Nitrogen availability mediates the priming effect of soil organic matter by preferentially altering the straw carbon-assimilating microbial community

Straw incorporation into soil increases carbon (C) sequestration but can induce priming effects (PE), the enhanced breakdown of soil organic matter. The direction and magnitude of PE and the consequences for the C balance induced by straw addition depend on nitrogen (N) availability and soil managem...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 815; p. 152882
Main Authors Bei, Shuikuan, Li, Xia, Kuyper, Thomas W., Chadwick, David R., Zhang, Junling
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Straw incorporation into soil increases carbon (C) sequestration but can induce priming effects (PE), the enhanced breakdown of soil organic matter. The direction and magnitude of PE and the consequences for the C balance induced by straw addition depend on nitrogen (N) availability and soil management history. Using 13C-labeled maize straw, we conducted a 56-day incubation to determine the dynamics of PE and the underlying microbial mechanisms after straw and/or mineral N addition to three soils with contrasting cultivation and fertilization histories, i) unfertilized soil (Unfertilized), ii) 8 years farmyard manure amended soil (Manured), and iii) abandoned cropland soil (Abandoned). 13C-PLFAs (phospholipid fatty acids) were analyzed to identify microbial groups utilizing straw and to explore their contribution to the PE. Straw addition increased microbial biomass (MBC), activities of enzymes related to the C and N cycles, and changed microbial community composition. SOC decomposition was enhanced by microbes activated by straw addition, leading to a positive cumulative PE ranging from 494 to 789 μg C g−1 soil. The magnitude of positive PE and straw decomposition in the manured soil was higher than that in the unfertilized and abandoned soils due to larger MBC and higher enzyme activities, resulting in a lower net SOC gain. Compared with straw only, the combination of straw addition with N fertilizer did not influence MBC, but increased positive PE (average increase of 18.1%) and straw decomposition (17.1%), further limiting SOC gain. 13C-labeled fungi: bacteria ratios and Gram-positive (G+): negative (G−) bacteria ratios increased with the increasing PE after N fertilization, but soil-derived (un-labeled) PLFAs remained stable. Random forest analysis further showed that straw C-assimilating microbial attributes are important predictors in driving the greater PE after N addition. Our study highlights the importance of straw C-assimilating fungi and G+ bacteria in mediating N-induced PE in arable soils. [Display omitted] •Nitrogen inputs induced higher soil enzyme activities and positive PE intensity.•Nitrogen inputs had no effect on MBC but led to higher 13C-labeled fungi: bacteria and G+:G− ratios.•13C-PLFA of bacteria decreased and actinomycetes increased with prolonged incubation time.•Straw carbon assimilating microbial communities were important predictors of greater PE intensity induced by N addition.
AbstractList Straw incorporation into soil increases carbon (C) sequestration but can induce priming effects (PE), the enhanced breakdown of soil organic matter. The direction and magnitude of PE and the consequences for the C balance induced by straw addition depend on nitrogen (N) availability and soil management history. Using ¹³C-labeled maize straw, we conducted a 56-day incubation to determine the dynamics of PE and the underlying microbial mechanisms after straw and/or mineral N addition to three soils with contrasting cultivation and fertilization histories, i) unfertilized soil (Unfertilized), ii) 8 years farmyard manure amended soil (Manured), and iii) abandoned cropland soil (Abandoned). ¹³C-PLFAs (phospholipid fatty acids) were analyzed to identify microbial groups utilizing straw and to explore their contribution to the PE. Straw addition increased microbial biomass (MBC), activities of enzymes related to the C and N cycles, and changed microbial community composition. SOC decomposition was enhanced by microbes activated by straw addition, leading to a positive cumulative PE ranging from 494 to 789 μg C g⁻¹ soil. The magnitude of positive PE and straw decomposition in the manured soil was higher than that in the unfertilized and abandoned soils due to larger MBC and higher enzyme activities, resulting in a lower net SOC gain. Compared with straw only, the combination of straw addition with N fertilizer did not influence MBC, but increased positive PE (average increase of 18.1%) and straw decomposition (17.1%), further limiting SOC gain. ¹³C-labeled fungi: bacteria ratios and Gram-positive (G+): negative (G−) bacteria ratios increased with the increasing PE after N fertilization, but soil-derived (un-labeled) PLFAs remained stable. Random forest analysis further showed that straw C-assimilating microbial attributes are important predictors in driving the greater PE after N addition. Our study highlights the importance of straw C-assimilating fungi and G+ bacteria in mediating N-induced PE in arable soils.
Straw incorporation into soil increases carbon (C) sequestration but can induce priming effects (PE), the enhanced breakdown of soil organic matter. The direction and magnitude of PE and the consequences for the C balance induced by straw addition depend on nitrogen (N) availability and soil management history. Using 13C-labeled maize straw, we conducted a 56-day incubation to determine the dynamics of PE and the underlying microbial mechanisms after straw and/or mineral N addition to three soils with contrasting cultivation and fertilization histories, i) unfertilized soil (Unfertilized), ii) 8 years farmyard manure amended soil (Manured), and iii) abandoned cropland soil (Abandoned). 13C-PLFAs (phospholipid fatty acids) were analyzed to identify microbial groups utilizing straw and to explore their contribution to the PE. Straw addition increased microbial biomass (MBC), activities of enzymes related to the C and N cycles, and changed microbial community composition. SOC decomposition was enhanced by microbes activated by straw addition, leading to a positive cumulative PE ranging from 494 to 789 μg C g−1 soil. The magnitude of positive PE and straw decomposition in the manured soil was higher than that in the unfertilized and abandoned soils due to larger MBC and higher enzyme activities, resulting in a lower net SOC gain. Compared with straw only, the combination of straw addition with N fertilizer did not influence MBC, but increased positive PE (average increase of 18.1%) and straw decomposition (17.1%), further limiting SOC gain. 13C-labeled fungi: bacteria ratios and Gram-positive (G+): negative (G−) bacteria ratios increased with the increasing PE after N fertilization, but soil-derived (un-labeled) PLFAs remained stable. Random forest analysis further showed that straw C-assimilating microbial attributes are important predictors in driving the greater PE after N addition. Our study highlights the importance of straw C-assimilating fungi and G+ bacteria in mediating N-induced PE in arable soils. [Display omitted] •Nitrogen inputs induced higher soil enzyme activities and positive PE intensity.•Nitrogen inputs had no effect on MBC but led to higher 13C-labeled fungi: bacteria and G+:G− ratios.•13C-PLFA of bacteria decreased and actinomycetes increased with prolonged incubation time.•Straw carbon assimilating microbial communities were important predictors of greater PE intensity induced by N addition.
Straw incorporation into soil increases carbon (C) sequestration but can induce priming effects (PE), the enhanced breakdown of soil organic matter. The direction and magnitude of PE and the consequences for the C balance induced by straw addition depend on nitrogen (N) availability and soil management history. Using 13C-labeled maize straw, we conducted a 56-day incubation to determine the dynamics of PE and the underlying microbial mechanisms after straw and/or mineral N addition to three soils with contrasting cultivation and fertilization histories, i) unfertilized soil (Unfertilized), ii) 8 years farmyard manure amended soil (Manured), and iii) abandoned cropland soil (Abandoned). 13C-PLFAs (phospholipid fatty acids) were analyzed to identify microbial groups utilizing straw and to explore their contribution to the PE. Straw addition increased microbial biomass (MBC), activities of enzymes related to the C and N cycles, and changed microbial community composition. SOC decomposition was enhanced by microbes activated by straw addition, leading to a positive cumulative PE ranging from 494 to 789 μg C g-1 soil. The magnitude of positive PE and straw decomposition in the manured soil was higher than that in the unfertilized and abandoned soils due to larger MBC and higher enzyme activities, resulting in a lower net SOC gain. Compared with straw only, the combination of straw addition with N fertilizer did not influence MBC, but increased positive PE (average increase of 18.1%) and straw decomposition (17.1%), further limiting SOC gain. 13C-labeled fungi: bacteria ratios and Gram-positive (G+): negative (G-) bacteria ratios increased with the increasing PE after N fertilization, but soil-derived (un-labeled) PLFAs remained stable. Random forest analysis further showed that straw C-assimilating microbial attributes are important predictors in driving the greater PE after N addition. Our study highlights the importance of straw C-assimilating fungi and G+ bacteria in mediating N-induced PE in arable soils.Straw incorporation into soil increases carbon (C) sequestration but can induce priming effects (PE), the enhanced breakdown of soil organic matter. The direction and magnitude of PE and the consequences for the C balance induced by straw addition depend on nitrogen (N) availability and soil management history. Using 13C-labeled maize straw, we conducted a 56-day incubation to determine the dynamics of PE and the underlying microbial mechanisms after straw and/or mineral N addition to three soils with contrasting cultivation and fertilization histories, i) unfertilized soil (Unfertilized), ii) 8 years farmyard manure amended soil (Manured), and iii) abandoned cropland soil (Abandoned). 13C-PLFAs (phospholipid fatty acids) were analyzed to identify microbial groups utilizing straw and to explore their contribution to the PE. Straw addition increased microbial biomass (MBC), activities of enzymes related to the C and N cycles, and changed microbial community composition. SOC decomposition was enhanced by microbes activated by straw addition, leading to a positive cumulative PE ranging from 494 to 789 μg C g-1 soil. The magnitude of positive PE and straw decomposition in the manured soil was higher than that in the unfertilized and abandoned soils due to larger MBC and higher enzyme activities, resulting in a lower net SOC gain. Compared with straw only, the combination of straw addition with N fertilizer did not influence MBC, but increased positive PE (average increase of 18.1%) and straw decomposition (17.1%), further limiting SOC gain. 13C-labeled fungi: bacteria ratios and Gram-positive (G+): negative (G-) bacteria ratios increased with the increasing PE after N fertilization, but soil-derived (un-labeled) PLFAs remained stable. Random forest analysis further showed that straw C-assimilating microbial attributes are important predictors in driving the greater PE after N addition. Our study highlights the importance of straw C-assimilating fungi and G+ bacteria in mediating N-induced PE in arable soils.
Straw incorporation into soil increases carbon (C) sequestration but can induce priming effects (PE), the enhanced breakdown of soil organic matter. The direction and magnitude of PE and the consequences for the C balance induced by straw addition depend on nitrogen (N) availability and soil management history. Using C-labeled maize straw, we conducted a 56-day incubation to determine the dynamics of PE and the underlying microbial mechanisms after straw and/or mineral N addition to three soils with contrasting cultivation and fertilization histories, i) unfertilized soil (Unfertilized), ii) 8 years farmyard manure amended soil (Manured), and iii) abandoned cropland soil (Abandoned). C-PLFAs (phospholipid fatty acids) were analyzed to identify microbial groups utilizing straw and to explore their contribution to the PE. Straw addition increased microbial biomass (MBC), activities of enzymes related to the C and N cycles, and changed microbial community composition. SOC decomposition was enhanced by microbes activated by straw addition, leading to a positive cumulative PE ranging from 494 to 789 μg C g soil. The magnitude of positive PE and straw decomposition in the manured soil was higher than that in the unfertilized and abandoned soils due to larger MBC and higher enzyme activities, resulting in a lower net SOC gain. Compared with straw only, the combination of straw addition with N fertilizer did not influence MBC, but increased positive PE (average increase of 18.1%) and straw decomposition (17.1%), further limiting SOC gain. C-labeled fungi: bacteria ratios and Gram-positive (G+): negative (G-) bacteria ratios increased with the increasing PE after N fertilization, but soil-derived (un-labeled) PLFAs remained stable. Random forest analysis further showed that straw C-assimilating microbial attributes are important predictors in driving the greater PE after N addition. Our study highlights the importance of straw C-assimilating fungi and G+ bacteria in mediating N-induced PE in arable soils.
ArticleNumber 152882
Author Chadwick, David R.
Bei, Shuikuan
Zhang, Junling
Kuyper, Thomas W.
Li, Xia
Author_xml – sequence: 1
  givenname: Shuikuan
  surname: Bei
  fullname: Bei, Shuikuan
  organization: College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China
– sequence: 2
  givenname: Xia
  surname: Li
  fullname: Li, Xia
  organization: College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China
– sequence: 3
  givenname: Thomas W.
  surname: Kuyper
  fullname: Kuyper, Thomas W.
  organization: Department of Soil Quality, Wageningen University and Research, PO Box 47, 6700 AA Wageningen, the Netherlands
– sequence: 4
  givenname: David R.
  surname: Chadwick
  fullname: Chadwick, David R.
  organization: Environment Centre Wales, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
– sequence: 5
  givenname: Junling
  surname: Zhang
  fullname: Zhang, Junling
  email: junlingz@cau.edu.cn
  organization: College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34998759$$D View this record in MEDLINE/PubMed
BookMark eNqNkc2OFCEUhYkZ4_zoKyhLN9UCRVHUwsVk4l8y0Y2uCVCXlg4FI9A96QfxfaXS4yzcOGwg8J1zwzmX6CymCAi9oWRDCRXvdptifU0V4mHDCKMbOjAp2TN0QeU4dZQwcYYuCOGym8Q0nqPLUnakrVHSF-i859Mkx2G6QL-_-prTFiLWB-2DNj74esQLzF5XKLj-BHyX_eLjFoNzYCtODpfkA055q6O3eNG1Qsbm2EBwkCFWr0M4Yh3a_SpcTUrN-h5bnU2KnS6lWQZd19fF25xMk2CblmUf2_yX6LnTocCrh_0K_fj44fvN5-7226cvN9e3neWE186K0TJuBZtnN1vNHXMznY0zRkgtiB7aeZh6MD0AyHkyzg4gRzCEDtYQ11-htyffu5x-7aFUtfhiIQQdIe2LYqIXY88EF09AqRzoyDlv6OsHdG9akGrNT-ej-pt6A8YT0D5eSgvtEaFErf2qnXrsV639qlO_Tfn-H2XDWowptnh9eIL--qSHlurBQ145iLbVnVu3ak7-vx5_AEyOzZU
CitedBy_id crossref_primary_10_1007_s42729_022_00858_0
crossref_primary_10_1016_j_eja_2025_127607
crossref_primary_10_3390_agriculture12122151
crossref_primary_10_1016_j_spc_2023_11_019
crossref_primary_10_3390_f13122090
crossref_primary_10_1016_j_eja_2023_126971
crossref_primary_10_1016_j_scitotenv_2022_155676
crossref_primary_10_1080_10643389_2023_2266312
crossref_primary_10_1016_j_scienta_2023_112100
crossref_primary_10_3390_polym15030660
crossref_primary_10_1016_j_ejsobi_2024_103648
crossref_primary_10_1007_s00374_023_01762_0
crossref_primary_10_1016_j_scitotenv_2025_178387
crossref_primary_10_1016_j_ecss_2024_108690
crossref_primary_10_1016_j_soilbio_2023_109265
crossref_primary_10_1016_j_soilbio_2025_109743
crossref_primary_10_1016_j_soilbio_2024_109444
crossref_primary_10_1111_gcb_17115
crossref_primary_10_3389_fmicb_2024_1304985
crossref_primary_10_1016_j_jenvman_2023_118537
crossref_primary_10_1002_ldr_5270
crossref_primary_10_3389_fmicb_2022_953552
crossref_primary_10_1016_j_catena_2024_108522
crossref_primary_10_1007_s00374_022_01682_5
crossref_primary_10_1016_j_geoderma_2023_116444
crossref_primary_10_3390_agriculture12071001
crossref_primary_10_1016_j_agee_2024_109008
crossref_primary_10_1016_j_apsoil_2025_105894
crossref_primary_10_1038_s41396_023_01523_9
crossref_primary_10_1007_s11356_024_34759_9
crossref_primary_10_1080_00103624_2023_2241500
crossref_primary_10_1016_j_scitotenv_2023_164347
crossref_primary_10_1111_plb_13689
crossref_primary_10_1002_ldr_5245
crossref_primary_10_3389_fenvs_2022_1009660
crossref_primary_10_3390_agriculture14111946
crossref_primary_10_1002_ldr_5262
crossref_primary_10_1016_j_jenvman_2024_123130
crossref_primary_10_1016_j_apsoil_2023_105060
Cites_doi 10.1016/j.soilbio.2011.04.004
10.3791/50961-v
10.1016/j.soilbio.2019.03.027
10.2136/sssaj2010.0424
10.1007/s10705-011-9469-6
10.1007/s00374-019-01416-0
10.1186/s40168-020-00978-8
10.1007/s10533-011-9637-4
10.1111/j.1365-2486.2009.01930.x
10.1139/y59-099
10.1016/j.soilbio.2016.07.011
10.1016/j.soilbio.2014.02.017
10.1016/j.envint.2004.09.005
10.1016/j.geoderma.2016.05.019
10.1016/j.geoderma.2019.113882
10.1016/j.geoderma.2018.07.008
10.3390/agronomy10010061
10.1111/gcb.14066
10.1016/j.soilbio.2004.09.014
10.1128/AEM.02151-19
10.1111/gcb.14069
10.1016/S0167-1987(97)00038-X
10.1111/geb.13281
10.1007/s11104-008-9705-2
10.1126/science.1097396
10.1111/j.1365-2486.2008.01743.x
10.1016/j.soilbio.2012.11.013
10.1016/j.soilbio.2019.05.001
10.1016/j.soilbio.2008.03.023
10.1007/s003740050533
10.1002/rcm.5148
10.1016/j.soilbio.2010.09.017
10.1016/j.soilbio.2010.04.005
10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2
10.1016/j.soilbio.2016.03.013
10.2136/sssaj1953.03615995001700010008x
10.1073/pnas.1700292114
10.1016/S0038-0717(03)00123-8
10.1111/gcb.12475
10.1111/2041-210X.12143
10.1016/j.soilbio.2019.06.003
10.1016/j.soilbio.2015.02.029
10.1016/j.soilbio.2020.107800
10.1111/j.1365-2486.2012.02639.x
10.1016/j.soilbio.2020.108118
10.1016/S0038-0717(00)00084-5
10.1016/j.geoderma.2011.11.005
10.1016/0038-0717(90)90188-6
10.1016/0038-0717(90)90046-3
10.1007/s00374-008-0334-y
10.1016/j.soilbio.2010.11.016
10.1016/j.soilbio.2005.06.025
10.1016/j.geoderma.2009.12.012
10.1016/0038-0717(87)90052-6
10.1016/j.soilbio.2012.05.006
10.1016/j.geoderma.2018.05.023
10.1111/j.1461-0248.2004.00579.x
10.1111/ejss.12818
10.1007/s10533-013-9849-x
10.1111/gcb.14154
10.1007/s00248-005-5156-y
10.1016/j.apsoil.2015.11.016
10.1016/j.tim.2013.09.005
10.1007/BF00384433
10.2136/sssaj1997.03615995006100020015x
10.1890/03-5120
10.1021/ac052027c
10.3389/fmicb.2013.00265
10.3390/app11052139
10.1890/02-0251
10.1016/j.catena.2015.02.016
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2021.152882
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 34998759
10_1016_j_scitotenv_2021_152882
S0048969721079614
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAQXK
AATTM
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c404t-c67c24c62ddfdca4f2fd1dbfbb68a60a5dbf593eb3eee8d9bfc5e87eb015cb0f3
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Wed Jul 02 03:22:01 EDT 2025
Tue Aug 05 11:22:46 EDT 2025
Wed Feb 19 02:27:01 EST 2025
Thu Apr 24 22:58:44 EDT 2025
Tue Jul 01 02:53:41 EDT 2025
Sat Nov 16 16:00:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mineral N
Extracellular enzyme activity
Fungi: bacteria ratios
Soil management legacy
Straw incorporation
Priming effect
Language English
License Copyright © 2022 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-c67c24c62ddfdca4f2fd1dbfbb68a60a5dbf593eb3eee8d9bfc5e87eb015cb0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 34998759
PQID 2618517444
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636732646
proquest_miscellaneous_2618517444
pubmed_primary_34998759
crossref_primary_10_1016_j_scitotenv_2021_152882
crossref_citationtrail_10_1016_j_scitotenv_2021_152882
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2021_152882
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
2022-04-00
2022-Apr-01
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Koster, Cardenas, Senbayram, Bol, Well, Butler (bb0150) 2011; 43
Poulton, Johnston, Macdonald, White, Powlson (bb0250) 2018; 24
Vance, Brookes, Jenkinson (bb0305) 1987; 19
Garcia-Ruiz, Ochoa, Belen Hinojosa, Antonio Carreira (bb0105) 2008; 40
Liaw, Wiener (bb0195) 2002
Nottingham, Turner, Chamberlain, Stott, Tanner (bb0240) 2012; 111
Qiu, Wu, Ouyang, Li, Xu, Wu (bb0255) 2016; 100
Zogg, Zak, Ringelberg, MacDonald, Pregitzer, White (bb0340) 1997; 61
Chen, Senbayram, Blagodatsky, Myachina, Dittert, Lin (bb0045) 2014; 20
Moorhead, Sinsabaugh (bb0235) 2006; 76
Blagodatsky, Blagodatskaya, Yuyukina, Kuzyakov (bb0030) 2010; 42
Fontaine, Henault, Aamor, Bdioui, Bloor, Maire (bb0095) 2011; 43
Bligh, Dyer (bb0035) 1959; 37
Fontaine, Bardoux, Abbadie, Mariotti (bb0090) 2004; 7
Gong, Yan, Wang, Hu, Gong (bb0110) 2009; 314
Inglett, Inglett, Reddy (bb0135) 2011; 75
You, Han, Chen, Yan, Li, Zou (bb0325) 2019; 70
Zhao, Wang, Hu, Zhang, Ouyang, Zhang (bb0335) 2018; 115
Ramirez, Craine, Fierer (bb0260) 2012; 18
Fan, Zhong, Lin, Lyu, Wang, Hu (bb0070) 2020; 56
Blagodatskaya, Khomyakov, Myachina, Bogomolova, Blagodatsky, Kuzyakov (bb0025) 2014; 74
Guenet, Camino-Serrano, Ciais, Tifafi, Maignan, Soong (bb0115) 2018; 24
Stursova, Crenshaw, Sinsabaugh (bb0275) 2006; 51
Wu, Joergensen, Pommerening, Chaussod, Brookes (bb0315) 1990; 22
Lal (bb0180) 2005; 31
Sun, Wang, Yang, Liao, Chen, Ruan (bb0280) 2021; 30
Fang, Nazaries, Singh, Singh (bb0075) 2018; 24
Kuzyakov, Friedel, Stahr (bb0160) 2000; 32
Liang, Chen, Gong, Fan, Yang, Lal (bb0190) 2011; 92
Liu, Qiao, Yang, Bai, Liu (bb0200) 2018; 332
Waldrop, Zak, Sinsabaugh, Gallo, Lauber (bb0310) 2004; 14
Waring, Weintraub, Sinsabaugh (bb2005) 2014; 117
Frostegård, Bååth (bb0100) 1996; 22
Lal (bb0175) 2004; 304
Tian, Pausch, Yu, Blagodatskaya, Kuzyakov (bb0295) 2016; 97
Kuzyakov, Gunina, Zamanian, Tian, Luo, Xu (bb0165) 2020; 7
Fan, Yu, Wang, George, Yin, Xu (bb0065) 2019; 135
Feng, Zhu (bb2020) 2021; 153
Wu, Zhang, Wei (bb2010) 2019; 135
Shahbaz, Kuzyakov, Heitkamp (bb0270) 2017; 304
Ma, Kan, Qi, Zhang (bb0225) 2020; 10
Byrnes, Gamfeldt, Isbell, Lefcheck, Griffin, Hector (bb0040) 2014; 5
Perveen, Barot, Maire, Cotrufo, Shahzad, Blagodatskaya (bb0245) 2019; 134
Blagodatskaya, Kuzyakov (bb0020) 2008; 45
Coplen, Brand, Gehre, Groning, Meijer, Toman (bb0050) 2006; 78
Luo, Wang, Sun (bb0215) 2016; 101
Martin, Mariotti, Balesdent, Lavelle, Vuattoux (bb0230) 1990; 22
Tavi, Martikainen, Lokko, Kontro, Wild, Richter (bb0285) 2013; 58
Kong, Kuzyakov, Ruan, Zhang, Wang, Wang (bb0145) 2020; 86
Lu, Wang, Han, Ouyang, Duan, Zheng (bb0205) 2009; 15
Li, Ni, Jiao, Lu, Zhou, Sun (bb0185) 2021; 9
Hessen, Agren, Anderson, Elser, De Ruiter (bb0125) 2004; 85
Yao, Thornton, Paterson (bb0320) 2012; 53
Bell, Fricks, Rocca, Steinweg, McMahon, Wallenstein (bb0010) 2013
Kurganova, Merino, Lopes de Gerenyu, Barros, Kalinina, Giani (bb0155) 2019; 354
Heitkamp, Wendland, Offenberger, Gerold (bb0120) 2012; 170
Kalinina, Goryachkin, Lyuri, Giani (bb0140) 2015; 129
Laganiere, Angers, Pare (bb0170) 2010; 16
Luo, Wang, Tian, Shi, Xu, Yang (bb0220) 2018; 329
De Vries, Shade (bb0060) 2013; 4
Allison, Vitousek (bb0005) 2005; 37
Bingeman, Varner, Martin (bb0015) 1953; 17
Thornton, Zhang, Mayes, Hogberg, Midwood (bb0290) 2011; 25
Luo, Wang, Sun (bb0210) 2010; 155
De Troyer, Amery, Van Moorleghem, Smolders, Merckx (bb0055) 2011; 43
Trivedi, Anderson, Singh (bb0300) 2013; 21
Reeves (bb0265) 1997; 43
Zou, Osborne (bb0345) 2021; 11
Heuck, Weig, Spohn (bb0130) 2015; 85
Fang, Singh, Farrell, Van Zwieten, Armstrong, Chen (bb0080) 2020; 145
Kuzyakov, Bol (bb2015) 2006; 38
Zelles (bb0330) 1999; 29
Fontaine, Mariotti, Abbadie (bb0085) 2003; 35
Kong (10.1016/j.scitotenv.2021.152882_bb0145) 2020; 86
Laganiere (10.1016/j.scitotenv.2021.152882_bb0170) 2010; 16
De Vries (10.1016/j.scitotenv.2021.152882_bb0060) 2013; 4
Poulton (10.1016/j.scitotenv.2021.152882_bb0250) 2018; 24
Shahbaz (10.1016/j.scitotenv.2021.152882_bb0270) 2017; 304
Moorhead (10.1016/j.scitotenv.2021.152882_bb0235) 2006; 76
Guenet (10.1016/j.scitotenv.2021.152882_bb0115) 2018; 24
Liang (10.1016/j.scitotenv.2021.152882_bb0190) 2011; 92
Blagodatsky (10.1016/j.scitotenv.2021.152882_bb0030) 2010; 42
Stursova (10.1016/j.scitotenv.2021.152882_bb0275) 2006; 51
Zelles (10.1016/j.scitotenv.2021.152882_bb0330) 1999; 29
Thornton (10.1016/j.scitotenv.2021.152882_bb0290) 2011; 25
You (10.1016/j.scitotenv.2021.152882_bb0325) 2019; 70
Heuck (10.1016/j.scitotenv.2021.152882_bb0130) 2015; 85
Frostegård (10.1016/j.scitotenv.2021.152882_bb0100) 1996; 22
Fan (10.1016/j.scitotenv.2021.152882_bb0065) 2019; 135
Liaw (10.1016/j.scitotenv.2021.152882_bb0195) 2002
Trivedi (10.1016/j.scitotenv.2021.152882_bb0300) 2013; 21
Kurganova (10.1016/j.scitotenv.2021.152882_bb0155) 2019; 354
Luo (10.1016/j.scitotenv.2021.152882_bb0210) 2010; 155
Luo (10.1016/j.scitotenv.2021.152882_bb0220) 2018; 329
Waring (10.1016/j.scitotenv.2021.152882_bb2005) 2014; 117
Blagodatskaya (10.1016/j.scitotenv.2021.152882_bb0025) 2014; 74
Coplen (10.1016/j.scitotenv.2021.152882_bb0050) 2006; 78
De Troyer (10.1016/j.scitotenv.2021.152882_bb0055) 2011; 43
Heitkamp (10.1016/j.scitotenv.2021.152882_bb0120) 2012; 170
Wu (10.1016/j.scitotenv.2021.152882_bb0315) 1990; 22
Liu (10.1016/j.scitotenv.2021.152882_bb0200) 2018; 332
Fang (10.1016/j.scitotenv.2021.152882_bb0080) 2020; 145
Fontaine (10.1016/j.scitotenv.2021.152882_bb0090) 2004; 7
Wu (10.1016/j.scitotenv.2021.152882_bb2010) 2019; 135
Inglett (10.1016/j.scitotenv.2021.152882_bb0135) 2011; 75
Qiu (10.1016/j.scitotenv.2021.152882_bb0255) 2016; 100
Feng (10.1016/j.scitotenv.2021.152882_bb2020) 2021; 153
Fang (10.1016/j.scitotenv.2021.152882_bb0075) 2018; 24
Koster (10.1016/j.scitotenv.2021.152882_bb0150) 2011; 43
Allison (10.1016/j.scitotenv.2021.152882_bb0005) 2005; 37
Zou (10.1016/j.scitotenv.2021.152882_bb0345) 2021; 11
Kalinina (10.1016/j.scitotenv.2021.152882_bb0140) 2015; 129
Fan (10.1016/j.scitotenv.2021.152882_bb0070) 2020; 56
Lu (10.1016/j.scitotenv.2021.152882_bb0205) 2009; 15
Gong (10.1016/j.scitotenv.2021.152882_bb0110) 2009; 314
Ramirez (10.1016/j.scitotenv.2021.152882_bb0260) 2012; 18
Yao (10.1016/j.scitotenv.2021.152882_bb0320) 2012; 53
Zhao (10.1016/j.scitotenv.2021.152882_bb0335) 2018; 115
Kuzyakov (10.1016/j.scitotenv.2021.152882_bb2015) 2006; 38
Bell (10.1016/j.scitotenv.2021.152882_bb0010) 2013
Perveen (10.1016/j.scitotenv.2021.152882_bb0245) 2019; 134
Zogg (10.1016/j.scitotenv.2021.152882_bb0340) 1997; 61
Kuzyakov (10.1016/j.scitotenv.2021.152882_bb0160) 2000; 32
Li (10.1016/j.scitotenv.2021.152882_bb0185) 2021; 9
Fontaine (10.1016/j.scitotenv.2021.152882_bb0095) 2011; 43
Kuzyakov (10.1016/j.scitotenv.2021.152882_bb0165) 2020; 7
Byrnes (10.1016/j.scitotenv.2021.152882_bb0040) 2014; 5
Ma (10.1016/j.scitotenv.2021.152882_bb0225) 2020; 10
Chen (10.1016/j.scitotenv.2021.152882_bb0045) 2014; 20
Hessen (10.1016/j.scitotenv.2021.152882_bb0125) 2004; 85
Nottingham (10.1016/j.scitotenv.2021.152882_bb0240) 2012; 111
Blagodatskaya (10.1016/j.scitotenv.2021.152882_bb0020) 2008; 45
Garcia-Ruiz (10.1016/j.scitotenv.2021.152882_bb0105) 2008; 40
Waldrop (10.1016/j.scitotenv.2021.152882_bb0310) 2004; 14
Bingeman (10.1016/j.scitotenv.2021.152882_bb0015) 1953; 17
Lal (10.1016/j.scitotenv.2021.152882_bb0175) 2004; 304
Luo (10.1016/j.scitotenv.2021.152882_bb0215) 2016; 101
Sun (10.1016/j.scitotenv.2021.152882_bb0280) 2021; 30
Bligh (10.1016/j.scitotenv.2021.152882_bb0035) 1959; 37
Reeves (10.1016/j.scitotenv.2021.152882_bb0265) 1997; 43
Tavi (10.1016/j.scitotenv.2021.152882_bb0285) 2013; 58
Martin (10.1016/j.scitotenv.2021.152882_bb0230) 1990; 22
Lal (10.1016/j.scitotenv.2021.152882_bb0180) 2005; 31
Fontaine (10.1016/j.scitotenv.2021.152882_bb0085) 2003; 35
Tian (10.1016/j.scitotenv.2021.152882_bb0295) 2016; 97
Vance (10.1016/j.scitotenv.2021.152882_bb0305) 1987; 19
References_xml – volume: 43
  start-page: 513
  year: 2011
  end-page: 519
  ident: bb0055
  article-title: Tracing the source and fate of dissolved organic matter in soil after incorporation of a 13C labelled residue: a batch incubation study
  publication-title: Soil Biol. Biochem.
– volume: 5
  start-page: 111
  year: 2014
  end-page: 124
  ident: bb0040
  article-title: Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions
  publication-title: Methods Ecol. Evol.
– volume: 117
  start-page: 101
  year: 2014
  end-page: 113
  ident: bb2005
  article-title: Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils
  publication-title: Biogeochemistry
– volume: 329
  start-page: 108
  year: 2018
  end-page: 117
  ident: bb0220
  article-title: Aggregate-related changes in soil microbial communities under different ameliorant applications in saline-sodic soils
  publication-title: Geoderma
– volume: 43
  start-page: 131
  year: 1997
  end-page: 167
  ident: bb0265
  article-title: The role of soil organic matter in maintaining soil quality in continuous cropping systems
  publication-title: Soil Tillage Res.
– volume: 58
  start-page: 207
  year: 2013
  end-page: 215
  ident: bb0285
  article-title: Linking microbial community structure and allocation of plant-derived carbon in an organic agricultural soil using (CO2)-C-13 pulse-chase labelling combined with C-13-PLFA profiling
  publication-title: Soil Biol. Biochem.
– volume: 332
  start-page: 37
  year: 2018
  end-page: 44
  ident: bb0200
  article-title: Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition
  publication-title: Geoderma
– volume: 22
  start-page: 1167
  year: 1990
  end-page: 1169
  ident: bb0315
  article-title: Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure
  publication-title: Soil Biol. Biochem.
– volume: 43
  start-page: 86
  year: 2011
  end-page: 96
  ident: bb0095
  article-title: Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect
  publication-title: Soil Biol. Biochem.
– volume: 24
  start-page: 1873
  year: 2018
  end-page: 1883
  ident: bb0115
  article-title: Impact of priming on global soil carbon stocks
  publication-title: Glob. Chang. Biol.
– volume: 304
  start-page: 1623
  year: 2004
  end-page: 1627
  ident: bb0175
  article-title: Soil carbon sequestration impacts on global climate change and food security
  publication-title: Science
– volume: 135
  start-page: 213
  year: 2019
  end-page: 221
  ident: bb0065
  article-title: Microbial mechanisms of the contrast residue decomposition and priming effect in soils with different organic and chemical fertilization histories
  publication-title: Soil Biol. Biochem.
– volume: 170
  start-page: 168
  year: 2012
  end-page: 175
  ident: bb0120
  article-title: Implications of input estimation, residue quality and carbon saturation on the predictive power of the rothamsted carbon model
  publication-title: Geoderma
– volume: 38
  start-page: 747
  year: 2006
  end-page: 758
  ident: bb2015
  article-title: Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar
  publication-title: Soil Biol. Biochem.
– volume: 304
  start-page: 76
  year: 2017
  end-page: 82
  ident: bb0270
  article-title: Decrease of soil organic matter stabilization with increasing inputs: mechanisms and controls
  publication-title: Geoderma
– volume: 74
  start-page: 39
  year: 2014
  end-page: 49
  ident: bb0025
  article-title: Microbial interactions affect sources of priming induced by cellulose
  publication-title: Soil Biol. Biochem.
– volume: 111
  start-page: 219
  year: 2012
  end-page: 237
  ident: bb0240
  article-title: Priming and microbial nutrient limitation in lowland tropical forest soils of contrasting fertility
  publication-title: Biogeochemistry
– volume: 53
  start-page: 72
  year: 2012
  end-page: 77
  ident: bb0320
  article-title: Incorporation of C-13-labelled rice rhizodeposition carbon into soil microbial communities under different water status
  publication-title: Soil Biol. Biochem.
– volume: 37
  start-page: 911
  year: 1959
  end-page: 917
  ident: bb0035
  article-title: A rapid method of total lipid extraction and purification
  publication-title: Can. J. Biochem. Physiol.
– volume: 40
  start-page: 2137
  year: 2008
  end-page: 2145
  ident: bb0105
  article-title: Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems
  publication-title: Soil Biol. Biochem.
– volume: 115
  start-page: 4045
  year: 2018
  end-page: 4050
  ident: bb0335
  article-title: Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in chinese croplands
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 135
  start-page: 383
  year: 2019
  end-page: 391
  ident: bb2010
  article-title: Soil organic matter priming and carbon balance after straw addition is regulated by long-term fertilization
  publication-title: Soil Biol. Biochem.
– volume: 29
  start-page: 111
  year: 1999
  end-page: 129
  ident: bb0330
  article-title: Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review
  publication-title: Biol. Fertil. Soils
– volume: 20
  start-page: 2356
  year: 2014
  end-page: 2367
  ident: bb0045
  article-title: Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories
  publication-title: Glob. Chang. Biol.
– volume: 43
  start-page: 1671
  year: 2011
  end-page: 1677
  ident: bb0150
  article-title: Rapid shift from denitrification to nitrification in soil after biogas residue application as indicated by nitrous oxide isotopomers
  publication-title: Soil Biol. Biochem.
– volume: 76
  start-page: 151
  year: 2006
  end-page: 174
  ident: bb0235
  article-title: A theoretical model of litter decay and microbial interaction
  publication-title: Ecol. Monogr.
– volume: 16
  start-page: 439
  year: 2010
  end-page: 453
  ident: bb0170
  article-title: Carbon accumulation in agricultural soils after afforestation: a meta-analysis
  publication-title: Glob. Chang. Biol.
– volume: 7
  start-page: 56
  year: 2020
  end-page: 62
  ident: bb0165
  article-title: New approaches for evaluation of soil health, sensitivity and resistance to degradation
  publication-title: Front. Agric. Sci. Eng.
– volume: 78
  start-page: 2439
  year: 2006
  end-page: 2441
  ident: bb0050
  article-title: New guidelines for delta C-13 measurements
  publication-title: Anal. Chem.
– volume: 17
  start-page: 34
  year: 1953
  end-page: 38
  ident: bb0015
  article-title: The effect of the addition of organic materials on the decomposition of an organic soil
  publication-title: Soil Sci. Soc. Am. J.
– volume: 11
  start-page: 2139
  year: 2021
  ident: bb0345
  article-title: Spatially related sampling uncertainty in the assessment of labile soil carbon and nitrogen in an irish forest plantation
  publication-title: Appl. Sci.
– volume: 9
  start-page: 20
  year: 2021
  ident: bb0185
  article-title: Coexistence patterns of soil methanogens are closely tied to methane generation and community assembly in rice paddies
  publication-title: Microbiome
– volume: 25
  start-page: 2433
  year: 2011
  end-page: 2438
  ident: bb0290
  article-title: Can gas chromatography combustion isotope ratio mass spectrometry be used to quantify organic compound abundance?
  publication-title: Rapid Commun. Mass Spectrom.
– volume: 155
  start-page: 211
  year: 2010
  end-page: 223
  ident: bb0210
  article-title: Soil carbon change and its responses to agricultural practices in australian agro-ecosystems: a review and synthesis
  publication-title: Geoderma
– volume: 35
  start-page: 837
  year: 2003
  end-page: 843
  ident: bb0085
  article-title: The priming effect of organic matter: a question of microbial competition?
  publication-title: Soil Biol. Biochem.
– volume: 14
  start-page: 1172
  year: 2004
  end-page: 1177
  ident: bb0310
  article-title: Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity
  publication-title: Ecol. Appl.
– volume: 15
  start-page: 281
  year: 2009
  end-page: 305
  ident: bb0205
  article-title: Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland
  publication-title: Glob. Chang. Biol.
– volume: 145
  year: 2020
  ident: bb0080
  article-title: Balanced nutrient stoichiometry of organic amendments enhances carbon priming in a poorly structured sodic subsoil
  publication-title: Soil Biol. Biochem.
– volume: 314
  start-page: 67
  year: 2009
  end-page: 76
  ident: bb0110
  article-title: Long-term manuring and fertilization effects on soil organic carbon pools under a wheat-maize cropping system in North China plain
  publication-title: Plant Soil
– volume: 100
  start-page: 65
  year: 2016
  end-page: 74
  ident: bb0255
  article-title: Priming effect of maize residue and urea N on soil organic matter changes with time
  publication-title: Appl. Soil Ecol.
– volume: 18
  start-page: 1918
  year: 2012
  end-page: 1927
  ident: bb0260
  article-title: Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes
  publication-title: Glob. Chang. Biol.
– volume: 51
  start-page: 90
  year: 2006
  end-page: 98
  ident: bb0275
  article-title: Microbial responses to long-term N deposition in a semiarid grassland
  publication-title: Microb. Ecol.
– volume: 21
  start-page: 641
  year: 2013
  end-page: 651
  ident: bb0300
  article-title: Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction
  publication-title: Trends Microbiol.
– volume: 354
  year: 2019
  ident: bb0155
  article-title: Mechanisms of carbon sequestration and stabilization by restoration of arable soils after abandonment: a chronosequence study on phaeozems and chernozems
  publication-title: Geoderma
– volume: 86
  year: 2020
  ident: bb0145
  article-title: DNA stable-isotope probing delineates carbon flows from rice residues into soil microbial communities depending on fertilization
  publication-title: Appl. Environ. Microbiol.
– volume: 101
  start-page: 96
  year: 2016
  end-page: 103
  ident: bb0215
  article-title: A meta-analysis of the temporal dynamics of priming soil carbon decomposition by fresh carbon inputs across ecosystems
  publication-title: Soil Biol. Biochem.
– volume: 97
  start-page: 199
  year: 2016
  end-page: 210
  ident: bb0295
  article-title: Aggregate size and glucose level affect priming sources: a three-source-partitioning study
  publication-title: Soil Biol. Biochem.
– volume: 4
  year: 2013
  ident: bb0060
  article-title: Controls on soil microbial community stability under climate change
  publication-title: Front. Microbiol.
– volume: 24
  start-page: 2563
  year: 2018
  end-page: 2584
  ident: bb0250
  article-title: Major limitations to achieving "4 per 1000" increases in soil organic carbon stock in temperate regions: Evidence from long-term experiments at Rothamsted Research, United Kingdom
  publication-title: Glob. Chang. Biol.
– volume: 32
  start-page: 1485
  year: 2000
  end-page: 1498
  ident: bb0160
  article-title: Review of mechanisms and quantification of priming effects
  publication-title: Soil Biol. Biochem.
– volume: 85
  start-page: 1179
  year: 2004
  end-page: 1192
  ident: bb0125
  article-title: Carbon, sequestration in ecosystems: the role of stoichiometry
  publication-title: Ecology
– volume: 56
  start-page: 205
  year: 2020
  end-page: 216
  ident: bb0070
  article-title: Effects of nitrogen addition on DOM-induced soil priming effects in a subtropical plantation forest and a natural forest
  publication-title: Biol. Fertil. Soils
– volume: 70
  start-page: 765
  year: 2019
  end-page: 775
  ident: bb0325
  article-title: Effect of reduction of aggregate size on the priming effect in a mollisol under different soil managements
  publication-title: Eur. J. Soil Sci.
– volume: 7
  start-page: 314
  year: 2004
  end-page: 320
  ident: bb0090
  article-title: Carbon input to soil may decrease soil carbon content
  publication-title: Ecol. Lett.
– volume: 22
  start-page: 59
  year: 1996
  end-page: 65
  ident: bb0100
  article-title: The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil
  publication-title: Biol. Fertil. Soils
– volume: 10
  start-page: 61
  year: 2020
  ident: bb0225
  article-title: Effects of straw return mode on soil aggregates and associated carbon in the North China plain
  publication-title: Agronomy
– volume: 45
  start-page: 115
  year: 2008
  end-page: 131
  ident: bb0020
  article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review
  publication-title: Biol. Fertil. Soils
– volume: 75
  start-page: 1731
  year: 2011
  end-page: 1740
  ident: bb0135
  article-title: Soil microbial community composition in a restored calcareous subtropical wetland
  publication-title: Soil Sci. Soc. Am. J.
– volume: 22
  start-page: 517
  year: 1990
  end-page: 523
  ident: bb0230
  article-title: Estimate of organic matter turnover rate in a savanna soil by 13C natural abundance measurements
  publication-title: Soil Biol. Biochem.
– year: 2013
  ident: bb0010
  article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities
  publication-title: J. Vis. Exp.
– volume: 153
  year: 2021
  ident: bb2020
  article-title: Global patterns and associated drivers of priming effect in response to nutrient addition
  publication-title: Soil Biol. Biochem.
– volume: 85
  start-page: 119
  year: 2015
  end-page: 129
  ident: bb0130
  article-title: Soil microbial biomass C:N: P stoichiometry and microbial use of organic phosphorus
  publication-title: Soil Biol. Biochem.
– volume: 31
  start-page: 575
  year: 2005
  end-page: 584
  ident: bb0180
  article-title: World crop residues production and implications of its use as a biofuel
  publication-title: Environ. Int.
– volume: 134
  start-page: 162
  year: 2019
  end-page: 171
  ident: bb0245
  article-title: Universality of priming effect: an analysis using thirty five soils with contrasted properties sampled from five continents
  publication-title: Soil Biol. Biochem.
– volume: 30
  start-page: 961
  year: 2021
  end-page: 972
  ident: bb0280
  article-title: Elevated CO2 shifts soil microbial communities from K-to r- strategists
  publication-title: Glob. Ecol. Biogeogr.
– volume: 37
  start-page: 937
  year: 2005
  end-page: 944
  ident: bb0005
  article-title: Responses of extracellular enzymes to simple and complex nutrient inputs
  publication-title: Soil Biol. Biochem.
– start-page: 23
  year: 2002
  ident: bb0195
  publication-title: Classification and Regression by randomForest. R News
– volume: 92
  start-page: 21
  year: 2011
  end-page: 33
  ident: bb0190
  article-title: Effects of 15 years of manure and inorganic fertilizers on soil organic carbon fractions in a wheat-maize system in the North China plain
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 24
  start-page: 2775
  year: 2018
  end-page: 2790
  ident: bb0075
  article-title: Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils
  publication-title: Glob. Chang. Biol.
– volume: 129
  start-page: 18
  year: 2015
  end-page: 29
  ident: bb0140
  article-title: Post-agrogenic development of vegetation, soils, and carbon stocks under self-restoration in different climatic zones of european Russia
  publication-title: Catena
– volume: 19
  start-page: 703
  year: 1987
  end-page: 707
  ident: bb0305
  article-title: An extraction method for measuring soil microbial biomass C
  publication-title: Soil Biol. Biochem.
– volume: 42
  start-page: 1275
  year: 2010
  end-page: 1283
  ident: bb0030
  article-title: Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition
  publication-title: Soil Biol. Biochem.
– volume: 61
  start-page: 475
  year: 1997
  end-page: 481
  ident: bb0340
  article-title: Compositional and functional shifts in microbial communities due to soil warming
  publication-title: Soil Sci. Soc. Am. J.
– volume: 43
  start-page: 1671
  year: 2011
  ident: 10.1016/j.scitotenv.2021.152882_bb0150
  article-title: Rapid shift from denitrification to nitrification in soil after biogas residue application as indicated by nitrous oxide isotopomers
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.04.004
– year: 2013
  ident: 10.1016/j.scitotenv.2021.152882_bb0010
  article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities
  publication-title: J. Vis. Exp.
  doi: 10.3791/50961-v
– volume: 134
  start-page: 162
  year: 2019
  ident: 10.1016/j.scitotenv.2021.152882_bb0245
  article-title: Universality of priming effect: an analysis using thirty five soils with contrasted properties sampled from five continents
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.03.027
– volume: 75
  start-page: 1731
  year: 2011
  ident: 10.1016/j.scitotenv.2021.152882_bb0135
  article-title: Soil microbial community composition in a restored calcareous subtropical wetland
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2010.0424
– volume: 92
  start-page: 21
  year: 2011
  ident: 10.1016/j.scitotenv.2021.152882_bb0190
  article-title: Effects of 15 years of manure and inorganic fertilizers on soil organic carbon fractions in a wheat-maize system in the North China plain
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-011-9469-6
– volume: 56
  start-page: 205
  year: 2020
  ident: 10.1016/j.scitotenv.2021.152882_bb0070
  article-title: Effects of nitrogen addition on DOM-induced soil priming effects in a subtropical plantation forest and a natural forest
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-019-01416-0
– volume: 9
  start-page: 20
  year: 2021
  ident: 10.1016/j.scitotenv.2021.152882_bb0185
  article-title: Coexistence patterns of soil methanogens are closely tied to methane generation and community assembly in rice paddies
  publication-title: Microbiome
  doi: 10.1186/s40168-020-00978-8
– volume: 111
  start-page: 219
  year: 2012
  ident: 10.1016/j.scitotenv.2021.152882_bb0240
  article-title: Priming and microbial nutrient limitation in lowland tropical forest soils of contrasting fertility
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-011-9637-4
– volume: 16
  start-page: 439
  year: 2010
  ident: 10.1016/j.scitotenv.2021.152882_bb0170
  article-title: Carbon accumulation in agricultural soils after afforestation: a meta-analysis
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2009.01930.x
– volume: 37
  start-page: 911
  year: 1959
  ident: 10.1016/j.scitotenv.2021.152882_bb0035
  article-title: A rapid method of total lipid extraction and purification
  publication-title: Can. J. Biochem. Physiol.
  doi: 10.1139/y59-099
– volume: 101
  start-page: 96
  year: 2016
  ident: 10.1016/j.scitotenv.2021.152882_bb0215
  article-title: A meta-analysis of the temporal dynamics of priming soil carbon decomposition by fresh carbon inputs across ecosystems
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.07.011
– volume: 74
  start-page: 39
  year: 2014
  ident: 10.1016/j.scitotenv.2021.152882_bb0025
  article-title: Microbial interactions affect sources of priming induced by cellulose
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.02.017
– volume: 31
  start-page: 575
  year: 2005
  ident: 10.1016/j.scitotenv.2021.152882_bb0180
  article-title: World crop residues production and implications of its use as a biofuel
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2004.09.005
– volume: 304
  start-page: 76
  year: 2017
  ident: 10.1016/j.scitotenv.2021.152882_bb0270
  article-title: Decrease of soil organic matter stabilization with increasing inputs: mechanisms and controls
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.05.019
– volume: 354
  year: 2019
  ident: 10.1016/j.scitotenv.2021.152882_bb0155
  article-title: Mechanisms of carbon sequestration and stabilization by restoration of arable soils after abandonment: a chronosequence study on phaeozems and chernozems
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.113882
– volume: 332
  start-page: 37
  year: 2018
  ident: 10.1016/j.scitotenv.2021.152882_bb0200
  article-title: Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.07.008
– volume: 10
  start-page: 61
  year: 2020
  ident: 10.1016/j.scitotenv.2021.152882_bb0225
  article-title: Effects of straw return mode on soil aggregates and associated carbon in the North China plain
  publication-title: Agronomy
  doi: 10.3390/agronomy10010061
– volume: 24
  start-page: 2563
  year: 2018
  ident: 10.1016/j.scitotenv.2021.152882_bb0250
  article-title: Major limitations to achieving "4 per 1000" increases in soil organic carbon stock in temperate regions: Evidence from long-term experiments at Rothamsted Research, United Kingdom
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14066
– volume: 37
  start-page: 937
  year: 2005
  ident: 10.1016/j.scitotenv.2021.152882_bb0005
  article-title: Responses of extracellular enzymes to simple and complex nutrient inputs
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2004.09.014
– volume: 86
  year: 2020
  ident: 10.1016/j.scitotenv.2021.152882_bb0145
  article-title: DNA stable-isotope probing delineates carbon flows from rice residues into soil microbial communities depending on fertilization
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02151-19
– volume: 24
  start-page: 1873
  year: 2018
  ident: 10.1016/j.scitotenv.2021.152882_bb0115
  article-title: Impact of priming on global soil carbon stocks
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14069
– volume: 43
  start-page: 131
  year: 1997
  ident: 10.1016/j.scitotenv.2021.152882_bb0265
  article-title: The role of soil organic matter in maintaining soil quality in continuous cropping systems
  publication-title: Soil Tillage Res.
  doi: 10.1016/S0167-1987(97)00038-X
– volume: 30
  start-page: 961
  year: 2021
  ident: 10.1016/j.scitotenv.2021.152882_bb0280
  article-title: Elevated CO2 shifts soil microbial communities from K-to r- strategists
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.13281
– volume: 314
  start-page: 67
  year: 2009
  ident: 10.1016/j.scitotenv.2021.152882_bb0110
  article-title: Long-term manuring and fertilization effects on soil organic carbon pools under a wheat-maize cropping system in North China plain
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9705-2
– volume: 7
  start-page: 56
  year: 2020
  ident: 10.1016/j.scitotenv.2021.152882_bb0165
  article-title: New approaches for evaluation of soil health, sensitivity and resistance to degradation
  publication-title: Front. Agric. Sci. Eng.
– volume: 304
  start-page: 1623
  year: 2004
  ident: 10.1016/j.scitotenv.2021.152882_bb0175
  article-title: Soil carbon sequestration impacts on global climate change and food security
  publication-title: Science
  doi: 10.1126/science.1097396
– volume: 15
  start-page: 281
  year: 2009
  ident: 10.1016/j.scitotenv.2021.152882_bb0205
  article-title: Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2008.01743.x
– volume: 58
  start-page: 207
  year: 2013
  ident: 10.1016/j.scitotenv.2021.152882_bb0285
  article-title: Linking microbial community structure and allocation of plant-derived carbon in an organic agricultural soil using (CO2)-C-13 pulse-chase labelling combined with C-13-PLFA profiling
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.11.013
– volume: 135
  start-page: 213
  year: 2019
  ident: 10.1016/j.scitotenv.2021.152882_bb0065
  article-title: Microbial mechanisms of the contrast residue decomposition and priming effect in soils with different organic and chemical fertilization histories
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.05.001
– volume: 40
  start-page: 2137
  year: 2008
  ident: 10.1016/j.scitotenv.2021.152882_bb0105
  article-title: Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.03.023
– volume: 29
  start-page: 111
  year: 1999
  ident: 10.1016/j.scitotenv.2021.152882_bb0330
  article-title: Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s003740050533
– volume: 25
  start-page: 2433
  year: 2011
  ident: 10.1016/j.scitotenv.2021.152882_bb0290
  article-title: Can gas chromatography combustion isotope ratio mass spectrometry be used to quantify organic compound abundance?
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.5148
– volume: 43
  start-page: 86
  year: 2011
  ident: 10.1016/j.scitotenv.2021.152882_bb0095
  article-title: Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.09.017
– volume: 42
  start-page: 1275
  year: 2010
  ident: 10.1016/j.scitotenv.2021.152882_bb0030
  article-title: Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.04.005
– volume: 76
  start-page: 151
  year: 2006
  ident: 10.1016/j.scitotenv.2021.152882_bb0235
  article-title: A theoretical model of litter decay and microbial interaction
  publication-title: Ecol. Monogr.
  doi: 10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2
– start-page: 23
  year: 2002
  ident: 10.1016/j.scitotenv.2021.152882_bb0195
– volume: 97
  start-page: 199
  year: 2016
  ident: 10.1016/j.scitotenv.2021.152882_bb0295
  article-title: Aggregate size and glucose level affect priming sources: a three-source-partitioning study
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.03.013
– volume: 17
  start-page: 34
  year: 1953
  ident: 10.1016/j.scitotenv.2021.152882_bb0015
  article-title: The effect of the addition of organic materials on the decomposition of an organic soil
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1953.03615995001700010008x
– volume: 115
  start-page: 4045
  year: 2018
  ident: 10.1016/j.scitotenv.2021.152882_bb0335
  article-title: Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in chinese croplands
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1700292114
– volume: 35
  start-page: 837
  year: 2003
  ident: 10.1016/j.scitotenv.2021.152882_bb0085
  article-title: The priming effect of organic matter: a question of microbial competition?
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(03)00123-8
– volume: 20
  start-page: 2356
  year: 2014
  ident: 10.1016/j.scitotenv.2021.152882_bb0045
  article-title: Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12475
– volume: 5
  start-page: 111
  year: 2014
  ident: 10.1016/j.scitotenv.2021.152882_bb0040
  article-title: Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12143
– volume: 135
  start-page: 383
  year: 2019
  ident: 10.1016/j.scitotenv.2021.152882_bb2010
  article-title: Soil organic matter priming and carbon balance after straw addition is regulated by long-term fertilization
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.06.003
– volume: 85
  start-page: 119
  year: 2015
  ident: 10.1016/j.scitotenv.2021.152882_bb0130
  article-title: Soil microbial biomass C:N: P stoichiometry and microbial use of organic phosphorus
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.02.029
– volume: 145
  year: 2020
  ident: 10.1016/j.scitotenv.2021.152882_bb0080
  article-title: Balanced nutrient stoichiometry of organic amendments enhances carbon priming in a poorly structured sodic subsoil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.107800
– volume: 18
  start-page: 1918
  year: 2012
  ident: 10.1016/j.scitotenv.2021.152882_bb0260
  article-title: Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2012.02639.x
– volume: 153
  year: 2021
  ident: 10.1016/j.scitotenv.2021.152882_bb2020
  article-title: Global patterns and associated drivers of priming effect in response to nutrient addition
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.108118
– volume: 32
  start-page: 1485
  year: 2000
  ident: 10.1016/j.scitotenv.2021.152882_bb0160
  article-title: Review of mechanisms and quantification of priming effects
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00084-5
– volume: 170
  start-page: 168
  year: 2012
  ident: 10.1016/j.scitotenv.2021.152882_bb0120
  article-title: Implications of input estimation, residue quality and carbon saturation on the predictive power of the rothamsted carbon model
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.11.005
– volume: 22
  start-page: 517
  year: 1990
  ident: 10.1016/j.scitotenv.2021.152882_bb0230
  article-title: Estimate of organic matter turnover rate in a savanna soil by 13C natural abundance measurements
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(90)90188-6
– volume: 22
  start-page: 1167
  year: 1990
  ident: 10.1016/j.scitotenv.2021.152882_bb0315
  article-title: Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(90)90046-3
– volume: 45
  start-page: 115
  year: 2008
  ident: 10.1016/j.scitotenv.2021.152882_bb0020
  article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-008-0334-y
– volume: 43
  start-page: 513
  year: 2011
  ident: 10.1016/j.scitotenv.2021.152882_bb0055
  article-title: Tracing the source and fate of dissolved organic matter in soil after incorporation of a 13C labelled residue: a batch incubation study
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.11.016
– volume: 38
  start-page: 747
  year: 2006
  ident: 10.1016/j.scitotenv.2021.152882_bb2015
  article-title: Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2005.06.025
– volume: 155
  start-page: 211
  year: 2010
  ident: 10.1016/j.scitotenv.2021.152882_bb0210
  article-title: Soil carbon change and its responses to agricultural practices in australian agro-ecosystems: a review and synthesis
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.12.012
– volume: 19
  start-page: 703
  year: 1987
  ident: 10.1016/j.scitotenv.2021.152882_bb0305
  article-title: An extraction method for measuring soil microbial biomass C
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(87)90052-6
– volume: 53
  start-page: 72
  year: 2012
  ident: 10.1016/j.scitotenv.2021.152882_bb0320
  article-title: Incorporation of C-13-labelled rice rhizodeposition carbon into soil microbial communities under different water status
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.05.006
– volume: 329
  start-page: 108
  year: 2018
  ident: 10.1016/j.scitotenv.2021.152882_bb0220
  article-title: Aggregate-related changes in soil microbial communities under different ameliorant applications in saline-sodic soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.05.023
– volume: 7
  start-page: 314
  year: 2004
  ident: 10.1016/j.scitotenv.2021.152882_bb0090
  article-title: Carbon input to soil may decrease soil carbon content
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2004.00579.x
– volume: 70
  start-page: 765
  year: 2019
  ident: 10.1016/j.scitotenv.2021.152882_bb0325
  article-title: Effect of reduction of aggregate size on the priming effect in a mollisol under different soil managements
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12818
– volume: 117
  start-page: 101
  issue: 1
  year: 2014
  ident: 10.1016/j.scitotenv.2021.152882_bb2005
  article-title: Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-013-9849-x
– volume: 24
  start-page: 2775
  year: 2018
  ident: 10.1016/j.scitotenv.2021.152882_bb0075
  article-title: Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14154
– volume: 51
  start-page: 90
  year: 2006
  ident: 10.1016/j.scitotenv.2021.152882_bb0275
  article-title: Microbial responses to long-term N deposition in a semiarid grassland
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-005-5156-y
– volume: 100
  start-page: 65
  year: 2016
  ident: 10.1016/j.scitotenv.2021.152882_bb0255
  article-title: Priming effect of maize residue and urea N on soil organic matter changes with time
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2015.11.016
– volume: 21
  start-page: 641
  year: 2013
  ident: 10.1016/j.scitotenv.2021.152882_bb0300
  article-title: Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2013.09.005
– volume: 22
  start-page: 59
  year: 1996
  ident: 10.1016/j.scitotenv.2021.152882_bb0100
  article-title: The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/BF00384433
– volume: 61
  start-page: 475
  year: 1997
  ident: 10.1016/j.scitotenv.2021.152882_bb0340
  article-title: Compositional and functional shifts in microbial communities due to soil warming
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1997.03615995006100020015x
– volume: 14
  start-page: 1172
  year: 2004
  ident: 10.1016/j.scitotenv.2021.152882_bb0310
  article-title: Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity
  publication-title: Ecol. Appl.
  doi: 10.1890/03-5120
– volume: 78
  start-page: 2439
  year: 2006
  ident: 10.1016/j.scitotenv.2021.152882_bb0050
  article-title: New guidelines for delta C-13 measurements
  publication-title: Anal. Chem.
  doi: 10.1021/ac052027c
– volume: 4
  year: 2013
  ident: 10.1016/j.scitotenv.2021.152882_bb0060
  article-title: Controls on soil microbial community stability under climate change
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2013.00265
– volume: 11
  start-page: 2139
  year: 2021
  ident: 10.1016/j.scitotenv.2021.152882_bb0345
  article-title: Spatially related sampling uncertainty in the assessment of labile soil carbon and nitrogen in an irish forest plantation
  publication-title: Appl. Sci.
  doi: 10.3390/app11052139
– volume: 85
  start-page: 1179
  year: 2004
  ident: 10.1016/j.scitotenv.2021.152882_bb0125
  article-title: Carbon, sequestration in ecosystems: the role of stoichiometry
  publication-title: Ecology
  doi: 10.1890/02-0251
– volume: 129
  start-page: 18
  year: 2015
  ident: 10.1016/j.scitotenv.2021.152882_bb0140
  article-title: Post-agrogenic development of vegetation, soils, and carbon stocks under self-restoration in different climatic zones of european Russia
  publication-title: Catena
  doi: 10.1016/j.catena.2015.02.016
SSID ssj0000781
Score 2.5573962
Snippet Straw incorporation into soil increases carbon (C) sequestration but can induce priming effects (PE), the enhanced breakdown of soil organic matter. The...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 152882
SubjectTerms animal manures
Carbon
community structure
corn straw
cropland
environment
enzymes
Extracellular enzyme activity
Fungi: bacteria ratios
microbial biomass
microbial communities
Microbiota
Mineral N
nitrogen
Nitrogen - analysis
nitrogen fertilizers
phospholipid fatty acids
Priming effect
Soil
Soil management legacy
Soil Microbiology
soil organic matter
Straw incorporation
Title Nitrogen availability mediates the priming effect of soil organic matter by preferentially altering the straw carbon-assimilating microbial community
URI https://dx.doi.org/10.1016/j.scitotenv.2021.152882
https://www.ncbi.nlm.nih.gov/pubmed/34998759
https://www.proquest.com/docview/2618517444
https://www.proquest.com/docview/2636732646
Volume 815
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhpVAopd027fYRVOjVjVeWZbm3EBK2XbqH0tDchJ7FwbGXXSfFl_yL_N-OJHtDDmkOPdnYkhCe0egba-YbhD5JbbkkUiVa0TSh3MhElYYnTlpKc244pz45-fuSzU_pt7P8bAcdjbkwPqxysP3RpgdrPTw5GL7mwaqqfI4v5SXz7DNpUbJQzJrSwmv55-vbMA9PZhNPmWFhQ-s7MV4wbtcCNr0CR5HMfC0gzsl9O9R9CDTsRCfP0bMBQuLDOMsXaMc2E_Q4FpXsJ2jv-DZ3DZoNi3czQU_jLzocM49eoptl1a1bUCAsr2RVR8LuHodcEgCgGKAhXoWqX79xDPvArcObtqpxrAWl8UVg58Sqh4aRsRYMRl33OBzC-45-EP835Q_Wcq3aJgGwDkP6CDx4e1EFHiiYpo6JKl3_Cp2eHP88midDlYZE05R2iWaFJlQzYowzWlJHnJkZ5ZRiXLJU5nCflxk47dZabkrldG55YRUAEa1Sl-2h3aZt7BuEXZoaMAiS8cKAKG2pjc3cTCtiHeHOTBEbJSP0QGHuK2nUYoxVOxdbkQovUhFFOkXptuMqsng83OXLKHpxRyEF7DUPd_44KouA5erPYGRj28uNAIeVe3JwSv_VJmMFwGrKpuh11LTtrDPwUMHFLN_-z_TeoSfEZ3GEAKT3aLdbX9oPgK06tR8Wzz56dPh1MV_66-LHr8Vf9jEudA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKEQIJIVgobPkzEhxDs47jOEgcELTa0nZPrdSb8S8KSpPVbtoql74FT8ILMo6TrXooPaDeosS2nIz9zUw88w1C76W2XBKpIq1oHFFuZKRywyMnLaUpN5xTn5x8MGPTI_r9OD1eQ3-GXBgfVtljf8D0Dq37O1v919yaF4XP8aU8Z559Js5y0DJ9ZOWebc_Bb1t-3v0GQv5AyM724ddp1JcWiDSNaRNplmlCNSPGOKMldcSZiVFOKcYli2UK12megKdpreUmV06nlmdWgfbUKnYJjHsH3aUAF75swseLy7gSz54TjrUBSWB6V4LK4EWaGozhM_BMycQXH-KcXKcSrzN5O9W38xg96m1W_CV8lidozVYjdC9UsWxHaGP7MlkOmvVosRyhh-GfIA6pTk_R71nRLGpYsVieyaIMDOEt7pJXwOLFYIvieVdm7CcOcSa4dnhZFyUOxac0PunoQLFqoWGgyAWEKssWd6f-vqMfxP--OcdaLlRdReAdwJA-5A-enhQd8RRMU4fMmKZ9ho5uRXYbaL2qK_sCYRfHBhBIMp4ZSjOba2MTN9GKWEe4M2PEBskI3XOm-9IdpRiC436JlUiFF6kIIh2jeNVxHmhDbu7yaRC9uLIDBCi3mzu_GxaLAHzwhz6ysvXpUoCHzD0bOaX_apOwDOx4ysboeVhpq1kn4BKDT5tv_s_03qL708ODfbG_O9t7iR4Qn0LSRT-9QuvN4tS-BsOuUW-6jYTRj9veuX8BkjltCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen+availability+mediates+the+priming+effect+of+soil+organic+matter+by+preferentially+altering+the+straw+carbon-assimilating+microbial+community&rft.jtitle=The+Science+of+the+total+environment&rft.au=Bei%2C+Shuikuan&rft.au=Li%2C+Xia&rft.au=Kuyper%2C+Thomas+W&rft.au=Chadwick%2C+David+R&rft.date=2022-04-01&rft.eissn=1879-1026&rft.volume=815&rft.spage=152882&rft_id=info:doi/10.1016%2Fj.scitotenv.2021.152882&rft_id=info%3Apmid%2F34998759&rft.externalDocID=34998759
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon