Diagnosing COVID-19 in human serum using Raman spectroscopy
This study proposed the diagnosis of COVID-19 by means of Raman spectroscopy. Samples of blood serum from 10 patients positive and 10 patients negative for COVID-19 by RT-PCR RNA and ELISA tests were analyzed. Raman spectra were obtained with a dispersive Raman spectrometer (830 nm, 350 mW) in tripl...
Saved in:
Published in | Lasers in medical science Vol. 37; no. 4; pp. 2217 - 2226 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.06.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study proposed the diagnosis of COVID-19 by means of Raman spectroscopy. Samples of blood serum from 10 patients positive and 10 patients negative for COVID-19 by RT-PCR RNA and ELISA tests were analyzed. Raman spectra were obtained with a dispersive Raman spectrometer (830 nm, 350 mW) in triplicate, being submitted to exploratory analysis with principal component analysis (PCA) to identify the spectral differences and discriminant analysis with PCA (PCA-DA) and partial least squares (PLS-DA) for classification of the blood serum spectra into Control and COVID-19. The spectra of both groups positive and negative for COVID-19 showed peaks referred to the basal constitution of the serum (mainly albumin). The difference spectra showed decrease in the peaks referred to proteins and amino acids for the group positive. PCA variables showed more detailed spectral differences related to the biochemical alterations due to the COVID-19 such as increase in lipids, nitrogen compounds (urea and amines/amides) and nucleic acids, and decrease of proteins and amino acids (tryptophan) in the COVID-19 group. The discriminant analysis applied to the principal component loadings (PC2, PC4, PC5, and PC6) could classify spectra with 87% sensitivity and 100% specificity compared to 95% sensitivity and 100% specificity indicated in the RT-PCR kit leaflet, demonstrating the possibilities of a rapid, label-free, and costless technique for diagnosing COVID-19 infection. |
---|---|
AbstractList | This study proposed the diagnosis of COVID-19 by means of Raman spectroscopy. Samples of blood serum from 10 patients positive and 10 patients negative for COVID-19 by RT-PCR RNA and ELISA tests were analyzed. Raman spectra were obtained with a dispersive Raman spectrometer (830 nm, 350 mW) in triplicate, being submitted to exploratory analysis with principal component analysis (PCA) to identify the spectral differences and discriminant analysis with PCA (PCA-DA) and partial least squares (PLS-DA) for classification of the blood serum spectra into Control and COVID-19. The spectra of both groups positive and negative for COVID-19 showed peaks referred to the basal constitution of the serum (mainly albumin). The difference spectra showed decrease in the peaks referred to proteins and amino acids for the group positive. PCA variables showed more detailed spectral differences related to the biochemical alterations due to the COVID-19 such as increase in lipids, nitrogen compounds (urea and amines/amides) and nucleic acids, and decrease of proteins and amino acids (tryptophan) in the COVID-19 group. The discriminant analysis applied to the principal component loadings (PC2, PC4, PC5, and PC6) could classify spectra with 87% sensitivity and 100% specificity compared to 95% sensitivity and 100% specificity indicated in the RT-PCR kit leaflet, demonstrating the possibilities of a rapid, label-free, and costless technique for diagnosing COVID-19 infection. This study proposed the diagnosis of COVID-19 by means of Raman spectroscopy. Samples of blood serum from 10 patients positive and 10 patients negative for COVID-19 by RT-PCR RNA and ELISA tests were analyzed. Raman spectra were obtained with a dispersive Raman spectrometer (830 nm, 350 mW) in triplicate, being submitted to exploratory analysis with principal component analysis (PCA) to identify the spectral differences and discriminant analysis with PCA (PCA-DA) and partial least squares (PLS-DA) for classification of the blood serum spectra into Control and COVID-19. The spectra of both groups positive and negative for COVID-19 showed peaks referred to the basal constitution of the serum (mainly albumin). The difference spectra showed decrease in the peaks referred to proteins and amino acids for the group positive. PCA variables showed more detailed spectral differences related to the biochemical alterations due to the COVID-19 such as increase in lipids, nitrogen compounds (urea and amines/amides) and nucleic acids, and decrease of proteins and amino acids (tryptophan) in the COVID-19 group. The discriminant analysis applied to the principal component loadings (PC2, PC4, PC5, and PC6) could classify spectra with 87% sensitivity and 100% specificity compared to 95% sensitivity and 100% specificity indicated in the RT-PCR kit leaflet, demonstrating the possibilities of a rapid, label-free, and costless technique for diagnosing COVID-19 infection. This study proposed the diagnosis of COVID-19 by means of Raman spectroscopy. Samples of blood serum from 10 patients positive and 10 patients negative for COVID-19 by RT-PCR RNA and ELISA tests were analyzed. Raman spectra were obtained with a dispersive Raman spectrometer (830 nm, 350 mW) in triplicate, being submitted to exploratory analysis with principal component analysis (PCA) to identify the spectral differences and discriminant analysis with PCA (PCA-DA) and partial least squares (PLS-DA) for classification of the blood serum spectra into Control and COVID-19. The spectra of both groups positive and negative for COVID-19 showed peaks referred to the basal constitution of the serum (mainly albumin). The difference spectra showed decrease in the peaks referred to proteins and amino acids for the group positive. PCA variables showed more detailed spectral differences related to the biochemical alterations due to the COVID-19 such as increase in lipids, nitrogen compounds (urea and amines/amides) and nucleic acids, and decrease of proteins and amino acids (tryptophan) in the COVID-19 group. The discriminant analysis applied to the principal component loadings (PC2, PC4, PC5, and PC6) could classify spectra with 87% sensitivity and 100% specificity compared to 95% sensitivity and 100% specificity indicated in the RT-PCR kit leaflet, demonstrating the possibilities of a rapid, label-free, and costless technique for diagnosing COVID-19 infection.This study proposed the diagnosis of COVID-19 by means of Raman spectroscopy. Samples of blood serum from 10 patients positive and 10 patients negative for COVID-19 by RT-PCR RNA and ELISA tests were analyzed. Raman spectra were obtained with a dispersive Raman spectrometer (830 nm, 350 mW) in triplicate, being submitted to exploratory analysis with principal component analysis (PCA) to identify the spectral differences and discriminant analysis with PCA (PCA-DA) and partial least squares (PLS-DA) for classification of the blood serum spectra into Control and COVID-19. The spectra of both groups positive and negative for COVID-19 showed peaks referred to the basal constitution of the serum (mainly albumin). The difference spectra showed decrease in the peaks referred to proteins and amino acids for the group positive. PCA variables showed more detailed spectral differences related to the biochemical alterations due to the COVID-19 such as increase in lipids, nitrogen compounds (urea and amines/amides) and nucleic acids, and decrease of proteins and amino acids (tryptophan) in the COVID-19 group. The discriminant analysis applied to the principal component loadings (PC2, PC4, PC5, and PC6) could classify spectra with 87% sensitivity and 100% specificity compared to 95% sensitivity and 100% specificity indicated in the RT-PCR kit leaflet, demonstrating the possibilities of a rapid, label-free, and costless technique for diagnosing COVID-19 infection. |
Author | Goulart, Ana Cristina Castro Carvalho, Henrique Cunha Pacheco, Marcos Tadeu T. Zângaro, Renato Amaro Silveira, Landulfo Dorta, Cristiane Bissoli |
Author_xml | – sequence: 1 givenname: Ana Cristina Castro surname: Goulart fullname: Goulart, Ana Cristina Castro organization: Universidade Anhembi Morumbi – UAM, Rua Casa Do Ator – sequence: 2 givenname: Landulfo surname: Silveira fullname: Silveira, Landulfo email: landulfo.silveira@gmail.com, lsjunior@anhembi.br organization: Universidade Anhembi Morumbi – UAM, Rua Casa Do Ator, Center for Innovation, Technology and Education – CITÉ, Parque Tecnológico de São José Dos Campos – sequence: 3 givenname: Henrique Cunha surname: Carvalho fullname: Carvalho, Henrique Cunha organization: Center for Innovation, Technology and Education – CITÉ, Parque Tecnológico de São José Dos Campos – sequence: 4 givenname: Cristiane Bissoli surname: Dorta fullname: Dorta, Cristiane Bissoli organization: Laboratório CIPAX, Avenida Nove de Julho – sequence: 5 givenname: Marcos Tadeu T. surname: Pacheco fullname: Pacheco, Marcos Tadeu T. organization: Universidade Anhembi Morumbi – UAM, Rua Casa Do Ator – sequence: 6 givenname: Renato Amaro surname: Zângaro fullname: Zângaro, Renato Amaro organization: Universidade Anhembi Morumbi – UAM, Rua Casa Do Ator, Center for Innovation, Technology and Education – CITÉ, Parque Tecnológico de São José Dos Campos |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35028768$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kd1LHDEUxYNY_Ow_0Icy0Bdfpt58TJKhUJC1H4IgFJG-hWz2zhqZSbbJjOB_3-yutuqDTwm5v3M4ueeQ7IYYkJAPFD5TAHWaKVDgNTBaAxda12qHHFDBm1qC-L377L5PDnO-A6BKUr5H9nkDTCupD8iXc2-XIWYfltXs6ubivKZt5UN1Ow02VBnTNFTTZvrLbl5W6MYUs4urh2PyrrN9xveP5xG5_v7tevazvrz6cTE7u6ydADHWTlNFQXJEXNjG8a6hgnXKoqQ4V7plgI3rOt12C8mEcAykYqqV8w71giE_Il-3tqtpPuDCYRiT7c0q-cGmBxOtNy8nwd-aZbw3WjWaQVsMTh4NUvwzYR7N4LPDvrcB45QNk6yss9VSFvTTK_QuTimU3xVKgeJCwJr6-DzRvyhPay2A3gKurCon7Izzox19XAf0vaFg1g2abYOmNGg2DRpVpOyV9Mn9TRHfinKBwxLT_9hvqP4CkjqspQ |
CitedBy_id | crossref_primary_10_1007_s10103_023_03871_6 crossref_primary_10_3390_ijms242115605 crossref_primary_10_1016_j_aca_2022_340286 crossref_primary_10_3390_bioengineering9100500 crossref_primary_10_33667_2078_5631_2022_3_41_46 crossref_primary_10_1021_acs_analchem_2c04514 crossref_primary_10_1002_jbio_202300338 crossref_primary_10_3389_fchem_2023_1193030 crossref_primary_10_3390_ijms24043209 crossref_primary_10_3390_diagnostics15060660 crossref_primary_10_1016_j_clispe_2023_100028 crossref_primary_10_1002_jrs_6461 crossref_primary_10_1021_acsomega_4c07991 crossref_primary_10_1038_s41427_023_00516_6 crossref_primary_10_3390_arm92050038 crossref_primary_10_1002_fft2_335 |
Cites_doi | 10.1039/d0an00538j 10.1165/rcmb.2015-0385OC 10.1017/bca.2020.12 10.1186/s12879-020-05242-w 10.1371/journal.pone.0032406 10.1016/S0140-6736(20)31681-0 10.1016/j.jphotobiol.2020.111801 10.18800/contabilidad.202002.004 10.1016/j.cell.2020.05.032 10.1080/05704920701551530 10.1128/JCM.00310-20 10.1007/s10103-021-03247-8 10.5123/s1679-49742020000300011 10.1016/j.pdpdt.2020.101765 10.1172/jci.insight.140327 10.1515/dx-2020-0057 10.3390/mi11030306 10.1117/1.3463006 10.1007/s10103-016-2003-y 10.1111/imcb.12397 10.1590/S0103-50532012005000073 10.1056/NEJMsr2022263 10.1016/j.ijleo.2015.11.060 10.1088/1054-660X/26/11/115602 10.1021/acs.analchem.5b02661 10.1021/acs.analchem.0c01971 10.1039/C8RA04491K 10.1016/B978-0-08-057116-4.50027-4 10.1002/jrs.6235 10.1080/14737159.2020.1766968 10.1016/j.ejrad.2020.108961 10.1016/j.pulmoe.2020.04.008 10.1002/bip.1976.360150114 10.1016/S0140-6736(20)30553-5 10.1002/jcp.29392 10.1098/rsta.2015.0202 10.1007/s00216-014-8311-9 10.25561/77482 10.5935/1676-2444.20200049 10.1117/1.JBO.23.10.107002 10.1016/j.saa.2021.119712 10.1016/j.pdpdt.2019.08.006 10.1007/s10103-017-2173-2 10.1002/jbio.202000189 10.1117/122317535 10.1128/JCM.00512-20 10.1016/j.pdpdt.2020.101735 10.1246/bcsj.48.2417 10.1117/1.JBO.18.8.087004 10.1099/jgv.0.001439 10.1126/science.abc8665 10.1515/cclm-2020-0369 10.1038/s41598-020-64737-3 10.34119/bjhrv3n2-185 10.1039/c9an00599d 10.5858/arpa.2020-0389-SA 10.1002/jrs.4607 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 2021. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 – notice: 2021. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature. – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
DBID | AAYXX CITATION NPM 3V. 7QO 7RV 7SP 7U5 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H8D HCIFZ K9. KB0 L7M LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1007/s10103-021-03488-7 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central (New) (NC LIVE) Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Nursing & Allied Health Premium ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1435-604X |
EndPage | 2226 |
ExternalDocumentID | PMC8758209 35028768 10_1007_s10103_021_03488_7 |
Genre | Journal Article |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M4Y M7P MA- MK0 N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7U Z7V Z7W Z7X Z83 Z87 ZMTXR ZOVNA ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 7QO 7SP 7U5 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ H8D K9. L7M P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c404t-c8171063eeeda5c3f5142f7ae61eb78920e5cff89fd6244c20672796bfe8d2e3 |
IEDL.DBID | U2A |
ISSN | 1435-604X 0268-8921 |
IngestDate | Thu Aug 21 13:44:42 EDT 2025 Fri Jul 11 07:18:27 EDT 2025 Sat Aug 16 15:42:02 EDT 2025 Thu Apr 03 07:06:57 EDT 2025 Thu Apr 24 23:05:51 EDT 2025 Tue Jul 01 03:07:29 EDT 2025 Fri Feb 21 02:45:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | COVID-19 Serum SARS-CoV-2 Diagnosis Raman spectroscopy Principal component analysis |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-c8171063eeeda5c3f5142f7ae61eb78920e5cff89fd6244c20672796bfe8d2e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8758209 |
PMID | 35028768 |
PQID | 2670734406 |
PQPubID | 46654 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8758209 proquest_miscellaneous_2620079866 proquest_journals_2670734406 pubmed_primary_35028768 crossref_citationtrail_10_1007_s10103_021_03488_7 crossref_primary_10_1007_s10103_021_03488_7 springer_journals_10_1007_s10103_021_03488_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: Heidelberg |
PublicationTitle | Lasers in medical science |
PublicationTitleAbbrev | Lasers Med Sci |
PublicationTitleAlternate | Lasers Med Sci |
PublicationYear | 2022 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Ferguson NM, Laydon D, Nedjati-Gilani G et al (2020) Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College London. https://doi.org/10.25561/77482 AlmeidaMLSaatkampCJFernandesABEstimating the concentration of urea and creatinine in the human serum of normal and dialysis patients through Raman spectroscopyLasers Med Sci20163171415142310.1007/s10103-016-2003-y27393683 BilalMSaleemMBilalMRaman spectroscopy-based screening of IgM positive and negative sera for dengue virus infectionLaser Phys Lett2016261110.1088/1054-660X/26/11/115602 PezzottiGZhuWAdachiTMetabolic machinery encrypted in the Raman spectrum of influenza A virus-inoculated mammalian cellsJ Cell Physiol2019235614651701:CAS:528:DC%2BC1MXitFakurnF10.1002/jcp.29392 AloisioEChibirevaMSerafiniLA comprehensive appraisal of laboratory biochemistry tests as major predictors of COVID-19 severityArch Pathol Lab Med202014412145714641:CAS:528:DC%2BB3MXhsFWhsbrE10.5858/arpa.2020-0389-SA32649222 DuarteJPachecoMTVillaverdeABNear-infrared Raman spectroscopy to detect anti-Toxoplasma gondii antibody in blood sera of domestic cats: quantitative analysis based on partial least-squares multivariate statisticsJ Biomed Opt20101541:CAS:528:DC%2BC3cXhtV2jtLzJ10.1117/1.346300620799833 ShenBYiXSunYProteomic and metabolomic characterization of COVID-19 patient seraCell2020182159721:CAS:528:DC%2BB3cXhtVyit7rL10.1016/j.cell.2020.05.032324924067254001 ChacolliMLAProtein C reactive as inflammation markerRev Méd (Tacna)20181114244 WangDLiRWangJCorrelation analysis between disease severity and clinical and biochemical characteristics of 143 cases of COVID-19 in Wuhan, China: a descriptive studyBMC Infect Dis2020205191:CAS:528:DC%2BB3cXhsVWhtbvE10.1186/s12879-020-05242-w326779187364396 CorreiaNABatistaLTANascimentoRJMDetection of prostate cancer by Raman spectroscopy: a multivariate study on patients with normal and altered PSA valuesJ Photochem Photobiol B Biol20202041:CAS:528:DC%2BB3cXhslSgsro%3D10.1016/j.jphotobiol.2020.111801 CiaccioMAgnelloLBiochemical biomarkers alterations in Coronavirus Disease 2019 (COVID-19)Diagnosis2020743653721:CAS:528:DC%2BB38XlsFalsbo%3D10.1515/dx-2020-005732589600 Word Health Organization (2020) WHO Coronavirus disease (COVID-19) dashboard. Word Health Organization – WHO. https://COVID19.who.int. Acessed 15 August 2021. KandelNChungongSOmaarAHealth security capacities in the context of COVID-19 outbreak: an analysis of International Health Regulations annual report data from 182 countriesLancet202039510229P1047105310.1016/S0140-6736(20)30553-5 Garcia FilhoCVieiraLJESSilvaRMInternet searches for measures to address COVID-19 in Brazil: a description of searches in the first 100 days of 2020Epidemiol Serv Saúde202029310.5123/s1679-4974202000030001132520122 ACC Goulart RA Zângaro HC Carvalho et al (2021) Diagnosing COVID-19 in human sera with detected immunoglobulinsIgM and IgG by means of Raman spectroscopy. J Raman Spectrosc. https://doi.org/10.1002/jrs.6235 KhanRSRehmanIUSpectroscopy as a tool for detection and monitoring of Coronavirus (COVID-19)Expert Rev Mol Diagn20202076476491:CAS:528:DC%2BB3cXhtVClsrjJ10.1080/14737159.2020.176696832378969 ChengHXuCZhangDMulticlass identification of hepatitis C based on serum Raman spectroscopyPhotodiagnosis Photodyn Ther2020301:CAS:528:DC%2BB3cXhtVKmsLvJ10.1016/j.pdpdt.2020.10173532171878 ThomsMBuschauerRAmeismeierMStructural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2Science20203696508124912551:CAS:528:DC%2BB3cXhslCltrnO10.1126/science.abc8665326808827402621 ThomasTStefanoniDReiszJACOVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal statusJCI Insight202051410.1172/jci.insight.1403277453907 Word Health Organization (2020) Laboratory testing strategy recommendations for COVID-19. World Health Organization – WHO. https://apps.who.int/iris/bitstream/handle/10665/331509/WHO-COVID-19-lab_testing-2020.1-eng.pdf. Acessed 15 August 2021. Abbott Molecular Inc (2020) Abbott RealTime SARS-CoV-2. Abbot. https://www.molecular.abbott/sal/Abbott%20RealTime%20SARS-CoV-2%20amp%20kit%20IFU%2051-608442%20R2.pdf. Acessed 15 August 2021. Lykina A, Artemyev D (2017) Analysis of albumin Raman scattering in visible and near-infrared ranges. In: Proceedings of the Saratov Fall Meeting 2017: Optical Technologies in Biophysics and Medicine XIX; Saratov, Russian Federation. 26–30 September 2017; p. 107160E. https://doi.org/10.1117/122317535 LinVJKoenigJLRaman studies of bovine serum albuminBiopolymers19761512032181:CAS:528:DyaE28XosFynug%3D%3D10.1002/bip.1976.3601501141119 XavierARSilvaJSAlmeidaJPCLCOVID-19: clinical and laboratory manifestations in novel coronavirus infectionJ Bras Patol Med Lab2020561:CAS:528:DC%2BB3cXisFeiurjJ10.5935/1676-2444.20200049 TrombergBJSchwetzTAPérez-StableEJRapid scaling up of Covid-19 diagnostic testing in the United States – The NIH RADx initiativeN Engl J Med202038311107110771:CAS:528:DC%2BB3cXhvVeju7vJ10.1056/NEJMsr2022263327069587493127 MarsonFALOrtegaMMCOVID-19 in BrazilPulmonology20202642412441:STN:280:DC%2BB38vjt1GjsQ%3D%3D10.1016/j.pulmoe.2020.04.008323710547183991 MovasaghiZRehmanSRehmanIURaman spectroscopy of biological tissuesAppl Spectrosc Rev20074254935411:CAS:528:DC%2BD2sXhtVWkur3J10.1080/05704920701551530 SilveiraLBorgesRCFNavarroRSQuantifying glucose and lipid components in human serum by Raman spectroscopy and multivariate statisticsLasers Med Sci201732478779510.1007/s10103-017-2173-228271376 ChanJFYipCCToKKImproved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel Real Time Reverse Transcription PCR assay validated in vitro and with clinical specimensJ Clin Microbiol2020585e00310e3201:CAS:528:DC%2BB3cXhvVOgtrnN10.1128/JCM.00310-20321321967180250 KhanSUllahRSaleemMRaman spectroscopic analysis of dengue virus infection in human blood seraOptik20161274208620881:CAS:528:DC%2BC2MXhvVyhu7%2FE10.1016/j.ijleo.2015.11.060 El Khatib AS (2020) Economy versus epidemiology: an analysis of trade-off between markets and lives in COVID 19 times. Contab Neg (En línea) 15 30 62 80 https://doi.org/10.18800/contabilidad.202002.004 HoriueHSasakiMYoshikawaYRaman spectroscopic signatures of carotenoids and polyenes enable label-free visualization of microbial distributions within pink biofilmsSci Rep202010177041:CAS:528:DC%2BB3cXptFGitL4%3D10.1038/s41598-020-64737-3323820427206103 TongDChenCZhangJApplication of Raman spectroscopy in the detection of hepatitis B virus infectionPhotodiagnosis Photodyn Ther2019282482521:CAS:528:DC%2BC1MXhvFKhurbO10.1016/j.pdpdt.2019.08.00631425766 MastersonANLiyanageTBermanCA novel liquid biopsy-based approach for highly specific cancer diagnostics: mitigating false responses in assaying patient plasma-derived circulating microRNAs through combined SERS and plasmon-enhanced fluorescence analysesAnalyst202014512417341801:CAS:528:DC%2BB3cXpvFehsL8%3D10.1039/d0an00538j32490854 Schuchmann AZ, Schnorrenberger BL, Chiquetti ME et al (2020) Vertical social isolation X horizontal social isolation: health and social dilemas in copping with the COVID-19 pandemic. Braz J Health Rev 3 2 3556 3576 https://doi.org/10.34119/bjhrv3n2-185 SilvaAMOliveiraFSSde BritoPLSpectral model for diagnosis of acute leukemias in whole blood and plasma through Raman spectroscopyJ Biomed Opt2018231010.1117/1.JBO.23.10.107002 CarvalhoLFDCESNogueiraMSOptical techniques for fast screening — towards prevention of the coronavirus COVID-19 outbreakPhotodiagnosis Photodyn Ther2020301:CAS:528:DC%2BB3cXotFCgsrY%3D10.1016/j.pdpdt.2020.101765323049127158832 DesaiSMishraSVJoshiARaman spectroscopy based detection of RNA viruses in saliva: a preliminary reportJ Biophotonics202013101:CAS:528:DC%2BB3cXhvFOisbzO10.1002/jbio.20200018932609429 BispoJAVieiraEESSilveiraLCorrelating the amount of urea, creatinine, and glucose in urine from patients with diabetes mellitus and hypertension with the risk of developing renal lesions by means of Raman spectroscopy and principal component analysisJ Biomed Opt2013188870041:CAS:528:DC%2BC3sXhs1eis73E10.1117/1.JBO.18.8.08700423929457 Lin-Vien D, Colthup N, Fateley W et al (1991) Appendix 3 — A summary of characteristic Raman and infrared frequencies. In: The handbook of infrared and Raman characteristic frequencies of organic molecules, 1st edn. Academic Press, San Diego, pp. 477 490 https://doi.org/10.1016/B978-0-08-057116-4.50027-4 NogamiNSugtaHMiyazawaTC-S stretching vibrations and molecular conformations of isobutyl methyl sulfide and related alkyl sulfidesBull Chem Soc Japan1975489241724201:CAS:528:DyaE28Xktlek10.1246/bcsj.48.2417 Ivanciuc T, Sbrana E, Ansar M et al (2016) Hydrogen sulfide is an antiviral and antiinflammatory endogenous gasotransmitter in the airways. Role in respiratory syncytial virus infection. Am J Resp Cell Mol Biol 55 5 684 696 https://doi.org/10.1165/rcmb.2015-0385OC NguyenTBangDDWolffA2019 Novel Coronavirus Disease (COVID-19): paving the road for rapid detection and point-of-care diagnosticsMicromachines (Basel)202011330610.3390/mi11030306 JolliffeITCadimaJPrincipal component analysis: a review and recent developmentsPhil Trans R Soc A201637420652015020210.1098/rsta.2015.0202269531784792409 KuharNSilSVermaTChallenges in application of Raman spectroscopy to biology and materialsRSC Adv2018825888259081:CAS:528:DC%2BC1cXhtlGht7%2FK10.1039/C8RA04491K355419739083091 LongCXuHShenQDiagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT?Eur J Radiol202012610.1016/j.ejrad.2020.108961322293227102545 TangYWSchmitzJEPersingDHLaboratory diagnosis of COVID 19: current issues and challengesJ Clin Microbiol2020586e00512e52010.1128/JCM.00512-20322458357269383 Auwaerter PG (2020) Coronavirus COVID-19 (SARS-COV-2). Johns Hopkins ABX Guide, Unbound Medicine. http://www.hopkinsguides.com/hopkins/view/Johns_Hopkins_ABX_Guide/540747/all/Coronavirus_COVID_19__SARS_CoV_2_. Acessed 05 August 2021. KellamPBarclayWThe dynamics of humoral M Bilal (3488_CR59) 2016; 26 MLA Chacolli (3488_CR57) 2018; 11 G Pezzotti (3488_CR65) 2019; 235 3488_CR55 JY Lim (3488_CR64) 2015; 87 C Garcia Filho (3488_CR6) 2020; 29 AN Masterson (3488_CR25) 2020; 145 3488_CR12 YW Tang (3488_CR15) 2020; 58 N Kuhar (3488_CR44) 2018; 8 JA Bispo (3488_CR51) 2013; 18 M Thoms (3488_CR45) 2020; 369 3488_CR19 CA Nunes (3488_CR34) 2012; 23 3488_CR16 H Cheng (3488_CR61) 2020; 30 FAL Marson (3488_CR10) 2020; 26 AR Xavier (3488_CR50) 2020; 56 N Nogami (3488_CR52) 1975; 48 C Krafft (3488_CR20) 2015; 407 AM Silva (3488_CR35) 2018; 23 L Silveira (3488_CR22) 2017; 32 RS Khan (3488_CR28) 2020; 20 NC Dingari (3488_CR39) 2012; 7 3488_CR43 P Kellam (3488_CR11) 2020; 101 L Thunström (3488_CR9) 2020; 11 N Kandel (3488_CR3) 2020; 395 IT Jolliffe (3488_CR33) 2016; 374 LFDCES Carvalho (3488_CR27) 2020; 30 SA Ejazi (3488_CR32) 2021; 99 C Long (3488_CR14) 2020; 126 T Dou (3488_CR26) 2020; 92 M Ciaccio (3488_CR56) 2020; 7 3488_CR31 3488_CR30 K Czamara (3488_CR53) 2015; 46 T Nguyen (3488_CR18) 2020; 11 ML Almeida (3488_CR21) 2016; 31 DR Parachalil (3488_CR38) 2019; 144 J Duarte (3488_CR58) 2010; 15 3488_CR37 T Thomas (3488_CR54) 2020; 5 D Tong (3488_CR60) 2019; 28 N Kuhar (3488_CR40) 2021; 258 VJ Lin (3488_CR36) 1976; 15 S Desai (3488_CR24) 2020; 13 E Aloisio (3488_CR47) 2020; 144 JF Chan (3488_CR17) 2020; 58 NA Correia (3488_CR23) 2020; 204 LG Barberia (3488_CR7) 2020; 396 H Horiue (3488_CR41) 2020; 10 BM Henry (3488_CR46) 2020; 58 B Shen (3488_CR49) 2020; 182 3488_CR29 3488_CR1 D Wang (3488_CR48) 2020; 20 A Baratloo (3488_CR63) 2015; 3 3488_CR2 S Khan (3488_CR62) 2016; 127 3488_CR4 3488_CR5 Z Movasaghi (3488_CR42) 2007; 42 3488_CR8 BJ Tromberg (3488_CR13) 2020; 383 |
References_xml | – reference: WangDLiRWangJCorrelation analysis between disease severity and clinical and biochemical characteristics of 143 cases of COVID-19 in Wuhan, China: a descriptive studyBMC Infect Dis2020205191:CAS:528:DC%2BB3cXhsVWhtbvE10.1186/s12879-020-05242-w326779187364396 – reference: Ivanciuc T, Sbrana E, Ansar M et al (2016) Hydrogen sulfide is an antiviral and antiinflammatory endogenous gasotransmitter in the airways. Role in respiratory syncytial virus infection. Am J Resp Cell Mol Biol 55 5 684 696 https://doi.org/10.1165/rcmb.2015-0385OC – reference: El Khatib AS (2020) Economy versus epidemiology: an analysis of trade-off between markets and lives in COVID 19 times. Contab Neg (En línea) 15 30 62 80 https://doi.org/10.18800/contabilidad.202002.004 – reference: ShenBYiXSunYProteomic and metabolomic characterization of COVID-19 patient seraCell2020182159721:CAS:528:DC%2BB3cXhtVyit7rL10.1016/j.cell.2020.05.032324924067254001 – reference: DuarteJPachecoMTVillaverdeABNear-infrared Raman spectroscopy to detect anti-Toxoplasma gondii antibody in blood sera of domestic cats: quantitative analysis based on partial least-squares multivariate statisticsJ Biomed Opt20101541:CAS:528:DC%2BC3cXhtV2jtLzJ10.1117/1.346300620799833 – reference: Auwaerter PG (2020) Coronavirus COVID-19 (SARS-COV-2). Johns Hopkins ABX Guide, Unbound Medicine. http://www.hopkinsguides.com/hopkins/view/Johns_Hopkins_ABX_Guide/540747/all/Coronavirus_COVID_19__SARS_CoV_2_. Acessed 05 August 2021. – reference: SilvaAMOliveiraFSSde BritoPLSpectral model for diagnosis of acute leukemias in whole blood and plasma through Raman spectroscopyJ Biomed Opt2018231010.1117/1.JBO.23.10.107002 – reference: KandelNChungongSOmaarAHealth security capacities in the context of COVID-19 outbreak: an analysis of International Health Regulations annual report data from 182 countriesLancet202039510229P1047105310.1016/S0140-6736(20)30553-5 – reference: AloisioEChibirevaMSerafiniLA comprehensive appraisal of laboratory biochemistry tests as major predictors of COVID-19 severityArch Pathol Lab Med202014412145714641:CAS:528:DC%2BB3MXhsFWhsbrE10.5858/arpa.2020-0389-SA32649222 – reference: TangYWSchmitzJEPersingDHLaboratory diagnosis of COVID 19: current issues and challengesJ Clin Microbiol2020586e00512e52010.1128/JCM.00512-20322458357269383 – reference: BispoJAVieiraEESSilveiraLCorrelating the amount of urea, creatinine, and glucose in urine from patients with diabetes mellitus and hypertension with the risk of developing renal lesions by means of Raman spectroscopy and principal component analysisJ Biomed Opt2013188870041:CAS:528:DC%2BC3sXhs1eis73E10.1117/1.JBO.18.8.08700423929457 – reference: TongDChenCZhangJApplication of Raman spectroscopy in the detection of hepatitis B virus infectionPhotodiagnosis Photodyn Ther2019282482521:CAS:528:DC%2BC1MXhvFKhurbO10.1016/j.pdpdt.2019.08.00631425766 – reference: Lin-Vien D, Colthup N, Fateley W et al (1991) Appendix 3 — A summary of characteristic Raman and infrared frequencies. In: The handbook of infrared and Raman characteristic frequencies of organic molecules, 1st edn. Academic Press, San Diego, pp. 477 490 https://doi.org/10.1016/B978-0-08-057116-4.50027-4 – reference: S Giansante HE Giana AB Fernandes et al 2021 Analytical performance of Raman spectroscopy in assaying biochemical components in human serum Lasers Med Scihttps://doi.org/10.1007/s10103-021-03247-8 – reference: KuharNSilSVermaTChallenges in application of Raman spectroscopy to biology and materialsRSC Adv2018825888259081:CAS:528:DC%2BC1cXhtlGht7%2FK10.1039/C8RA04491K355419739083091 – reference: ChengHXuCZhangDMulticlass identification of hepatitis C based on serum Raman spectroscopyPhotodiagnosis Photodyn Ther2020301:CAS:528:DC%2BB3cXhtVKmsLvJ10.1016/j.pdpdt.2020.10173532171878 – reference: Garcia FilhoCVieiraLJESSilvaRMInternet searches for measures to address COVID-19 in Brazil: a description of searches in the first 100 days of 2020Epidemiol Serv Saúde202029310.5123/s1679-4974202000030001132520122 – reference: CorreiaNABatistaLTANascimentoRJMDetection of prostate cancer by Raman spectroscopy: a multivariate study on patients with normal and altered PSA valuesJ Photochem Photobiol B Biol20202041:CAS:528:DC%2BB3cXhslSgsro%3D10.1016/j.jphotobiol.2020.111801 – reference: Word Health Organization (2020) WHO Coronavirus disease (COVID-19) dashboard. Word Health Organization – WHO. https://COVID19.who.int. Acessed 15 August 2021. – reference: DesaiSMishraSVJoshiARaman spectroscopy based detection of RNA viruses in saliva: a preliminary reportJ Biophotonics202013101:CAS:528:DC%2BB3cXhvFOisbzO10.1002/jbio.20200018932609429 – reference: KhanRSRehmanIUSpectroscopy as a tool for detection and monitoring of Coronavirus (COVID-19)Expert Rev Mol Diagn20202076476491:CAS:528:DC%2BB3cXhtVClsrjJ10.1080/14737159.2020.176696832378969 – reference: LimJYNamJSYangSEIdentification of newly emerging influenza viruses by surface-enhanced Raman spectroscopyAnal Chem2015872311652116591:CAS:528:DC%2BC2MXhslGms7bF10.1021/acs.analchem.5b0266126528878 – reference: Schuchmann AZ, Schnorrenberger BL, Chiquetti ME et al (2020) Vertical social isolation X horizontal social isolation: health and social dilemas in copping with the COVID-19 pandemic. Braz J Health Rev 3 2 3556 3576 https://doi.org/10.34119/bjhrv3n2-185 – reference: ThomasTStefanoniDReiszJACOVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal statusJCI Insight202051410.1172/jci.insight.1403277453907 – reference: ACC Goulart RA Zângaro HC Carvalho et al (2021) Diagnosing COVID-19 in human sera with detected immunoglobulinsIgM and IgG by means of Raman spectroscopy. J Raman Spectrosc. https://doi.org/10.1002/jrs.6235 – reference: CarvalhoLFDCESNogueiraMSOptical techniques for fast screening — towards prevention of the coronavirus COVID-19 outbreakPhotodiagnosis Photodyn Ther2020301:CAS:528:DC%2BB3cXotFCgsrY%3D10.1016/j.pdpdt.2020.101765323049127158832 – reference: ThomsMBuschauerRAmeismeierMStructural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2Science20203696508124912551:CAS:528:DC%2BB3cXhslCltrnO10.1126/science.abc8665326808827402621 – reference: CzamaraKMajznerKPaciaMZRaman spectroscopy of lipids: a reviewJ Raman Spectrosc20154614201:CAS:528:DC%2BC2cXitVChsrjF10.1002/jrs.4607 – reference: ParachalilDRBrunoCBonnierFRaman spectroscopic screening of high and low molecular weight fractions of human serumAnalyst201914414429543111:CAS:528:DC%2BC1MXhtFWks7jK10.1039/c9an00599d31187802 – reference: KuharNSilSUmapathySPotential of Raman spectroscopic techniques to study proteinsSpectrochim Acta A Mol Biomol Spectrosc20212581:CAS:528:DC%2BB3MXhtVKmsbzN10.1016/j.saa.2021.11971233965670 – reference: Abbott Molecular Inc (2020) Abbott RealTime SARS-CoV-2. Abbot. https://www.molecular.abbott/sal/Abbott%20RealTime%20SARS-CoV-2%20amp%20kit%20IFU%2051-608442%20R2.pdf. Acessed 15 August 2021. – reference: MastersonANLiyanageTBermanCA novel liquid biopsy-based approach for highly specific cancer diagnostics: mitigating false responses in assaying patient plasma-derived circulating microRNAs through combined SERS and plasmon-enhanced fluorescence analysesAnalyst202014512417341801:CAS:528:DC%2BB3cXpvFehsL8%3D10.1039/d0an00538j32490854 – reference: NogamiNSugtaHMiyazawaTC-S stretching vibrations and molecular conformations of isobutyl methyl sulfide and related alkyl sulfidesBull Chem Soc Japan1975489241724201:CAS:528:DyaE28Xktlek10.1246/bcsj.48.2417 – reference: SilveiraLBorgesRCFNavarroRSQuantifying glucose and lipid components in human serum by Raman spectroscopy and multivariate statisticsLasers Med Sci201732478779510.1007/s10103-017-2173-228271376 – reference: Word Health Organization (2020) Laboratory testing strategy recommendations for COVID-19. World Health Organization – WHO. https://apps.who.int/iris/bitstream/handle/10665/331509/WHO-COVID-19-lab_testing-2020.1-eng.pdf. Acessed 15 August 2021. – reference: BarberiaLGGómezEJPolitical and institutional perils of Brazil’s COVID-19 crisisLancet2020396102483673681:CAS:528:DC%2BB3cXhsFais7%2FM10.1016/S0140-6736(20)31681-0327389387392557 – reference: KrafftCPoppJThe many facets of Raman spectroscopy for biomedical analysisAnal Bioanal Chem201540736997171:CAS:528:DC%2BC2cXitValtrnJ10.1007/s00216-014-8311-925428454 – reference: NunesCAFreitasMPPinheiroACMChemoface: a novel free user-friendly interface for chemometricsJ Braz Chem Soc20122311200320101:CAS:528:DC%2BC3sXivVSqt7s%3D10.1590/S0103-50532012005000073 – reference: KhanSUllahRSaleemMRaman spectroscopic analysis of dengue virus infection in human blood seraOptik20161274208620881:CAS:528:DC%2BC2MXhvVyhu7%2FE10.1016/j.ijleo.2015.11.060 – reference: ThunströmLNewboldSCFinnoffDThe benefits and costs of using social distancing to flatten the curve for COVID-19J Benefit Cost Anal202011217919510.1017/bca.2020.12 – reference: MarsonFALOrtegaMMCOVID-19 in BrazilPulmonology20202642412441:STN:280:DC%2BB38vjt1GjsQ%3D%3D10.1016/j.pulmoe.2020.04.008323710547183991 – reference: TrombergBJSchwetzTAPérez-StableEJRapid scaling up of Covid-19 diagnostic testing in the United States – The NIH RADx initiativeN Engl J Med202038311107110771:CAS:528:DC%2BB3cXhvVeju7vJ10.1056/NEJMsr2022263327069587493127 – reference: XavierARSilvaJSAlmeidaJPCLCOVID-19: clinical and laboratory manifestations in novel coronavirus infectionJ Bras Patol Med Lab2020561:CAS:528:DC%2BB3cXisFeiurjJ10.5935/1676-2444.20200049 – reference: Lykina A, Artemyev D (2017) Analysis of albumin Raman scattering in visible and near-infrared ranges. In: Proceedings of the Saratov Fall Meeting 2017: Optical Technologies in Biophysics and Medicine XIX; Saratov, Russian Federation. 26–30 September 2017; p. 107160E. https://doi.org/10.1117/122317535 – reference: LinVJKoenigJLRaman studies of bovine serum albuminBiopolymers19761512032181:CAS:528:DyaE28XosFynug%3D%3D10.1002/bip.1976.3601501141119 – reference: AlmeidaMLSaatkampCJFernandesABEstimating the concentration of urea and creatinine in the human serum of normal and dialysis patients through Raman spectroscopyLasers Med Sci20163171415142310.1007/s10103-016-2003-y27393683 – reference: JolliffeITCadimaJPrincipal component analysis: a review and recent developmentsPhil Trans R Soc A201637420652015020210.1098/rsta.2015.0202269531784792409 – reference: NguyenTBangDDWolffA2019 Novel Coronavirus Disease (COVID-19): paving the road for rapid detection and point-of-care diagnosticsMicromachines (Basel)202011330610.3390/mi11030306 – reference: HoriueHSasakiMYoshikawaYRaman spectroscopic signatures of carotenoids and polyenes enable label-free visualization of microbial distributions within pink biofilmsSci Rep202010177041:CAS:528:DC%2BB3cXptFGitL4%3D10.1038/s41598-020-64737-3323820427206103 – reference: CiaccioMAgnelloLBiochemical biomarkers alterations in Coronavirus Disease 2019 (COVID-19)Diagnosis2020743653721:CAS:528:DC%2BB38XlsFalsbo%3D10.1515/dx-2020-005732589600 – reference: DouTLiZZhangJNanoscale structural characterization of individual viral particles using atomic force microscopy infrared spectroscopy (AFM-IR) and tip-enhanced Raman spectroscopy (TERS)Anal Chem2020921611297113041:CAS:528:DC%2BB3cXhsVSmsLjI10.1021/acs.analchem.0c0197132683857 – reference: HenryBMOliveiraMHSBenoitSHematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysisClin Chem Lab Med2020587102110281:CAS:528:DC%2BB3cXhtFKjsrfL10.1515/cclm-2020-036932286245 – reference: ChanJFYipCCToKKImproved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel Real Time Reverse Transcription PCR assay validated in vitro and with clinical specimensJ Clin Microbiol2020585e00310e3201:CAS:528:DC%2BB3cXhvVOgtrnN10.1128/JCM.00310-20321321967180250 – reference: PezzottiGZhuWAdachiTMetabolic machinery encrypted in the Raman spectrum of influenza A virus-inoculated mammalian cellsJ Cell Physiol2019235614651701:CAS:528:DC%2BC1MXitFakurnF10.1002/jcp.29392 – reference: KellamPBarclayWThe dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfectionJ Gen Virol202010187917971:CAS:528:DC%2BB3cXhvFylsL7L10.1099/jgv.0.001439324300947641391 – reference: ChacolliMLAProtein C reactive as inflammation markerRev Méd (Tacna)20181114244 – reference: Ferguson NM, Laydon D, Nedjati-Gilani G et al (2020) Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College London. https://doi.org/10.25561/77482 – reference: BilalMSaleemMBilalMRaman spectroscopy-based screening of IgM positive and negative sera for dengue virus infectionLaser Phys Lett2016261110.1088/1054-660X/26/11/115602 – reference: MovasaghiZRehmanSRehmanIURaman spectroscopy of biological tissuesAppl Spectrosc Rev20074254935411:CAS:528:DC%2BD2sXhtVWkur3J10.1080/05704920701551530 – reference: LongCXuHShenQDiagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT?Eur J Radiol202012610.1016/j.ejrad.2020.108961322293227102545 – reference: Instituto Adolfo Lutz (2020) Protocolo laboratorial para coleta, acondicionamento e transporte de amostras biológicas para investigação de SRAG e SG por SARS-CoV-2. Instituto Adolfo Lutz. http://www.ial.sp.gov.br/resources/insituto-adolfo-lutz/publicacoes/coronavirus/orientacoesdecoletaestrategiadeampliacao_sg.pdf. Acessed 15 August 2021. – reference: Sociedade Brasileira de Patologia Clínica e Medicina Laboratorial (2020) Métodos laboratoriais para o diagnóstico de infecção capilar por SARS-CoV-2. Sociedade Brasileira de Patologia Clínica e Medicina Laboratorial – SBPC/ML. http://www.sbpc.org.br/wp-content/uploads/2020/04/MetodosLaboratoriaisDiagnosticoSARS-CoV-2.pdf. Acessed 15 August 2021. – reference: EjaziSAGhoshSAliNAntibody detection assays for COVID-19 diagnosis: an early overviewImmunol Cell Biol202199121331:CAS:528:DC%2BB3MXjsVeltLg%3D10.1111/imcb.1239732864735 – reference: BaratlooAHosseiniMNegidaAPart 1: Simple definition and calculation of accuracy, sensitivity and specificityEmerg (Tehran)2015324849 – reference: DingariNCHorowitzGLKangJWRaman spectroscopy provides a powerful diagnostic tool for accurate determination of albumin glycationPLoS ONE2012721:CAS:528:DC%2BC38Xjs12lsb8%3D10.1371/journal.pone.0032406223934053290592 – volume: 145 start-page: 4173 issue: 12 year: 2020 ident: 3488_CR25 publication-title: Analyst doi: 10.1039/d0an00538j – ident: 3488_CR55 doi: 10.1165/rcmb.2015-0385OC – volume: 11 start-page: 179 issue: 2 year: 2020 ident: 3488_CR9 publication-title: J Benefit Cost Anal doi: 10.1017/bca.2020.12 – volume: 20 start-page: 519 year: 2020 ident: 3488_CR48 publication-title: BMC Infect Dis doi: 10.1186/s12879-020-05242-w – volume: 7 issue: 2 year: 2012 ident: 3488_CR39 publication-title: PLoS ONE doi: 10.1371/journal.pone.0032406 – volume: 396 start-page: 367 issue: 10248 year: 2020 ident: 3488_CR7 publication-title: Lancet doi: 10.1016/S0140-6736(20)31681-0 – volume: 204 year: 2020 ident: 3488_CR23 publication-title: J Photochem Photobiol B Biol doi: 10.1016/j.jphotobiol.2020.111801 – ident: 3488_CR2 doi: 10.18800/contabilidad.202002.004 – volume: 182 start-page: 59 issue: 1 year: 2020 ident: 3488_CR49 publication-title: Cell doi: 10.1016/j.cell.2020.05.032 – volume: 42 start-page: 493 issue: 5 year: 2007 ident: 3488_CR42 publication-title: Appl Spectrosc Rev doi: 10.1080/05704920701551530 – volume: 58 start-page: e00310 issue: 5 year: 2020 ident: 3488_CR17 publication-title: J Clin Microbiol doi: 10.1128/JCM.00310-20 – ident: 3488_CR19 doi: 10.1007/s10103-021-03247-8 – ident: 3488_CR4 – volume: 29 issue: 3 year: 2020 ident: 3488_CR6 publication-title: Epidemiol Serv Saúde doi: 10.5123/s1679-49742020000300011 – volume: 30 year: 2020 ident: 3488_CR27 publication-title: Photodiagnosis Photodyn Ther doi: 10.1016/j.pdpdt.2020.101765 – volume: 5 issue: 14 year: 2020 ident: 3488_CR54 publication-title: JCI Insight doi: 10.1172/jci.insight.140327 – ident: 3488_CR31 – volume: 7 start-page: 365 issue: 4 year: 2020 ident: 3488_CR56 publication-title: Diagnosis doi: 10.1515/dx-2020-0057 – volume: 3 start-page: 48 issue: 2 year: 2015 ident: 3488_CR63 publication-title: Emerg (Tehran) – volume: 11 start-page: 306 issue: 3 year: 2020 ident: 3488_CR18 publication-title: Micromachines (Basel) doi: 10.3390/mi11030306 – volume: 15 issue: 4 year: 2010 ident: 3488_CR58 publication-title: J Biomed Opt doi: 10.1117/1.3463006 – volume: 31 start-page: 1415 issue: 7 year: 2016 ident: 3488_CR21 publication-title: Lasers Med Sci doi: 10.1007/s10103-016-2003-y – volume: 99 start-page: 21 issue: 1 year: 2021 ident: 3488_CR32 publication-title: Immunol Cell Biol doi: 10.1111/imcb.12397 – volume: 23 start-page: 2003 issue: 11 year: 2012 ident: 3488_CR34 publication-title: J Braz Chem Soc doi: 10.1590/S0103-50532012005000073 – volume: 383 start-page: 1071 issue: 11 year: 2020 ident: 3488_CR13 publication-title: N Engl J Med doi: 10.1056/NEJMsr2022263 – volume: 127 start-page: 2086 issue: 4 year: 2016 ident: 3488_CR62 publication-title: Optik doi: 10.1016/j.ijleo.2015.11.060 – ident: 3488_CR30 – volume: 26 issue: 11 year: 2016 ident: 3488_CR59 publication-title: Laser Phys Lett doi: 10.1088/1054-660X/26/11/115602 – volume: 87 start-page: 11652 issue: 23 year: 2015 ident: 3488_CR64 publication-title: Anal Chem doi: 10.1021/acs.analchem.5b02661 – volume: 92 start-page: 11297 issue: 16 year: 2020 ident: 3488_CR26 publication-title: Anal Chem doi: 10.1021/acs.analchem.0c01971 – volume: 8 start-page: 25888 year: 2018 ident: 3488_CR44 publication-title: RSC Adv doi: 10.1039/C8RA04491K – ident: 3488_CR43 doi: 10.1016/B978-0-08-057116-4.50027-4 – ident: 3488_CR29 doi: 10.1002/jrs.6235 – volume: 20 start-page: 647 issue: 7 year: 2020 ident: 3488_CR28 publication-title: Expert Rev Mol Diagn doi: 10.1080/14737159.2020.1766968 – volume: 126 year: 2020 ident: 3488_CR14 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2020.108961 – volume: 26 start-page: 241 issue: 4 year: 2020 ident: 3488_CR10 publication-title: Pulmonology doi: 10.1016/j.pulmoe.2020.04.008 – volume: 11 start-page: 42 issue: 1 year: 2018 ident: 3488_CR57 publication-title: Rev Méd (Tacna) – volume: 15 start-page: 203 issue: 1 year: 1976 ident: 3488_CR36 publication-title: Biopolymers doi: 10.1002/bip.1976.360150114 – volume: 395 start-page: P1047 issue: 10229 year: 2020 ident: 3488_CR3 publication-title: Lancet doi: 10.1016/S0140-6736(20)30553-5 – volume: 235 start-page: 146 issue: 6 year: 2019 ident: 3488_CR65 publication-title: J Cell Physiol doi: 10.1002/jcp.29392 – volume: 374 start-page: 20150202 issue: 2065 year: 2016 ident: 3488_CR33 publication-title: Phil Trans R Soc A doi: 10.1098/rsta.2015.0202 – volume: 407 start-page: 699 issue: 3 year: 2015 ident: 3488_CR20 publication-title: Anal Bioanal Chem doi: 10.1007/s00216-014-8311-9 – ident: 3488_CR8 doi: 10.25561/77482 – volume: 56 year: 2020 ident: 3488_CR50 publication-title: J Bras Patol Med Lab doi: 10.5935/1676-2444.20200049 – volume: 23 issue: 10 year: 2018 ident: 3488_CR35 publication-title: J Biomed Opt doi: 10.1117/1.JBO.23.10.107002 – volume: 258 year: 2021 ident: 3488_CR40 publication-title: Spectrochim Acta A Mol Biomol Spectrosc doi: 10.1016/j.saa.2021.119712 – volume: 28 start-page: 248 year: 2019 ident: 3488_CR60 publication-title: Photodiagnosis Photodyn Ther doi: 10.1016/j.pdpdt.2019.08.006 – volume: 32 start-page: 787 issue: 4 year: 2017 ident: 3488_CR22 publication-title: Lasers Med Sci doi: 10.1007/s10103-017-2173-2 – volume: 13 issue: 10 year: 2020 ident: 3488_CR24 publication-title: J Biophotonics doi: 10.1002/jbio.202000189 – ident: 3488_CR37 doi: 10.1117/122317535 – volume: 58 start-page: e00512 issue: 6 year: 2020 ident: 3488_CR15 publication-title: J Clin Microbiol doi: 10.1128/JCM.00512-20 – volume: 30 year: 2020 ident: 3488_CR61 publication-title: Photodiagnosis Photodyn Ther doi: 10.1016/j.pdpdt.2020.101735 – volume: 48 start-page: 2417 issue: 9 year: 1975 ident: 3488_CR52 publication-title: Bull Chem Soc Japan doi: 10.1246/bcsj.48.2417 – volume: 18 start-page: 87004 issue: 8 year: 2013 ident: 3488_CR51 publication-title: J Biomed Opt doi: 10.1117/1.JBO.18.8.087004 – ident: 3488_CR12 – volume: 101 start-page: 791 issue: 8 year: 2020 ident: 3488_CR11 publication-title: J Gen Virol doi: 10.1099/jgv.0.001439 – volume: 369 start-page: 1249 issue: 6508 year: 2020 ident: 3488_CR45 publication-title: Science doi: 10.1126/science.abc8665 – volume: 58 start-page: 1021 issue: 7 year: 2020 ident: 3488_CR46 publication-title: Clin Chem Lab Med doi: 10.1515/cclm-2020-0369 – volume: 10 start-page: 7704 issue: 1 year: 2020 ident: 3488_CR41 publication-title: Sci Rep doi: 10.1038/s41598-020-64737-3 – ident: 3488_CR16 – ident: 3488_CR5 doi: 10.34119/bjhrv3n2-185 – ident: 3488_CR1 – volume: 144 start-page: 4295 issue: 14 year: 2019 ident: 3488_CR38 publication-title: Analyst doi: 10.1039/c9an00599d – volume: 144 start-page: 1457 issue: 12 year: 2020 ident: 3488_CR47 publication-title: Arch Pathol Lab Med doi: 10.5858/arpa.2020-0389-SA – volume: 46 start-page: 4 issue: 1 year: 2015 ident: 3488_CR53 publication-title: J Raman Spectrosc doi: 10.1002/jrs.4607 |
SSID | ssj0017613 |
Score | 2.4005075 |
Snippet | This study proposed the diagnosis of COVID-19 by means of Raman spectroscopy. Samples of blood serum from 10 patients positive and 10 patients negative for... This study proposed the diagnosis of COVID-19 by means of Raman spectroscopy. Samples of blood serum from 10 patients positive and 10 patients negative for... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2217 |
SubjectTerms | Albumins Amides Amines Amino acids Blood Coronaviruses COVID-19 Dentistry Discriminant analysis Lasers Lipids Medical diagnosis Medicine Medicine & Public Health Nitrogen compounds Nucleic acids Optical Devices Optics Original Original Article Photonics Polymerase chain reaction Principal components analysis Proteins Quantum Optics Raman spectra Raman spectroscopy Spectral sensitivity Spectroscopy Spectrum analysis Tryptophan Urea |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection (NC LIVE) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dT9sw8MRAQtvDBN3GwpeCtLfNWm0ncaI9IFRAgARIE0x9i2LHEZVY2q3Nw_49d46bUtD6Gl-U-O7s-74D-BJJK7Qkj7sUlkU8KpjOKs24kcZkVEupXYLsTXJxH10N46F3uE19WuX8TnQXdTk25CP_LhKF3Bih_Dme_GE0NYqiq36ExhvYoNZlxNVq2BlcHE102fpYUpZmgvuiGV86xymTSFBCETIxU8uC6ZW2-Tpp8kXk1Amk8y147zXJ8KQl_Tas2boH7571F-zB5rWPnH-AH6dtTh0-Dwe3vy5PGc_CUR26GX0h8mHzO2zc6s_CPZm48ThUtPLvI9ydn90NLpgfnMBM1I9mzKQcFYdEWhSARWxkhVqRqFRhE261Qkz0bWyqKs2qMkHxboSLx2aJrmxaCis_wXo9ru1nCEtR8jiVKOh0HFVlobmSpaJoZ6JNqUQAfI603Pim4jTb4jFftEMmROeI6NwhOlcBfO3embQtNVZC789pkfvjNc0XzBDAUbeMB4OiHUVtxw3BkBs2SxOE2WlJ131OxqhWoaEVgFoiagdATbeXV-rRg2u-jfYdKk1ZAN_m5F_81v93sbt6F3vwVlBZhfPu7MP67G9jD1DZmelDx9FPKpr31w priority: 102 providerName: ProQuest |
Title | Diagnosing COVID-19 in human serum using Raman spectroscopy |
URI | https://link.springer.com/article/10.1007/s10103-021-03488-7 https://www.ncbi.nlm.nih.gov/pubmed/35028768 https://www.proquest.com/docview/2670734406 https://www.proquest.com/docview/2620079866 https://pubmed.ncbi.nlm.nih.gov/PMC8758209 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3ZTsMwzOKQOB4QjKscU5F4g0pL0jateBps4xKHEEPjqWrSVEyCbmLbA3-Pk7WFcUm8tFLjqK3txHZ8Aey7TFHB9Ik7o8pxiRs7IkyFQySTMtS5lMIEyF77Z233ouN18qSwQRHtXrgkzU79KdmN6NgfqkOAkO0cPg2zHtruOpCrTeul7wANc5anx_w8b1IEfdMrv4dHfvGRGtHTWoalXGe062Mir8CUyiow39BxPrpVWwUWP1UVrMDcVe4vX4WjxjiSDp_bJzcP5w2HhHY3s01nPhu5b_Rij8zoXWye9E1THJ2q8rYG963m_cmZk7dLcKRbc4eODAiqCz5TKPZiT7IUdSGa8lj5RAkehLSmPJmmQZgmPgp1SY0XNvRFqoKEKrYOM1kvU5tgJzQhXsBQvAnPTZNYEM4Srn2cvpAJpxaQAoGRzEuJ644Wz9FHEWSN9AiRHhmkR9yCg3JOf1xI40_onYIuUb6oBhH1OW5ILqogFuyVw7gctI8jzlRvpGH04WsY-AizMSZj-TrmIbOgeWUBnyBwCaBLbU-OZN0nU3IbrTpUlUILDgtW-Pis3_9i63_g27BAdXKFOePZgZnh60jtosozFFWY5h2O16B1WoXZ-unjZRPvx83r27uq4f53gVX7sw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtQwcFSKxPGAoFyBAkGCJ7Coj9iJEEKoy7JLDyS0VH2LYsdRK5XsQneF-lH8IzPOsSwVfetr7DjxHJ7xnAAvlPTCSrK4S-GZ4qpgNqss4046l1EupQ0Bsvt69E19PkwO1-B3lwtDYZXdmRgO6nLqyEb-RmiD1KhQ_ryf_WDUNYq8q10LjYYsdvzZL7yynb4bDxC_L4UYfpxsj1jbVYA5taXmzKUcpaqWHqVDkThZocogKlN4zb01aSa2fOKqKs2qUqPscyI4KzNtK5-Wwktc9gpcVRIFOSWmDz_1Tgujm27MQqcM1-Ftjk6bqccpcElQ_BLyDDOrcvCccns-RvMfR22Qf8PbcKtVXOMPDaXdgTVfb8DNv8oZbsC1vdZRfxfeDpoQPnweb385GA8Yz-LjOg4tAWMk-8X3eBFGvxbhySx046EcmbN7MLkMiN6H9Xpa-4cQl6LkSSpRrtpEVWVhuZGlIeeqtq40IgLeAS13bQ1zaqVxki-rLxOgcwR0HgCdmwhe9e_MmgoeF87e7HCRt9x8mi9pL4Ln_TDyITlXitpPFzSHrL5ZqnHOgwZ1_edkgloc3usiMCtI7SdQje_Vkfr4KNT6xusk6mhZBK879C9_6_-7eHTxLp7B9dFkbzffHe_vPIYbgjI6gmFpE9bnPxf-CepZc_s0UHcM-SVz0x8b_DSo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DQ6aWIP0xhfGQOCBE9gbbYTOxFCCNZVK4MyTWPaWxQ7tjYJ0sJaof00_t3OjpNSJva219hx4vvw3fm-AF4m3DDF3Y07Z4YkNCmJyq0iVHOtc5dLqXyA7Ejsf0s-naanS_CnzYVxYZXtmegP6mqs3R35NhMSqTFB-bNtQ1jEYX_wfvKTuA5SztPattNoSOTAXP5G8-3i3bCPuH7F2GDveHefhA4DRCc7yZTojKKEFdygpChTzS2qD8zK0ghqlMxytmNSbW2W20qgHNTMOy5zoazJKmY4LnsHlqUzinqw_HFvdHjUuTCkaHozM5ERXImGjJ2Qt0ddGBNz0UzIQUQuSsVrqu71iM1_3LZeGg7WYS2osfGHhu7uwZKpN2D1r-KGG7DyJbjt78PbfhPQh8_j3a8nwz6heXxex75BYIxMMPsRz_zoUemfTHxvHpcxc_kAjm8Dpg-hV49r8xjiilU0zThKWZUmtioVlbySztUqlK4ki4C2QCt0qGjuGmt8L-a1mB2gCwR04QFdyAhed-9MmnoeN87eanFRBN6-KOaUGMGLbhi50rlaytqMZ26OuwPOM4FzHjWo6z7HU9Tp0MqLQC4gtZvgKn4vjtTnZ77yNxqXqLHlEbxp0T__rf_vYvPmXTyHFeSk4vNwdPAE7jKX3uFvmbagN_01M09R6ZqqZ4G8YyhumaGuAORGOjo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosing+COVID-19+in+human+serum+using+Raman+spectroscopy&rft.jtitle=Lasers+in+medical+science&rft.au=Goulart%2C+Ana+Cristina+Castro&rft.au=Silveira%2C+Landulfo&rft.au=Carvalho%2C+Henrique+Cunha&rft.au=Dorta%2C+Cristiane+Bissoli&rft.date=2022-06-01&rft.issn=1435-604X&rft.eissn=1435-604X&rft.volume=37&rft.issue=4&rft.spage=2217&rft_id=info:doi/10.1007%2Fs10103-021-03488-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1435-604X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1435-604X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1435-604X&client=summon |