Nitrogen availability mediates the priming effect of soil organic matter by preferentially altering the straw carbon-assimilating microbial community
Straw incorporation into soil increases carbon (C) sequestration but can induce priming effects (PE), the enhanced breakdown of soil organic matter. The direction and magnitude of PE and the consequences for the C balance induced by straw addition depend on nitrogen (N) availability and soil managem...
Saved in:
Published in | The Science of the total environment Vol. 815; p. 152882 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Straw incorporation into soil increases carbon (C) sequestration but can induce priming effects (PE), the enhanced breakdown of soil organic matter. The direction and magnitude of PE and the consequences for the C balance induced by straw addition depend on nitrogen (N) availability and soil management history. Using 13C-labeled maize straw, we conducted a 56-day incubation to determine the dynamics of PE and the underlying microbial mechanisms after straw and/or mineral N addition to three soils with contrasting cultivation and fertilization histories, i) unfertilized soil (Unfertilized), ii) 8 years farmyard manure amended soil (Manured), and iii) abandoned cropland soil (Abandoned). 13C-PLFAs (phospholipid fatty acids) were analyzed to identify microbial groups utilizing straw and to explore their contribution to the PE. Straw addition increased microbial biomass (MBC), activities of enzymes related to the C and N cycles, and changed microbial community composition. SOC decomposition was enhanced by microbes activated by straw addition, leading to a positive cumulative PE ranging from 494 to 789 μg C g−1 soil. The magnitude of positive PE and straw decomposition in the manured soil was higher than that in the unfertilized and abandoned soils due to larger MBC and higher enzyme activities, resulting in a lower net SOC gain. Compared with straw only, the combination of straw addition with N fertilizer did not influence MBC, but increased positive PE (average increase of 18.1%) and straw decomposition (17.1%), further limiting SOC gain. 13C-labeled fungi: bacteria ratios and Gram-positive (G+): negative (G−) bacteria ratios increased with the increasing PE after N fertilization, but soil-derived (un-labeled) PLFAs remained stable. Random forest analysis further showed that straw C-assimilating microbial attributes are important predictors in driving the greater PE after N addition. Our study highlights the importance of straw C-assimilating fungi and G+ bacteria in mediating N-induced PE in arable soils.
[Display omitted]
•Nitrogen inputs induced higher soil enzyme activities and positive PE intensity.•Nitrogen inputs had no effect on MBC but led to higher 13C-labeled fungi: bacteria and G+:G− ratios.•13C-PLFA of bacteria decreased and actinomycetes increased with prolonged incubation time.•Straw carbon assimilating microbial communities were important predictors of greater PE intensity induced by N addition. |
---|---|
AbstractList | Straw incorporation into soil increases carbon (C) sequestration but can induce priming effects (PE), the enhanced breakdown of soil organic matter. The direction and magnitude of PE and the consequences for the C balance induced by straw addition depend on nitrogen (N) availability and soil management history. Using ¹³C-labeled maize straw, we conducted a 56-day incubation to determine the dynamics of PE and the underlying microbial mechanisms after straw and/or mineral N addition to three soils with contrasting cultivation and fertilization histories, i) unfertilized soil (Unfertilized), ii) 8 years farmyard manure amended soil (Manured), and iii) abandoned cropland soil (Abandoned). ¹³C-PLFAs (phospholipid fatty acids) were analyzed to identify microbial groups utilizing straw and to explore their contribution to the PE. Straw addition increased microbial biomass (MBC), activities of enzymes related to the C and N cycles, and changed microbial community composition. SOC decomposition was enhanced by microbes activated by straw addition, leading to a positive cumulative PE ranging from 494 to 789 μg C g⁻¹ soil. The magnitude of positive PE and straw decomposition in the manured soil was higher than that in the unfertilized and abandoned soils due to larger MBC and higher enzyme activities, resulting in a lower net SOC gain. Compared with straw only, the combination of straw addition with N fertilizer did not influence MBC, but increased positive PE (average increase of 18.1%) and straw decomposition (17.1%), further limiting SOC gain. ¹³C-labeled fungi: bacteria ratios and Gram-positive (G+): negative (G−) bacteria ratios increased with the increasing PE after N fertilization, but soil-derived (un-labeled) PLFAs remained stable. Random forest analysis further showed that straw C-assimilating microbial attributes are important predictors in driving the greater PE after N addition. Our study highlights the importance of straw C-assimilating fungi and G+ bacteria in mediating N-induced PE in arable soils. Straw incorporation into soil increases carbon (C) sequestration but can induce priming effects (PE), the enhanced breakdown of soil organic matter. The direction and magnitude of PE and the consequences for the C balance induced by straw addition depend on nitrogen (N) availability and soil management history. Using 13C-labeled maize straw, we conducted a 56-day incubation to determine the dynamics of PE and the underlying microbial mechanisms after straw and/or mineral N addition to three soils with contrasting cultivation and fertilization histories, i) unfertilized soil (Unfertilized), ii) 8 years farmyard manure amended soil (Manured), and iii) abandoned cropland soil (Abandoned). 13C-PLFAs (phospholipid fatty acids) were analyzed to identify microbial groups utilizing straw and to explore their contribution to the PE. Straw addition increased microbial biomass (MBC), activities of enzymes related to the C and N cycles, and changed microbial community composition. SOC decomposition was enhanced by microbes activated by straw addition, leading to a positive cumulative PE ranging from 494 to 789 μg C g−1 soil. The magnitude of positive PE and straw decomposition in the manured soil was higher than that in the unfertilized and abandoned soils due to larger MBC and higher enzyme activities, resulting in a lower net SOC gain. Compared with straw only, the combination of straw addition with N fertilizer did not influence MBC, but increased positive PE (average increase of 18.1%) and straw decomposition (17.1%), further limiting SOC gain. 13C-labeled fungi: bacteria ratios and Gram-positive (G+): negative (G−) bacteria ratios increased with the increasing PE after N fertilization, but soil-derived (un-labeled) PLFAs remained stable. Random forest analysis further showed that straw C-assimilating microbial attributes are important predictors in driving the greater PE after N addition. Our study highlights the importance of straw C-assimilating fungi and G+ bacteria in mediating N-induced PE in arable soils. [Display omitted] •Nitrogen inputs induced higher soil enzyme activities and positive PE intensity.•Nitrogen inputs had no effect on MBC but led to higher 13C-labeled fungi: bacteria and G+:G− ratios.•13C-PLFA of bacteria decreased and actinomycetes increased with prolonged incubation time.•Straw carbon assimilating microbial communities were important predictors of greater PE intensity induced by N addition. Straw incorporation into soil increases carbon (C) sequestration but can induce priming effects (PE), the enhanced breakdown of soil organic matter. The direction and magnitude of PE and the consequences for the C balance induced by straw addition depend on nitrogen (N) availability and soil management history. Using 13C-labeled maize straw, we conducted a 56-day incubation to determine the dynamics of PE and the underlying microbial mechanisms after straw and/or mineral N addition to three soils with contrasting cultivation and fertilization histories, i) unfertilized soil (Unfertilized), ii) 8 years farmyard manure amended soil (Manured), and iii) abandoned cropland soil (Abandoned). 13C-PLFAs (phospholipid fatty acids) were analyzed to identify microbial groups utilizing straw and to explore their contribution to the PE. Straw addition increased microbial biomass (MBC), activities of enzymes related to the C and N cycles, and changed microbial community composition. SOC decomposition was enhanced by microbes activated by straw addition, leading to a positive cumulative PE ranging from 494 to 789 μg C g-1 soil. The magnitude of positive PE and straw decomposition in the manured soil was higher than that in the unfertilized and abandoned soils due to larger MBC and higher enzyme activities, resulting in a lower net SOC gain. Compared with straw only, the combination of straw addition with N fertilizer did not influence MBC, but increased positive PE (average increase of 18.1%) and straw decomposition (17.1%), further limiting SOC gain. 13C-labeled fungi: bacteria ratios and Gram-positive (G+): negative (G-) bacteria ratios increased with the increasing PE after N fertilization, but soil-derived (un-labeled) PLFAs remained stable. Random forest analysis further showed that straw C-assimilating microbial attributes are important predictors in driving the greater PE after N addition. Our study highlights the importance of straw C-assimilating fungi and G+ bacteria in mediating N-induced PE in arable soils.Straw incorporation into soil increases carbon (C) sequestration but can induce priming effects (PE), the enhanced breakdown of soil organic matter. The direction and magnitude of PE and the consequences for the C balance induced by straw addition depend on nitrogen (N) availability and soil management history. Using 13C-labeled maize straw, we conducted a 56-day incubation to determine the dynamics of PE and the underlying microbial mechanisms after straw and/or mineral N addition to three soils with contrasting cultivation and fertilization histories, i) unfertilized soil (Unfertilized), ii) 8 years farmyard manure amended soil (Manured), and iii) abandoned cropland soil (Abandoned). 13C-PLFAs (phospholipid fatty acids) were analyzed to identify microbial groups utilizing straw and to explore their contribution to the PE. Straw addition increased microbial biomass (MBC), activities of enzymes related to the C and N cycles, and changed microbial community composition. SOC decomposition was enhanced by microbes activated by straw addition, leading to a positive cumulative PE ranging from 494 to 789 μg C g-1 soil. The magnitude of positive PE and straw decomposition in the manured soil was higher than that in the unfertilized and abandoned soils due to larger MBC and higher enzyme activities, resulting in a lower net SOC gain. Compared with straw only, the combination of straw addition with N fertilizer did not influence MBC, but increased positive PE (average increase of 18.1%) and straw decomposition (17.1%), further limiting SOC gain. 13C-labeled fungi: bacteria ratios and Gram-positive (G+): negative (G-) bacteria ratios increased with the increasing PE after N fertilization, but soil-derived (un-labeled) PLFAs remained stable. Random forest analysis further showed that straw C-assimilating microbial attributes are important predictors in driving the greater PE after N addition. Our study highlights the importance of straw C-assimilating fungi and G+ bacteria in mediating N-induced PE in arable soils. Straw incorporation into soil increases carbon (C) sequestration but can induce priming effects (PE), the enhanced breakdown of soil organic matter. The direction and magnitude of PE and the consequences for the C balance induced by straw addition depend on nitrogen (N) availability and soil management history. Using C-labeled maize straw, we conducted a 56-day incubation to determine the dynamics of PE and the underlying microbial mechanisms after straw and/or mineral N addition to three soils with contrasting cultivation and fertilization histories, i) unfertilized soil (Unfertilized), ii) 8 years farmyard manure amended soil (Manured), and iii) abandoned cropland soil (Abandoned). C-PLFAs (phospholipid fatty acids) were analyzed to identify microbial groups utilizing straw and to explore their contribution to the PE. Straw addition increased microbial biomass (MBC), activities of enzymes related to the C and N cycles, and changed microbial community composition. SOC decomposition was enhanced by microbes activated by straw addition, leading to a positive cumulative PE ranging from 494 to 789 μg C g soil. The magnitude of positive PE and straw decomposition in the manured soil was higher than that in the unfertilized and abandoned soils due to larger MBC and higher enzyme activities, resulting in a lower net SOC gain. Compared with straw only, the combination of straw addition with N fertilizer did not influence MBC, but increased positive PE (average increase of 18.1%) and straw decomposition (17.1%), further limiting SOC gain. C-labeled fungi: bacteria ratios and Gram-positive (G+): negative (G-) bacteria ratios increased with the increasing PE after N fertilization, but soil-derived (un-labeled) PLFAs remained stable. Random forest analysis further showed that straw C-assimilating microbial attributes are important predictors in driving the greater PE after N addition. Our study highlights the importance of straw C-assimilating fungi and G+ bacteria in mediating N-induced PE in arable soils. |
ArticleNumber | 152882 |
Author | Chadwick, David R. Bei, Shuikuan Zhang, Junling Kuyper, Thomas W. Li, Xia |
Author_xml | – sequence: 1 givenname: Shuikuan surname: Bei fullname: Bei, Shuikuan organization: College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China – sequence: 2 givenname: Xia surname: Li fullname: Li, Xia organization: College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China – sequence: 3 givenname: Thomas W. surname: Kuyper fullname: Kuyper, Thomas W. organization: Department of Soil Quality, Wageningen University and Research, PO Box 47, 6700 AA Wageningen, the Netherlands – sequence: 4 givenname: David R. surname: Chadwick fullname: Chadwick, David R. organization: Environment Centre Wales, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK – sequence: 5 givenname: Junling surname: Zhang fullname: Zhang, Junling email: junlingz@cau.edu.cn organization: College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34998759$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc2OFCEUhYkZ4_zoKyhLN9UCRVHUwsVk4l8y0Y2uCVCXlg4FI9A96QfxfaXS4yzcOGwg8J1zwzmX6CymCAi9oWRDCRXvdptifU0V4mHDCKMbOjAp2TN0QeU4dZQwcYYuCOGym8Q0nqPLUnakrVHSF-i859Mkx2G6QL-_-prTFiLWB-2DNj74esQLzF5XKLj-BHyX_eLjFoNzYCtODpfkA055q6O3eNG1Qsbm2EBwkCFWr0M4Yh3a_SpcTUrN-h5bnU2KnS6lWQZd19fF25xMk2CblmUf2_yX6LnTocCrh_0K_fj44fvN5-7226cvN9e3neWE186K0TJuBZtnN1vNHXMznY0zRkgtiB7aeZh6MD0AyHkyzg4gRzCEDtYQ11-htyffu5x-7aFUtfhiIQQdIe2LYqIXY88EF09AqRzoyDlv6OsHdG9akGrNT-ej-pt6A8YT0D5eSgvtEaFErf2qnXrsV639qlO_Tfn-H2XDWowptnh9eIL--qSHlurBQ145iLbVnVu3ak7-vx5_AEyOzZU |
CitedBy_id | crossref_primary_10_1007_s42729_022_00858_0 crossref_primary_10_1016_j_eja_2025_127607 crossref_primary_10_3390_agriculture12122151 crossref_primary_10_1016_j_spc_2023_11_019 crossref_primary_10_3390_f13122090 crossref_primary_10_1016_j_eja_2023_126971 crossref_primary_10_1016_j_scitotenv_2022_155676 crossref_primary_10_1080_10643389_2023_2266312 crossref_primary_10_1016_j_scienta_2023_112100 crossref_primary_10_3390_polym15030660 crossref_primary_10_1016_j_ejsobi_2024_103648 crossref_primary_10_1007_s00374_023_01762_0 crossref_primary_10_1016_j_scitotenv_2025_178387 crossref_primary_10_1016_j_ecss_2024_108690 crossref_primary_10_1016_j_soilbio_2023_109265 crossref_primary_10_1016_j_soilbio_2025_109743 crossref_primary_10_1016_j_soilbio_2024_109444 crossref_primary_10_1111_gcb_17115 crossref_primary_10_3389_fmicb_2024_1304985 crossref_primary_10_1016_j_jenvman_2023_118537 crossref_primary_10_1002_ldr_5270 crossref_primary_10_3389_fmicb_2022_953552 crossref_primary_10_1016_j_catena_2024_108522 crossref_primary_10_1007_s00374_022_01682_5 crossref_primary_10_1016_j_geoderma_2023_116444 crossref_primary_10_3390_agriculture12071001 crossref_primary_10_1016_j_agee_2024_109008 crossref_primary_10_1016_j_apsoil_2025_105894 crossref_primary_10_1038_s41396_023_01523_9 crossref_primary_10_1007_s11356_024_34759_9 crossref_primary_10_1080_00103624_2023_2241500 crossref_primary_10_1016_j_scitotenv_2023_164347 crossref_primary_10_1111_plb_13689 crossref_primary_10_1002_ldr_5245 crossref_primary_10_3389_fenvs_2022_1009660 crossref_primary_10_3390_agriculture14111946 crossref_primary_10_1002_ldr_5262 crossref_primary_10_1016_j_jenvman_2024_123130 crossref_primary_10_1016_j_apsoil_2023_105060 |
Cites_doi | 10.1016/j.soilbio.2011.04.004 10.3791/50961-v 10.1016/j.soilbio.2019.03.027 10.2136/sssaj2010.0424 10.1007/s10705-011-9469-6 10.1007/s00374-019-01416-0 10.1186/s40168-020-00978-8 10.1007/s10533-011-9637-4 10.1111/j.1365-2486.2009.01930.x 10.1139/y59-099 10.1016/j.soilbio.2016.07.011 10.1016/j.soilbio.2014.02.017 10.1016/j.envint.2004.09.005 10.1016/j.geoderma.2016.05.019 10.1016/j.geoderma.2019.113882 10.1016/j.geoderma.2018.07.008 10.3390/agronomy10010061 10.1111/gcb.14066 10.1016/j.soilbio.2004.09.014 10.1128/AEM.02151-19 10.1111/gcb.14069 10.1016/S0167-1987(97)00038-X 10.1111/geb.13281 10.1007/s11104-008-9705-2 10.1126/science.1097396 10.1111/j.1365-2486.2008.01743.x 10.1016/j.soilbio.2012.11.013 10.1016/j.soilbio.2019.05.001 10.1016/j.soilbio.2008.03.023 10.1007/s003740050533 10.1002/rcm.5148 10.1016/j.soilbio.2010.09.017 10.1016/j.soilbio.2010.04.005 10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2 10.1016/j.soilbio.2016.03.013 10.2136/sssaj1953.03615995001700010008x 10.1073/pnas.1700292114 10.1016/S0038-0717(03)00123-8 10.1111/gcb.12475 10.1111/2041-210X.12143 10.1016/j.soilbio.2019.06.003 10.1016/j.soilbio.2015.02.029 10.1016/j.soilbio.2020.107800 10.1111/j.1365-2486.2012.02639.x 10.1016/j.soilbio.2020.108118 10.1016/S0038-0717(00)00084-5 10.1016/j.geoderma.2011.11.005 10.1016/0038-0717(90)90188-6 10.1016/0038-0717(90)90046-3 10.1007/s00374-008-0334-y 10.1016/j.soilbio.2010.11.016 10.1016/j.soilbio.2005.06.025 10.1016/j.geoderma.2009.12.012 10.1016/0038-0717(87)90052-6 10.1016/j.soilbio.2012.05.006 10.1016/j.geoderma.2018.05.023 10.1111/j.1461-0248.2004.00579.x 10.1111/ejss.12818 10.1007/s10533-013-9849-x 10.1111/gcb.14154 10.1007/s00248-005-5156-y 10.1016/j.apsoil.2015.11.016 10.1016/j.tim.2013.09.005 10.1007/BF00384433 10.2136/sssaj1997.03615995006100020015x 10.1890/03-5120 10.1021/ac052027c 10.3389/fmicb.2013.00265 10.3390/app11052139 10.1890/02-0251 10.1016/j.catena.2015.02.016 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2021.152882 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 34998759 10_1016_j_scitotenv_2021_152882 S0048969721079614 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAQXK AATTM AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW SSH WUQ XPP ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c404t-c67c24c62ddfdca4f2fd1dbfbb68a60a5dbf593eb3eee8d9bfc5e87eb015cb0f3 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Wed Jul 02 03:22:01 EDT 2025 Tue Aug 05 11:22:46 EDT 2025 Wed Feb 19 02:27:01 EST 2025 Thu Apr 24 22:58:44 EDT 2025 Tue Jul 01 02:53:41 EDT 2025 Sat Nov 16 16:00:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mineral N Extracellular enzyme activity Fungi: bacteria ratios Soil management legacy Straw incorporation Priming effect |
Language | English |
License | Copyright © 2022 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-c67c24c62ddfdca4f2fd1dbfbb68a60a5dbf593eb3eee8d9bfc5e87eb015cb0f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 34998759 |
PQID | 2618517444 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2636732646 proquest_miscellaneous_2618517444 pubmed_primary_34998759 crossref_primary_10_1016_j_scitotenv_2021_152882 crossref_citationtrail_10_1016_j_scitotenv_2021_152882 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2021_152882 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 2022-04-00 2022-Apr-01 20220401 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Koster, Cardenas, Senbayram, Bol, Well, Butler (bb0150) 2011; 43 Poulton, Johnston, Macdonald, White, Powlson (bb0250) 2018; 24 Vance, Brookes, Jenkinson (bb0305) 1987; 19 Garcia-Ruiz, Ochoa, Belen Hinojosa, Antonio Carreira (bb0105) 2008; 40 Liaw, Wiener (bb0195) 2002 Nottingham, Turner, Chamberlain, Stott, Tanner (bb0240) 2012; 111 Qiu, Wu, Ouyang, Li, Xu, Wu (bb0255) 2016; 100 Zogg, Zak, Ringelberg, MacDonald, Pregitzer, White (bb0340) 1997; 61 Chen, Senbayram, Blagodatsky, Myachina, Dittert, Lin (bb0045) 2014; 20 Moorhead, Sinsabaugh (bb0235) 2006; 76 Blagodatsky, Blagodatskaya, Yuyukina, Kuzyakov (bb0030) 2010; 42 Fontaine, Henault, Aamor, Bdioui, Bloor, Maire (bb0095) 2011; 43 Bligh, Dyer (bb0035) 1959; 37 Fontaine, Bardoux, Abbadie, Mariotti (bb0090) 2004; 7 Gong, Yan, Wang, Hu, Gong (bb0110) 2009; 314 Inglett, Inglett, Reddy (bb0135) 2011; 75 You, Han, Chen, Yan, Li, Zou (bb0325) 2019; 70 Zhao, Wang, Hu, Zhang, Ouyang, Zhang (bb0335) 2018; 115 Ramirez, Craine, Fierer (bb0260) 2012; 18 Fan, Zhong, Lin, Lyu, Wang, Hu (bb0070) 2020; 56 Blagodatskaya, Khomyakov, Myachina, Bogomolova, Blagodatsky, Kuzyakov (bb0025) 2014; 74 Guenet, Camino-Serrano, Ciais, Tifafi, Maignan, Soong (bb0115) 2018; 24 Stursova, Crenshaw, Sinsabaugh (bb0275) 2006; 51 Wu, Joergensen, Pommerening, Chaussod, Brookes (bb0315) 1990; 22 Lal (bb0180) 2005; 31 Sun, Wang, Yang, Liao, Chen, Ruan (bb0280) 2021; 30 Fang, Nazaries, Singh, Singh (bb0075) 2018; 24 Kuzyakov, Friedel, Stahr (bb0160) 2000; 32 Liang, Chen, Gong, Fan, Yang, Lal (bb0190) 2011; 92 Liu, Qiao, Yang, Bai, Liu (bb0200) 2018; 332 Waldrop, Zak, Sinsabaugh, Gallo, Lauber (bb0310) 2004; 14 Waring, Weintraub, Sinsabaugh (bb2005) 2014; 117 Frostegård, Bååth (bb0100) 1996; 22 Lal (bb0175) 2004; 304 Tian, Pausch, Yu, Blagodatskaya, Kuzyakov (bb0295) 2016; 97 Kuzyakov, Gunina, Zamanian, Tian, Luo, Xu (bb0165) 2020; 7 Fan, Yu, Wang, George, Yin, Xu (bb0065) 2019; 135 Feng, Zhu (bb2020) 2021; 153 Wu, Zhang, Wei (bb2010) 2019; 135 Shahbaz, Kuzyakov, Heitkamp (bb0270) 2017; 304 Ma, Kan, Qi, Zhang (bb0225) 2020; 10 Byrnes, Gamfeldt, Isbell, Lefcheck, Griffin, Hector (bb0040) 2014; 5 Perveen, Barot, Maire, Cotrufo, Shahzad, Blagodatskaya (bb0245) 2019; 134 Blagodatskaya, Kuzyakov (bb0020) 2008; 45 Coplen, Brand, Gehre, Groning, Meijer, Toman (bb0050) 2006; 78 Luo, Wang, Sun (bb0215) 2016; 101 Martin, Mariotti, Balesdent, Lavelle, Vuattoux (bb0230) 1990; 22 Tavi, Martikainen, Lokko, Kontro, Wild, Richter (bb0285) 2013; 58 Kong, Kuzyakov, Ruan, Zhang, Wang, Wang (bb0145) 2020; 86 Lu, Wang, Han, Ouyang, Duan, Zheng (bb0205) 2009; 15 Li, Ni, Jiao, Lu, Zhou, Sun (bb0185) 2021; 9 Hessen, Agren, Anderson, Elser, De Ruiter (bb0125) 2004; 85 Yao, Thornton, Paterson (bb0320) 2012; 53 Bell, Fricks, Rocca, Steinweg, McMahon, Wallenstein (bb0010) 2013 Kurganova, Merino, Lopes de Gerenyu, Barros, Kalinina, Giani (bb0155) 2019; 354 Heitkamp, Wendland, Offenberger, Gerold (bb0120) 2012; 170 Kalinina, Goryachkin, Lyuri, Giani (bb0140) 2015; 129 Laganiere, Angers, Pare (bb0170) 2010; 16 Luo, Wang, Tian, Shi, Xu, Yang (bb0220) 2018; 329 De Vries, Shade (bb0060) 2013; 4 Allison, Vitousek (bb0005) 2005; 37 Bingeman, Varner, Martin (bb0015) 1953; 17 Thornton, Zhang, Mayes, Hogberg, Midwood (bb0290) 2011; 25 Luo, Wang, Sun (bb0210) 2010; 155 De Troyer, Amery, Van Moorleghem, Smolders, Merckx (bb0055) 2011; 43 Trivedi, Anderson, Singh (bb0300) 2013; 21 Reeves (bb0265) 1997; 43 Zou, Osborne (bb0345) 2021; 11 Heuck, Weig, Spohn (bb0130) 2015; 85 Fang, Singh, Farrell, Van Zwieten, Armstrong, Chen (bb0080) 2020; 145 Kuzyakov, Bol (bb2015) 2006; 38 Zelles (bb0330) 1999; 29 Fontaine, Mariotti, Abbadie (bb0085) 2003; 35 Kong (10.1016/j.scitotenv.2021.152882_bb0145) 2020; 86 Laganiere (10.1016/j.scitotenv.2021.152882_bb0170) 2010; 16 De Vries (10.1016/j.scitotenv.2021.152882_bb0060) 2013; 4 Poulton (10.1016/j.scitotenv.2021.152882_bb0250) 2018; 24 Shahbaz (10.1016/j.scitotenv.2021.152882_bb0270) 2017; 304 Moorhead (10.1016/j.scitotenv.2021.152882_bb0235) 2006; 76 Guenet (10.1016/j.scitotenv.2021.152882_bb0115) 2018; 24 Liang (10.1016/j.scitotenv.2021.152882_bb0190) 2011; 92 Blagodatsky (10.1016/j.scitotenv.2021.152882_bb0030) 2010; 42 Stursova (10.1016/j.scitotenv.2021.152882_bb0275) 2006; 51 Zelles (10.1016/j.scitotenv.2021.152882_bb0330) 1999; 29 Thornton (10.1016/j.scitotenv.2021.152882_bb0290) 2011; 25 You (10.1016/j.scitotenv.2021.152882_bb0325) 2019; 70 Heuck (10.1016/j.scitotenv.2021.152882_bb0130) 2015; 85 Frostegård (10.1016/j.scitotenv.2021.152882_bb0100) 1996; 22 Fan (10.1016/j.scitotenv.2021.152882_bb0065) 2019; 135 Liaw (10.1016/j.scitotenv.2021.152882_bb0195) 2002 Trivedi (10.1016/j.scitotenv.2021.152882_bb0300) 2013; 21 Kurganova (10.1016/j.scitotenv.2021.152882_bb0155) 2019; 354 Luo (10.1016/j.scitotenv.2021.152882_bb0210) 2010; 155 Luo (10.1016/j.scitotenv.2021.152882_bb0220) 2018; 329 Waring (10.1016/j.scitotenv.2021.152882_bb2005) 2014; 117 Blagodatskaya (10.1016/j.scitotenv.2021.152882_bb0025) 2014; 74 Coplen (10.1016/j.scitotenv.2021.152882_bb0050) 2006; 78 De Troyer (10.1016/j.scitotenv.2021.152882_bb0055) 2011; 43 Heitkamp (10.1016/j.scitotenv.2021.152882_bb0120) 2012; 170 Wu (10.1016/j.scitotenv.2021.152882_bb0315) 1990; 22 Liu (10.1016/j.scitotenv.2021.152882_bb0200) 2018; 332 Fang (10.1016/j.scitotenv.2021.152882_bb0080) 2020; 145 Fontaine (10.1016/j.scitotenv.2021.152882_bb0090) 2004; 7 Wu (10.1016/j.scitotenv.2021.152882_bb2010) 2019; 135 Inglett (10.1016/j.scitotenv.2021.152882_bb0135) 2011; 75 Qiu (10.1016/j.scitotenv.2021.152882_bb0255) 2016; 100 Feng (10.1016/j.scitotenv.2021.152882_bb2020) 2021; 153 Fang (10.1016/j.scitotenv.2021.152882_bb0075) 2018; 24 Koster (10.1016/j.scitotenv.2021.152882_bb0150) 2011; 43 Allison (10.1016/j.scitotenv.2021.152882_bb0005) 2005; 37 Zou (10.1016/j.scitotenv.2021.152882_bb0345) 2021; 11 Kalinina (10.1016/j.scitotenv.2021.152882_bb0140) 2015; 129 Fan (10.1016/j.scitotenv.2021.152882_bb0070) 2020; 56 Lu (10.1016/j.scitotenv.2021.152882_bb0205) 2009; 15 Gong (10.1016/j.scitotenv.2021.152882_bb0110) 2009; 314 Ramirez (10.1016/j.scitotenv.2021.152882_bb0260) 2012; 18 Yao (10.1016/j.scitotenv.2021.152882_bb0320) 2012; 53 Zhao (10.1016/j.scitotenv.2021.152882_bb0335) 2018; 115 Kuzyakov (10.1016/j.scitotenv.2021.152882_bb2015) 2006; 38 Bell (10.1016/j.scitotenv.2021.152882_bb0010) 2013 Perveen (10.1016/j.scitotenv.2021.152882_bb0245) 2019; 134 Zogg (10.1016/j.scitotenv.2021.152882_bb0340) 1997; 61 Kuzyakov (10.1016/j.scitotenv.2021.152882_bb0160) 2000; 32 Li (10.1016/j.scitotenv.2021.152882_bb0185) 2021; 9 Fontaine (10.1016/j.scitotenv.2021.152882_bb0095) 2011; 43 Kuzyakov (10.1016/j.scitotenv.2021.152882_bb0165) 2020; 7 Byrnes (10.1016/j.scitotenv.2021.152882_bb0040) 2014; 5 Ma (10.1016/j.scitotenv.2021.152882_bb0225) 2020; 10 Chen (10.1016/j.scitotenv.2021.152882_bb0045) 2014; 20 Hessen (10.1016/j.scitotenv.2021.152882_bb0125) 2004; 85 Nottingham (10.1016/j.scitotenv.2021.152882_bb0240) 2012; 111 Blagodatskaya (10.1016/j.scitotenv.2021.152882_bb0020) 2008; 45 Garcia-Ruiz (10.1016/j.scitotenv.2021.152882_bb0105) 2008; 40 Waldrop (10.1016/j.scitotenv.2021.152882_bb0310) 2004; 14 Bingeman (10.1016/j.scitotenv.2021.152882_bb0015) 1953; 17 Lal (10.1016/j.scitotenv.2021.152882_bb0175) 2004; 304 Luo (10.1016/j.scitotenv.2021.152882_bb0215) 2016; 101 Sun (10.1016/j.scitotenv.2021.152882_bb0280) 2021; 30 Bligh (10.1016/j.scitotenv.2021.152882_bb0035) 1959; 37 Reeves (10.1016/j.scitotenv.2021.152882_bb0265) 1997; 43 Tavi (10.1016/j.scitotenv.2021.152882_bb0285) 2013; 58 Martin (10.1016/j.scitotenv.2021.152882_bb0230) 1990; 22 Lal (10.1016/j.scitotenv.2021.152882_bb0180) 2005; 31 Fontaine (10.1016/j.scitotenv.2021.152882_bb0085) 2003; 35 Tian (10.1016/j.scitotenv.2021.152882_bb0295) 2016; 97 Vance (10.1016/j.scitotenv.2021.152882_bb0305) 1987; 19 |
References_xml | – volume: 43 start-page: 513 year: 2011 end-page: 519 ident: bb0055 article-title: Tracing the source and fate of dissolved organic matter in soil after incorporation of a 13C labelled residue: a batch incubation study publication-title: Soil Biol. Biochem. – volume: 5 start-page: 111 year: 2014 end-page: 124 ident: bb0040 article-title: Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions publication-title: Methods Ecol. Evol. – volume: 117 start-page: 101 year: 2014 end-page: 113 ident: bb2005 article-title: Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils publication-title: Biogeochemistry – volume: 329 start-page: 108 year: 2018 end-page: 117 ident: bb0220 article-title: Aggregate-related changes in soil microbial communities under different ameliorant applications in saline-sodic soils publication-title: Geoderma – volume: 43 start-page: 131 year: 1997 end-page: 167 ident: bb0265 article-title: The role of soil organic matter in maintaining soil quality in continuous cropping systems publication-title: Soil Tillage Res. – volume: 58 start-page: 207 year: 2013 end-page: 215 ident: bb0285 article-title: Linking microbial community structure and allocation of plant-derived carbon in an organic agricultural soil using (CO2)-C-13 pulse-chase labelling combined with C-13-PLFA profiling publication-title: Soil Biol. Biochem. – volume: 332 start-page: 37 year: 2018 end-page: 44 ident: bb0200 article-title: Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition publication-title: Geoderma – volume: 22 start-page: 1167 year: 1990 end-page: 1169 ident: bb0315 article-title: Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure publication-title: Soil Biol. Biochem. – volume: 43 start-page: 86 year: 2011 end-page: 96 ident: bb0095 article-title: Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect publication-title: Soil Biol. Biochem. – volume: 24 start-page: 1873 year: 2018 end-page: 1883 ident: bb0115 article-title: Impact of priming on global soil carbon stocks publication-title: Glob. Chang. Biol. – volume: 304 start-page: 1623 year: 2004 end-page: 1627 ident: bb0175 article-title: Soil carbon sequestration impacts on global climate change and food security publication-title: Science – volume: 135 start-page: 213 year: 2019 end-page: 221 ident: bb0065 article-title: Microbial mechanisms of the contrast residue decomposition and priming effect in soils with different organic and chemical fertilization histories publication-title: Soil Biol. Biochem. – volume: 170 start-page: 168 year: 2012 end-page: 175 ident: bb0120 article-title: Implications of input estimation, residue quality and carbon saturation on the predictive power of the rothamsted carbon model publication-title: Geoderma – volume: 38 start-page: 747 year: 2006 end-page: 758 ident: bb2015 article-title: Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar publication-title: Soil Biol. Biochem. – volume: 304 start-page: 76 year: 2017 end-page: 82 ident: bb0270 article-title: Decrease of soil organic matter stabilization with increasing inputs: mechanisms and controls publication-title: Geoderma – volume: 74 start-page: 39 year: 2014 end-page: 49 ident: bb0025 article-title: Microbial interactions affect sources of priming induced by cellulose publication-title: Soil Biol. Biochem. – volume: 111 start-page: 219 year: 2012 end-page: 237 ident: bb0240 article-title: Priming and microbial nutrient limitation in lowland tropical forest soils of contrasting fertility publication-title: Biogeochemistry – volume: 53 start-page: 72 year: 2012 end-page: 77 ident: bb0320 article-title: Incorporation of C-13-labelled rice rhizodeposition carbon into soil microbial communities under different water status publication-title: Soil Biol. Biochem. – volume: 37 start-page: 911 year: 1959 end-page: 917 ident: bb0035 article-title: A rapid method of total lipid extraction and purification publication-title: Can. J. Biochem. Physiol. – volume: 40 start-page: 2137 year: 2008 end-page: 2145 ident: bb0105 article-title: Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems publication-title: Soil Biol. Biochem. – volume: 115 start-page: 4045 year: 2018 end-page: 4050 ident: bb0335 article-title: Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in chinese croplands publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 135 start-page: 383 year: 2019 end-page: 391 ident: bb2010 article-title: Soil organic matter priming and carbon balance after straw addition is regulated by long-term fertilization publication-title: Soil Biol. Biochem. – volume: 29 start-page: 111 year: 1999 end-page: 129 ident: bb0330 article-title: Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review publication-title: Biol. Fertil. Soils – volume: 20 start-page: 2356 year: 2014 end-page: 2367 ident: bb0045 article-title: Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories publication-title: Glob. Chang. Biol. – volume: 43 start-page: 1671 year: 2011 end-page: 1677 ident: bb0150 article-title: Rapid shift from denitrification to nitrification in soil after biogas residue application as indicated by nitrous oxide isotopomers publication-title: Soil Biol. Biochem. – volume: 76 start-page: 151 year: 2006 end-page: 174 ident: bb0235 article-title: A theoretical model of litter decay and microbial interaction publication-title: Ecol. Monogr. – volume: 16 start-page: 439 year: 2010 end-page: 453 ident: bb0170 article-title: Carbon accumulation in agricultural soils after afforestation: a meta-analysis publication-title: Glob. Chang. Biol. – volume: 7 start-page: 56 year: 2020 end-page: 62 ident: bb0165 article-title: New approaches for evaluation of soil health, sensitivity and resistance to degradation publication-title: Front. Agric. Sci. Eng. – volume: 78 start-page: 2439 year: 2006 end-page: 2441 ident: bb0050 article-title: New guidelines for delta C-13 measurements publication-title: Anal. Chem. – volume: 17 start-page: 34 year: 1953 end-page: 38 ident: bb0015 article-title: The effect of the addition of organic materials on the decomposition of an organic soil publication-title: Soil Sci. Soc. Am. J. – volume: 11 start-page: 2139 year: 2021 ident: bb0345 article-title: Spatially related sampling uncertainty in the assessment of labile soil carbon and nitrogen in an irish forest plantation publication-title: Appl. Sci. – volume: 9 start-page: 20 year: 2021 ident: bb0185 article-title: Coexistence patterns of soil methanogens are closely tied to methane generation and community assembly in rice paddies publication-title: Microbiome – volume: 25 start-page: 2433 year: 2011 end-page: 2438 ident: bb0290 article-title: Can gas chromatography combustion isotope ratio mass spectrometry be used to quantify organic compound abundance? publication-title: Rapid Commun. Mass Spectrom. – volume: 155 start-page: 211 year: 2010 end-page: 223 ident: bb0210 article-title: Soil carbon change and its responses to agricultural practices in australian agro-ecosystems: a review and synthesis publication-title: Geoderma – volume: 35 start-page: 837 year: 2003 end-page: 843 ident: bb0085 article-title: The priming effect of organic matter: a question of microbial competition? publication-title: Soil Biol. Biochem. – volume: 14 start-page: 1172 year: 2004 end-page: 1177 ident: bb0310 article-title: Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity publication-title: Ecol. Appl. – volume: 15 start-page: 281 year: 2009 end-page: 305 ident: bb0205 article-title: Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland publication-title: Glob. Chang. Biol. – volume: 145 year: 2020 ident: bb0080 article-title: Balanced nutrient stoichiometry of organic amendments enhances carbon priming in a poorly structured sodic subsoil publication-title: Soil Biol. Biochem. – volume: 314 start-page: 67 year: 2009 end-page: 76 ident: bb0110 article-title: Long-term manuring and fertilization effects on soil organic carbon pools under a wheat-maize cropping system in North China plain publication-title: Plant Soil – volume: 100 start-page: 65 year: 2016 end-page: 74 ident: bb0255 article-title: Priming effect of maize residue and urea N on soil organic matter changes with time publication-title: Appl. Soil Ecol. – volume: 18 start-page: 1918 year: 2012 end-page: 1927 ident: bb0260 article-title: Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes publication-title: Glob. Chang. Biol. – volume: 51 start-page: 90 year: 2006 end-page: 98 ident: bb0275 article-title: Microbial responses to long-term N deposition in a semiarid grassland publication-title: Microb. Ecol. – volume: 21 start-page: 641 year: 2013 end-page: 651 ident: bb0300 article-title: Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction publication-title: Trends Microbiol. – volume: 354 year: 2019 ident: bb0155 article-title: Mechanisms of carbon sequestration and stabilization by restoration of arable soils after abandonment: a chronosequence study on phaeozems and chernozems publication-title: Geoderma – volume: 86 year: 2020 ident: bb0145 article-title: DNA stable-isotope probing delineates carbon flows from rice residues into soil microbial communities depending on fertilization publication-title: Appl. Environ. Microbiol. – volume: 101 start-page: 96 year: 2016 end-page: 103 ident: bb0215 article-title: A meta-analysis of the temporal dynamics of priming soil carbon decomposition by fresh carbon inputs across ecosystems publication-title: Soil Biol. Biochem. – volume: 97 start-page: 199 year: 2016 end-page: 210 ident: bb0295 article-title: Aggregate size and glucose level affect priming sources: a three-source-partitioning study publication-title: Soil Biol. Biochem. – volume: 4 year: 2013 ident: bb0060 article-title: Controls on soil microbial community stability under climate change publication-title: Front. Microbiol. – volume: 24 start-page: 2563 year: 2018 end-page: 2584 ident: bb0250 article-title: Major limitations to achieving "4 per 1000" increases in soil organic carbon stock in temperate regions: Evidence from long-term experiments at Rothamsted Research, United Kingdom publication-title: Glob. Chang. Biol. – volume: 32 start-page: 1485 year: 2000 end-page: 1498 ident: bb0160 article-title: Review of mechanisms and quantification of priming effects publication-title: Soil Biol. Biochem. – volume: 85 start-page: 1179 year: 2004 end-page: 1192 ident: bb0125 article-title: Carbon, sequestration in ecosystems: the role of stoichiometry publication-title: Ecology – volume: 56 start-page: 205 year: 2020 end-page: 216 ident: bb0070 article-title: Effects of nitrogen addition on DOM-induced soil priming effects in a subtropical plantation forest and a natural forest publication-title: Biol. Fertil. Soils – volume: 70 start-page: 765 year: 2019 end-page: 775 ident: bb0325 article-title: Effect of reduction of aggregate size on the priming effect in a mollisol under different soil managements publication-title: Eur. J. Soil Sci. – volume: 7 start-page: 314 year: 2004 end-page: 320 ident: bb0090 article-title: Carbon input to soil may decrease soil carbon content publication-title: Ecol. Lett. – volume: 22 start-page: 59 year: 1996 end-page: 65 ident: bb0100 article-title: The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil publication-title: Biol. Fertil. Soils – volume: 10 start-page: 61 year: 2020 ident: bb0225 article-title: Effects of straw return mode on soil aggregates and associated carbon in the North China plain publication-title: Agronomy – volume: 45 start-page: 115 year: 2008 end-page: 131 ident: bb0020 article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review publication-title: Biol. Fertil. Soils – volume: 75 start-page: 1731 year: 2011 end-page: 1740 ident: bb0135 article-title: Soil microbial community composition in a restored calcareous subtropical wetland publication-title: Soil Sci. Soc. Am. J. – volume: 22 start-page: 517 year: 1990 end-page: 523 ident: bb0230 article-title: Estimate of organic matter turnover rate in a savanna soil by 13C natural abundance measurements publication-title: Soil Biol. Biochem. – year: 2013 ident: bb0010 article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities publication-title: J. Vis. Exp. – volume: 153 year: 2021 ident: bb2020 article-title: Global patterns and associated drivers of priming effect in response to nutrient addition publication-title: Soil Biol. Biochem. – volume: 85 start-page: 119 year: 2015 end-page: 129 ident: bb0130 article-title: Soil microbial biomass C:N: P stoichiometry and microbial use of organic phosphorus publication-title: Soil Biol. Biochem. – volume: 31 start-page: 575 year: 2005 end-page: 584 ident: bb0180 article-title: World crop residues production and implications of its use as a biofuel publication-title: Environ. Int. – volume: 134 start-page: 162 year: 2019 end-page: 171 ident: bb0245 article-title: Universality of priming effect: an analysis using thirty five soils with contrasted properties sampled from five continents publication-title: Soil Biol. Biochem. – volume: 30 start-page: 961 year: 2021 end-page: 972 ident: bb0280 article-title: Elevated CO2 shifts soil microbial communities from K-to r- strategists publication-title: Glob. Ecol. Biogeogr. – volume: 37 start-page: 937 year: 2005 end-page: 944 ident: bb0005 article-title: Responses of extracellular enzymes to simple and complex nutrient inputs publication-title: Soil Biol. Biochem. – start-page: 23 year: 2002 ident: bb0195 publication-title: Classification and Regression by randomForest. R News – volume: 92 start-page: 21 year: 2011 end-page: 33 ident: bb0190 article-title: Effects of 15 years of manure and inorganic fertilizers on soil organic carbon fractions in a wheat-maize system in the North China plain publication-title: Nutr. Cycl. Agroecosyst. – volume: 24 start-page: 2775 year: 2018 end-page: 2790 ident: bb0075 article-title: Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils publication-title: Glob. Chang. Biol. – volume: 129 start-page: 18 year: 2015 end-page: 29 ident: bb0140 article-title: Post-agrogenic development of vegetation, soils, and carbon stocks under self-restoration in different climatic zones of european Russia publication-title: Catena – volume: 19 start-page: 703 year: 1987 end-page: 707 ident: bb0305 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biol. Biochem. – volume: 42 start-page: 1275 year: 2010 end-page: 1283 ident: bb0030 article-title: Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition publication-title: Soil Biol. Biochem. – volume: 61 start-page: 475 year: 1997 end-page: 481 ident: bb0340 article-title: Compositional and functional shifts in microbial communities due to soil warming publication-title: Soil Sci. Soc. Am. J. – volume: 43 start-page: 1671 year: 2011 ident: 10.1016/j.scitotenv.2021.152882_bb0150 article-title: Rapid shift from denitrification to nitrification in soil after biogas residue application as indicated by nitrous oxide isotopomers publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.04.004 – year: 2013 ident: 10.1016/j.scitotenv.2021.152882_bb0010 article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities publication-title: J. Vis. Exp. doi: 10.3791/50961-v – volume: 134 start-page: 162 year: 2019 ident: 10.1016/j.scitotenv.2021.152882_bb0245 article-title: Universality of priming effect: an analysis using thirty five soils with contrasted properties sampled from five continents publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.03.027 – volume: 75 start-page: 1731 year: 2011 ident: 10.1016/j.scitotenv.2021.152882_bb0135 article-title: Soil microbial community composition in a restored calcareous subtropical wetland publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2010.0424 – volume: 92 start-page: 21 year: 2011 ident: 10.1016/j.scitotenv.2021.152882_bb0190 article-title: Effects of 15 years of manure and inorganic fertilizers on soil organic carbon fractions in a wheat-maize system in the North China plain publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-011-9469-6 – volume: 56 start-page: 205 year: 2020 ident: 10.1016/j.scitotenv.2021.152882_bb0070 article-title: Effects of nitrogen addition on DOM-induced soil priming effects in a subtropical plantation forest and a natural forest publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-019-01416-0 – volume: 9 start-page: 20 year: 2021 ident: 10.1016/j.scitotenv.2021.152882_bb0185 article-title: Coexistence patterns of soil methanogens are closely tied to methane generation and community assembly in rice paddies publication-title: Microbiome doi: 10.1186/s40168-020-00978-8 – volume: 111 start-page: 219 year: 2012 ident: 10.1016/j.scitotenv.2021.152882_bb0240 article-title: Priming and microbial nutrient limitation in lowland tropical forest soils of contrasting fertility publication-title: Biogeochemistry doi: 10.1007/s10533-011-9637-4 – volume: 16 start-page: 439 year: 2010 ident: 10.1016/j.scitotenv.2021.152882_bb0170 article-title: Carbon accumulation in agricultural soils after afforestation: a meta-analysis publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2009.01930.x – volume: 37 start-page: 911 year: 1959 ident: 10.1016/j.scitotenv.2021.152882_bb0035 article-title: A rapid method of total lipid extraction and purification publication-title: Can. J. Biochem. Physiol. doi: 10.1139/y59-099 – volume: 101 start-page: 96 year: 2016 ident: 10.1016/j.scitotenv.2021.152882_bb0215 article-title: A meta-analysis of the temporal dynamics of priming soil carbon decomposition by fresh carbon inputs across ecosystems publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.07.011 – volume: 74 start-page: 39 year: 2014 ident: 10.1016/j.scitotenv.2021.152882_bb0025 article-title: Microbial interactions affect sources of priming induced by cellulose publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.02.017 – volume: 31 start-page: 575 year: 2005 ident: 10.1016/j.scitotenv.2021.152882_bb0180 article-title: World crop residues production and implications of its use as a biofuel publication-title: Environ. Int. doi: 10.1016/j.envint.2004.09.005 – volume: 304 start-page: 76 year: 2017 ident: 10.1016/j.scitotenv.2021.152882_bb0270 article-title: Decrease of soil organic matter stabilization with increasing inputs: mechanisms and controls publication-title: Geoderma doi: 10.1016/j.geoderma.2016.05.019 – volume: 354 year: 2019 ident: 10.1016/j.scitotenv.2021.152882_bb0155 article-title: Mechanisms of carbon sequestration and stabilization by restoration of arable soils after abandonment: a chronosequence study on phaeozems and chernozems publication-title: Geoderma doi: 10.1016/j.geoderma.2019.113882 – volume: 332 start-page: 37 year: 2018 ident: 10.1016/j.scitotenv.2021.152882_bb0200 article-title: Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition publication-title: Geoderma doi: 10.1016/j.geoderma.2018.07.008 – volume: 10 start-page: 61 year: 2020 ident: 10.1016/j.scitotenv.2021.152882_bb0225 article-title: Effects of straw return mode on soil aggregates and associated carbon in the North China plain publication-title: Agronomy doi: 10.3390/agronomy10010061 – volume: 24 start-page: 2563 year: 2018 ident: 10.1016/j.scitotenv.2021.152882_bb0250 article-title: Major limitations to achieving "4 per 1000" increases in soil organic carbon stock in temperate regions: Evidence from long-term experiments at Rothamsted Research, United Kingdom publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14066 – volume: 37 start-page: 937 year: 2005 ident: 10.1016/j.scitotenv.2021.152882_bb0005 article-title: Responses of extracellular enzymes to simple and complex nutrient inputs publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2004.09.014 – volume: 86 year: 2020 ident: 10.1016/j.scitotenv.2021.152882_bb0145 article-title: DNA stable-isotope probing delineates carbon flows from rice residues into soil microbial communities depending on fertilization publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02151-19 – volume: 24 start-page: 1873 year: 2018 ident: 10.1016/j.scitotenv.2021.152882_bb0115 article-title: Impact of priming on global soil carbon stocks publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14069 – volume: 43 start-page: 131 year: 1997 ident: 10.1016/j.scitotenv.2021.152882_bb0265 article-title: The role of soil organic matter in maintaining soil quality in continuous cropping systems publication-title: Soil Tillage Res. doi: 10.1016/S0167-1987(97)00038-X – volume: 30 start-page: 961 year: 2021 ident: 10.1016/j.scitotenv.2021.152882_bb0280 article-title: Elevated CO2 shifts soil microbial communities from K-to r- strategists publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.13281 – volume: 314 start-page: 67 year: 2009 ident: 10.1016/j.scitotenv.2021.152882_bb0110 article-title: Long-term manuring and fertilization effects on soil organic carbon pools under a wheat-maize cropping system in North China plain publication-title: Plant Soil doi: 10.1007/s11104-008-9705-2 – volume: 7 start-page: 56 year: 2020 ident: 10.1016/j.scitotenv.2021.152882_bb0165 article-title: New approaches for evaluation of soil health, sensitivity and resistance to degradation publication-title: Front. Agric. Sci. Eng. – volume: 304 start-page: 1623 year: 2004 ident: 10.1016/j.scitotenv.2021.152882_bb0175 article-title: Soil carbon sequestration impacts on global climate change and food security publication-title: Science doi: 10.1126/science.1097396 – volume: 15 start-page: 281 year: 2009 ident: 10.1016/j.scitotenv.2021.152882_bb0205 article-title: Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2008.01743.x – volume: 58 start-page: 207 year: 2013 ident: 10.1016/j.scitotenv.2021.152882_bb0285 article-title: Linking microbial community structure and allocation of plant-derived carbon in an organic agricultural soil using (CO2)-C-13 pulse-chase labelling combined with C-13-PLFA profiling publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.11.013 – volume: 135 start-page: 213 year: 2019 ident: 10.1016/j.scitotenv.2021.152882_bb0065 article-title: Microbial mechanisms of the contrast residue decomposition and priming effect in soils with different organic and chemical fertilization histories publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.05.001 – volume: 40 start-page: 2137 year: 2008 ident: 10.1016/j.scitotenv.2021.152882_bb0105 article-title: Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.03.023 – volume: 29 start-page: 111 year: 1999 ident: 10.1016/j.scitotenv.2021.152882_bb0330 article-title: Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review publication-title: Biol. Fertil. Soils doi: 10.1007/s003740050533 – volume: 25 start-page: 2433 year: 2011 ident: 10.1016/j.scitotenv.2021.152882_bb0290 article-title: Can gas chromatography combustion isotope ratio mass spectrometry be used to quantify organic compound abundance? publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.5148 – volume: 43 start-page: 86 year: 2011 ident: 10.1016/j.scitotenv.2021.152882_bb0095 article-title: Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.09.017 – volume: 42 start-page: 1275 year: 2010 ident: 10.1016/j.scitotenv.2021.152882_bb0030 article-title: Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.04.005 – volume: 76 start-page: 151 year: 2006 ident: 10.1016/j.scitotenv.2021.152882_bb0235 article-title: A theoretical model of litter decay and microbial interaction publication-title: Ecol. Monogr. doi: 10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2 – start-page: 23 year: 2002 ident: 10.1016/j.scitotenv.2021.152882_bb0195 – volume: 97 start-page: 199 year: 2016 ident: 10.1016/j.scitotenv.2021.152882_bb0295 article-title: Aggregate size and glucose level affect priming sources: a three-source-partitioning study publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.03.013 – volume: 17 start-page: 34 year: 1953 ident: 10.1016/j.scitotenv.2021.152882_bb0015 article-title: The effect of the addition of organic materials on the decomposition of an organic soil publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1953.03615995001700010008x – volume: 115 start-page: 4045 year: 2018 ident: 10.1016/j.scitotenv.2021.152882_bb0335 article-title: Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in chinese croplands publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1700292114 – volume: 35 start-page: 837 year: 2003 ident: 10.1016/j.scitotenv.2021.152882_bb0085 article-title: The priming effect of organic matter: a question of microbial competition? publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(03)00123-8 – volume: 20 start-page: 2356 year: 2014 ident: 10.1016/j.scitotenv.2021.152882_bb0045 article-title: Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12475 – volume: 5 start-page: 111 year: 2014 ident: 10.1016/j.scitotenv.2021.152882_bb0040 article-title: Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12143 – volume: 135 start-page: 383 year: 2019 ident: 10.1016/j.scitotenv.2021.152882_bb2010 article-title: Soil organic matter priming and carbon balance after straw addition is regulated by long-term fertilization publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.06.003 – volume: 85 start-page: 119 year: 2015 ident: 10.1016/j.scitotenv.2021.152882_bb0130 article-title: Soil microbial biomass C:N: P stoichiometry and microbial use of organic phosphorus publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.02.029 – volume: 145 year: 2020 ident: 10.1016/j.scitotenv.2021.152882_bb0080 article-title: Balanced nutrient stoichiometry of organic amendments enhances carbon priming in a poorly structured sodic subsoil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.107800 – volume: 18 start-page: 1918 year: 2012 ident: 10.1016/j.scitotenv.2021.152882_bb0260 article-title: Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2012.02639.x – volume: 153 year: 2021 ident: 10.1016/j.scitotenv.2021.152882_bb2020 article-title: Global patterns and associated drivers of priming effect in response to nutrient addition publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.108118 – volume: 32 start-page: 1485 year: 2000 ident: 10.1016/j.scitotenv.2021.152882_bb0160 article-title: Review of mechanisms and quantification of priming effects publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00084-5 – volume: 170 start-page: 168 year: 2012 ident: 10.1016/j.scitotenv.2021.152882_bb0120 article-title: Implications of input estimation, residue quality and carbon saturation on the predictive power of the rothamsted carbon model publication-title: Geoderma doi: 10.1016/j.geoderma.2011.11.005 – volume: 22 start-page: 517 year: 1990 ident: 10.1016/j.scitotenv.2021.152882_bb0230 article-title: Estimate of organic matter turnover rate in a savanna soil by 13C natural abundance measurements publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(90)90188-6 – volume: 22 start-page: 1167 year: 1990 ident: 10.1016/j.scitotenv.2021.152882_bb0315 article-title: Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(90)90046-3 – volume: 45 start-page: 115 year: 2008 ident: 10.1016/j.scitotenv.2021.152882_bb0020 article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-008-0334-y – volume: 43 start-page: 513 year: 2011 ident: 10.1016/j.scitotenv.2021.152882_bb0055 article-title: Tracing the source and fate of dissolved organic matter in soil after incorporation of a 13C labelled residue: a batch incubation study publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.11.016 – volume: 38 start-page: 747 year: 2006 ident: 10.1016/j.scitotenv.2021.152882_bb2015 article-title: Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.06.025 – volume: 155 start-page: 211 year: 2010 ident: 10.1016/j.scitotenv.2021.152882_bb0210 article-title: Soil carbon change and its responses to agricultural practices in australian agro-ecosystems: a review and synthesis publication-title: Geoderma doi: 10.1016/j.geoderma.2009.12.012 – volume: 19 start-page: 703 year: 1987 ident: 10.1016/j.scitotenv.2021.152882_bb0305 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(87)90052-6 – volume: 53 start-page: 72 year: 2012 ident: 10.1016/j.scitotenv.2021.152882_bb0320 article-title: Incorporation of C-13-labelled rice rhizodeposition carbon into soil microbial communities under different water status publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.05.006 – volume: 329 start-page: 108 year: 2018 ident: 10.1016/j.scitotenv.2021.152882_bb0220 article-title: Aggregate-related changes in soil microbial communities under different ameliorant applications in saline-sodic soils publication-title: Geoderma doi: 10.1016/j.geoderma.2018.05.023 – volume: 7 start-page: 314 year: 2004 ident: 10.1016/j.scitotenv.2021.152882_bb0090 article-title: Carbon input to soil may decrease soil carbon content publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2004.00579.x – volume: 70 start-page: 765 year: 2019 ident: 10.1016/j.scitotenv.2021.152882_bb0325 article-title: Effect of reduction of aggregate size on the priming effect in a mollisol under different soil managements publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12818 – volume: 117 start-page: 101 issue: 1 year: 2014 ident: 10.1016/j.scitotenv.2021.152882_bb2005 article-title: Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils publication-title: Biogeochemistry doi: 10.1007/s10533-013-9849-x – volume: 24 start-page: 2775 year: 2018 ident: 10.1016/j.scitotenv.2021.152882_bb0075 article-title: Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14154 – volume: 51 start-page: 90 year: 2006 ident: 10.1016/j.scitotenv.2021.152882_bb0275 article-title: Microbial responses to long-term N deposition in a semiarid grassland publication-title: Microb. Ecol. doi: 10.1007/s00248-005-5156-y – volume: 100 start-page: 65 year: 2016 ident: 10.1016/j.scitotenv.2021.152882_bb0255 article-title: Priming effect of maize residue and urea N on soil organic matter changes with time publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2015.11.016 – volume: 21 start-page: 641 year: 2013 ident: 10.1016/j.scitotenv.2021.152882_bb0300 article-title: Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction publication-title: Trends Microbiol. doi: 10.1016/j.tim.2013.09.005 – volume: 22 start-page: 59 year: 1996 ident: 10.1016/j.scitotenv.2021.152882_bb0100 article-title: The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil publication-title: Biol. Fertil. Soils doi: 10.1007/BF00384433 – volume: 61 start-page: 475 year: 1997 ident: 10.1016/j.scitotenv.2021.152882_bb0340 article-title: Compositional and functional shifts in microbial communities due to soil warming publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1997.03615995006100020015x – volume: 14 start-page: 1172 year: 2004 ident: 10.1016/j.scitotenv.2021.152882_bb0310 article-title: Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity publication-title: Ecol. Appl. doi: 10.1890/03-5120 – volume: 78 start-page: 2439 year: 2006 ident: 10.1016/j.scitotenv.2021.152882_bb0050 article-title: New guidelines for delta C-13 measurements publication-title: Anal. Chem. doi: 10.1021/ac052027c – volume: 4 year: 2013 ident: 10.1016/j.scitotenv.2021.152882_bb0060 article-title: Controls on soil microbial community stability under climate change publication-title: Front. Microbiol. doi: 10.3389/fmicb.2013.00265 – volume: 11 start-page: 2139 year: 2021 ident: 10.1016/j.scitotenv.2021.152882_bb0345 article-title: Spatially related sampling uncertainty in the assessment of labile soil carbon and nitrogen in an irish forest plantation publication-title: Appl. Sci. doi: 10.3390/app11052139 – volume: 85 start-page: 1179 year: 2004 ident: 10.1016/j.scitotenv.2021.152882_bb0125 article-title: Carbon, sequestration in ecosystems: the role of stoichiometry publication-title: Ecology doi: 10.1890/02-0251 – volume: 129 start-page: 18 year: 2015 ident: 10.1016/j.scitotenv.2021.152882_bb0140 article-title: Post-agrogenic development of vegetation, soils, and carbon stocks under self-restoration in different climatic zones of european Russia publication-title: Catena doi: 10.1016/j.catena.2015.02.016 |
SSID | ssj0000781 |
Score | 2.5573962 |
Snippet | Straw incorporation into soil increases carbon (C) sequestration but can induce priming effects (PE), the enhanced breakdown of soil organic matter. The... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 152882 |
SubjectTerms | animal manures Carbon community structure corn straw cropland environment enzymes Extracellular enzyme activity Fungi: bacteria ratios microbial biomass microbial communities Microbiota Mineral N nitrogen Nitrogen - analysis nitrogen fertilizers phospholipid fatty acids Priming effect Soil Soil management legacy Soil Microbiology soil organic matter Straw incorporation |
Title | Nitrogen availability mediates the priming effect of soil organic matter by preferentially altering the straw carbon-assimilating microbial community |
URI | https://dx.doi.org/10.1016/j.scitotenv.2021.152882 https://www.ncbi.nlm.nih.gov/pubmed/34998759 https://www.proquest.com/docview/2618517444 https://www.proquest.com/docview/2636732646 |
Volume | 815 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhpVAopd027fYRVOjVjVeWZbm3EBK2XbqH0tDchJ7FwbGXXSfFl_yL_N-OJHtDDmkOPdnYkhCe0egba-YbhD5JbbkkUiVa0TSh3MhElYYnTlpKc244pz45-fuSzU_pt7P8bAcdjbkwPqxysP3RpgdrPTw5GL7mwaqqfI4v5SXz7DNpUbJQzJrSwmv55-vbMA9PZhNPmWFhQ-s7MV4wbtcCNr0CR5HMfC0gzsl9O9R9CDTsRCfP0bMBQuLDOMsXaMc2E_Q4FpXsJ2jv-DZ3DZoNi3czQU_jLzocM49eoptl1a1bUCAsr2RVR8LuHodcEgCgGKAhXoWqX79xDPvArcObtqpxrAWl8UVg58Sqh4aRsRYMRl33OBzC-45-EP835Q_Wcq3aJgGwDkP6CDx4e1EFHiiYpo6JKl3_Cp2eHP88midDlYZE05R2iWaFJlQzYowzWlJHnJkZ5ZRiXLJU5nCflxk47dZabkrldG55YRUAEa1Sl-2h3aZt7BuEXZoaMAiS8cKAKG2pjc3cTCtiHeHOTBEbJSP0QGHuK2nUYoxVOxdbkQovUhFFOkXptuMqsng83OXLKHpxRyEF7DUPd_44KouA5erPYGRj28uNAIeVe3JwSv_VJmMFwGrKpuh11LTtrDPwUMHFLN_-z_TeoSfEZ3GEAKT3aLdbX9oPgK06tR8Wzz56dPh1MV_66-LHr8Vf9jEudA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKEQIJIVgobPkzEhxDs47jOEgcELTa0nZPrdSb8S8KSpPVbtoql74FT8ILMo6TrXooPaDeosS2nIz9zUw88w1C76W2XBKpIq1oHFFuZKRywyMnLaUpN5xTn5x8MGPTI_r9OD1eQ3-GXBgfVtljf8D0Dq37O1v919yaF4XP8aU8Z559Js5y0DJ9ZOWebc_Bb1t-3v0GQv5AyM724ddp1JcWiDSNaRNplmlCNSPGOKMldcSZiVFOKcYli2UK12megKdpreUmV06nlmdWgfbUKnYJjHsH3aUAF75swseLy7gSz54TjrUBSWB6V4LK4EWaGozhM_BMycQXH-KcXKcSrzN5O9W38xg96m1W_CV8lidozVYjdC9UsWxHaGP7MlkOmvVosRyhh-GfIA6pTk_R71nRLGpYsVieyaIMDOEt7pJXwOLFYIvieVdm7CcOcSa4dnhZFyUOxac0PunoQLFqoWGgyAWEKssWd6f-vqMfxP--OcdaLlRdReAdwJA-5A-enhQd8RRMU4fMmKZ9ho5uRXYbaL2qK_sCYRfHBhBIMp4ZSjOba2MTN9GKWEe4M2PEBskI3XOm-9IdpRiC436JlUiFF6kIIh2jeNVxHmhDbu7yaRC9uLIDBCi3mzu_GxaLAHzwhz6ysvXpUoCHzD0bOaX_apOwDOx4ysboeVhpq1kn4BKDT5tv_s_03qL708ODfbG_O9t7iR4Qn0LSRT-9QuvN4tS-BsOuUW-6jYTRj9veuX8BkjltCw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen+availability+mediates+the+priming+effect+of+soil+organic+matter+by+preferentially+altering+the+straw+carbon-assimilating+microbial+community&rft.jtitle=The+Science+of+the+total+environment&rft.au=Bei%2C+Shuikuan&rft.au=Li%2C+Xia&rft.au=Kuyper%2C+Thomas+W&rft.au=Chadwick%2C+David+R&rft.date=2022-04-01&rft.eissn=1879-1026&rft.volume=815&rft.spage=152882&rft_id=info:doi/10.1016%2Fj.scitotenv.2021.152882&rft_id=info%3Apmid%2F34998759&rft.externalDocID=34998759 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |