Hairy root transformation of Brassica rapa with bacterial halogenase genes and regeneration to adult plants to modify production of indolic compounds

During the last years halogenated compounds have drawn a lot of attention. Metabolites with one or more halogen atoms are often more active than their non-halogenated derivatives like indole-3-acetic acid (IAA) and 4-Cl-IAA. Within this work, bacterial flavin-dependent tryptophan halogenase genes we...

Full description

Saved in:
Bibliographic Details
Published inPhytochemistry (Oxford) Vol. 175; p. 112371
Main Authors Neumann, Madeleine, Prahl, Swantje, Caputi, Lorenzo, Hill, Lionel, Kular, Baldeep, Walter, Antje, Patallo, Eugenio P., Milbredt, Daniela, Aires, Alfredo, Schöpe, Maria, O'Connor, Sarah, van Pée, Karl-Heinz, Ludwig-Müller, Jutta
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract During the last years halogenated compounds have drawn a lot of attention. Metabolites with one or more halogen atoms are often more active than their non-halogenated derivatives like indole-3-acetic acid (IAA) and 4-Cl-IAA. Within this work, bacterial flavin-dependent tryptophan halogenase genes were inserted into Brassica rapa ssp. pekinensis (Chinese cabbage) with the aim to produce novel halogenated indole compounds. It was investigated which tryptophan-derived indole metabolites, such as indole glucosinolates or potential degradation products can be synthesized by the transgenic root cultures. In vivo and in vitro activity of halogenases heterologously produced was shown and the production of chlorinated tryptophan in transgenic root lines was confirmed. Furthermore, chlorinated indole-3-acetonitrile (Cl-IAN) was detected. Other tryptophan-derived indole metabolites, such as IAA or indole glucosinolates were not found in the transgenic roots in a chlorinated form. The influence of altered growth conditions on the amount of produced chlorinated compounds was evaluated. We found an increase in Cl-IAN production at low temperatures (8 °C), but otherwise no significant changes were observed. Furthermore, we were able to regenerate the wild type and transgenic root cultures to adult plants, of which the latter still produced chlorinated metabolites. Therefore, we conclude that the genetic information had been stably integrated. The transgenic plants showed a slightly altered phenotype compared to plants grown from seeds since they also still expressed the rol genes. By this approach we were able to generate various stably transformed plant materials from which it was possible to isolate chlorinated tryptophan and Cl-IAN. Brassica rapa has been transformed into transgenic root cultures harboring three different tryptophan-dependent halogenases from bacterial origin. These were regenerated to plants that stably contained the halogenase genes. Tryptophan was converted to Cl-tryptophan in planta and to other chlorinated indole derivatives by the plant enzymes. [Display omitted] •Hairy roots of Chinese cabbage were stably transformed with bacterial halogenase genes.•Halogenated tryptophan and compounds derived from the amino acid were found.•Production of halogenated compounds was induced by cold treatment.•Transgenic root cultures were regenerated to adult plants that stably contained the halogenase genes.•Regenerated plants produced the same set of halogenated metabolites as their progenitor.
AbstractList During the last years halogenated compounds have drawn a lot of attention. Metabolites with one or more halogen atoms are often more active than their non-halogenated derivatives like indole-3-acetic acid (IAA) and 4-Cl-IAA. Within this work, bacterial flavin-dependent tryptophan halogenase genes were inserted into Brassica rapa ssp. pekinensis (Chinese cabbage) with the aim to produce novel halogenated indole compounds. It was investigated which tryptophan-derived indole metabolites, such as indole glucosinolates or potential degradation products can be synthesized by the transgenic root cultures. In vivo and in vitro activity of halogenases heterologously produced was shown and the production of chlorinated tryptophan in transgenic root lines was confirmed. Furthermore, chlorinated indole-3-acetonitrile (Cl-IAN) was detected. Other tryptophan-derived indole metabolites, such as IAA or indole glucosinolates were not found in the transgenic roots in a chlorinated form. The influence of altered growth conditions on the amount of produced chlorinated compounds was evaluated. We found an increase in Cl-IAN production at low temperatures (8 °C), but otherwise no significant changes were observed. Furthermore, we were able to regenerate the wild type and transgenic root cultures to adult plants, of which the latter still produced chlorinated metabolites. Therefore, we conclude that the genetic information had been stably integrated. The transgenic plants showed a slightly altered phenotype compared to plants grown from seeds since they also still expressed the rol genes. By this approach we were able to generate various stably transformed plant materials from which it was possible to isolate chlorinated tryptophan and Cl-IAN.During the last years halogenated compounds have drawn a lot of attention. Metabolites with one or more halogen atoms are often more active than their non-halogenated derivatives like indole-3-acetic acid (IAA) and 4-Cl-IAA. Within this work, bacterial flavin-dependent tryptophan halogenase genes were inserted into Brassica rapa ssp. pekinensis (Chinese cabbage) with the aim to produce novel halogenated indole compounds. It was investigated which tryptophan-derived indole metabolites, such as indole glucosinolates or potential degradation products can be synthesized by the transgenic root cultures. In vivo and in vitro activity of halogenases heterologously produced was shown and the production of chlorinated tryptophan in transgenic root lines was confirmed. Furthermore, chlorinated indole-3-acetonitrile (Cl-IAN) was detected. Other tryptophan-derived indole metabolites, such as IAA or indole glucosinolates were not found in the transgenic roots in a chlorinated form. The influence of altered growth conditions on the amount of produced chlorinated compounds was evaluated. We found an increase in Cl-IAN production at low temperatures (8 °C), but otherwise no significant changes were observed. Furthermore, we were able to regenerate the wild type and transgenic root cultures to adult plants, of which the latter still produced chlorinated metabolites. Therefore, we conclude that the genetic information had been stably integrated. The transgenic plants showed a slightly altered phenotype compared to plants grown from seeds since they also still expressed the rol genes. By this approach we were able to generate various stably transformed plant materials from which it was possible to isolate chlorinated tryptophan and Cl-IAN.
During the last years halogenated compounds have drawn a lot of attention. Metabolites with one or more halogen atoms are often more active than their non-halogenated derivatives like indole-3-acetic acid (IAA) and 4-Cl-IAA. Within this work, bacterial flavin-dependent tryptophan halogenase genes were inserted into Brassica rapa ssp. pekinensis (Chinese cabbage) with the aim to produce novel halogenated indole compounds. It was investigated which tryptophan-derived indole metabolites, such as indole glucosinolates or potential degradation products can be synthesized by the transgenic root cultures. In vivo and in vitro activity of halogenases heterologously produced was shown and the production of chlorinated tryptophan in transgenic root lines was confirmed. Furthermore, chlorinated indole-3-acetonitrile (Cl-IAN) was detected. Other tryptophan-derived indole metabolites, such as IAA or indole glucosinolates were not found in the transgenic roots in a chlorinated form. The influence of altered growth conditions on the amount of produced chlorinated compounds was evaluated. We found an increase in Cl-IAN production at low temperatures (8 °C), but otherwise no significant changes were observed. Furthermore, we were able to regenerate the wild type and transgenic root cultures to adult plants, of which the latter still produced chlorinated metabolites. Therefore, we conclude that the genetic information had been stably integrated. The transgenic plants showed a slightly altered phenotype compared to plants grown from seeds since they also still expressed the rol genes. By this approach we were able to generate various stably transformed plant materials from which it was possible to isolate chlorinated tryptophan and Cl-IAN. Brassica rapa has been transformed into transgenic root cultures harboring three different tryptophan-dependent halogenases from bacterial origin. These were regenerated to plants that stably contained the halogenase genes. Tryptophan was converted to Cl-tryptophan in planta and to other chlorinated indole derivatives by the plant enzymes. [Display omitted] •Hairy roots of Chinese cabbage were stably transformed with bacterial halogenase genes.•Halogenated tryptophan and compounds derived from the amino acid were found.•Production of halogenated compounds was induced by cold treatment.•Transgenic root cultures were regenerated to adult plants that stably contained the halogenase genes.•Regenerated plants produced the same set of halogenated metabolites as their progenitor.
During the last years halogenated compounds have drawn a lot of attention. Metabolites with one or more halogen atoms are often more active than their non-halogenated derivatives like indole-3-acetic acid (IAA) and 4-Cl-IAA. Within this work, bacterial flavin-dependent tryptophan halogenase genes were inserted into Brassica rapa ssp. pekinensis (Chinese cabbage) with the aim to produce novel halogenated indole compounds. It was investigated which tryptophan-derived indole metabolites, such as indole glucosinolates or potential degradation products can be synthesized by the transgenic root cultures. In vivo and in vitro activity of halogenases heterologously produced was shown and the production of chlorinated tryptophan in transgenic root lines was confirmed. Furthermore, chlorinated indole-3-acetonitrile (Cl-IAN) was detected. Other tryptophan-derived indole metabolites, such as IAA or indole glucosinolates were not found in the transgenic roots in a chlorinated form. The influence of altered growth conditions on the amount of produced chlorinated compounds was evaluated. We found an increase in Cl-IAN production at low temperatures (8 °C), but otherwise no significant changes were observed. Furthermore, we were able to regenerate the wild type and transgenic root cultures to adult plants, of which the latter still produced chlorinated metabolites. Therefore, we conclude that the genetic information had been stably integrated. The transgenic plants showed a slightly altered phenotype compared to plants grown from seeds since they also still expressed the rol genes. By this approach we were able to generate various stably transformed plant materials from which it was possible to isolate chlorinated tryptophan and Cl-IAN.
During the last years halogenated compounds have drawn a lot of attention. Metabolites with one or more halogen atoms are often more active than their non-halogenated derivatives like indole-3-acetic acid (IAA) and 4-Cl-IAA. Within this work, bacterial flavin-dependent tryptophan halogenase genes were inserted into Brassica rapa ssp. pekinensis (Chinese cabbage) with the aim to produce novel halogenated indole compounds. It was investigated which tryptophan-derived indole metabolites, such as indole glucosinolates or potential degradation products can be synthesized by the transgenic root cultures. In vivo and in vitro activity of halogenases heterologously produced was shown and the production of chlorinated tryptophan in transgenic root lines was confirmed. Furthermore, chlorinated indole-3-acetonitrile (Cl-IAN) was detected. Other tryptophan-derived indole metabolites, such as IAA or indole glucosinolates were not found in the transgenic roots in a chlorinated form. The influence of altered growth conditions on the amount of produced chlorinated compounds was evaluated. We found an increase in Cl-IAN production at low temperatures (8 °C), but otherwise no significant changes were observed. Furthermore, we were able to regenerate the wild type and transgenic root cultures to adult plants, of which the latter still produced chlorinated metabolites. Therefore, we conclude that the genetic information had been stably integrated. The transgenic plants showed a slightly altered phenotype compared to plants grown from seeds since they also still expressed the rol genes. By this approach we were able to generate various stably transformed plant materials from which it was possible to isolate chlorinated tryptophan and Cl-IAN.
ArticleNumber 112371
Author Prahl, Swantje
Ludwig-Müller, Jutta
Kular, Baldeep
Schöpe, Maria
Neumann, Madeleine
van Pée, Karl-Heinz
Aires, Alfredo
O'Connor, Sarah
Walter, Antje
Milbredt, Daniela
Caputi, Lorenzo
Hill, Lionel
Patallo, Eugenio P.
Author_xml – sequence: 1
  givenname: Madeleine
  surname: Neumann
  fullname: Neumann, Madeleine
  organization: Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany
– sequence: 2
  givenname: Swantje
  surname: Prahl
  fullname: Prahl, Swantje
  organization: Vita34 AG, 04103, Leipzig, Germany
– sequence: 3
  givenname: Lorenzo
  surname: Caputi
  fullname: Caputi, Lorenzo
  organization: Department of Natural Product Synthesis, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
– sequence: 4
  givenname: Lionel
  surname: Hill
  fullname: Hill, Lionel
  organization: John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
– sequence: 5
  givenname: Baldeep
  surname: Kular
  fullname: Kular, Baldeep
  organization: John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
– sequence: 6
  givenname: Antje
  surname: Walter
  fullname: Walter, Antje
  organization: Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany
– sequence: 7
  givenname: Eugenio P.
  surname: Patallo
  fullname: Patallo, Eugenio P.
  organization: Biochemistry, Technische Universität Dresden, 01062, Dresden, Germany
– sequence: 8
  givenname: Daniela
  surname: Milbredt
  fullname: Milbredt, Daniela
  organization: Biochemistry, Technische Universität Dresden, 01062, Dresden, Germany
– sequence: 9
  givenname: Alfredo
  surname: Aires
  fullname: Aires, Alfredo
  organization: Centre for the Research and Technology for Agro-Environment and Biological Sciences, CITAB, University of Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal
– sequence: 10
  givenname: Maria
  surname: Schöpe
  fullname: Schöpe, Maria
  organization: Vita34 AG, 04103, Leipzig, Germany
– sequence: 11
  givenname: Sarah
  surname: O'Connor
  fullname: O'Connor, Sarah
  organization: Department of Natural Product Synthesis, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
– sequence: 12
  givenname: Karl-Heinz
  surname: van Pée
  fullname: van Pée, Karl-Heinz
  organization: Biochemistry, Technische Universität Dresden, 01062, Dresden, Germany
– sequence: 13
  givenname: Jutta
  surname: Ludwig-Müller
  fullname: Ludwig-Müller, Jutta
  email: Jutta.Ludwig-Mueller@tu-dresden.de
  organization: Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32283438$$D View this record in MEDLINE/PubMed
BookMark eNqNkctuFDEQRS0URCaBXwAv2fTgV78WLEIEBCkSm-ytarua8ajbbmw3aD6E_8XDZFiwCauyS-dWle69Ihc-eCTkDWdbznjzbr9ddocczA7nrWCidLmQLX9GNrxrZSVbxi7IhjHJq14JcUmuUtozxuq6aV6QSylEJ5XsNuTXHbh4oDGETHMEn8YQZ8gueBpG-iFCSs4AjbAA_enyjg5gMkYHE93BFL6hh4S0FEwUvKURj-94mpADBbtOmS4T-JyO_zlYNx7oEoNdzXmN8zZMzlAT5iWs3qaX5PkIU8JXj_WaPHz6-HB7V91__fzl9ua-MoqpXJm6Rwm8Ro6saWBs6o4PyqiBSyHHXvWjVDjy3rSDVG3XKEAwFlthBt70Sl6Tt6ex5ZzvK6asZ5cMTuVaDGvSQslCdUr8Byq7vulUW_cFff2IrsOMVi_RzRAP-mx6Ad6fABNDShFHbVz-41hJwE2aM30MWe_135D1MWR9Crno23_05xVPK29OSiym_nAYdTIOvUHrIpqsbXBPzvgNo0TJuw
CitedBy_id crossref_primary_10_1016_j_plaphy_2022_12_010
crossref_primary_10_1016_j_pbi_2023_102379
crossref_primary_10_1111_pbi_70028
crossref_primary_10_3389_fpls_2020_581675
crossref_primary_10_1093_jxb_erac237
crossref_primary_10_3389_fpls_2021_672023
crossref_primary_10_1016_j_scienta_2023_112490
crossref_primary_10_1016_j_scienta_2024_113542
crossref_primary_10_17816_ecogen640859
crossref_primary_10_1016_j_indcrop_2024_119104
Cites_doi 10.1016/j.plaphy.2015.10.013
10.1104/pp.99.4.1336
10.17660/ActaHortic.2019.1242.7
10.1093/jxb/ert348
10.3390/molecules200915827
10.1016/j.jmb.2009.06.008
10.1016/j.biotechadv.2014.03.007
10.1016/j.phytochem.2011.08.018
10.1371/journal.pone.0202153
10.1104/pp.69.4.975
10.1007/s11738-009-0445-6
10.1007/BF00017721
10.1016/j.phytochem.2009.05.002
10.1002/anie.201509573
10.1111/j.1365-3040.2006.01529.x
10.1021/jf980205f
10.3390/ijms21072567
10.1093/jxb/erq412
10.3329/bjar.v35i2.5881
10.1007/s11101-008-9103-7
10.1128/aem.63.6.2147-2154.1997
10.1080/10242420601033738
10.1016/j.pbi.2006.03.008
10.1007/s11101-008-9117-1
10.1128/JB.180.7.1939-1943.1998
10.1111/jipb.12705
10.1007/s11101-011-9210-8
10.1038/sj.cr.7290097
10.1631/jzus.B1400370
10.1155/2017/5125329
10.1007/BF00011656
10.1016/j.phytochem.2016.06.003
10.1073/pnas.1700558114
10.1055/s-2002-34924
10.1007/s11240-009-9498-x
10.1021/ja2089348
10.3389/fpls.2016.01486
10.1007/s11240-015-0840-1
10.1016/j.chembiol.2008.01.006
10.1016/j.scienta.2011.04.009
10.1023/B:PLAN.0000009268.45851.95
10.7164/antibiotics.57.691
10.1016/j.foodchem.2009.08.051
10.1002/biot.201600337
10.1007/s12298-016-0354-2
10.1007/s11240-010-9669-9
10.5511/plantbiotechnology.20.169
10.4236/ajps.2013.48203
10.1134/S2079059714020063
10.1038/nature09524
10.3390/molecules21020182
10.1016/j.phytochem.2010.03.020
10.1104/pp.112.198457
10.1007/s11240-010-9702-z
10.1038/nature08303
10.1016/S0958-1669(99)80026-3
10.1023/A:1010631731559
10.12816/0030070
10.1016/j.chembiol.2005.02.005
10.1023/A:1009658128964
10.1134/S1021443709020113
10.1021/np800651m
10.2174/157017941006140206102541
10.1093/pcp/pcp101
10.1016/j.phytochem.2012.01.005
10.1371/journal.pone.0071877
10.1007/BF00041844
10.1016/S0031-9422(96)00498-0
10.1584/jpestics.G09-69
10.1016/0031-9422(95)00367-G
10.1007/s002990050774
10.1007/s12298-013-0217-z
10.1093/mp/ssq020
10.1016/j.biotechadv.2008.03.001
10.1007/s11240-015-0727-1
10.1111/j.1399-3054.1997.tb03050.x
10.5511/plantbiotechnology.21.165
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.phytochem.2020.112371
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1873-3700
ExternalDocumentID 32283438
10_1016_j_phytochem_2020_112371
S0031942219311604
Genre Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/M004570/1
GroupedDBID ---
--K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATCM
AATLK
AAXUO
ABFNM
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFS
ACIUM
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D0L
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HMS
HMT
HVGLF
HZ~
H~9
IHE
J1W
K-O
KOM
LW9
LX3
M2Z
M34
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCB
SCC
SCU
SDF
SDG
SDP
SES
SEW
SOC
SPC
SPCBC
SPT
SSA
SSK
SSP
SSU
SSZ
T5K
TN5
TWZ
WH7
WUQ
XOL
Y6R
YK3
ZKB
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c404t-c59e3a15e1e066af6581b4c4b1323f949f34ef19c7b347864aeacde72cb16943
IEDL.DBID .~1
ISSN 0031-9422
1873-3700
IngestDate Fri Jul 11 04:58:19 EDT 2025
Mon Jul 21 10:35:38 EDT 2025
Mon Jul 21 06:06:23 EDT 2025
Tue Jul 01 03:32:25 EDT 2025
Thu Apr 24 23:07:48 EDT 2025
Fri Feb 23 02:46:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cl-trp
Chinese cabbage
Hairy root cultures
Brassica rapa subsp. pekinensis
Agrobacterium rhizogenes
Brassicaceae
Plant regeneration
Cl-IAN
Flavin-dependent tryptophan halogenases
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-c59e3a15e1e066af6581b4c4b1323f949f34ef19c7b347864aeacde72cb16943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32283438
PQID 2389684759
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2439438424
proquest_miscellaneous_2389684759
pubmed_primary_32283438
crossref_citationtrail_10_1016_j_phytochem_2020_112371
crossref_primary_10_1016_j_phytochem_2020_112371
elsevier_sciencedirect_doi_10_1016_j_phytochem_2020_112371
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
2020-Jul
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Phytochemistry (Oxford)
PublicationTitleAlternate Phytochemistry
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ludwig-Müller, Schubert, Pieper, Ihmig, Hilgenberg (bib46) 1997; 44
Kirner, Hammer, Hill, Altmann, Fischer, Weislo, Lanahan, van Pée, Ligon (bib40) 1998; 180
Saitou, Kamada, Harada (bib72) 1992; 99
Nilsson, Olsson (bib55) 1997; 100
Sharafi, Sohi, Azadi, Sharafi (bib77) 2014; 20
Reinecke, Ozga, Magnus (bib70) 1995; 40
Bhandari, Jo, Lee (bib9) 2015; 20
Mei, Wang, Lu, Jia (bib49) 2001; 11
Habibi, Grossi de Sa, Lopes da Silva, Makhzoum, da Luz Costa, Borghetti, Soccol (bib29) 2016; 22
Wagner, El Omari, König (bib84) 2009; 72
Mittag, Gabrielyan, Ludwig-Müller (bib51) 2015; 97
Hammer, Hill, Lam, van Pée, Ligon (bib33) 1997; 63
Kastell, Schreiner, Knorr, Ulrichs, Mewis (bib36) 2017; 132
Aires, Neumann, Ludwig-Müller, Schöpe, van Pée (bib4) 2019; 1242
Mikkelsen, Olsen, Halkier (bib50) 2010; 3
Zhou, Duan, Zhou, Li, Gu, Wang, Zhang, Gao (bib89) 2009; 56
Fräbel, Krischke, Staniek, Warzecha (bib21) 2016; 11
Paek, Hahn, Son (bib57) 2001; vol. 37
Butler, Sandy (bib12) 2009; 460
Georgiev, Radziszewska, Neumann, Marchev, Alipieva, Ludwig-Müller (bib23) 2015; 123
Ludwig-Müller, Jahn, Lippert, Püschel, Walter (bib47) 2014; 32
Kolvari, Koukabi, Khoramabadi-zad, Shiri, Zolfigol (bib42) 2013; 10
Radwanski, Last (bib66) 1995; 7
Kos, Houshyani, Wietsma, Kabouw, Vet, Van Loon, Dicke (bib43) 2012; 77
Sidwa-Gorycka, Krolicka, Orlita, Malinski, Golebiowski, Kumirska, Chromik, Biskup, Stepnowski, Lojkowska (bib78) 2009; 97
Qing, Fan, Lei, Bouchez, Tourneur, Yan, Robaglia (bib65) 2000; 6
Chriqui, Guivarc'h, Dewitte, Prinsen, van Onkelen (bib15) 1996; 187
Pedras, Yaya (bib60) 2010; 71
Neumann, Fujimori, Walsh (bib54) 2008; 15
Rameeh (bib67) 2015; 11
Peres, Morgante, Vecchi, Kraus, van Sluys (bib62) 2001; 65
Zhu, De Laurentis, Leang, Herrmann, Ihlefeld, van Pée, Naismith (bib90) 2009; 391
Hamill, Parr, Rhodes, Robins, Walton (bib31) 1987; 5
Ashrap, Zheng, Wan, Li, Hu, Li, Zhang, Zhang, Hu (bib7) 2017; 114
Witzel, Hanschen, Schreiner, Krumbein, Ruppel, Grosch (bib86) 2013; 8
Guillon, Trémouillaux-Guiller, Pati, Rideau, Gantet (bib26) 2006; 9
Sun, Lindbeck, Nilius, Towne, Zhou, Paulus (bib79) 2004; 57
Hamill, Robins, Parr, Evans, Furze, Rhodes (bib32) 1990; 15
Liu, Yang, Chen, Li, Liao, Tang (bib44) 2010; 4
Murata, Orton (bib53) 1987; 11
Christey (bib16) 1997
Textor, Gershenzon (bib81) 2009; 8
Cogbill, Faulcon, Jones, McDaniel, Harmon, Blackmon, Young (bib18) 2010; 101
Matsuda, Toyoda, Nishio, Nishida, Dohgo, Bingo, Matsuda, Yoshida, Harada, Tanaka, Komai, Ouchi (bib48) 1998; 46
Bulgakov (bib11) 2008; 26
Aires, Carvalho (bib2) 2017; 2017
Al-Hamad (bib6) 2014; 1
Kim, Chu, Kim, Lee, Lee, Lim, Ha, Kweon, Cho (bib39) 2010; 119
Savić, Tomić, Magnus, Gruden, Barle, Grenković, Ludwig-Müller, Salopek-Sondi (bib73) 2009; 50
Chandra, Chandra (bib13) 2011; 10
Chintapakorn, Hamill (bib14) 2003; 53
Moriuchi, Fujikawa, Aly, Saneoka, Fujita, Yamashita, Tanaka (bib52) 2004; 21
Glenn, Nims, O'Connor (bib24) 2011; 133
Runguphan, Qu, O'Connor (bib71) 2010; 468
Ludwig-Müller (bib45) 2011; 62
Doyle, Doyle (bib20) 1987; 19
Guo, Shen, Qian, Zhang, Liu, Wang (bib28) 2013; 64
Zehner, Kotzsch, Bister, Süssmuth, Méndez, Salas, van Pée (bib88) 2005; 12
Aires, Dias, Carvalho, Oliveira, Monteiro, Simões, Rosa, Bennett, Saavedra (bib3) 2011; 129
Petersen, Wang, Crocoll, Halkier (bib63) 2018; 60
Katayama, Saito, Katayama (bib37) 2010; 35
Brandt, Fachinger, Tohge, Fernie, Braun, Hildebrandt (bib10) 2018; 13
Seibold, Schnerr, Rumpf, Kunzendorf, Hatscher, Wage, Ernyei, Dong, Naismith, van Pée (bib74) 2006; 24
Tivendale, Davidson, Davies, Smith, Dalmais, Bendahmane, Quittenden, Sutton, Bala, Le Signor (bib82) 2012; 159
Junghans, Polle, Düchting, Weiler, Kuhlman, Gruber, Teichmann (bib35) 2006; 29
Khan, Arif Hasan Khan Robin, Nazim-Ud-Dowla, Talukder, Hassan (bib38) 2010; 35
Pedras, Hossain (bib61) 2011; 72
Weichold, Milbredt, van Pee (bib85) 2016; 55
Traka, Mithen (bib83) 2009; 8
Inoue, Sugiura, Tabuchi, Karasawa, Minami (bib34) 2003; 20
Walter, Caputi, O’Connor, van Pée, Ludwig-Müller (bib91) 2020; 21
Croteau, Winters (bib19) 1982; 69
Takayama, Akita (bib80) 2005
Piatczak, Kuzma, Skała, Zebrowska, Balcerczak, Wysokinska (bib64) 2015; 122
Christey (bib17) 2001; vol. 37
Grabkowska, Krolicka, Mielicki, Wielanek, Wysokinska (bib25) 2010; 32
Abdel-Farid, Choi, Kim, van den Hondel, van der Meijden, Verpoorte (bib1) 2006; 7
Gunjan, Lutz, Bushong, Rogers, Littleton (bib27) 2013; 4
Rauhut, Glawischnig (bib69) 2009; 70
Shanks, Morgan (bib76) 1999; 10
Kissen, Eberl, Winge, Uleberg, Martinussen, Bones (bib41) 2016; 130
Pavlova, Matveyeva, Lutova (bib59) 2014; 4
Baskar, Gangadhar, Park, Nile (bib8) 2016; 6
Gangopadhyay, Chakraborty, Bhattacharyya, Bhattacharya (bib22) 2010; 102
Sevon, Oksman-Caldentey (bib75) 2002; 68
Al-Barbawi, Atheel (bib5) 2003; 23
Ramirez-Estrada, Vidal-Limon, Hidalgo, Moyano, Golenioswki, Cusidó, Palazon (bib68) 2016; 21
Patallo, Walter, Milbredt, Thomas, Neumann, Caputi, O'Connor, Ludwig-Müller, van Pée (bib58) 2017; 2
Häkkinen, Moyano, Cusidó, Oksman-Caldentey (bib30) 2016; 7
Ohara, Akasaka, Daimon, Mii (bib56) 2000; 19
Zang, Ge, Huang, Gao, Lv, Zheng, Hong, Zhu (bib87) 2015; 16
Qing (10.1016/j.phytochem.2020.112371_bib65) 2000; 6
Aires (10.1016/j.phytochem.2020.112371_bib4) 2019; 1242
Al-Hamad (10.1016/j.phytochem.2020.112371_bib6) 2014; 1
Kim (10.1016/j.phytochem.2020.112371_bib39) 2010; 119
Radwanski (10.1016/j.phytochem.2020.112371_bib66) 1995; 7
Textor (10.1016/j.phytochem.2020.112371_bib81) 2009; 8
Zang (10.1016/j.phytochem.2020.112371_bib87) 2015; 16
Sharafi (10.1016/j.phytochem.2020.112371_bib77) 2014; 20
Ramirez-Estrada (10.1016/j.phytochem.2020.112371_bib68) 2016; 21
Saitou (10.1016/j.phytochem.2020.112371_bib72) 1992; 99
Cogbill (10.1016/j.phytochem.2020.112371_bib18) 2010; 101
Liu (10.1016/j.phytochem.2020.112371_bib44) 2010; 4
Ohara (10.1016/j.phytochem.2020.112371_bib56) 2000; 19
Sevon (10.1016/j.phytochem.2020.112371_bib75) 2002; 68
Tivendale (10.1016/j.phytochem.2020.112371_bib82) 2012; 159
Peres (10.1016/j.phytochem.2020.112371_bib62) 2001; 65
Katayama (10.1016/j.phytochem.2020.112371_bib37) 2010; 35
Matsuda (10.1016/j.phytochem.2020.112371_bib48) 1998; 46
Shanks (10.1016/j.phytochem.2020.112371_bib76) 1999; 10
Khan (10.1016/j.phytochem.2020.112371_bib38) 2010; 35
Gunjan (10.1016/j.phytochem.2020.112371_bib27) 2013; 4
Savić (10.1016/j.phytochem.2020.112371_bib73) 2009; 50
Neumann (10.1016/j.phytochem.2020.112371_bib54) 2008; 15
Rauhut (10.1016/j.phytochem.2020.112371_bib69) 2009; 70
Hamill (10.1016/j.phytochem.2020.112371_bib31) 1987; 5
Croteau (10.1016/j.phytochem.2020.112371_bib19) 1982; 69
Al-Barbawi (10.1016/j.phytochem.2020.112371_bib5) 2003; 23
Bulgakov (10.1016/j.phytochem.2020.112371_bib11) 2008; 26
Piatczak (10.1016/j.phytochem.2020.112371_bib64) 2015; 122
Habibi (10.1016/j.phytochem.2020.112371_bib29) 2016; 22
Pavlova (10.1016/j.phytochem.2020.112371_bib59) 2014; 4
Witzel (10.1016/j.phytochem.2020.112371_bib86) 2013; 8
Christey (10.1016/j.phytochem.2020.112371_bib17) 2001; vol. 37
Ludwig-Müller (10.1016/j.phytochem.2020.112371_bib45) 2011; 62
Pedras (10.1016/j.phytochem.2020.112371_bib61) 2011; 72
Kolvari (10.1016/j.phytochem.2020.112371_bib42) 2013; 10
Paek (10.1016/j.phytochem.2020.112371_bib57) 2001; vol. 37
Rameeh (10.1016/j.phytochem.2020.112371_bib67) 2015; 11
Kirner (10.1016/j.phytochem.2020.112371_bib40) 1998; 180
Zhu (10.1016/j.phytochem.2020.112371_bib90) 2009; 391
Traka (10.1016/j.phytochem.2020.112371_bib83) 2009; 8
Inoue (10.1016/j.phytochem.2020.112371_bib34) 2003; 20
Fräbel (10.1016/j.phytochem.2020.112371_bib21) 2016; 11
Ludwig-Müller (10.1016/j.phytochem.2020.112371_bib46) 1997; 44
Sidwa-Gorycka (10.1016/j.phytochem.2020.112371_bib78) 2009; 97
Ashrap (10.1016/j.phytochem.2020.112371_bib7) 2017; 114
Ludwig-Müller (10.1016/j.phytochem.2020.112371_bib47) 2014; 32
Hammer (10.1016/j.phytochem.2020.112371_bib33) 1997; 63
Reinecke (10.1016/j.phytochem.2020.112371_bib70) 1995; 40
Baskar (10.1016/j.phytochem.2020.112371_bib8) 2016; 6
Guillon (10.1016/j.phytochem.2020.112371_bib26) 2006; 9
Moriuchi (10.1016/j.phytochem.2020.112371_bib52) 2004; 21
Häkkinen (10.1016/j.phytochem.2020.112371_bib30) 2016; 7
Petersen (10.1016/j.phytochem.2020.112371_bib63) 2018; 60
Butler (10.1016/j.phytochem.2020.112371_bib12) 2009; 460
Nilsson (10.1016/j.phytochem.2020.112371_bib55) 1997; 100
Sun (10.1016/j.phytochem.2020.112371_bib79) 2004; 57
Aires (10.1016/j.phytochem.2020.112371_bib2) 2017; 2017
Guo (10.1016/j.phytochem.2020.112371_bib28) 2013; 64
Kastell (10.1016/j.phytochem.2020.112371_bib36) 2017; 132
Kos (10.1016/j.phytochem.2020.112371_bib43) 2012; 77
Mittag (10.1016/j.phytochem.2020.112371_bib51) 2015; 97
Glenn (10.1016/j.phytochem.2020.112371_bib24) 2011; 133
Christey (10.1016/j.phytochem.2020.112371_bib16) 1997
Brandt (10.1016/j.phytochem.2020.112371_bib10) 2018; 13
Patallo (10.1016/j.phytochem.2020.112371_bib58) 2017; 2
Wagner (10.1016/j.phytochem.2020.112371_bib84) 2009; 72
Zehner (10.1016/j.phytochem.2020.112371_bib88) 2005; 12
Chandra (10.1016/j.phytochem.2020.112371_bib13) 2011; 10
Runguphan (10.1016/j.phytochem.2020.112371_bib71) 2010; 468
Mei (10.1016/j.phytochem.2020.112371_bib49) 2001; 11
Pedras (10.1016/j.phytochem.2020.112371_bib60) 2010; 71
Grabkowska (10.1016/j.phytochem.2020.112371_bib25) 2010; 32
Walter (10.1016/j.phytochem.2020.112371_bib91) 2020; 21
Junghans (10.1016/j.phytochem.2020.112371_bib35) 2006; 29
Mikkelsen (10.1016/j.phytochem.2020.112371_bib50) 2010; 3
Seibold (10.1016/j.phytochem.2020.112371_bib74) 2006; 24
Bhandari (10.1016/j.phytochem.2020.112371_bib9) 2015; 20
Doyle (10.1016/j.phytochem.2020.112371_bib20) 1987; 19
Georgiev (10.1016/j.phytochem.2020.112371_bib23) 2015; 123
Aires (10.1016/j.phytochem.2020.112371_bib3) 2011; 129
Kissen (10.1016/j.phytochem.2020.112371_bib41) 2016; 130
Takayama (10.1016/j.phytochem.2020.112371_bib80) 2005
Zhou (10.1016/j.phytochem.2020.112371_bib89) 2009; 56
Chriqui (10.1016/j.phytochem.2020.112371_bib15) 1996; 187
Murata (10.1016/j.phytochem.2020.112371_bib53) 1987; 11
Gangopadhyay (10.1016/j.phytochem.2020.112371_bib22) 2010; 102
Chintapakorn (10.1016/j.phytochem.2020.112371_bib14) 2003; 53
Hamill (10.1016/j.phytochem.2020.112371_bib32) 1990; 15
Abdel-Farid (10.1016/j.phytochem.2020.112371_bib1) 2006; 7
Weichold (10.1016/j.phytochem.2020.112371_bib85) 2016; 55
References_xml – volume: 6
  start-page: 67
  year: 2000
  end-page: 72
  ident: bib65
  article-title: Transformation of pakchoi (
  publication-title: Mol. Breed.
– volume: 101
  start-page: 127
  year: 2010
  end-page: 133
  ident: bib18
  article-title: Adventitious shoot regeneration from cotyledonary explants of rapid-cycling fast plants of
  publication-title: Plant Cell Tiss. Organ Cult
– volume: 11
  start-page: 111
  year: 1987
  end-page: 123
  ident: bib53
  article-title: Callus initiation and regeneration capacities in
  publication-title: Plant Cell Tissue Organ Cult.
– volume: 57
  start-page: 691
  year: 2004
  end-page: 694
  ident: bib79
  article-title: Synthesis, isolation and antibacterial activities of monodechlorovancomycins
  publication-title: J. Antibiot. (Tokyo)
– volume: 7
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib30
  article-title: Exploring the metabolic stability of engineered Hairy Roots after 16 years maintenance
  publication-title: Front. Plant Sci.
– volume: 23
  start-page: 109
  year: 2003
  end-page: 115
  ident: bib5
  article-title: Regeneration of transformed forage legume plants by
  publication-title: Qatar Univ. Sci. J.
– volume: 10
  start-page: 371
  year: 2011
  end-page: 395
  ident: bib13
  article-title: Engineering secondary metabolite production in hairy roots
  publication-title: Phytochemistry Rev.
– volume: 35
  start-page: 134
  year: 2010
  end-page: 137
  ident: bib37
  article-title: 5,6-Dichloro-3-acetic acid and 4-chloroindole-3-acetic acid, two potent candidates for new rooting promoters without estrogenic activity
  publication-title: J. Pestic. Sci.
– volume: 2
  start-page: 11148
  year: 2017
  end-page: 11153
  ident: bib58
  article-title: Strategies to produce chlorinated indole-3-acetic acid and indole-3-acetic acid intermediates
  publication-title: Chemistry
– volume: 123
  start-page: 349
  year: 2015
  end-page: 356
  ident: bib23
  article-title: Metabolic alterations of
  publication-title: Plant Cell Tissue Organ Cult.
– volume: 130
  start-page: 106
  year: 2016
  end-page: 118
  ident: bib41
  article-title: Effect of growth temperature on glucosinolate profiles in
  publication-title: Phytochemistry
– volume: 7
  start-page: 47
  year: 2006
  end-page: 73
  ident: bib1
  article-title: The role of secondary metabolites in
  publication-title: Curr. Top. Plant Biol.
– volume: 7
  start-page: 921
  year: 1995
  end-page: 934
  ident: bib66
  article-title: Tryptophan biosynthesis and metabolism: biochemical and molecular genetics
  publication-title: Plant Cell
– volume: 114
  start-page: 6062
  year: 2017
  end-page: 6067
  ident: bib7
  article-title: Discovery of a widespread metabolic pathway within and among phenolic xenobiotics
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 4
  start-page: 1708
  year: 2010
  end-page: 1713
  ident: bib44
  article-title: Promoting scopolamine accumulation in transgenic plants of
  publication-title: J. Med. Plants Res.
– volume: 32
  start-page: 1168
  year: 2014
  end-page: 1179
  ident: bib47
  article-title: Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications
  publication-title: Biotechnol. Adv.
– volume: vol. 37
  start-page: 687
  year: 2001
  end-page: 700
  ident: bib17
  article-title: Use of Ri-mediated transformation for production of transgenic plants
  publication-title: Vitro Cell. Dev. Biol. Plant
– volume: 19
  start-page: 563
  year: 2000
  end-page: 568
  ident: bib56
  article-title: Plant regeneration from hairy roots induced by infection with
  publication-title: Plant Cell Rep.
– volume: 70
  start-page: 1638
  year: 2009
  end-page: 1644
  ident: bib69
  article-title: Evolution of camalexin and structurally related indolic compounds
  publication-title: Phytochemistry
– volume: 1
  year: 2014
  ident: bib6
  article-title: Naphthaleneacetic acid solely induced extensive hairy root development that precedes extensive shoot regeneration from stalk explants of cauliflower (
  publication-title: J. J. Biotech. Bioeng.
– volume: 53
  start-page: 87
  year: 2003
  end-page: 105
  ident: bib14
  article-title: Antisense-mediated down-regulation of putrescine
  publication-title: Plant Mol. Biol.
– volume: 102
  start-page: 109
  year: 2010
  end-page: 114
  ident: bib22
  article-title: Regeneration of transformed plants from hairy roots of
  publication-title: Plant Cell Tissue Organ Cult.
– volume: 4
  start-page: 1675
  year: 2013
  end-page: 1678
  ident: bib27
  article-title: Hairy root cultures and plant regeneration in
  publication-title: Am. J. Plant Sci.
– volume: 19
  start-page: 11
  year: 1987
  end-page: 15
  ident: bib20
  article-title: A rapid DNA isolation procedure for small quantities of fresh leaf tissue
  publication-title: Phytochem. Bull.
– volume: 8
  start-page: 269
  year: 2009
  end-page: 282
  ident: bib83
  article-title: Glucosinolates, isothiocyanates and human health
  publication-title: Phytochemistry Rev.
– volume: 44
  start-page: 407
  year: 1997
  end-page: 414
  ident: bib46
  article-title: Glucosinolate content in susceptible and tolerant Chinese cabbage varieties during the development of the clubroot disease
  publication-title: Phytochemistry
– volume: 10
  start-page: 151
  year: 1999
  end-page: 155
  ident: bib76
  article-title: Plant “hairy root” culture
  publication-title: Curr. Opin. Biotechnol.
– volume: 56
  start-page: 224
  year: 2009
  end-page: 231
  ident: bib89
  article-title: Hairy root induction and plant regeneration of
  publication-title: Russ. J. Plant Physiol.
– volume: 11
  start-page: 1
  year: 2015
  end-page: 13
  ident: bib67
  article-title: Glucosinolates and their important biological and anti-cancer effects: a review
  publication-title: Jordan J. Agric. Sci.
– volume: 65
  start-page: 37
  year: 2001
  end-page: 44
  ident: bib62
  article-title: Shoot regeneration capacity from roots and transgenic hairy roots of tomato cultivars and wild related species
  publication-title: Plant Cell Tissue Organ Cult.
– volume: 1242
  start-page: 49
  year: 2019
  end-page: 56
  ident: bib4
  article-title: Induced production of indol-3-ylmethyl glucosinolates in hairy roots of Chinese cabbage (
  publication-title: Acta Hortic.
– volume: 133
  start-page: 19346
  year: 2011
  end-page: 19349
  ident: bib24
  article-title: Reengineering a tryptophan halogenase to preferentially chlorinate a direct alkaloid precursor
  publication-title: J. Am. Chem. Soc.
– volume: 62
  start-page: 1757
  year: 2011
  end-page: 1773
  ident: bib45
  article-title: Auxin conjugates: their role for plant development and in the evolution of land plants
  publication-title: J. Exp. Bot.
– volume: 99
  start-page: 1336
  year: 1992
  end-page: 1341
  ident: bib72
  article-title: Light requirement for shoot regeneration in horseradish hairy roots
  publication-title: Plant Physiol.
– volume: 391
  start-page: 74
  year: 2009
  end-page: 85
  ident: bib90
  article-title: Structural insights into regioselectivity in the enzymatic chlorination of tryptophan
  publication-title: J. Mol. Biol.
– volume: 26
  start-page: 318
  year: 2008
  end-page: 324
  ident: bib11
  article-title: Functions of
  publication-title: Biotechnol. Adv.
– volume: 50
  start-page: 1587
  year: 2009
  end-page: 1599
  ident: bib73
  article-title: Auxin amidohydrolases from
  publication-title: Plant Cell Physiol.
– volume: 24
  start-page: 401
  year: 2006
  end-page: 408
  ident: bib74
  article-title: A flavin-dependent tryptophan 6-halogenase and its use in modification of pyrrolnitrin biosynthesis
  publication-title: Biocatal. Biotransform.
– volume: 35
  start-page: 189
  year: 2010
  end-page: 199
  ident: bib38
  article-title: regeneration potentiality of Brassica genotypes in differential growth regulators
  publication-title: Bangladesh J. Agril. Res.
– volume: 20
  start-page: 169
  year: 2003
  end-page: 172
  ident: bib34
  article-title: Plant regeneration of peppermint,
  publication-title: Plant Biotechnol.
– volume: 132
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib36
  article-title: Influence of nutrient supply and elicitors on glucosinolate production in E. sativa hairy root cultures
  publication-title: Plant Cell Tissue Organ Cult.
– volume: 72
  start-page: 2308
  year: 2011
  end-page: 2316
  ident: bib61
  article-title: Interaction of cruciferous phytoanticipins with plant fungal pathogens: indole glucosinolates are not metabolized but the corresponding desulfo-derivatives and nitriles are
  publication-title: Phytochemistry
– volume: 21
  start-page: 165
  year: 2004
  end-page: 168
  ident: bib52
  article-title: Hairy root-mediated transgenic plant regeneration in Egyptian clover (
  publication-title: Plant Biotechnol.
– volume: 68
  start-page: 859
  year: 2002
  end-page: 868
  ident: bib75
  article-title: -mediated transformation: root cultures as a source of alkaloids
  publication-title: Planta Med.
– volume: 187
  start-page: 47
  year: 1996
  end-page: 55
  ident: bib15
  article-title: genes and root initiation and development
  publication-title: Plant Soil
– volume: 180
  start-page: 1939
  year: 1998
  end-page: 1943
  ident: bib40
  article-title: Functions encoded by pyrrolnitrin biosynthetic genes from
  publication-title: J. Bacteriol.
– volume: 460
  start-page: 848
  year: 2009
  end-page: 854
  ident: bib12
  article-title: Mechanistic considerations of halogenating enzymes
  publication-title: Nature
– start-page: 99
  year: 1997
  end-page: 110
  ident: bib16
  article-title: Transgenic crop plants using
  publication-title: Hairy Roots: Culture and Applications
– volume: 22
  start-page: 271
  year: 2016
  end-page: 277
  ident: bib29
  article-title: Efficient genetic transformation and regeneration system from hairy root of
  publication-title: Physiol. Mol. Biol. Plants
– volume: 55
  start-page: 6374
  year: 2016
  end-page: 6389
  ident: bib85
  article-title: Specific enzymatic halogenation - from the discovery of halogenated enzymes to their applications
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 341
  year: 2006
  end-page: 346
  ident: bib26
  article-title: Hairy root research: recent scenario and exciting prospects
  publication-title: Curr. Opin. Plant Biol.
– volume: 71
  start-page: 1191
  year: 2010
  end-page: 1197
  ident: bib60
  article-title: Phytoalexins from Brassicaceae: news from the front
  publication-title: Phytochemistry
– volume: 20
  start-page: 257
  year: 2014
  end-page: 262
  ident: bib77
  article-title: Hairy root induction and plant regeneration of medicinal plant
  publication-title: Physiol. Mol. Biol. Plants
– volume: 122
  start-page: 259
  year: 2015
  end-page: 266
  ident: bib64
  article-title: Iridoid and phenylethanoid glycoside production and phenotypical changes in plants regenerated from hairy roots of
  publication-title: Plant Cell Tissue Organ Cult.
– volume: 4
  start-page: 137
  year: 2014
  end-page: 145
  ident: bib59
  article-title: -Genes of
  publication-title: Russ. J. Genet.: Appl. Res.
– volume: 8
  start-page: 149
  year: 2009
  end-page: 170
  ident: bib81
  article-title: Herbivore induction of the glucosinolate–myrosinase defense system: major trends, biochemical bases and ecological significance
  publication-title: Phytochemistry Rev.
– volume: 15
  start-page: 99
  year: 2008
  end-page: 109
  ident: bib54
  article-title: Halogenation strategies in natural product biosynthesis
  publication-title: Chem. Biol.
– volume: 119
  start-page: 423
  year: 2010
  end-page: 428
  ident: bib39
  article-title: Variation of glucosinolates in vegetable crops of
  publication-title: Food Chem.
– volume: 97
  start-page: 339
  year: 2015
  end-page: 349
  ident: bib51
  article-title: Knockout of
  publication-title: Plant Physiol. Biochem.
– volume: 63
  start-page: 2147
  year: 1997
  end-page: 2154
  ident: bib33
  article-title: Four genes from
  publication-title: Appl. Environ. Microbiol.
– volume: 2017
  start-page: 6
  year: 2017
  ident: bib2
  article-title: Rapid separation of indole glucosinolates in roots of Chinese cabbage (
  publication-title: Int. J. Anal. Chem.
– volume: 64
  start-page: 5707
  year: 2013
  end-page: 5719
  ident: bib28
  article-title: Jasmonic acid and glucose synergistically modulate the accumulation of glucosinolates in
  publication-title: J. Exp. Bot.
– volume: 159
  start-page: 1055
  year: 2012
  end-page: 1063
  ident: bib82
  article-title: Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid
  publication-title: Plant Physiol.
– volume: 32
  start-page: 665
  year: 2010
  end-page: 673
  ident: bib25
  article-title: Genetic transformation of
  publication-title: Acta Physiol. Plant.
– volume: 6
  start-page: 88
  year: 2016
  ident: bib8
  article-title: A simple and efficient Agrobacterium tumefaciens-mediated plant transformation of
  publication-title: . 3 Biotech
– volume: vol. 37
  start-page: 149
  year: 2001
  end-page: 157
  ident: bib57
  article-title: Application of bioreactors for large-scale micropropagation systems of plants
  publication-title: Vitro Cell. Dev. Biol. Plant
– volume: 60
  start-page: 1231
  year: 2018
  end-page: 1248
  ident: bib63
  article-title: Biotechnological approaches in glucosinolate production
  publication-title: J. Integr. Plant Biol.
– volume: 21
  start-page: 182
  year: 2016
  ident: bib68
  article-title: Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories
  publication-title: Molecules
– volume: 72
  start-page: 540
  year: 2009
  end-page: 553
  ident: bib84
  article-title: Biohalogenation: nature's way to synthesize halogenated metabolites
  publication-title: J. Nat. Prod.
– volume: 3
  start-page: 751
  year: 2010
  end-page: 759
  ident: bib50
  article-title: Production of the cancer-preventive glucoraphanin in tobacco
  publication-title: Mol. Plant
– volume: 29
  start-page: 1519
  year: 2006
  end-page: 1531
  ident: bib35
  article-title: Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology
  publication-title: Plant Cell Environ.
– volume: 5
  start-page: 800
  year: 1987
  end-page: 804
  ident: bib31
  article-title: New routes to plant secondary products
  publication-title: Biotechnology
– volume: 468
  start-page: 461
  year: 2010
  end-page: 464
  ident: bib71
  article-title: Integrating carbon-halogen bond formation into medicinal plant metabolism
  publication-title: Nature
– volume: 20
  start-page: 15827
  year: 2015
  end-page: 15841
  ident: bib9
  article-title: Comparison of glucosinolate profiles in different tissues of nine Brassica crops
  publication-title: Molecules
– volume: 15
  start-page: 27
  year: 1990
  end-page: 38
  ident: bib32
  article-title: Over-expressing a yeast ornithine decarboxylase gene in transgenic roots of
  publication-title: Plant Mol. Biol.
– volume: 69
  start-page: 975
  year: 1982
  end-page: 977
  ident: bib19
  article-title: Demonstration of the intercellular compartmentation of l-menthone metabolism in peppermint (
  publication-title: Plant Physiol.
– volume: 13
  year: 2018
  ident: bib10
  article-title: Extended darkness induces internal turnover of glucosinolates in
  publication-title: PloS One
– volume: 11
  start-page: 279
  year: 2001
  end-page: 284
  ident: bib49
  article-title: Regeneration of plants from callus cultures of roots induced by
  publication-title: Cell Res.
– volume: 10
  start-page: 837
  year: 2013
  end-page: 863
  ident: bib42
  article-title: Alternative methodologies for halogenation of organic compounds
  publication-title: Curr. Org. Synth.
– volume: 46
  start-page: 4416
  year: 1998
  end-page: 4419
  ident: bib48
  article-title: Control of the bacterial wilt of tomato plants by a derivative of 3-indolepropionic acid based on selective actions on
  publication-title: J. Agric. Food Chem.
– volume: 129
  start-page: 503
  year: 2011
  end-page: 510
  ident: bib3
  article-title: Correlations between disease severity, glucosinolate profiles and total phenolics and
  publication-title: Sci. Hortic. (Canterb.)
– volume: 100
  start-page: 463
  year: 1997
  end-page: 473
  ident: bib55
  article-title: Getting to the root: the role of the
  publication-title: Physiol. Plantarum
– volume: 21
  start-page: 2567
  year: 2020
  ident: bib91
  article-title: Chlorinated auxins - How does
  publication-title: Int. J. Mol. Sci.
– start-page: 61
  year: 2005
  end-page: 78
  ident: bib80
  article-title: Practical aspects of bioreactor application in mass propagation of plants
  publication-title: Liquid Culture Systems for in Vitro Plant Propagation
– volume: 11
  start-page: 1586
  year: 2016
  end-page: 1594
  ident: bib21
  article-title: Recombinant flavin-dependent halogenases are functional in tobacco chloroplasts without co-expression of flavin reductase genes
  publication-title: Biotechnol. J.
– volume: 8
  start-page: 1
  year: 2013
  end-page: 10
  ident: bib86
  article-title: Verticillium suppression is associated with the glucosinolate composition of
  publication-title: PloS One
– volume: 12
  start-page: 445
  year: 2005
  end-page: 452
  ident: bib88
  article-title: A regioselective tryptophan 5-halogenase is involved in pyrroindomycin biosynthesis in
  publication-title: Chem. Biol.
– volume: 77
  start-page: 162
  year: 2012
  end-page: 170
  ident: bib43
  article-title: Effects of glucosinolates on a generalist and specialist leaf-chewing herbivore and an associated parasitoid
  publication-title: Phytochemistry
– volume: 16
  start-page: 696
  year: 2015
  end-page: 708
  ident: bib87
  article-title: Leaf and root glucosinolate profiles of Chinese cabbage (
  publication-title: J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.)
– volume: 40
  start-page: 1361
  year: 1995
  end-page: 1366
  ident: bib70
  article-title: Effect of halogen substitution of indole-3-acetic acid on biological activity in pea fruit
  publication-title: Phytochemistry
– volume: 97
  start-page: 59
  year: 2009
  end-page: 69
  ident: bib78
  article-title: Genetic transformation of
  publication-title: Plant Cell Tissue Organ Cult.
– volume: 5
  start-page: 800
  year: 1987
  ident: 10.1016/j.phytochem.2020.112371_bib31
  article-title: New routes to plant secondary products
  publication-title: Biotechnology
– volume: 97
  start-page: 339
  year: 2015
  ident: 10.1016/j.phytochem.2020.112371_bib51
  article-title: Knockout of GH3 genes in the moss Physcomitrella patens leads to increased IAA levels at elevated temperature and in darkness
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2015.10.013
– volume: 99
  start-page: 1336
  year: 1992
  ident: 10.1016/j.phytochem.2020.112371_bib72
  article-title: Light requirement for shoot regeneration in horseradish hairy roots
  publication-title: Plant Physiol.
  doi: 10.1104/pp.99.4.1336
– volume: 1242
  start-page: 49
  year: 2019
  ident: 10.1016/j.phytochem.2020.112371_bib4
  article-title: Induced production of indol-3-ylmethyl glucosinolates in hairy roots of Chinese cabbage (Brassica rapa subsp. pekinensis): perspectives to enhance the content of bioactive compounds
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2019.1242.7
– volume: vol. 37
  start-page: 149
  year: 2001
  ident: 10.1016/j.phytochem.2020.112371_bib57
  article-title: Application of bioreactors for large-scale micropropagation systems of plants
– volume: 64
  start-page: 5707
  year: 2013
  ident: 10.1016/j.phytochem.2020.112371_bib28
  article-title: Jasmonic acid and glucose synergistically modulate the accumulation of glucosinolates in Arabidopsis thaliana
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert348
– volume: 2
  start-page: 11148
  year: 2017
  ident: 10.1016/j.phytochem.2020.112371_bib58
  article-title: Strategies to produce chlorinated indole-3-acetic acid and indole-3-acetic acid intermediates
  publication-title: Chemistry
– volume: 20
  start-page: 15827
  year: 2015
  ident: 10.1016/j.phytochem.2020.112371_bib9
  article-title: Comparison of glucosinolate profiles in different tissues of nine Brassica crops
  publication-title: Molecules
  doi: 10.3390/molecules200915827
– volume: 6
  start-page: 88
  year: 2016
  ident: 10.1016/j.phytochem.2020.112371_bib8
  article-title: A simple and efficient Agrobacterium tumefaciens-mediated plant transformation of Brassica rapa ssp
  publication-title: pekinensis. 3 Biotech
– volume: 391
  start-page: 74
  year: 2009
  ident: 10.1016/j.phytochem.2020.112371_bib90
  article-title: Structural insights into regioselectivity in the enzymatic chlorination of tryptophan
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2009.06.008
– volume: 32
  start-page: 1168
  year: 2014
  ident: 10.1016/j.phytochem.2020.112371_bib47
  article-title: Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2014.03.007
– volume: 7
  start-page: 921
  year: 1995
  ident: 10.1016/j.phytochem.2020.112371_bib66
  article-title: Tryptophan biosynthesis and metabolism: biochemical and molecular genetics
  publication-title: Plant Cell
– volume: 72
  start-page: 2308
  year: 2011
  ident: 10.1016/j.phytochem.2020.112371_bib61
  article-title: Interaction of cruciferous phytoanticipins with plant fungal pathogens: indole glucosinolates are not metabolized but the corresponding desulfo-derivatives and nitriles are
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2011.08.018
– volume: 13
  year: 2018
  ident: 10.1016/j.phytochem.2020.112371_bib10
  article-title: Extended darkness induces internal turnover of glucosinolates in Arabidopsis thaliana leaves
  publication-title: PloS One
  doi: 10.1371/journal.pone.0202153
– volume: 69
  start-page: 975
  year: 1982
  ident: 10.1016/j.phytochem.2020.112371_bib19
  article-title: Demonstration of the intercellular compartmentation of l-menthone metabolism in peppermint (Mentha piperita) leaves
  publication-title: Plant Physiol.
  doi: 10.1104/pp.69.4.975
– volume: 32
  start-page: 665
  year: 2010
  ident: 10.1016/j.phytochem.2020.112371_bib25
  article-title: Genetic transformation of Harpagophytum procumbens by Agrobacterium rhizogenes: iridoid and phenylethanoid glycoside accumulation in hairy root cultures
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-009-0445-6
– volume: 15
  start-page: 27
  year: 1990
  ident: 10.1016/j.phytochem.2020.112371_bib32
  article-title: Over-expressing a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation
  publication-title: Plant Mol. Biol.
  doi: 10.1007/BF00017721
– volume: 70
  start-page: 1638
  year: 2009
  ident: 10.1016/j.phytochem.2020.112371_bib69
  article-title: Evolution of camalexin and structurally related indolic compounds
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2009.05.002
– volume: 55
  start-page: 6374
  year: 2016
  ident: 10.1016/j.phytochem.2020.112371_bib85
  article-title: Specific enzymatic halogenation - from the discovery of halogenated enzymes to their applications in vitro and in vivo
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201509573
– volume: 29
  start-page: 1519
  year: 2006
  ident: 10.1016/j.phytochem.2020.112371_bib35
  article-title: Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2006.01529.x
– volume: 46
  start-page: 4416
  year: 1998
  ident: 10.1016/j.phytochem.2020.112371_bib48
  article-title: Control of the bacterial wilt of tomato plants by a derivative of 3-indolepropionic acid based on selective actions on Ralstonia solanacearum
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf980205f
– volume: 21
  start-page: 2567
  year: 2020
  ident: 10.1016/j.phytochem.2020.112371_bib91
  article-title: Chlorinated auxins - How does Arabidopsis thaliana deal with them?
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21072567
– volume: 62
  start-page: 1757
  year: 2011
  ident: 10.1016/j.phytochem.2020.112371_bib45
  article-title: Auxin conjugates: their role for plant development and in the evolution of land plants
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq412
– volume: 35
  start-page: 189
  year: 2010
  ident: 10.1016/j.phytochem.2020.112371_bib38
  article-title: In vitro regeneration potentiality of Brassica genotypes in differential growth regulators
  publication-title: Bangladesh J. Agril. Res.
  doi: 10.3329/bjar.v35i2.5881
– volume: 8
  start-page: 269
  year: 2009
  ident: 10.1016/j.phytochem.2020.112371_bib83
  article-title: Glucosinolates, isothiocyanates and human health
  publication-title: Phytochemistry Rev.
  doi: 10.1007/s11101-008-9103-7
– volume: 63
  start-page: 2147
  year: 1997
  ident: 10.1016/j.phytochem.2020.112371_bib33
  article-title: Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.63.6.2147-2154.1997
– volume: 24
  start-page: 401
  year: 2006
  ident: 10.1016/j.phytochem.2020.112371_bib74
  article-title: A flavin-dependent tryptophan 6-halogenase and its use in modification of pyrrolnitrin biosynthesis
  publication-title: Biocatal. Biotransform.
  doi: 10.1080/10242420601033738
– volume: 9
  start-page: 341
  year: 2006
  ident: 10.1016/j.phytochem.2020.112371_bib26
  article-title: Hairy root research: recent scenario and exciting prospects
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2006.03.008
– volume: 8
  start-page: 149
  year: 2009
  ident: 10.1016/j.phytochem.2020.112371_bib81
  article-title: Herbivore induction of the glucosinolate–myrosinase defense system: major trends, biochemical bases and ecological significance
  publication-title: Phytochemistry Rev.
  doi: 10.1007/s11101-008-9117-1
– volume: 7
  start-page: 47
  year: 2006
  ident: 10.1016/j.phytochem.2020.112371_bib1
  article-title: The role of secondary metabolites in Arabidopsis and Brassica in the interaction with fungi
  publication-title: Curr. Top. Plant Biol.
– volume: 180
  start-page: 1939
  year: 1998
  ident: 10.1016/j.phytochem.2020.112371_bib40
  article-title: Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.180.7.1939-1943.1998
– volume: 60
  start-page: 1231
  year: 2018
  ident: 10.1016/j.phytochem.2020.112371_bib63
  article-title: Biotechnological approaches in glucosinolate production
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12705
– volume: 10
  start-page: 371
  year: 2011
  ident: 10.1016/j.phytochem.2020.112371_bib13
  article-title: Engineering secondary metabolite production in hairy roots
  publication-title: Phytochemistry Rev.
  doi: 10.1007/s11101-011-9210-8
– volume: 11
  start-page: 279
  year: 2001
  ident: 10.1016/j.phytochem.2020.112371_bib49
  article-title: Regeneration of plants from callus cultures of roots induced by Agrobacterium rhizogenes on Alhagi pseudoalhagi
  publication-title: Cell Res.
  doi: 10.1038/sj.cr.7290097
– volume: 16
  start-page: 696
  year: 2015
  ident: 10.1016/j.phytochem.2020.112371_bib87
  article-title: Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation
  publication-title: J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.)
  doi: 10.1631/jzus.B1400370
– volume: 2017
  start-page: 6
  year: 2017
  ident: 10.1016/j.phytochem.2020.112371_bib2
  article-title: Rapid separation of indole glucosinolates in roots of Chinese cabbage (Brassica rapa subsp. pekinensis) by High-Performance Liquid Chromatography with Diode Array Detection
  publication-title: Int. J. Anal. Chem.
  doi: 10.1155/2017/5125329
– volume: 187
  start-page: 47
  year: 1996
  ident: 10.1016/j.phytochem.2020.112371_bib15
  article-title: Rol genes and root initiation and development
  publication-title: Plant Soil
  doi: 10.1007/BF00011656
– volume: 132
  start-page: 1
  year: 2017
  ident: 10.1016/j.phytochem.2020.112371_bib36
  article-title: Influence of nutrient supply and elicitors on glucosinolate production in E. sativa hairy root cultures
  publication-title: Plant Cell Tissue Organ Cult.
– volume: 130
  start-page: 106
  year: 2016
  ident: 10.1016/j.phytochem.2020.112371_bib41
  article-title: Effect of growth temperature on glucosinolate profiles in Arabidopsis thaliana accessions
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2016.06.003
– volume: 114
  start-page: 6062
  year: 2017
  ident: 10.1016/j.phytochem.2020.112371_bib7
  article-title: Discovery of a widespread metabolic pathway within and among phenolic xenobiotics
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1700558114
– volume: 68
  start-page: 859
  year: 2002
  ident: 10.1016/j.phytochem.2020.112371_bib75
  article-title: Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids
  publication-title: Planta Med.
  doi: 10.1055/s-2002-34924
– start-page: 61
  year: 2005
  ident: 10.1016/j.phytochem.2020.112371_bib80
  article-title: Practical aspects of bioreactor application in mass propagation of plants
– volume: 97
  start-page: 59
  year: 2009
  ident: 10.1016/j.phytochem.2020.112371_bib78
  article-title: Genetic transformation of Ruta graveolens L. by Agrobacterium rhizogenes: hairy root cultures a promising approach for production of coumarins and furanocoumarins
  publication-title: Plant Cell Tissue Organ Cult.
  doi: 10.1007/s11240-009-9498-x
– volume: 133
  start-page: 19346
  year: 2011
  ident: 10.1016/j.phytochem.2020.112371_bib24
  article-title: Reengineering a tryptophan halogenase to preferentially chlorinate a direct alkaloid precursor
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2089348
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.phytochem.2020.112371_bib30
  article-title: Exploring the metabolic stability of engineered Hairy Roots after 16 years maintenance
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01486
– volume: 123
  start-page: 349
  year: 2015
  ident: 10.1016/j.phytochem.2020.112371_bib23
  article-title: Metabolic alterations of Verbascum nigrum L. plants and SAArT transformed roots as revealed by NMR-based metabolomics
  publication-title: Plant Cell Tissue Organ Cult.
  doi: 10.1007/s11240-015-0840-1
– volume: 15
  start-page: 99
  year: 2008
  ident: 10.1016/j.phytochem.2020.112371_bib54
  article-title: Halogenation strategies in natural product biosynthesis
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2008.01.006
– volume: 129
  start-page: 503
  year: 2011
  ident: 10.1016/j.phytochem.2020.112371_bib3
  article-title: Correlations between disease severity, glucosinolate profiles and total phenolics and Xanthomonas campestris pv. campestris inoculation of different Brassicaceae
  publication-title: Sci. Hortic. (Canterb.)
  doi: 10.1016/j.scienta.2011.04.009
– volume: 53
  start-page: 87
  year: 2003
  ident: 10.1016/j.phytochem.2020.112371_bib14
  article-title: Antisense-mediated down-regulation of putrescine N-methyltransferase activity in transgenic Nicotiana tabacum L. can lead to elevated levels of anatabine at the expense of nicotine
  publication-title: Plant Mol. Biol.
  doi: 10.1023/B:PLAN.0000009268.45851.95
– volume: 57
  start-page: 691
  year: 2004
  ident: 10.1016/j.phytochem.2020.112371_bib79
  article-title: Synthesis, isolation and antibacterial activities of monodechlorovancomycins
  publication-title: J. Antibiot. (Tokyo)
  doi: 10.7164/antibiotics.57.691
– volume: 119
  start-page: 423
  year: 2010
  ident: 10.1016/j.phytochem.2020.112371_bib39
  article-title: Variation of glucosinolates in vegetable crops of Brassica rapa L. ssp. pekinensis
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2009.08.051
– volume: 1
  year: 2014
  ident: 10.1016/j.phytochem.2020.112371_bib6
  article-title: Naphthaleneacetic acid solely induced extensive hairy root development that precedes extensive shoot regeneration from stalk explants of cauliflower (Brassica oleracea var. botrytis)
  publication-title: J. J. Biotech. Bioeng.
– volume: 11
  start-page: 1586
  year: 2016
  ident: 10.1016/j.phytochem.2020.112371_bib21
  article-title: Recombinant flavin-dependent halogenases are functional in tobacco chloroplasts without co-expression of flavin reductase genes
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201600337
– volume: 22
  start-page: 271
  year: 2016
  ident: 10.1016/j.phytochem.2020.112371_bib29
  article-title: Efficient genetic transformation and regeneration system from hairy root of Origanum vulgare
  publication-title: Physiol. Mol. Biol. Plants
  doi: 10.1007/s12298-016-0354-2
– volume: 101
  start-page: 127
  year: 2010
  ident: 10.1016/j.phytochem.2020.112371_bib18
  article-title: Adventitious shoot regeneration from cotyledonary explants of rapid-cycling fast plants of Brassica rapa L
  publication-title: Plant Cell Tiss. Organ Cult
  doi: 10.1007/s11240-010-9669-9
– volume: 4
  start-page: 1708
  year: 2010
  ident: 10.1016/j.phytochem.2020.112371_bib44
  article-title: Promoting scopolamine accumulation in transgenic plants of Atropa belladonna generated from hairy roots with over expression of pmt and h6h gene
  publication-title: J. Med. Plants Res.
– volume: 20
  start-page: 169
  year: 2003
  ident: 10.1016/j.phytochem.2020.112371_bib34
  article-title: Plant regeneration of peppermint, Mentha piperita, from the hairy roots generated from microsegment infected with Agrobacterium rhizogenes
  publication-title: Plant Biotechnol.
  doi: 10.5511/plantbiotechnology.20.169
– volume: 19
  start-page: 11
  year: 1987
  ident: 10.1016/j.phytochem.2020.112371_bib20
  article-title: A rapid DNA isolation procedure for small quantities of fresh leaf tissue
  publication-title: Phytochem. Bull.
– volume: 4
  start-page: 1675
  year: 2013
  ident: 10.1016/j.phytochem.2020.112371_bib27
  article-title: Hairy root cultures and plant regeneration in Solidago nemoralis transformed with Agrobacterium rhizogenes
  publication-title: Am. J. Plant Sci.
  doi: 10.4236/ajps.2013.48203
– volume: 4
  start-page: 137
  year: 2014
  ident: 10.1016/j.phytochem.2020.112371_bib59
  article-title: rol-Genes of Agrobacterium rhizogenes
  publication-title: Russ. J. Genet.: Appl. Res.
  doi: 10.1134/S2079059714020063
– volume: 468
  start-page: 461
  year: 2010
  ident: 10.1016/j.phytochem.2020.112371_bib71
  article-title: Integrating carbon-halogen bond formation into medicinal plant metabolism
  publication-title: Nature
  doi: 10.1038/nature09524
– volume: 21
  start-page: 182
  year: 2016
  ident: 10.1016/j.phytochem.2020.112371_bib68
  article-title: Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories
  publication-title: Molecules
  doi: 10.3390/molecules21020182
– volume: vol. 37
  start-page: 687
  year: 2001
  ident: 10.1016/j.phytochem.2020.112371_bib17
  article-title: Use of Ri-mediated transformation for production of transgenic plants
– volume: 71
  start-page: 1191
  year: 2010
  ident: 10.1016/j.phytochem.2020.112371_bib60
  article-title: Phytoalexins from Brassicaceae: news from the front
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2010.03.020
– volume: 159
  start-page: 1055
  year: 2012
  ident: 10.1016/j.phytochem.2020.112371_bib82
  article-title: Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.198457
– volume: 102
  start-page: 109
  year: 2010
  ident: 10.1016/j.phytochem.2020.112371_bib22
  article-title: Regeneration of transformed plants from hairy roots of Plumbago indica
  publication-title: Plant Cell Tissue Organ Cult.
  doi: 10.1007/s11240-010-9702-z
– volume: 460
  start-page: 848
  year: 2009
  ident: 10.1016/j.phytochem.2020.112371_bib12
  article-title: Mechanistic considerations of halogenating enzymes
  publication-title: Nature
  doi: 10.1038/nature08303
– volume: 23
  start-page: 109
  year: 2003
  ident: 10.1016/j.phytochem.2020.112371_bib5
  article-title: Regeneration of transformed forage legume plants by Agrobacterium rhizogenes R1601
  publication-title: Qatar Univ. Sci. J.
– volume: 10
  start-page: 151
  year: 1999
  ident: 10.1016/j.phytochem.2020.112371_bib76
  article-title: Plant “hairy root” culture
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/S0958-1669(99)80026-3
– volume: 65
  start-page: 37
  year: 2001
  ident: 10.1016/j.phytochem.2020.112371_bib62
  article-title: Shoot regeneration capacity from roots and transgenic hairy roots of tomato cultivars and wild related species
  publication-title: Plant Cell Tissue Organ Cult.
  doi: 10.1023/A:1010631731559
– volume: 11
  start-page: 1
  year: 2015
  ident: 10.1016/j.phytochem.2020.112371_bib67
  article-title: Glucosinolates and their important biological and anti-cancer effects: a review
  publication-title: Jordan J. Agric. Sci.
  doi: 10.12816/0030070
– volume: 12
  start-page: 445
  year: 2005
  ident: 10.1016/j.phytochem.2020.112371_bib88
  article-title: A regioselective tryptophan 5-halogenase is involved in pyrroindomycin biosynthesis in Streptomyces rugosporus LL-42D005
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2005.02.005
– volume: 6
  start-page: 67
  year: 2000
  ident: 10.1016/j.phytochem.2020.112371_bib65
  article-title: Transformation of pakchoi (Brassica rapa L. ssp. chinensis) by Agrobacterium infiltration
  publication-title: Mol. Breed.
  doi: 10.1023/A:1009658128964
– volume: 56
  start-page: 224
  year: 2009
  ident: 10.1016/j.phytochem.2020.112371_bib89
  article-title: Hairy root induction and plant regeneration of Rehmannia glutinosa Libosch. f. hueichingensis Hsiao via Agrobacterium rhizogenes-mediated transformation
  publication-title: Russ. J. Plant Physiol.
  doi: 10.1134/S1021443709020113
– volume: 72
  start-page: 540
  year: 2009
  ident: 10.1016/j.phytochem.2020.112371_bib84
  article-title: Biohalogenation: nature's way to synthesize halogenated metabolites
  publication-title: J. Nat. Prod.
  doi: 10.1021/np800651m
– volume: 10
  start-page: 837
  year: 2013
  ident: 10.1016/j.phytochem.2020.112371_bib42
  article-title: Alternative methodologies for halogenation of organic compounds
  publication-title: Curr. Org. Synth.
  doi: 10.2174/157017941006140206102541
– volume: 50
  start-page: 1587
  year: 2009
  ident: 10.1016/j.phytochem.2020.112371_bib73
  article-title: Auxin amidohydrolases from Brassica rapa cleave the alanine conjugate of indolepropionic acid as a preferable substrate: a biochemical and modeling approach
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcp101
– volume: 77
  start-page: 162
  year: 2012
  ident: 10.1016/j.phytochem.2020.112371_bib43
  article-title: Effects of glucosinolates on a generalist and specialist leaf-chewing herbivore and an associated parasitoid
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2012.01.005
– volume: 8
  start-page: 1
  year: 2013
  ident: 10.1016/j.phytochem.2020.112371_bib86
  article-title: Verticillium suppression is associated with the glucosinolate composition of Arabidopsis thaliana leaves
  publication-title: PloS One
  doi: 10.1371/journal.pone.0071877
– volume: 11
  start-page: 111
  year: 1987
  ident: 10.1016/j.phytochem.2020.112371_bib53
  article-title: Callus initiation and regeneration capacities in Brassica species
  publication-title: Plant Cell Tissue Organ Cult.
  doi: 10.1007/BF00041844
– start-page: 99
  year: 1997
  ident: 10.1016/j.phytochem.2020.112371_bib16
  article-title: Transgenic crop plants using Agrobacterium rhizogenes-mediated transformation
– volume: 44
  start-page: 407
  year: 1997
  ident: 10.1016/j.phytochem.2020.112371_bib46
  article-title: Glucosinolate content in susceptible and tolerant Chinese cabbage varieties during the development of the clubroot disease
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(96)00498-0
– volume: 35
  start-page: 134
  year: 2010
  ident: 10.1016/j.phytochem.2020.112371_bib37
  article-title: 5,6-Dichloro-3-acetic acid and 4-chloroindole-3-acetic acid, two potent candidates for new rooting promoters without estrogenic activity
  publication-title: J. Pestic. Sci.
  doi: 10.1584/jpestics.G09-69
– volume: 40
  start-page: 1361
  year: 1995
  ident: 10.1016/j.phytochem.2020.112371_bib70
  article-title: Effect of halogen substitution of indole-3-acetic acid on biological activity in pea fruit
  publication-title: Phytochemistry
  doi: 10.1016/0031-9422(95)00367-G
– volume: 19
  start-page: 563
  year: 2000
  ident: 10.1016/j.phytochem.2020.112371_bib56
  article-title: Plant regeneration from hairy roots induced by infection with Agrobacterium rhizogenes in Crotalaria juncea L
  publication-title: Plant Cell Rep.
  doi: 10.1007/s002990050774
– volume: 20
  start-page: 257
  year: 2014
  ident: 10.1016/j.phytochem.2020.112371_bib77
  article-title: Hairy root induction and plant regeneration of medicinal plant Dracocephalum kotschyi
  publication-title: Physiol. Mol. Biol. Plants
  doi: 10.1007/s12298-013-0217-z
– volume: 3
  start-page: 751
  year: 2010
  ident: 10.1016/j.phytochem.2020.112371_bib50
  article-title: Production of the cancer-preventive glucoraphanin in tobacco
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssq020
– volume: 26
  start-page: 318
  year: 2008
  ident: 10.1016/j.phytochem.2020.112371_bib11
  article-title: Functions of rol genes in plant secondary metabolism
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2008.03.001
– volume: 122
  start-page: 259
  year: 2015
  ident: 10.1016/j.phytochem.2020.112371_bib64
  article-title: Iridoid and phenylethanoid glycoside production and phenotypical changes in plants regenerated from hairy roots of Rehmannia glutinosa Libosch
  publication-title: Plant Cell Tissue Organ Cult.
  doi: 10.1007/s11240-015-0727-1
– volume: 100
  start-page: 463
  year: 1997
  ident: 10.1016/j.phytochem.2020.112371_bib55
  article-title: Getting to the root: the role of the Agrobacterium rhizogenes rol-genes in the formation of hairy roots
  publication-title: Physiol. Plantarum
  doi: 10.1111/j.1399-3054.1997.tb03050.x
– volume: 21
  start-page: 165
  year: 2004
  ident: 10.1016/j.phytochem.2020.112371_bib52
  article-title: Hairy root-mediated transgenic plant regeneration in Egyptian clover (Trifolium alexandrinum L.)
  publication-title: Plant Biotechnol.
  doi: 10.5511/plantbiotechnology.21.165
SSID ssj0005566
Score 2.3692496
Snippet During the last years halogenated compounds have drawn a lot of attention. Metabolites with one or more halogen atoms are often more active than their...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 112371
SubjectTerms Agrobacterium rhizogenes
Brassica
Brassica rapa
Brassica rapa subsp. pekinensis
Brassicaceae
Chinese cabbage
Cl-IAN
Cl-trp
enzyme activity
enzymes
Flavin-dependent tryptophan halogenases
genes
Glucosinolates
Hairy root cultures
halogens
indole acetic acid
Indoles
mature plants
metabolites
phenotype
Plant regeneration
Plant Roots
Plants, Genetically Modified
roots
seeds
temperature
transgenic plants
tryptophan
Title Hairy root transformation of Brassica rapa with bacterial halogenase genes and regeneration to adult plants to modify production of indolic compounds
URI https://dx.doi.org/10.1016/j.phytochem.2020.112371
https://www.ncbi.nlm.nih.gov/pubmed/32283438
https://www.proquest.com/docview/2389684759
https://www.proquest.com/docview/2439438424
Volume 175
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQ9NBLVejXtgUZiWsgjsdx0hsg0JaVOCAquFmO16Zb0WS1hMNe-i_6fzsTJys4AIeeIid24njG4-dk5g1jewVuboLyNhGy0gkUONNtBjopU6mdclNKekTeFuf5-AecXavrNXY8xMKQW2Vv-6NN76x1f-agH82D-WxGMb6oPpDhlJNC5B0nKIAmLd__88DNQ8X_lVg5odqPfLzwTVpKTEUh6VkXTiO1eGqFegqBdivR6Vv2poeQ_DD2cpOt-XqLvTpqEOYt37G_YztbLDkC4pa3D1BpU_Mm8KMFgmWUC6fE55w-wvIq8jXjHX_Shxxf47rGb8gEcltP-cLfdMzU3R3ahneEHXx-S_4zVP7dTGdhyeeRObZ_DG70iW-Yk8M65W26e88uT08uj8dJn3shcZBCmzhVemmF8sIjKLEBgYqowEGFu1cZSiiDBB9E6XQlQRc5WLTgU68zV4m8BPmBrddN7T8xrjLvADc5IVUOpNOlsAJ1IChtsVGWjlg-DLdxPS85pce4NYMD2i-zkpMhOZkopxFLVw3nkZrj5SbfBnmaR1pmcAF5ufHuoAEG5yD9WLG1b-7vDMKeMi-IOfGZOhSCLAvIYMQ-RvVZ9VoSBxFe_Pw_3fvCXlMpuhJ_Zevt4t5vI2Bqq51uRuywjcPvk_E5HScXV5N_GHYZ5Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQVGovFS19bAutkbimxPE4TrgBKlpaymmRuFmO16Zb0WS1hMNe-i_6fzsTJys4UA4ck9iJk3n4szPzDWN7BS5ugvI2EbLSCRRo6TYDnZSp1E65KRU9omiL83x8Ad8u1eUaOx5yYSissvf90ad33ro_s99_zf35bEY5vqg-kKHJSSFy4gTdADRfKmPw5c-dOA8Vf1hi64Sa3wvywldpqTIV5aRnXT6N1OKhKeohCNpNRSeb7GWPIflhHOYrtubr1-zZUYM4b7nF_o7tbLHkiIhb3t6BpU3Nm8CPFoiWUTCcKp9z2oXlVSRsxjv-pJ0cX-PExq_IB3JbT_nCX3XU1N0d2oZ3jB18fk0BNHT8u5nOwpLPI3Vs_xhc6RPhMKeIdSrcdPOGTU6-To7HSV98IXGQQps4VXpphfLCIyqxAZGKqMBBhctXGUoogwQfROl0JUEXOVh04VOvM1eJvAT5lq3XTe3fM64y7wBXOSFVDqTTpbAClSAobbFTlo5YPnxu43picqqPcW2GCLRfZiUnQ3IyUU4jlq46ziM3x-NdDgZ5mntqZnAGebzz7qABBo2Q_qzY2je3NwZxT5kXRJ34nzaUgywLyGDE3kX1WY1aEgkRXvzwlOF9Zs_Hkx9n5uz0_PtH9oKuxLjibbbeLm79DqKntvrUWcc_h_MZ0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hairy+root+transformation+of+Brassica+rapa+with+bacterial+halogenase+genes+and+regeneration+to+adult+plants+to+modify+production+of+indolic+compounds&rft.jtitle=Phytochemistry+%28Oxford%29&rft.au=Neumann%2C+Madeleine&rft.au=Prahl%2C+Swantje&rft.au=Caputi%2C+Lorenzo&rft.au=Hill%2C+Lionel&rft.date=2020-07-01&rft.eissn=1873-3700&rft.volume=175&rft.spage=112371&rft_id=info:doi/10.1016%2Fj.phytochem.2020.112371&rft_id=info%3Apmid%2F32283438&rft.externalDocID=32283438
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9422&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9422&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9422&client=summon