Joule heating induced heat transfer for electroosmotic flow of power-law fluids in a microcapillary

Capillary electrophoresis systems mainly used for chemical analyses and biomedical diagnoses usually involve biofluids in electrolyte buffers which cannot be treated as Newtonian fluids. In addition, the presence of Joule heating can limit the performance of capillary electrophoresis systems. This s...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 55; no. 7-8; pp. 2044 - 2051
Main Authors Zhao, Cunlu, Yang, Chun
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.03.2012
Elsevier
Subjects
Online AccessGet full text
ISSN0017-9310
1879-2189
DOI10.1016/j.ijheatmasstransfer.2011.12.005

Cover

Loading…
Abstract Capillary electrophoresis systems mainly used for chemical analyses and biomedical diagnoses usually involve biofluids in electrolyte buffers which cannot be treated as Newtonian fluids. In addition, the presence of Joule heating can limit the performance of capillary electrophoresis systems. This study presents a detailed analysis of Joule heating induced heat transfer for electroosmotic flow (EOF) of power-law fluids in a microcapillary. The steady, fully developed EOF field of power-law fluids governed by the Cauchy momentum equation is solved analytically by using two approximate schemes for modified Bessel functions, I0(x) and I1(x). Subsequently, under the widely accepted assumption of thin electric double layer (EDL) in microfluidics, an exact solution for temperature field induced by Joule heating is analytically solved from the energy equation subject to a mixed thermal boundary condition outside the capillary. Closed form expressions are obtained for the two-dimensional temperature field, the average fluid temperature and the local Nusselt number in both thermally developing and thermally developed regions. It is found that the rheological properties of power-law fluids affect the heat transfer characteristics mainly through the thermal Peclet number.
AbstractList Capillary electrophoresis systems mainly used for chemical analyses and biomedical diagnoses usually involve biofluids in electrolyte buffers which cannot be treated as Newtonian fluids. In addition, the presence of Joule heating can limit the performance of capillary electrophoresis systems. This study presents a detailed analysis of Joule heating induced heat transfer for electroosmotic flow (EOF) of power-law fluids in a microcapillary. The steady, fully developed EOF field of power-law fluids governed by the Cauchy momentum equation is solved analytically by using two approximate schemes for modified Bessel functions, I0(x) and I1(x). Subsequently, under the widely accepted assumption of thin electric double layer (EDL) in microfluidics, an exact solution for temperature field induced by Joule heating is analytically solved from the energy equation subject to a mixed thermal boundary condition outside the capillary. Closed form expressions are obtained for the two-dimensional temperature field, the average fluid temperature and the local Nusselt number in both thermally developing and thermally developed regions. It is found that the rheological properties of power-law fluids affect the heat transfer characteristics mainly through the thermal Peclet number.
Author Zhao, Cunlu
Yang, Chun
Author_xml – sequence: 1
  givenname: Cunlu
  surname: Zhao
  fullname: Zhao, Cunlu
– sequence: 2
  givenname: Chun
  surname: Yang
  fullname: Yang, Chun
  email: mcyang@ntu.edu.sg
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25912927$$DView record in Pascal Francis
BookMark eNqVkU1vFDEMhiNUJLaF_5ALgssMduYzN1BFgaoSFzhH2cSBrDKTJZlhxb9vhi0c4AKnyM6jR7bfS3Yxx5kYe4lQI2D_6lD7w1fSy6RzXpKes6NUC0CsUdQA3SO2w3GQlcBRXrAdAA6VbBCesMucD1sJbb9j5jaugfhm8vMX7me7GrI_a_5Ly11MnAKZJcWYp7h4w12IJx4dP8YTpSroU-ms3uZi4JpP3qRo9NGHoNOPp-yx0yHTs4f3in2-efvp-n119_Hdh-s3d5VpoV2qvTNGyN72WsLgGjOaznadxXFvm24EuSfQBKPZg5USRhTgxEBbv20GbExzxV6cvccUv62UFzX5bKjMMFNcs5KiQdlh2xfy-QOps9HBlUWNz-qY_FTmVaKTKKQYCvf6zJV1ck7kfiMIaotBHdTfMagtBoVClRiK4uYPhfFLOXacC-7D_4huzyIqJ_zuy282nuaSlk8lGmWj_3fZPbAfuZw
CODEN IJHMAK
CitedBy_id crossref_primary_10_1088_1402_4896_aafa51
crossref_primary_10_1016_j_colsurfa_2022_129710
crossref_primary_10_1016_j_colsurfa_2015_12_034
crossref_primary_10_1038_s41598_017_11473_w
crossref_primary_10_1115_1_4007542
crossref_primary_10_1016_j_cis_2013_09_001
crossref_primary_10_1007_s10765_016_2082_9
crossref_primary_10_1016_j_aej_2019_11_020
crossref_primary_10_3934_math_2021352
crossref_primary_10_1007_s12043_021_02224_8
crossref_primary_10_3390_mi11040421
crossref_primary_10_1016_j_ijthermalsci_2015_09_024
crossref_primary_10_33959_cuijca_v4i2_44
crossref_primary_10_3390_mi8010028
crossref_primary_10_1108_HFF_07_2021_0495
crossref_primary_10_1002_elps_201400473
crossref_primary_10_1002_elps_201200507
crossref_primary_10_3390_mi13030405
crossref_primary_10_1016_j_applthermaleng_2021_117314
crossref_primary_10_1063_5_0144228
crossref_primary_10_1016_j_rinp_2016_11_014
crossref_primary_10_3390_mi10060363
crossref_primary_10_3390_mi14020371
crossref_primary_10_1007_s40430_018_1348_5
crossref_primary_10_1142_S1793524521500716
crossref_primary_10_1088_1742_6596_1549_5_052079
crossref_primary_10_1016_j_icheatmasstransfer_2014_12_002
crossref_primary_10_1016_j_energy_2013_04_030
Cites_doi 10.1007/s10404-006-0135-2
10.1016/S0020-7225(02)00143-X
10.1115/1.1597624
10.1016/j.ijheatmasstransfer.2005.07.048
10.1126/science.261.5123.895
10.1016/S0020-7225(02)00379-8
10.1016/j.aca.2005.11.046
10.1016/S0017-9310(98)00125-2
10.1016/j.ijheatmasstransfer.2006.07.037
10.1006/jcis.1997.5091
10.1002/elps.200500314
10.1002/elps.200900564
10.1016/j.jnnfm.2005.04.004
10.1016/j.ijheatmasstransfer.2004.02.023
10.1016/S1672-6529(07)60001-8
10.1021/ac970846u
10.1002/1522-2683(200210)23:20<3461::AID-ELPS3461>3.0.CO;2-8
10.2514/1.3769
10.1002/elps.200305594
10.1016/j.ijmachtools.2007.09.004
10.1016/0021-9673(93)80045-A
10.1016/j.jcis.2008.06.028
10.1016/0021-9797(75)90310-0
10.1007/s10404-006-0089-4
10.1016/S0021-9673(02)00843-9
10.1016/S0021-9673(00)01074-8
10.1299/jsmeb.49.812
10.1016/j.icheatmasstransfer.2004.05.010
10.1016/S0021-9673(01)90217-1
10.1021/ac0101398
10.1006/jcis.1999.6250
10.1016/j.ijheatmasstransfer.2004.02.020
10.1021/j100895a062
10.1016/j.ijheatmasstransfer.2005.01.019
10.1115/IMECE1999-0294
10.1016/j.aca.2003.09.066
10.1080/10407780500283309
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7ST
C1K
SOI
DOI 10.1016/j.ijheatmasstransfer.2011.12.005
DatabaseName CrossRef
Pascal-Francis
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Environment Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 2051
ExternalDocumentID 25912927
10_1016_j_ijheatmasstransfer_2011_12_005
S0017931011007083
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7ST
C1K
SOI
ID FETCH-LOGICAL-c404t-bfcc296d6a907f3c8c5d55d18bd35809be0ae08cb0d9908120f27e09be43713c3
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Wed Jul 30 11:10:49 EDT 2025
Mon Jul 21 09:14:40 EDT 2025
Tue Jul 01 02:16:07 EDT 2025
Thu Apr 24 23:09:10 EDT 2025
Fri Feb 23 02:23:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7-8
Keywords Joule heating induced heat transfer
Electroosmotic flow of non-Newtonian fluids
Capillary electrophoresis
Nusselt number
Joule heating
Circular pipe
Theoretical study
Capillary flow
Velocity distribution
Non-Newtonian fluids
Power law fluid
Microchannel
Electroosmosis
Microstructure
Microfluidics
Heat transfer
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-bfcc296d6a907f3c8c5d55d18bd35809be0ae08cb0d9908120f27e09be43713c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 923195146
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_923195146
pascalfrancis_primary_25912927
crossref_primary_10_1016_j_ijheatmasstransfer_2011_12_005
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2011_12_005
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2011_12_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-01
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of heat and mass transfer
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Yan, Yang, Huang (b0055) 2007; 3
Das, Jain, Ghoshdastidar (b0130) 2008; 48
Zade, Manzari, Hannani (b0090) 2007; 50
Rice, Whitehead (b0020) 1965; 69
Iverson, Maynes, Webb (b0115) 2004; 18
Zhao, Zholkovskij, Masliyah, Yang (b0165) 2008; 326
Kamisli (b0150) 2003; 41
Horiuchi, Dutta (b0095) 2006; 49
Koh, Ong, Chen, Lam, Chai (b0145) 2004; 31
Tang, Yang, Chai, Gong (b0070) 2004; 507
Xuan, Sinton, Li (b0215) 2004; 47
Harrison, Fluri, Seiler, Fan, Effenhauser, Manz (b0005) 1993; 261
Li (b0170) 2004
Liechty, Webb, Maynes (b0125) 2005; 48
Yang, Li, Masliyah (b0175) 1998; 41
Levine, Marriott, Neale, Epstein (b0025) 1975; 52
Ng, Gitlin, Stroock, Whitesides (b0080) 2002; 23
Xu, Uchiyama, Shimosaka, Hobo (b0085) 2001; 907
Maynes, Webb (b0105) 2003; 125
Zu, Yan (b0075) 2006; 3
Zhao, Yang (b0185) 2010; 31
Chein, Yang, Lin (b0195) 2006; 27
Das, Chakraborty (b0155) 2006; 559
Wainright, Nguyen, Bjornson, Boone (b0015) 2003; 24
E.B. Cummings, PIV measurement of electro-osmotic and pressure-driven flow components in microfluidic systems, in: Proceedings of ASME Microelectromechanical Systems (MEMS) 1999, pp. 377–382.
Zimmerman, Rees, Craven (b0135) 2006; 2
Gaudioso, Craighead (b0050) 2002; 971
Patankar, Hu (b0060) 1998; 70
M. Abramowitz, I.A. Stegun, Handbook of mathematical functions, U.S. Department of Commerce, National Bureau of Stands, Washington DC, 1970.
Huilgol, You (b0140) 2005; 128
Burmeister (b0210) 1993
Chakraborty (b0100) 2006; 49
Tsuda, Ikedo, Jones, Dadoo, Zare (b0040) 1993; 632
Horiuchi, Dutta (b0110) 2004; 47
Hu, Harrison, Masliyah (b0065) 1999; 215
Broderick, Webb, Maynes (b0120) 2005; 48
S.L. Broderick, Thermally Developing Electro-osmotic Convection in Circular Microchannels, Brigham Young University, Master thesis, 2004.
Kang, Yang, Huang (b0035) 2002; 40
Masliyah, Bhattacharjee (b0160) 2006
Gobie, Ivory (b0190) 1990; 516
Santiago (b0010) 2001; 73
Yang, Li (b0030) 1997; 194
Deen (b0200) 1998
Zade (10.1016/j.ijheatmasstransfer.2011.12.005_b0090) 2007; 50
Liechty (10.1016/j.ijheatmasstransfer.2011.12.005_b0125) 2005; 48
Yan (10.1016/j.ijheatmasstransfer.2011.12.005_b0055) 2007; 3
Gobie (10.1016/j.ijheatmasstransfer.2011.12.005_b0190) 1990; 516
Yang (10.1016/j.ijheatmasstransfer.2011.12.005_b0030) 1997; 194
Iverson (10.1016/j.ijheatmasstransfer.2011.12.005_b0115) 2004; 18
Yang (10.1016/j.ijheatmasstransfer.2011.12.005_b0175) 1998; 41
Zu (10.1016/j.ijheatmasstransfer.2011.12.005_b0075) 2006; 3
Maynes (10.1016/j.ijheatmasstransfer.2011.12.005_b0105) 2003; 125
Harrison (10.1016/j.ijheatmasstransfer.2011.12.005_b0005) 1993; 261
Gaudioso (10.1016/j.ijheatmasstransfer.2011.12.005_b0050) 2002; 971
Huilgol (10.1016/j.ijheatmasstransfer.2011.12.005_b0140) 2005; 128
Tsuda (10.1016/j.ijheatmasstransfer.2011.12.005_b0040) 1993; 632
Ng (10.1016/j.ijheatmasstransfer.2011.12.005_b0080) 2002; 23
Broderick (10.1016/j.ijheatmasstransfer.2011.12.005_b0120) 2005; 48
Rice (10.1016/j.ijheatmasstransfer.2011.12.005_b0020) 1965; 69
Koh (10.1016/j.ijheatmasstransfer.2011.12.005_b0145) 2004; 31
Zhao (10.1016/j.ijheatmasstransfer.2011.12.005_b0185) 2010; 31
Burmeister (10.1016/j.ijheatmasstransfer.2011.12.005_b0210) 1993
Horiuchi (10.1016/j.ijheatmasstransfer.2011.12.005_b0095) 2006; 49
Levine (10.1016/j.ijheatmasstransfer.2011.12.005_b0025) 1975; 52
Das (10.1016/j.ijheatmasstransfer.2011.12.005_b0130) 2008; 48
10.1016/j.ijheatmasstransfer.2011.12.005_b0205
Xu (10.1016/j.ijheatmasstransfer.2011.12.005_b0085) 2001; 907
Tang (10.1016/j.ijheatmasstransfer.2011.12.005_b0070) 2004; 507
10.1016/j.ijheatmasstransfer.2011.12.005_b0045
Masliyah (10.1016/j.ijheatmasstransfer.2011.12.005_b0160) 2006
Xuan (10.1016/j.ijheatmasstransfer.2011.12.005_b0215) 2004; 47
Kamisli (10.1016/j.ijheatmasstransfer.2011.12.005_b0150) 2003; 41
Zimmerman (10.1016/j.ijheatmasstransfer.2011.12.005_b0135) 2006; 2
10.1016/j.ijheatmasstransfer.2011.12.005_b0180
Wainright (10.1016/j.ijheatmasstransfer.2011.12.005_b0015) 2003; 24
Li (10.1016/j.ijheatmasstransfer.2011.12.005_b0170) 2004
Patankar (10.1016/j.ijheatmasstransfer.2011.12.005_b0060) 1998; 70
Santiago (10.1016/j.ijheatmasstransfer.2011.12.005_b0010) 2001; 73
Chakraborty (10.1016/j.ijheatmasstransfer.2011.12.005_b0100) 2006; 49
Das (10.1016/j.ijheatmasstransfer.2011.12.005_b0155) 2006; 559
Zhao (10.1016/j.ijheatmasstransfer.2011.12.005_b0165) 2008; 326
Deen (10.1016/j.ijheatmasstransfer.2011.12.005_b0200) 1998
Chein (10.1016/j.ijheatmasstransfer.2011.12.005_b0195) 2006; 27
Horiuchi (10.1016/j.ijheatmasstransfer.2011.12.005_b0110) 2004; 47
Hu (10.1016/j.ijheatmasstransfer.2011.12.005_b0065) 1999; 215
Kang (10.1016/j.ijheatmasstransfer.2011.12.005_b0035) 2002; 40
References_xml – volume: 3
  start-page: 333
  year: 2007
  end-page: 340
  ident: b0055
  article-title: Effect of finite reservoir size on electroosmotic flow in microchannels
  publication-title: Microfluid. Nanofluid.
– volume: 52
  start-page: 136
  year: 1975
  end-page: 149
  ident: b0025
  article-title: Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials
  publication-title: J. Colloid Interface Sci.
– volume: 47
  start-page: 3085
  year: 2004
  end-page: 3095
  ident: b0110
  article-title: Joule heating effects in electroosmotically driven microchannel flows
  publication-title: Int. J. Heat Mass Transfer
– volume: 23
  start-page: 3461
  year: 2002
  end-page: 3473
  ident: b0080
  article-title: Components for integrated poly(dimethylsiloxane) microfluidic systems
  publication-title: Electrophoresis
– volume: 69
  start-page: 4017
  year: 1965
  end-page: 4024
  ident: b0020
  article-title: Electrokinetic flow in a narrow cylindrical capillary
  publication-title: J. Phys. Chem.
– volume: 31
  start-page: 973
  year: 2010
  end-page: 979
  ident: b0185
  article-title: Nonlinear Smoluchowski velocity for electroosmosis of power-law fluids over a surface with arbitrary zeta potentials
  publication-title: Electrophoresis
– volume: 3
  start-page: 179
  year: 2006
  end-page: 186
  ident: b0075
  article-title: Numerical simulation of electroosmotic flow near earthworm surface
  publication-title: J. Bionic Eng.
– volume: 128
  start-page: 126
  year: 2005
  end-page: 143
  ident: b0140
  article-title: Application of the augmented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel–Bulkley fluids
  publication-title: J. Non-Newtonian Fluid Mech.
– year: 2004
  ident: b0170
  article-title: Electrokinetics in Microfluidics
– volume: 41
  start-page: 4229
  year: 1998
  end-page: 4249
  ident: b0175
  article-title: Modeling forced liquid convection in rectangular microchannels with electrokinetic effects
  publication-title: Int. J. Heat Mass Transfer
– volume: 49
  start-page: 810
  year: 2006
  end-page: 813
  ident: b0100
  article-title: Analytical solutions of Nusselt number for thermally fully developed flow in microtubes under a combined action of electroosmotic forces and imposed pressure gradients
  publication-title: Int. J. Heat Mass Transfer
– volume: 47
  start-page: 3145
  year: 2004
  end-page: 3157
  ident: b0215
  article-title: Thermal end effects on electroosmotic flow in a capillary
  publication-title: Int. J. Heat Mass Transfer
– volume: 70
  start-page: 1870
  year: 1998
  end-page: 1881
  ident: b0060
  article-title: Numerical simulation of electroosmotic flow
  publication-title: Anal. Chem.
– volume: 516
  start-page: 191
  year: 1990
  end-page: 210
  ident: b0190
  article-title: Thermal model of capillary electrophoresis and a method for counteracting thermal band broadening
  publication-title: J. Chromatogr. A
– volume: 261
  start-page: 895
  year: 1993
  end-page: 897
  ident: b0005
  article-title: Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip
  publication-title: Science
– volume: 73
  start-page: 2353
  year: 2001
  end-page: 2365
  ident: b0010
  article-title: Electroosmotic flows in microchannels with finite inertial and pressure forces
  publication-title: Anal. Chem.
– volume: 194
  start-page: 95
  year: 1997
  end-page: 107
  ident: b0030
  article-title: Electrokinetic effects on pressure-driven liquid flows in rectangular microchannels
  publication-title: J. Colloid Interface Sci.
– volume: 326
  start-page: 503
  year: 2008
  end-page: 510
  ident: b0165
  article-title: Analysis of electroosmotic flow of power-law fluids in a slit microchannel
  publication-title: J. Colloid Interface Sci.
– reference: M. Abramowitz, I.A. Stegun, Handbook of mathematical functions, U.S. Department of Commerce, National Bureau of Stands, Washington DC, 1970.
– volume: 632
  start-page: 201
  year: 1993
  end-page: 207
  ident: b0040
  article-title: Observation of flow profiles in electroosmosis in a rectangular capillary
  publication-title: J. Chromatogr.
– volume: 50
  start-page: 1087
  year: 2007
  end-page: 1096
  ident: b0090
  article-title: An analytical solution for thermally fully developed combined pressure – electroosmotically driven flow in microchannels
  publication-title: Int. J. Heat Mass Transfer
– reference: S.L. Broderick, Thermally Developing Electro-osmotic Convection in Circular Microchannels, Brigham Young University, Master thesis, 2004.
– volume: 48
  start-page: 2360
  year: 2005
  end-page: 2371
  ident: b0125
  article-title: Convective heat transfer characteristics of electro-osmotically generated flow in microtubes at high wall potential
  publication-title: Int. J. Heat Mass Transfer
– reference: E.B. Cummings, PIV measurement of electro-osmotic and pressure-driven flow components in microfluidic systems, in: Proceedings of ASME Microelectromechanical Systems (MEMS) 1999, pp. 377–382.
– year: 2006
  ident: b0160
  article-title: Electrokinetic and Colloid Transport Phenomena
– volume: 41
  start-page: 1059
  year: 2003
  end-page: 1083
  ident: b0150
  article-title: Flow analysis of a power-law fluid confined in an extrusion die
  publication-title: Int. J. Eng. Sci.
– year: 1993
  ident: b0210
  article-title: Convective Heat Transfer
– volume: 48
  start-page: 415
  year: 2008
  end-page: 426
  ident: b0130
  article-title: Fluid flow analysis of magnetorheological abrasive flow finishing (MRAFF) process
  publication-title: Int. J. Mach. Tools Manufact.
– volume: 971
  start-page: 249
  year: 2002
  end-page: 253
  ident: b0050
  article-title: Characterizing electroosmotic flow in microfluidic devices
  publication-title: J. Chromatogr. A
– volume: 125
  start-page: 889
  year: 2003
  end-page: 895
  ident: b0105
  article-title: Fully-developed thermal transport in combined pressure and electro-osmotically driven flow in microchannels
  publication-title: J. Heat Transfer
– volume: 18
  start-page: 486
  year: 2004
  end-page: 493
  ident: b0115
  article-title: Thermally developing electroosmotic convection in rectangular microchannels with vanishing Debye-layer thickness
  publication-title: J. Thermophys. Heat Transfer
– volume: 215
  start-page: 300
  year: 1999
  end-page: 312
  ident: b0065
  article-title: Numerical model of electrokinetic flow for capillary electrophoresis
  publication-title: J. Colloid Interface Sci.
– volume: 31
  start-page: 1005
  year: 2004
  end-page: 1013
  ident: b0145
  article-title: Effect of temperature and inlet velocity on the flow of a nonNewtonian fluid
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 48
  start-page: 941
  year: 2005
  end-page: 964
  ident: b0120
  article-title: Thermally developing electro-osmotic convection in microchannels with finite debye-layer thickness
  publication-title: Numer. Heat Transfer Part A
– volume: 507
  start-page: 27
  year: 2004
  end-page: 37
  ident: b0070
  article-title: Numerical analysis of the thermal effect on electroosmotic flow and electrokinetic mass transport in microchannels
  publication-title: Anal. Chim. Acta
– volume: 559
  start-page: 15
  year: 2006
  end-page: 24
  ident: b0155
  article-title: Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid
  publication-title: Anal. Chim. Acta
– volume: 49
  start-page: 812
  year: 2006
  end-page: 819
  ident: b0095
  article-title: Heat transfer characteristics of mixed electroosmotic and pressure driven micro-flows
  publication-title: JSME Int J. Ser. B
– year: 1998
  ident: b0200
  article-title: Analysis of Transport Phenomena
– volume: 24
  start-page: 3784
  year: 2003
  end-page: 3792
  ident: b0015
  article-title: Preconcentration and separation of double-stranded DNA fragments by electrophoresis in plastic microfluidic devices
  publication-title: Electrophoresis
– volume: 2
  start-page: 481
  year: 2006
  end-page: 492
  ident: b0135
  article-title: Rheometry of non-Newtonian electrokinetic flow in a microchannel T-junction
  publication-title: Microfluid. Nanofluid.
– volume: 907
  start-page: 279
  year: 2001
  end-page: 289
  ident: b0085
  article-title: Fabrication of polyester microchannels and their applications to capillary electrophoresis
  publication-title: J. Chromatogr. A
– volume: 40
  start-page: 2203
  year: 2002
  end-page: 2221
  ident: b0035
  article-title: Dynamic aspects of electroosmotic flow in a cylindrical microcapillary
  publication-title: Int. J. Eng Sci.
– volume: 27
  start-page: 640
  year: 2006
  end-page: 649
  ident: b0195
  article-title: Estimation of Joule heating effect on temperature and pressure distribution in electrokinetic-driven microchannel flows
  publication-title: Electrophoresis
– volume: 3
  start-page: 333
  issue: 3
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0055
  article-title: Effect of finite reservoir size on electroosmotic flow in microchannels
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-006-0135-2
– volume: 40
  start-page: 2203
  issue: 20
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0035
  article-title: Dynamic aspects of electroosmotic flow in a cylindrical microcapillary
  publication-title: Int. J. Eng Sci.
  doi: 10.1016/S0020-7225(02)00143-X
– volume: 125
  start-page: 889
  issue: 5
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0105
  article-title: Fully-developed thermal transport in combined pressure and electro-osmotically driven flow in microchannels
  publication-title: J. Heat Transfer
  doi: 10.1115/1.1597624
– volume: 49
  start-page: 810
  issue: 3–4
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0100
  article-title: Analytical solutions of Nusselt number for thermally fully developed flow in microtubes under a combined action of electroosmotic forces and imposed pressure gradients
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2005.07.048
– year: 1993
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0210
– volume: 261
  start-page: 895
  issue: 5123
  year: 1993
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0005
  article-title: Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip
  publication-title: Science
  doi: 10.1126/science.261.5123.895
– volume: 41
  start-page: 1059
  issue: 10
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0150
  article-title: Flow analysis of a power-law fluid confined in an extrusion die
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/S0020-7225(02)00379-8
– ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0205
– volume: 559
  start-page: 15
  issue: 1
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0155
  article-title: Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2005.11.046
– volume: 41
  start-page: 4229
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0175
  article-title: Modeling forced liquid convection in rectangular microchannels with electrokinetic effects
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(98)00125-2
– volume: 50
  start-page: 1087
  issue: 5–6
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0090
  article-title: An analytical solution for thermally fully developed combined pressure – electroosmotically driven flow in microchannels
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2006.07.037
– volume: 194
  start-page: 95
  issue: 1
  year: 1997
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0030
  article-title: Electrokinetic effects on pressure-driven liquid flows in rectangular microchannels
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1997.5091
– volume: 27
  start-page: 640
  issue: 3
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0195
  article-title: Estimation of Joule heating effect on temperature and pressure distribution in electrokinetic-driven microchannel flows
  publication-title: Electrophoresis
  doi: 10.1002/elps.200500314
– volume: 31
  start-page: 973
  issue: 5
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0185
  article-title: Nonlinear Smoluchowski velocity for electroosmosis of power-law fluids over a surface with arbitrary zeta potentials
  publication-title: Electrophoresis
  doi: 10.1002/elps.200900564
– volume: 128
  start-page: 126
  issue: 2–3
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0140
  article-title: Application of the augmented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel–Bulkley fluids
  publication-title: J. Non-Newtonian Fluid Mech.
  doi: 10.1016/j.jnnfm.2005.04.004
– volume: 47
  start-page: 3145
  issue: 14–16
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0215
  article-title: Thermal end effects on electroosmotic flow in a capillary
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2004.02.023
– volume: 3
  start-page: 179
  issue: 4
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0075
  article-title: Numerical simulation of electroosmotic flow near earthworm surface
  publication-title: J. Bionic Eng.
  doi: 10.1016/S1672-6529(07)60001-8
– volume: 70
  start-page: 1870
  issue: 9
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0060
  article-title: Numerical simulation of electroosmotic flow
  publication-title: Anal. Chem.
  doi: 10.1021/ac970846u
– volume: 23
  start-page: 3461
  issue: 20
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0080
  article-title: Components for integrated poly(dimethylsiloxane) microfluidic systems
  publication-title: Electrophoresis
  doi: 10.1002/1522-2683(200210)23:20<3461::AID-ELPS3461>3.0.CO;2-8
– volume: 18
  start-page: 486
  issue: 4
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0115
  article-title: Thermally developing electroosmotic convection in rectangular microchannels with vanishing Debye-layer thickness
  publication-title: J. Thermophys. Heat Transfer
  doi: 10.2514/1.3769
– volume: 24
  start-page: 3784
  issue: 21
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0015
  article-title: Preconcentration and separation of double-stranded DNA fragments by electrophoresis in plastic microfluidic devices
  publication-title: Electrophoresis
  doi: 10.1002/elps.200305594
– volume: 48
  start-page: 415
  issue: 3–4
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0130
  article-title: Fluid flow analysis of magnetorheological abrasive flow finishing (MRAFF) process
  publication-title: Int. J. Mach. Tools Manufact.
  doi: 10.1016/j.ijmachtools.2007.09.004
– volume: 632
  start-page: 201
  issue: 1–2
  year: 1993
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0040
  article-title: Observation of flow profiles in electroosmosis in a rectangular capillary
  publication-title: J. Chromatogr.
  doi: 10.1016/0021-9673(93)80045-A
– volume: 326
  start-page: 503
  issue: 2
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0165
  article-title: Analysis of electroosmotic flow of power-law fluids in a slit microchannel
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2008.06.028
– volume: 52
  start-page: 136
  issue: 1
  year: 1975
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0025
  article-title: Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(75)90310-0
– volume: 2
  start-page: 481
  issue: 6
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0135
  article-title: Rheometry of non-Newtonian electrokinetic flow in a microchannel T-junction
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-006-0089-4
– volume: 971
  start-page: 249
  issue: 1–2
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0050
  article-title: Characterizing electroosmotic flow in microfluidic devices
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(02)00843-9
– volume: 907
  start-page: 279
  issue: 1–2
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0085
  article-title: Fabrication of polyester microchannels and their applications to capillary electrophoresis
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(00)01074-8
– year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0170
– volume: 49
  start-page: 812
  issue: 3
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0095
  article-title: Heat transfer characteristics of mixed electroosmotic and pressure driven micro-flows
  publication-title: JSME Int J. Ser. B
  doi: 10.1299/jsmeb.49.812
– ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0180
– volume: 31
  start-page: 1005
  issue: 7
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0145
  article-title: Effect of temperature and inlet velocity on the flow of a nonNewtonian fluid
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2004.05.010
– volume: 516
  start-page: 191
  issue: 1
  year: 1990
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0190
  article-title: Thermal model of capillary electrophoresis and a method for counteracting thermal band broadening
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(01)90217-1
– volume: 73
  start-page: 2353
  issue: 10
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0010
  article-title: Electroosmotic flows in microchannels with finite inertial and pressure forces
  publication-title: Anal. Chem.
  doi: 10.1021/ac0101398
– volume: 215
  start-page: 300
  issue: 2
  year: 1999
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0065
  article-title: Numerical model of electrokinetic flow for capillary electrophoresis
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1999.6250
– volume: 47
  start-page: 3085
  issue: 14–16
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0110
  article-title: Joule heating effects in electroosmotically driven microchannel flows
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2004.02.020
– volume: 69
  start-page: 4017
  issue: 11
  year: 1965
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0020
  article-title: Electrokinetic flow in a narrow cylindrical capillary
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100895a062
– volume: 48
  start-page: 2360
  issue: 12
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0125
  article-title: Convective heat transfer characteristics of electro-osmotically generated flow in microtubes at high wall potential
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2005.01.019
– year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0160
– ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0045
  doi: 10.1115/IMECE1999-0294
– volume: 507
  start-page: 27
  issue: 1
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0070
  article-title: Numerical analysis of the thermal effect on electroosmotic flow and electrokinetic mass transport in microchannels
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2003.09.066
– year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0200
– volume: 48
  start-page: 941
  issue: 10
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2011.12.005_b0120
  article-title: Thermally developing electro-osmotic convection in microchannels with finite debye-layer thickness
  publication-title: Numer. Heat Transfer Part A
  doi: 10.1080/10407780500283309
SSID ssj0017046
Score 2.2030642
Snippet Capillary electrophoresis systems mainly used for chemical analyses and biomedical diagnoses usually involve biofluids in electrolyte buffers which cannot be...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2044
SubjectTerms Applied fluid mechanics
Capillary electrophoresis
Electroosmotic flow of non-Newtonian fluids
Exact sciences and technology
Fluid dynamics
Fluidics
Fundamental areas of phenomenology (including applications)
Joule heating induced heat transfer
Non-newtonian fluid flows
Physics
Title Joule heating induced heat transfer for electroosmotic flow of power-law fluids in a microcapillary
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.12.005
https://www.proquest.com/docview/923195146
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEC7ExWVBFh-7OK4OOXjYS2v6me6TyKCMDniQFb2FJJ3AyDjdzAPx4m-3Kt09i-hF8NQkpIsiVV31pVMPgKOosAqBQR7kOrRBksYmUKXgQUToIIstF85HW1xnw9vk6j69X4NBlwtDYZWt7W9surfW7cxJu5sn9XhMOb6kXKEveiYQSVAGeyJIy49fVmEeoeBNsg5ZY1r9Hf7-j_EaP5DFe0SYuvAw0c6aop70g5Aa2n3sqjZrNccNdE3ni3dG3Humiy342UJKdtZwvQ1rdroDGz6008x3weCCiWXEArophmdwlGbpx6zjhyF0ZW1HnMp39jHMTaonVjlWUx-1YKKecGY5LudIgSn2SIF8RtXUtGj2_AtuL87_DYZB21ohMAlPFoF2xkRFVmYKD8cuNrlJyzQtw1yXdC9aaMuV5bnRvER3hSCAu0hYmk9iPNaa-DesT6up3QPGi1zHLgu15jZxVihRRFynhmgj2NI9OO12UZq27ji1v5jILsDsQb6XgyQ5yDCSKIceFCsKdVOD4xPvDjrByTd6JdFlfIJK_43MV2zg4REBUyR6wDolkPh90qWLmtpqOZcEoBHFJtn-l3DyB37gKGqi4A5gfTFb2kOERQvd93rfh29nl6PhNT1HN3ejV4uVFN0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50Fx8g4hPXZw4evBTTd3sSWZRdH3tS8BaSNIGVdVv2gfjvneljRfQieGzaDEMmmfnSTOYDOPdSIxEYJE6iXOMEoa8dmcXc8QgdRL7hsS2zLQZR7zm4ewlflqDb3IWhtMra91c-vfTWdctlPZqXxXBId3xpcrll0bMYkcQytKk6VdiC9nX_vjdYHCbEvLqvQw6ZOqzCxVea1_CVnN4bItVZiRTNpKrrSf8IidPu92i1UcgpjqGtyC9--PEyON1uwWaNKtl1pfg2LJnxDqyU2Z16ugsaPxgZRipgpGK4DUeDZuUza_RhiF5ZTYqTl-Q-mtlR_s5yywqiUnNG8h1b5sNsihKYZG-Uy6dlQbxFk489eL69eer2nJpdwdEBD2aOslp7aZRFEvfH1teJDrMwzNxEZXQ0mirDpeGJVjzDiIU4gFsvNtQe-Liz1f4-tMb52BwA42mifBu5SnETWBPLOPW4CjXJRrylOnDVjKLQdelxYsAYiSbH7FX8tIMgOwjXE2iHDqQLCUVVhuMPfbuN4cS3qSUwavxByuk3my_UwP0jYiYv7gBrJoHAJUrnLnJs8vlUEIZGIBtEh_-iyRms9Z4eH8RDf3B_BOv4xquS4o6hNZvMzQmipJk6rVfBJzskFes
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joule+heating+induced+heat+transfer+for+electroosmotic+flow+of+power-law+fluids+in+a+microcapillary&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=CUNLU+ZHAO&rft.au=CHUN+YANG&rft.date=2012-03-01&rft.pub=Elsevier&rft.issn=0017-9310&rft.volume=55&rft.issue=7-8&rft.spage=2044&rft.epage=2051&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2011.12.005&rft.externalDBID=n%2Fa&rft.externalDocID=25912927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon