQqP_r4si18aWmbS5sR5Af2alzbiuZWmonCkMWSyaEfxVCl4rlUqZ1rPHsNu0jT0Aopmixi3LVc7yVIuyMJxKTo3Ky0LVE5j2Iqx0BDZ3D_ut8gkOFRWK39FtFlUQ_wReDzd8D5ge25eOnaCGZVFGEzj8Q0eG_zPqgX7xvqNeaSr8Xt0hjGxsu7mpMD_lJebhEyBbVpQuiEPbyifwJKjb711GrX36720dwd3FenlWnX1YnT6De6G1xRWMnsNud72xLzB-6tSh_2x-AS0oFhs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+constrained+optimization+approach+to+preserving+prior+knowledge+during+incremental+training&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Ferrari%2C+Silvia&rft.au=Jensenius%2C+Mark&rft.date=2008-06-01&rft.issn=1045-9227&rft.volume=19&rft.issue=6&rft.spage=996&rft_id=info:doi/10.1109%2FTNN.2007.915108&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon |