A data-driven approach to exploring the causal relationships between distributed pumping activities and aquifer drawdown

Groundwater depletion, typically caused by the distributed pumping activities of multiple stakeholders (i.e., water users) that share a hydrologically connected aquifer, has led to severe environmental and ecological problems in many river basins worldwide. Conventionally, the effects of pumping on...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 870; p. 161998
Main Authors Pang, Min, Du, Erhu, Zheng, Chunmiao
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 20.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Groundwater depletion, typically caused by the distributed pumping activities of multiple stakeholders (i.e., water users) that share a hydrologically connected aquifer, has led to severe environmental and ecological problems in many river basins worldwide. Conventionally, the effects of pumping on aquifer depletion are quantified using well hydraulics or physically based hydrological models in groundwater management. However, the derivation of well hydraulics-based analytical solutions requires numerous simplifying assumptions, while the construction and calibration of a physically based groundwater flow model require detailed information about the subsurface properties, which are subject to large uncertainties. In this study, we develop a novel modeling framework that does not rely on well hydraulics or groundwater flow models. The proposed framework integrates (1) a deep learning model that captures the spatiotemporal variations in the aquifer in response to distributed pumping activities in multiple well fields and (2) a statistical causal inference model that identifies the causal networks among stakeholders to quantify the causal effects of individual pumping activities on aquifer depletion. The proposed framework is tested on a synthetic case study site with well fields that have various spatial distributions and pumping rates. The modeling results show that the deep learning method can effectively capture the water table dynamics influenced by distributed pumping activities with R2 >90 % for all observation data. More importantly, our model is capable of assessing the causal networks between the drawdown of water table and the pumping activities of multiple well fields and quantifying their causal strengths. These results suggest that our modeling framework can be used to explicitly assess the extent to which each individual stakeholder's pumping activities contribute to aquifer depletion at the system level. The concepts and techniques developed in this study can be used to resolve classic externality problems in the context of common-pool groundwater management. [Display omitted] •A data-driven approach is developed for common-pool groundwater management.•The new approach combines a deep learning model and a causal inference model.•The proposed method identifies causal relationships between pumping and groundwater drawdowns.•Convolutional long short-term memory works well for subsurface hydrological problems.
AbstractList Groundwater depletion, typically caused by the distributed pumping activities of multiple stakeholders (i.e., water users) that share a hydrologically connected aquifer, has led to severe environmental and ecological problems in many river basins worldwide. Conventionally, the effects of pumping on aquifer depletion are quantified using well hydraulics or physically based hydrological models in groundwater management. However, the derivation of well hydraulics-based analytical solutions requires numerous simplifying assumptions, while the construction and calibration of a physically based groundwater flow model require detailed information about the subsurface properties, which are subject to large uncertainties. In this study, we develop a novel modeling framework that does not rely on well hydraulics or groundwater flow models. The proposed framework integrates (1) a deep learning model that captures the spatiotemporal variations in the aquifer in response to distributed pumping activities in multiple well fields and (2) a statistical causal inference model that identifies the causal networks among stakeholders to quantify the causal effects of individual pumping activities on aquifer depletion. The proposed framework is tested on a synthetic case study site with well fields that have various spatial distributions and pumping rates. The modeling results show that the deep learning method can effectively capture the water table dynamics influenced by distributed pumping activities with R2 >90 % for all observation data. More importantly, our model is capable of assessing the causal networks between the drawdown of water table and the pumping activities of multiple well fields and quantifying their causal strengths. These results suggest that our modeling framework can be used to explicitly assess the extent to which each individual stakeholder's pumping activities contribute to aquifer depletion at the system level. The concepts and techniques developed in this study can be used to resolve classic externality problems in the context of common-pool groundwater management. [Display omitted] •A data-driven approach is developed for common-pool groundwater management.•The new approach combines a deep learning model and a causal inference model.•The proposed method identifies causal relationships between pumping and groundwater drawdowns.•Convolutional long short-term memory works well for subsurface hydrological problems.
Groundwater depletion, typically caused by the distributed pumping activities of multiple stakeholders (i.e., water users) that share a hydrologically connected aquifer, has led to severe environmental and ecological problems in many river basins worldwide. Conventionally, the effects of pumping on aquifer depletion are quantified using well hydraulics or physically based hydrological models in groundwater management. However, the derivation of well hydraulics-based analytical solutions requires numerous simplifying assumptions, while the construction and calibration of a physically based groundwater flow model require detailed information about the subsurface properties, which are subject to large uncertainties. In this study, we develop a novel modeling framework that does not rely on well hydraulics or groundwater flow models. The proposed framework integrates (1) a deep learning model that captures the spatiotemporal variations in the aquifer in response to distributed pumping activities in multiple well fields and (2) a statistical causal inference model that identifies the causal networks among stakeholders to quantify the causal effects of individual pumping activities on aquifer depletion. The proposed framework is tested on a synthetic case study site with well fields that have various spatial distributions and pumping rates. The modeling results show that the deep learning method can effectively capture the water table dynamics influenced by distributed pumping activities with R >90 % for all observation data. More importantly, our model is capable of assessing the causal networks between the drawdown of water table and the pumping activities of multiple well fields and quantifying their causal strengths. These results suggest that our modeling framework can be used to explicitly assess the extent to which each individual stakeholder's pumping activities contribute to aquifer depletion at the system level. The concepts and techniques developed in this study can be used to resolve classic externality problems in the context of common-pool groundwater management.
Groundwater depletion, typically caused by the distributed pumping activities of multiple stakeholders (i.e., water users) that share a hydrologically connected aquifer, has led to severe environmental and ecological problems in many river basins worldwide. Conventionally, the effects of pumping on aquifer depletion are quantified using well hydraulics or physically based hydrological models in groundwater management. However, the derivation of well hydraulics-based analytical solutions requires numerous simplifying assumptions, while the construction and calibration of a physically based groundwater flow model require detailed information about the subsurface properties, which are subject to large uncertainties. In this study, we develop a novel modeling framework that does not rely on well hydraulics or groundwater flow models. The proposed framework integrates (1) a deep learning model that captures the spatiotemporal variations in the aquifer in response to distributed pumping activities in multiple well fields and (2) a statistical causal inference model that identifies the causal networks among stakeholders to quantify the causal effects of individual pumping activities on aquifer depletion. The proposed framework is tested on a synthetic case study site with well fields that have various spatial distributions and pumping rates. The modeling results show that the deep learning method can effectively capture the water table dynamics influenced by distributed pumping activities with R² >90 % for all observation data. More importantly, our model is capable of assessing the causal networks between the drawdown of water table and the pumping activities of multiple well fields and quantifying their causal strengths. These results suggest that our modeling framework can be used to explicitly assess the extent to which each individual stakeholder's pumping activities contribute to aquifer depletion at the system level. The concepts and techniques developed in this study can be used to resolve classic externality problems in the context of common-pool groundwater management.
Groundwater depletion, typically caused by the distributed pumping activities of multiple stakeholders (i.e., water users) that share a hydrologically connected aquifer, has led to severe environmental and ecological problems in many river basins worldwide. Conventionally, the effects of pumping on aquifer depletion are quantified using well hydraulics or physically based hydrological models in groundwater management. However, the derivation of well hydraulics-based analytical solutions requires numerous simplifying assumptions, while the construction and calibration of a physically based groundwater flow model require detailed information about the subsurface properties, which are subject to large uncertainties. In this study, we develop a novel modeling framework that does not rely on well hydraulics or groundwater flow models. The proposed framework integrates (1) a deep learning model that captures the spatiotemporal variations in the aquifer in response to distributed pumping activities in multiple well fields and (2) a statistical causal inference model that identifies the causal networks among stakeholders to quantify the causal effects of individual pumping activities on aquifer depletion. The proposed framework is tested on a synthetic case study site with well fields that have various spatial distributions and pumping rates. The modeling results show that the deep learning method can effectively capture the water table dynamics influenced by distributed pumping activities with R2 >90 % for all observation data. More importantly, our model is capable of assessing the causal networks between the drawdown of water table and the pumping activities of multiple well fields and quantifying their causal strengths. These results suggest that our modeling framework can be used to explicitly assess the extent to which each individual stakeholder's pumping activities contribute to aquifer depletion at the system level. The concepts and techniques developed in this study can be used to resolve classic externality problems in the context of common-pool groundwater management.Groundwater depletion, typically caused by the distributed pumping activities of multiple stakeholders (i.e., water users) that share a hydrologically connected aquifer, has led to severe environmental and ecological problems in many river basins worldwide. Conventionally, the effects of pumping on aquifer depletion are quantified using well hydraulics or physically based hydrological models in groundwater management. However, the derivation of well hydraulics-based analytical solutions requires numerous simplifying assumptions, while the construction and calibration of a physically based groundwater flow model require detailed information about the subsurface properties, which are subject to large uncertainties. In this study, we develop a novel modeling framework that does not rely on well hydraulics or groundwater flow models. The proposed framework integrates (1) a deep learning model that captures the spatiotemporal variations in the aquifer in response to distributed pumping activities in multiple well fields and (2) a statistical causal inference model that identifies the causal networks among stakeholders to quantify the causal effects of individual pumping activities on aquifer depletion. The proposed framework is tested on a synthetic case study site with well fields that have various spatial distributions and pumping rates. The modeling results show that the deep learning method can effectively capture the water table dynamics influenced by distributed pumping activities with R2 >90 % for all observation data. More importantly, our model is capable of assessing the causal networks between the drawdown of water table and the pumping activities of multiple well fields and quantifying their causal strengths. These results suggest that our modeling framework can be used to explicitly assess the extent to which each individual stakeholder's pumping activities contribute to aquifer depletion at the system level. The concepts and techniques developed in this study can be used to resolve classic externality problems in the context of common-pool groundwater management.
ArticleNumber 161998
Author Zheng, Chunmiao
Pang, Min
Du, Erhu
Author_xml – sequence: 1
  givenname: Min
  surname: Pang
  fullname: Pang, Min
  organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
– sequence: 2
  givenname: Erhu
  surname: Du
  fullname: Du, Erhu
  email: erhudu@hhu.edu.cn
  organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
– sequence: 3
  givenname: Chunmiao
  surname: Zheng
  fullname: Zheng, Chunmiao
  email: zhengcm@sustech.edu.cn
  organization: Yangtze Institute for Conservation and Development, Hohai University, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36739028$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvEzEURi1URNPHXwAv2UzwY-LHgkVUUUCqxAbWlse-QxxN7KntScq_74S0LNjEm7s55175-67QRUwREPpAyZISKj5tl8WFmirE_ZIRxpdUUK3VG7SgSuqGEiYu0IKQVjVaaHmJrkrZkvlJRd-hSy4k14SpBXpaY2-rbXwOe4jYjmNO1m1wTRiexiHlEH_jugHs7FTsgDMMtoYUyyaMBXdQDzBrPpSaQzdV8HicduNRsq6GfagBCrbRY_s4hR4y9tkefDrEG_S2t0OB25d5jX7df_l59615-PH1-936oXEtaWvTOc6c6umqB9GuWM87stLKr7xkWksuOiGd6IjTurNeE6J7yr2irO8k5c4Lfo0-nvbOH3ucoFSzC8XBMNgIaSqGKd4yThWn51EpOWW8JWpG37-gU7cDb8Ycdjb_Ma_BzsDnE-ByKiVDb-a-_iZXsw2DocQcizRb869IcyzSnIqcffmf_3rivLk-mTCnug-QjxxEBz5kcNX4FM7ueAaDMr-x
CitedBy_id crossref_primary_10_3390_su16062499
crossref_primary_10_1016_j_jhydrol_2025_132719
crossref_primary_10_1029_2023WR035278
crossref_primary_10_1016_j_heliyon_2024_e39718
crossref_primary_10_1007_s12665_024_11923_5
crossref_primary_10_1016_j_jhydrol_2024_131345
crossref_primary_10_1016_j_energy_2024_133129
crossref_primary_10_3390_rs17020208
Cites_doi 10.1016/j.agwat.2005.01.016
10.1002/hyp.5145
10.1088/1748-9326/ab1b7d
10.1029/2010WR009326
10.1126/science.1227079
10.1007/s10040-004-0411-8
10.1515/jci-2013-0003
10.1007/s11069-014-1102-y
10.1007/s12665-019-8497-4
10.1063/1.5025050
10.1002/2017WR020927
10.1016/j.ejrh.2014.10.002
10.1162/neco.1997.9.8.1735
10.1088/1748-9326/ac10de
10.1088/1748-9326/aafe39
10.1080/02626667.2013.803183
10.2166/nh.2010.009
10.1002/hyp.10276
10.1061/(ASCE)WR.1943-5452.0000733
10.1016/j.advwatres.2020.103619
10.1016/j.jhydrol.2008.11.028
10.1016/j.horiz.2022.100042
10.1038/nclimate2425
10.1007/s10040-009-0540-1
10.1029/2020WR029402
10.1016/j.jenvman.2022.114753
10.1016/j.ejrh.2018.04.008
10.1038/ncomms9502
10.1029/2019WR024940
10.3389/feart.2022.907609
10.1016/j.wre.2013.08.001
10.1038/s41467-019-10105-3
10.1016/j.earscirev.2013.02.001
10.1016/j.scitotenv.2022.159544
10.1073/pnas.1200311109
10.1175/JCLI-D-15-0654.1
10.1029/2012WR011899
10.1080/02626667.2021.1935964
10.1126/sciadv.aau4996
10.1162/neco.1989.1.4.541
10.1002/hyp.5667
10.1016/S0022-1694(00)00379-6
10.1016/j.jhydrol.2020.125117
10.1371/journal.pone.0230114
10.1177/089443939100900106
10.1002/2016WR020261
10.1038/s41586-019-0912-1
10.1038/s41598-019-49278-8
10.1029/2019WR026166
10.1029/2021WR031352
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2023.161998
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 36739028
10_1016_j_scitotenv_2023_161998
S0048969723006137
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SEW
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SSH
WUQ
XPP
ZXP
ZY4
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c404t-bc32c8f15fe6452f3b0598d5d7299736b67c6b0c99bad9009f13d812fb713cd63
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Tue Aug 05 09:47:34 EDT 2025
Fri Jul 11 07:07:34 EDT 2025
Wed Feb 19 02:24:32 EST 2025
Tue Jul 01 02:08:32 EDT 2025
Thu Apr 24 23:07:22 EDT 2025
Fri Feb 23 02:34:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Causal inference
Groundwater management
Aquifer depletion
Convolutional long short-term memory
Language English
License Copyright © 2023 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-bc32c8f15fe6452f3b0598d5d7299736b67c6b0c99bad9009f13d812fb713cd63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 36739028
PQID 2773123408
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2834231831
proquest_miscellaneous_2773123408
pubmed_primary_36739028
crossref_citationtrail_10_1016_j_scitotenv_2023_161998
crossref_primary_10_1016_j_scitotenv_2023_161998
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2023_161998
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-20
PublicationDateYYYYMMDD 2023-04-20
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-20
  day: 20
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kumar, Islam, Sekimoto, Mattmann, Wilson (bb0125) 2020; 15
Bracken, Wainwright, Ali, Tetzlaff, Smith, Reaney, Roy (bb0025) 2013; 119
Sutskever, Vinyals, Le (bb0285) 2014; 4
Reichstein, Camps-valls, Stevens, Jung, Denzler, Carvalhais (bb0210) 2019; 566
Runge (bb0215) 2018; 28
Harbaugh (bb0080) 2005
Khan, Yang, Ringler, Wi, Cheema, Basharat (bb0110) 2017; 143
Madani, Dinar (bb0155) 2013; 2–3
Famiglietti (bb0070) 2014; 4
Bhattarai, Pollack, Lobell, Fishman, Singh, Dar, Jain (bb0020) 2021; 16
Lewis (bb0145) 1973
Bayer, Duran, Baumann, Finkel (bb0010) 2009; 365
Shapley (bb0245) 1953
Deines, Kendall, Butler, Hyndman (bb0055) 2019; 14
Sophocleous (bb0265) 2010; 18
Abro, Zhu, Ali Khaskheli, Elahi, Aleem ul Hassan Ramay (bb0005) 2020; 588
Klein (bb0045) 2017; 35
Sahu, McLaughlin (bb0235) 2021; 57
Refsgaard, Storm, Clausen (bb0205) 2010; 41
LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (bb0140) 1989; 1
Runge, Petoukhov, Donges, Hlinka, Jajcay, Vejmelka, Hartman, Marwan, Paluš, Kurths (bb0230) 2015; 6
Larson, Başaǧaoǧlu, Mariño (bb0135) 2001; 242
Hochreiter, Schmidhuber (bb0085) 1997; 9
Markstrom, Niswonger, Regan, Prudic, Barlow (bb0170) 2005
Pang, Shoemaker (bb0185) 2023; 857
Delforge, de Viron, Vanclooster, Van Camp, Watlet (bb0060) 2021; 1–25
Cao, Zheng, Scanlon, Liu, Li (bb0035) 2013; 49
Lancia, Yao, Andrews, Wang, Kuang, Ni, Gorelick, Scanlon, Wang, Zheng (bb0130) 2022; 4
Mao, Wan, Yeh, Lee, Hsu, Wen, Lu (bb0160) 2011; 47
López-Alvis, Carrera-Hernández, Levresse, Nieto-Samaniego (bb0150) 2019; 78
Scanlon, Faunt, Longuevergne, Reedy, Alley, McGuire, McMahon (bb0240) 2012; 109
Cooper, Wolf, Ronayne, Roche (bb0050) 2015; 3
Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (bb0040) 2014
Hrozencik, Manning, Suter, Goemans, Bailey (bb0095) 2017; 53
Tahmasebi, Kamrava, Bai, Sahimi (bb0290) 2020; 142
Spirtes, Glymour (bb0270) 1991; 9
Benyamini, Mirlas, Marish, Gottesman, Fizik, Agassi (bb0015) 2005; 76
Hrachowitz, Savenije, Blöschl, McDonnell, Sivapalan, Pomeroy, Arheimer, Blume, Clark, Ehret, Fenicia, Freer, Gelfan, Gupta, Hughes, Hut, Montanari, Pande, Tetzlaff, Troch, Uhlenbrook, Wagener, Winsemius, Woods, Zehe, Cudennec (bb0090) 2013; 58
Penny, Mondal, Biswas, Bolster, Tank, Müller (bb0195) 2020; 56
Konikow, Kendy (bb0115) 2005; 13
Ilyas, Pham, Zhu, Elahi, Linh, Anh, Khedher, Ahmadlou (bb0105) 2021; 66
Mao, Jia, Liu, Hou (bb0165) 2005; 19
Müller, Müller-Itten, Gorelick (bb0175) 2017; 53
Runge, Nowack, Kretschmer, Flaxman, Sejdinovic (bb0225) 2019; 5
Goodwell, Jiang, Ruddell, Kumar (bb0075) 2020; 56
Singh, Borrok (bb0260) 2019; 9
Sindico, Hirata, Manganelli (bb0255) 2018; 20
Yao, Zheng, Liu, Cao, Xiao, Li, Li (bb0295) 2015; 29
Pringle (bb0200) 2003; 17
Sun, Scanlon (bb0280) 2019; 14
Kretschmer, Coumou, Donges, Runge (bb0120) 2016; 29
Shi, Chen, Wang, Yeung, Wong, Woo (bb0250) 2015
Huang, Wang, Yang, Wang (bb0100) 2014; 73
Brakenhoff, Vonk, Collenteur, Van Baar, Bakker (bb0030) 2022; 10
Sugihara, May, Ye, Hsieh, Deyle, Fogarty, Munch (bb0275) 2012; 338
Pang, Du, Shoemaker, Zheng (bb0180) 2022; 310
Du, Tian, Cai, Zheng, Han, Li, Zhao, Yang, Zheng (bb0065) 2022; 58
Runge, Bathiany, Bollt, Camps-Valls, Coumou, Deyle, Glymour, Kretschmer, Mahecha, Muñoz-Marí, van Nes, Peters, Quax, Reichstein, Scheffer, Schölkopf, Spirtes, Sugihara, Sun, Zhang, Zscheischler (bb0220) 2019; 10
Pearl (bb0190) 2013; 1
Cao (10.1016/j.scitotenv.2023.161998_bb0035) 2013; 49
Huang (10.1016/j.scitotenv.2023.161998_bb0100) 2014; 73
Reichstein (10.1016/j.scitotenv.2023.161998_bb0210) 2019; 566
Sugihara (10.1016/j.scitotenv.2023.161998_bb0275) 2012; 338
Abro (10.1016/j.scitotenv.2023.161998_bb0005) 2020; 588
Klein (10.1016/j.scitotenv.2023.161998_bb0045) 2017; 35
Tahmasebi (10.1016/j.scitotenv.2023.161998_bb0290) 2020; 142
Harbaugh (10.1016/j.scitotenv.2023.161998_bb0080) 2005
Pearl (10.1016/j.scitotenv.2023.161998_bb0190) 2013; 1
Refsgaard (10.1016/j.scitotenv.2023.161998_bb0205) 2010; 41
Cooper (10.1016/j.scitotenv.2023.161998_bb0050) 2015; 3
Konikow (10.1016/j.scitotenv.2023.161998_bb0115) 2005; 13
Sun (10.1016/j.scitotenv.2023.161998_bb0280) 2019; 14
Sutskever (10.1016/j.scitotenv.2023.161998_bb0285) 2014; 4
Khan (10.1016/j.scitotenv.2023.161998_bb0110) 2017; 143
Lancia (10.1016/j.scitotenv.2023.161998_bb0130) 2022; 4
Runge (10.1016/j.scitotenv.2023.161998_bb0230) 2015; 6
Hrozencik (10.1016/j.scitotenv.2023.161998_bb0095) 2017; 53
Runge (10.1016/j.scitotenv.2023.161998_bb0215) 2018; 28
LeCun (10.1016/j.scitotenv.2023.161998_bb0140) 1989; 1
Sahu (10.1016/j.scitotenv.2023.161998_bb0235) 2021; 57
Runge (10.1016/j.scitotenv.2023.161998_bb0220) 2019; 10
Madani (10.1016/j.scitotenv.2023.161998_bb0155) 2013; 2–3
Ilyas (10.1016/j.scitotenv.2023.161998_bb0105) 2021; 66
Pringle (10.1016/j.scitotenv.2023.161998_bb0200) 2003; 17
Singh (10.1016/j.scitotenv.2023.161998_bb0260) 2019; 9
Goodwell (10.1016/j.scitotenv.2023.161998_bb0075) 2020; 56
Pang (10.1016/j.scitotenv.2023.161998_bb0185) 2023; 857
Mao (10.1016/j.scitotenv.2023.161998_bb0160) 2011; 47
Deines (10.1016/j.scitotenv.2023.161998_bb0055) 2019; 14
Pang (10.1016/j.scitotenv.2023.161998_bb0180) 2022; 310
Penny (10.1016/j.scitotenv.2023.161998_bb0195) 2020; 56
Du (10.1016/j.scitotenv.2023.161998_bb0065) 2022; 58
Bhattarai (10.1016/j.scitotenv.2023.161998_bb0020) 2021; 16
Spirtes (10.1016/j.scitotenv.2023.161998_bb0270) 1991; 9
Müller (10.1016/j.scitotenv.2023.161998_bb0175) 2017; 53
Hochreiter (10.1016/j.scitotenv.2023.161998_bb0085) 1997; 9
Markstrom (10.1016/j.scitotenv.2023.161998_bb0170) 2005
Bayer (10.1016/j.scitotenv.2023.161998_bb0010) 2009; 365
Bracken (10.1016/j.scitotenv.2023.161998_bb0025) 2013; 119
Scanlon (10.1016/j.scitotenv.2023.161998_bb0240) 2012; 109
Benyamini (10.1016/j.scitotenv.2023.161998_bb0015) 2005; 76
Shapley (10.1016/j.scitotenv.2023.161998_bb0245) 1953
Yao (10.1016/j.scitotenv.2023.161998_bb0295) 2015; 29
Lewis (10.1016/j.scitotenv.2023.161998_bb0145) 1973
Brakenhoff (10.1016/j.scitotenv.2023.161998_bb0030) 2022; 10
Sophocleous (10.1016/j.scitotenv.2023.161998_bb0265) 2010; 18
Kretschmer (10.1016/j.scitotenv.2023.161998_bb0120) 2016; 29
Larson (10.1016/j.scitotenv.2023.161998_bb0135) 2001; 242
Famiglietti (10.1016/j.scitotenv.2023.161998_bb0070) 2014; 4
Mao (10.1016/j.scitotenv.2023.161998_bb0165) 2005; 19
Kumar (10.1016/j.scitotenv.2023.161998_bb0125) 2020; 15
Shi (10.1016/j.scitotenv.2023.161998_bb0250) 2015
Sindico (10.1016/j.scitotenv.2023.161998_bb0255) 2018; 20
López-Alvis (10.1016/j.scitotenv.2023.161998_bb0150) 2019; 78
Hrachowitz (10.1016/j.scitotenv.2023.161998_bb0090) 2013; 58
Cho (10.1016/j.scitotenv.2023.161998_bb0040) 2014
Runge (10.1016/j.scitotenv.2023.161998_bb0225) 2019; 5
Delforge (10.1016/j.scitotenv.2023.161998_bb0060) 2021; 1–25
References_xml – volume: 10
  start-page: 1
  year: 2019
  end-page: 13
  ident: bb0220
  article-title: Inferring causation from time series in earth system sciences
  publication-title: Nat. Commun.
– volume: 29
  start-page: 4069
  year: 2016
  end-page: 4081
  ident: bb0120
  article-title: Using causal effect networks to analyze different Arctic drivers of midlatitude winter circulation
  publication-title: J. Clim.
– volume: 9
  start-page: 62
  year: 1991
  end-page: 72
  ident: bb0270
  article-title: An algorithm for fast recovery of sparse causal graphs
  publication-title: Soc. Sci. Comput. Rev.
– volume: 58
  start-page: 1198
  year: 2013
  end-page: 1255
  ident: bb0090
  article-title: A decade of predictions in ungauged basins (PUB)—a review
  publication-title: Hydrol. Sci. J.
– start-page: 802
  year: 2015
  end-page: 810
  ident: bb0250
  article-title: Convolutional LSTM network: a machine learning approach for precipitation nowcasting
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 41
  start-page: 355
  year: 2010
  end-page: 377
  ident: bb0205
  article-title: Système hydrologique Europeén (SHE): review and perspectives after 30 years development in distributed physically-based hydrological modelling
  publication-title: Hydrol. Res.
– volume: 2–3
  start-page: 57
  year: 2013
  end-page: 76
  ident: bb0155
  article-title: Exogenous regulatory institutions for sustainable common pool resource management: application to groundwater
  publication-title: Water Resour. Econ.
– volume: 4
  start-page: 100042
  year: 2022
  ident: bb0130
  article-title: The China groundwater crisis: amechanistic analysis with implications for global sustainability
  publication-title: Sustain. Horizons
– volume: 1–25
  year: 2021
  ident: bb0060
  article-title: Detecting hydrological connectivity using causal inference from time-series: synthetic and real karstic study cases
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– year: 2005
  ident: bb0170
  article-title: GSFLOW — coupled ground-water and surface-water flow model based on the integration of the precipitation-runoff modeling system (PRMS) and the modular ground-water flow model (MODFLOW-2005)
  publication-title: U.S. Geological Survey Techniques and Methods
– volume: 19
  start-page: 2071
  year: 2005
  end-page: 2084
  ident: bb0165
  article-title: A simulation and prediction of agricultural irrigation on groundwater in well irrigation area of the piedmont of Mt. Taihang, North China
  publication-title: Hydrol. Process.
– volume: 242
  start-page: 79
  year: 2001
  end-page: 102
  ident: bb0135
  article-title: Prediction of optimal safe ground water yield and land subsidence in the Los Banos-Kettleman City area, California, using a calibrated numerical simulation model
  publication-title: J. Hydrol.
– volume: 14
  year: 2019
  ident: bb0055
  article-title: Quantifying irrigation adaptation strategies in response to stakeholder-driven groundwater management in the US High Plains aquifer
  publication-title: Environ. Res. Lett.
– volume: 14
  year: 2019
  ident: bb0280
  article-title: How can big data and machine learning benefit environment and water management: a survey of methods, applications, and future directions
  publication-title: Environ. Res. Lett.
– volume: 1
  start-page: 541
  year: 1989
  end-page: 551
  ident: bb0140
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
– volume: 857
  year: 2023
  ident: bb0185
  article-title: Comparison of parallel optimization algorithms on computationally expensive groundwater remediation designs
  publication-title: Sci. Total Environ.
– volume: 6
  start-page: 8502
  year: 2015
  ident: bb0230
  article-title: Identifying causal gateways and mediators in complex spatio-temporal systems
  publication-title: Nat. Commun.
– volume: 17
  start-page: 2685
  year: 2003
  end-page: 2689
  ident: bb0200
  article-title: What is hydrologic connectivity and why is it ecologically important?
  publication-title: Hydrol. Process.
– start-page: 307
  year: 1953
  end-page: 318
  ident: bb0245
  article-title: A value for n-person games, in
  publication-title: Contribution to the Theory of Games. Annals of Mathematics Studies. 28
– year: 2005
  ident: bb0080
  article-title: MODFLOW-2005: the U . S . Geological Survey Modular Ground-Water Model — the Ground-Water Flow Process, USGS Techniques and Methods, 6-A16
– volume: 310
  year: 2022
  ident: bb0180
  article-title: Efficient, parallelized global optimization of groundwater pumping in a regional aquifer with land subsidence constraints
  publication-title: J. Environ. Manag.
– volume: 4
  start-page: 945
  year: 2014
  end-page: 948
  ident: bb0070
  article-title: The global groundwater crisis
  publication-title: Nat. Clim. Chang.
– volume: 109
  start-page: 9320
  year: 2012
  end-page: 9325
  ident: bb0240
  article-title: Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley
  publication-title: Proc. Natl. Acad. Sci.
– volume: 10
  year: 2022
  ident: bb0030
  article-title: Application of time series analysis to estimate drawdown from multiple well fields
  publication-title: Front. Earth Sci.
– volume: 566
  start-page: 196
  year: 2019
  end-page: 204
  ident: bb0210
  article-title: Deep learning and process understanding for data-driven earth system science
  publication-title: Nature
– volume: 49
  start-page: 159
  year: 2013
  end-page: 175
  ident: bb0035
  article-title: Use of flow modeling to assess sustainability of groundwater resources in the North China plain
  publication-title: Water Resour. Res.
– volume: 16
  year: 2021
  ident: bb0020
  article-title: The impact of groundwater depletion on agricultural production in India
  publication-title: Environ. Res. Lett.
– volume: 66
  start-page: 1383
  year: 2021
  end-page: 1392
  ident: bb0105
  article-title: Multi sources hydrological assessment over Vu Gia Thu Bon Basin, Vietnam
  publication-title: Hydrol. Sci. J.
– volume: 20
  start-page: 49
  year: 2018
  end-page: 59
  ident: bb0255
  article-title: The Guarani aquifer system: from a Beacon of hope to a question mark in the governance of transboundary aquifers
  publication-title: J. Hydrol. Reg. Stud.
– volume: 78
  start-page: 482
  year: 2019
  ident: bb0150
  article-title: Assessment of groundwater depletion caused by excessive extraction through groundwater flow modeling: the Celaya aquifer in Central Mexico
  publication-title: Environ. Earth Sci.
– volume: 142
  year: 2020
  ident: bb0290
  article-title: Machine learning in geo- and environmental sciences: from small to large scale
  publication-title: Adv. Water Resour.
– volume: 143
  start-page: 05016014
  year: 2017
  ident: bb0110
  article-title: Guiding groundwater policy in the Indus Basin of Pakistan using a physically based groundwater model
  publication-title: J. Water Resour. Plan. Manag.
– volume: 13
  start-page: 317
  year: 2005
  end-page: 320
  ident: bb0115
  article-title: Groundwater depletion: a global problem
  publication-title: Hydrogeol. J.
– volume: 57
  start-page: 1
  year: 2021
  end-page: 17
  ident: bb0235
  article-title: The multi-scale dynamics of groundwater depletion
  publication-title: Water Resour. Res.
– volume: 35
  start-page: 474
  year: 2017
  ident: bb0045
  article-title: Owning groundwater: the example of Mississippi v. Tennessee
  publication-title: Virginia Environ. Law J.
– volume: 47
  year: 2011
  ident: bb0160
  article-title: A revisit of drawdown behavior during pumping in unconfined aquifers
  publication-title: Water Resour. Res.
– volume: 1
  start-page: 155
  year: 2013
  end-page: 170
  ident: bb0190
  article-title: Linear models: a useful, “Microscope” for causal analysis
  publication-title: J. Causal Inference
– volume: 4
  start-page: 3104
  year: 2014
  end-page: 3112
  ident: bb0285
  article-title: Sequence to sequence learning with neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 73
  start-page: 727
  year: 2014
  end-page: 741
  ident: bb0100
  article-title: Overexploitation status of groundwater and induced geological hazards in China
  publication-title: Nat. Hazards
– year: 1973
  ident: bb0145
  article-title: Counterfactuals
– volume: 18
  start-page: 559
  year: 2010
  end-page: 575
  ident: bb0265
  article-title: Review: groundwater management practices, challenges, and innovations in the High Plains aquifer, USA—lessons and recommended actions
  publication-title: Hydrogeol. J.
– volume: 53
  start-page: 10757
  year: 2017
  end-page: 10778
  ident: bb0095
  article-title: The heterogeneous impacts of groundwater management policies in the Republican River basin of Colorado
  publication-title: Water Resour. Res.
– volume: 56
  start-page: 1
  year: 2020
  end-page: 12
  ident: bb0075
  article-title: Debates—Does information theory provide a new paradigm for earth Science? Causality, interaction, and feedback
  publication-title: Water Resour. Res.
– volume: 29
  start-page: 1480
  year: 2015
  end-page: 1492
  ident: bb0295
  article-title: Conceptual and numerical models for groundwater flow in an arid inland river basin
  publication-title: Hydrol. Process.
– volume: 28
  year: 2018
  ident: bb0215
  article-title: Causal network reconstruction from time series: from theoretical assumptions to practical estimation
  publication-title: Chaos
– volume: 76
  start-page: 181
  year: 2005
  end-page: 194
  ident: bb0015
  article-title: A survey of soil salinity and groundwater level control systems in irrigated fields in the Jezre’el Valley, Israel
  publication-title: Agric. Water Manag.
– volume: 5
  start-page: eaau4996
  year: 2019
  ident: bb0225
  article-title: Detecting and quantifying causal associations in large nonlinear time series datasets
  publication-title: Sci. Adv.
– volume: 365
  start-page: 95
  year: 2009
  end-page: 104
  ident: bb0010
  article-title: Optimized groundwater drawdown in a subsiding urban mining area
  publication-title: J. Hydrol.
– volume: 15
  year: 2020
  ident: bb0125
  article-title: Convcast: an embedded convolutional LSTM based architecture for precipitation nowcasting using satellite data
  publication-title: PLoS One
– volume: 9
  start-page: 1
  year: 2019
  end-page: 8
  ident: bb0260
  article-title: A Granger causality analysis of groundwater patterns over a half-century
  publication-title: Sci. Rep.
– volume: 53
  start-page: 5451
  year: 2017
  end-page: 5468
  ident: bb0175
  article-title: How Jordan and Saudi Arabia are avoiding a tragedy of the commons over shared groundwater
  publication-title: Water Resour. Res.
– volume: 56
  start-page: 1
  year: 2020
  end-page: 15
  ident: bb0195
  article-title: Using natural experiments and counterfactuals for causal assessment: river salinity and the Ganges water agreement
  publication-title: Water Resour. Res.
– volume: 3
  start-page: 87
  year: 2015
  end-page: 105
  ident: bb0050
  article-title: Effects of groundwater pumping on the sustainability of a mountain wetland complex, Yosemite National Park, California
  publication-title: J. Hydrol. Reg. Stud.
– volume: 58
  year: 2022
  ident: bb0065
  article-title: Evaluating distributed policies for conjunctive surface water-groundwater Management in Large River Basins: water uses versus hydrological impacts
  publication-title: Water Resour. Res.
– volume: 588
  start-page: 125117
  year: 2020
  ident: bb0005
  article-title: Statistical and qualitative evaluation of multi-sources for hydrological suitability inflood-prone areas of Pakistan
  publication-title: J. Hydrol.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bb0085
  article-title: Long short-term memory
  publication-title: Neural Comput.
– start-page: 1724
  year: 2014
  end-page: 1734
  ident: bb0040
  article-title: Learning phrase representations using RNN encoder–decoder for statistical machine translation
  publication-title: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)
– volume: 119
  start-page: 17
  year: 2013
  end-page: 34
  ident: bb0025
  article-title: Concepts of hydrological connectivity: research approaches, pathways and future agendas
  publication-title: EarthSci. Rev.
– volume: 338
  start-page: 496
  year: 2012
  end-page: 500
  ident: bb0275
  article-title: Detecting causality in complex ecosystems
  publication-title: Science (80-. )
– volume: 76
  start-page: 181
  year: 2005
  ident: 10.1016/j.scitotenv.2023.161998_bb0015
  article-title: A survey of soil salinity and groundwater level control systems in irrigated fields in the Jezre’el Valley, Israel
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2005.01.016
– volume: 17
  start-page: 2685
  year: 2003
  ident: 10.1016/j.scitotenv.2023.161998_bb0200
  article-title: What is hydrologic connectivity and why is it ecologically important?
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.5145
– volume: 14
  year: 2019
  ident: 10.1016/j.scitotenv.2023.161998_bb0280
  article-title: How can big data and machine learning benefit environment and water management: a survey of methods, applications, and future directions
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab1b7d
– volume: 47
  year: 2011
  ident: 10.1016/j.scitotenv.2023.161998_bb0160
  article-title: A revisit of drawdown behavior during pumping in unconfined aquifers
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR009326
– volume: 338
  start-page: 496
  year: 2012
  ident: 10.1016/j.scitotenv.2023.161998_bb0275
  article-title: Detecting causality in complex ecosystems
  publication-title: Science (80-. )
  doi: 10.1126/science.1227079
– volume: 13
  start-page: 317
  year: 2005
  ident: 10.1016/j.scitotenv.2023.161998_bb0115
  article-title: Groundwater depletion: a global problem
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-004-0411-8
– volume: 1
  start-page: 155
  year: 2013
  ident: 10.1016/j.scitotenv.2023.161998_bb0190
  article-title: Linear models: a useful, “Microscope” for causal analysis
  publication-title: J. Causal Inference
  doi: 10.1515/jci-2013-0003
– year: 2005
  ident: 10.1016/j.scitotenv.2023.161998_bb0080
– volume: 73
  start-page: 727
  year: 2014
  ident: 10.1016/j.scitotenv.2023.161998_bb0100
  article-title: Overexploitation status of groundwater and induced geological hazards in China
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-014-1102-y
– volume: 78
  start-page: 482
  year: 2019
  ident: 10.1016/j.scitotenv.2023.161998_bb0150
  article-title: Assessment of groundwater depletion caused by excessive extraction through groundwater flow modeling: the Celaya aquifer in Central Mexico
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-019-8497-4
– volume: 28
  year: 2018
  ident: 10.1016/j.scitotenv.2023.161998_bb0215
  article-title: Causal network reconstruction from time series: from theoretical assumptions to practical estimation
  publication-title: Chaos
  doi: 10.1063/1.5025050
– volume: 53
  start-page: 10757
  year: 2017
  ident: 10.1016/j.scitotenv.2023.161998_bb0095
  article-title: The heterogeneous impacts of groundwater management policies in the Republican River basin of Colorado
  publication-title: Water Resour. Res.
  doi: 10.1002/2017WR020927
– volume: 3
  start-page: 87
  year: 2015
  ident: 10.1016/j.scitotenv.2023.161998_bb0050
  article-title: Effects of groundwater pumping on the sustainability of a mountain wetland complex, Yosemite National Park, California
  publication-title: J. Hydrol. Reg. Stud.
  doi: 10.1016/j.ejrh.2014.10.002
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.scitotenv.2023.161998_bb0085
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 16
  year: 2021
  ident: 10.1016/j.scitotenv.2023.161998_bb0020
  article-title: The impact of groundwater depletion on agricultural production in India
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ac10de
– volume: 14
  year: 2019
  ident: 10.1016/j.scitotenv.2023.161998_bb0055
  article-title: Quantifying irrigation adaptation strategies in response to stakeholder-driven groundwater management in the US High Plains aquifer
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aafe39
– volume: 58
  start-page: 1198
  year: 2013
  ident: 10.1016/j.scitotenv.2023.161998_bb0090
  article-title: A decade of predictions in ungauged basins (PUB)—a review
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2013.803183
– volume: 41
  start-page: 355
  year: 2010
  ident: 10.1016/j.scitotenv.2023.161998_bb0205
  article-title: Système hydrologique Europeén (SHE): review and perspectives after 30 years development in distributed physically-based hydrological modelling
  publication-title: Hydrol. Res.
  doi: 10.2166/nh.2010.009
– volume: 29
  start-page: 1480
  year: 2015
  ident: 10.1016/j.scitotenv.2023.161998_bb0295
  article-title: Conceptual and numerical models for groundwater flow in an arid inland river basin
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10276
– volume: 143
  start-page: 05016014
  year: 2017
  ident: 10.1016/j.scitotenv.2023.161998_bb0110
  article-title: Guiding groundwater policy in the Indus Basin of Pakistan using a physically based groundwater model
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0000733
– volume: 142
  year: 2020
  ident: 10.1016/j.scitotenv.2023.161998_bb0290
  article-title: Machine learning in geo- and environmental sciences: from small to large scale
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2020.103619
– volume: 365
  start-page: 95
  year: 2009
  ident: 10.1016/j.scitotenv.2023.161998_bb0010
  article-title: Optimized groundwater drawdown in a subsiding urban mining area
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2008.11.028
– year: 2005
  ident: 10.1016/j.scitotenv.2023.161998_bb0170
  article-title: GSFLOW — coupled ground-water and surface-water flow model based on the integration of the precipitation-runoff modeling system (PRMS) and the modular ground-water flow model (MODFLOW-2005)
– volume: 4
  start-page: 100042
  year: 2022
  ident: 10.1016/j.scitotenv.2023.161998_bb0130
  article-title: The China groundwater crisis: amechanistic analysis with implications for global sustainability
  publication-title: Sustain. Horizons
  doi: 10.1016/j.horiz.2022.100042
– volume: 4
  start-page: 945
  year: 2014
  ident: 10.1016/j.scitotenv.2023.161998_bb0070
  article-title: The global groundwater crisis
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate2425
– start-page: 1724
  year: 2014
  ident: 10.1016/j.scitotenv.2023.161998_bb0040
  article-title: Learning phrase representations using RNN encoder–decoder for statistical machine translation
– volume: 18
  start-page: 559
  year: 2010
  ident: 10.1016/j.scitotenv.2023.161998_bb0265
  article-title: Review: groundwater management practices, challenges, and innovations in the High Plains aquifer, USA—lessons and recommended actions
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-009-0540-1
– volume: 57
  start-page: 1
  year: 2021
  ident: 10.1016/j.scitotenv.2023.161998_bb0235
  article-title: The multi-scale dynamics of groundwater depletion
  publication-title: Water Resour. Res.
  doi: 10.1029/2020WR029402
– volume: 4
  start-page: 3104
  year: 2014
  ident: 10.1016/j.scitotenv.2023.161998_bb0285
  article-title: Sequence to sequence learning with neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 310
  year: 2022
  ident: 10.1016/j.scitotenv.2023.161998_bb0180
  article-title: Efficient, parallelized global optimization of groundwater pumping in a regional aquifer with land subsidence constraints
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2022.114753
– volume: 20
  start-page: 49
  year: 2018
  ident: 10.1016/j.scitotenv.2023.161998_bb0255
  article-title: The Guarani aquifer system: from a Beacon of hope to a question mark in the governance of transboundary aquifers
  publication-title: J. Hydrol. Reg. Stud.
  doi: 10.1016/j.ejrh.2018.04.008
– volume: 6
  start-page: 8502
  year: 2015
  ident: 10.1016/j.scitotenv.2023.161998_bb0230
  article-title: Identifying causal gateways and mediators in complex spatio-temporal systems
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9502
– volume: 56
  start-page: 1
  year: 2020
  ident: 10.1016/j.scitotenv.2023.161998_bb0075
  article-title: Debates—Does information theory provide a new paradigm for earth Science? Causality, interaction, and feedback
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR024940
– volume: 10
  year: 2022
  ident: 10.1016/j.scitotenv.2023.161998_bb0030
  article-title: Application of time series analysis to estimate drawdown from multiple well fields
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2022.907609
– volume: 1–25
  year: 2021
  ident: 10.1016/j.scitotenv.2023.161998_bb0060
  article-title: Detecting hydrological connectivity using causal inference from time-series: synthetic and real karstic study cases
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– volume: 2–3
  start-page: 57
  year: 2013
  ident: 10.1016/j.scitotenv.2023.161998_bb0155
  article-title: Exogenous regulatory institutions for sustainable common pool resource management: application to groundwater
  publication-title: Water Resour. Econ.
  doi: 10.1016/j.wre.2013.08.001
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.scitotenv.2023.161998_bb0220
  article-title: Inferring causation from time series in earth system sciences
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10105-3
– volume: 119
  start-page: 17
  year: 2013
  ident: 10.1016/j.scitotenv.2023.161998_bb0025
  article-title: Concepts of hydrological connectivity: research approaches, pathways and future agendas
  publication-title: EarthSci. Rev.
  doi: 10.1016/j.earscirev.2013.02.001
– volume: 857
  year: 2023
  ident: 10.1016/j.scitotenv.2023.161998_bb0185
  article-title: Comparison of parallel optimization algorithms on computationally expensive groundwater remediation designs
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.159544
– volume: 35
  start-page: 474
  year: 2017
  ident: 10.1016/j.scitotenv.2023.161998_bb0045
  article-title: Owning groundwater: the example of Mississippi v. Tennessee
  publication-title: Virginia Environ. Law J.
– volume: 109
  start-page: 9320
  year: 2012
  ident: 10.1016/j.scitotenv.2023.161998_bb0240
  article-title: Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1200311109
– start-page: 307
  year: 1953
  ident: 10.1016/j.scitotenv.2023.161998_bb0245
  article-title: A value for n-person games, in
– volume: 29
  start-page: 4069
  year: 2016
  ident: 10.1016/j.scitotenv.2023.161998_bb0120
  article-title: Using causal effect networks to analyze different Arctic drivers of midlatitude winter circulation
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-15-0654.1
– volume: 49
  start-page: 159
  year: 2013
  ident: 10.1016/j.scitotenv.2023.161998_bb0035
  article-title: Use of flow modeling to assess sustainability of groundwater resources in the North China plain
  publication-title: Water Resour. Res.
  doi: 10.1029/2012WR011899
– volume: 66
  start-page: 1383
  year: 2021
  ident: 10.1016/j.scitotenv.2023.161998_bb0105
  article-title: Multi sources hydrological assessment over Vu Gia Thu Bon Basin, Vietnam
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2021.1935964
– volume: 5
  start-page: eaau4996
  year: 2019
  ident: 10.1016/j.scitotenv.2023.161998_bb0225
  article-title: Detecting and quantifying causal associations in large nonlinear time series datasets
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau4996
– volume: 1
  start-page: 541
  year: 1989
  ident: 10.1016/j.scitotenv.2023.161998_bb0140
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– volume: 19
  start-page: 2071
  year: 2005
  ident: 10.1016/j.scitotenv.2023.161998_bb0165
  article-title: A simulation and prediction of agricultural irrigation on groundwater in well irrigation area of the piedmont of Mt. Taihang, North China
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.5667
– volume: 242
  start-page: 79
  year: 2001
  ident: 10.1016/j.scitotenv.2023.161998_bb0135
  article-title: Prediction of optimal safe ground water yield and land subsidence in the Los Banos-Kettleman City area, California, using a calibrated numerical simulation model
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(00)00379-6
– volume: 588
  start-page: 125117
  year: 2020
  ident: 10.1016/j.scitotenv.2023.161998_bb0005
  article-title: Statistical and qualitative evaluation of multi-sources for hydrological suitability inflood-prone areas of Pakistan
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125117
– year: 1973
  ident: 10.1016/j.scitotenv.2023.161998_bb0145
– volume: 15
  year: 2020
  ident: 10.1016/j.scitotenv.2023.161998_bb0125
  article-title: Convcast: an embedded convolutional LSTM based architecture for precipitation nowcasting using satellite data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0230114
– volume: 9
  start-page: 62
  year: 1991
  ident: 10.1016/j.scitotenv.2023.161998_bb0270
  article-title: An algorithm for fast recovery of sparse causal graphs
  publication-title: Soc. Sci. Comput. Rev.
  doi: 10.1177/089443939100900106
– volume: 53
  start-page: 5451
  year: 2017
  ident: 10.1016/j.scitotenv.2023.161998_bb0175
  article-title: How Jordan and Saudi Arabia are avoiding a tragedy of the commons over shared groundwater
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR020261
– volume: 566
  start-page: 196
  year: 2019
  ident: 10.1016/j.scitotenv.2023.161998_bb0210
  article-title: Deep learning and process understanding for data-driven earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.scitotenv.2023.161998_bb0260
  article-title: A Granger causality analysis of groundwater patterns over a half-century
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-49278-8
– volume: 56
  start-page: 1
  year: 2020
  ident: 10.1016/j.scitotenv.2023.161998_bb0195
  article-title: Using natural experiments and counterfactuals for causal assessment: river salinity and the Ganges water agreement
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR026166
– start-page: 802
  year: 2015
  ident: 10.1016/j.scitotenv.2023.161998_bb0250
  article-title: Convolutional LSTM network: a machine learning approach for precipitation nowcasting
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 58
  year: 2022
  ident: 10.1016/j.scitotenv.2023.161998_bb0065
  article-title: Evaluating distributed policies for conjunctive surface water-groundwater Management in Large River Basins: water uses versus hydrological impacts
  publication-title: Water Resour. Res.
  doi: 10.1029/2021WR031352
SSID ssj0000781
Score 2.4510374
Snippet Groundwater depletion, typically caused by the distributed pumping activities of multiple stakeholders (i.e., water users) that share a hydrologically...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 161998
SubjectTerms Aquifer depletion
aquifers
case studies
Causal inference
Convolutional long short-term memory
Deep learning
drawdown
environment
fluid mechanics
groundwater flow
Groundwater management
hydrologic models
rivers
stakeholders
water management
water shortages
water table
Title A data-driven approach to exploring the causal relationships between distributed pumping activities and aquifer drawdown
URI https://dx.doi.org/10.1016/j.scitotenv.2023.161998
https://www.ncbi.nlm.nih.gov/pubmed/36739028
https://www.proquest.com/docview/2773123408
https://www.proquest.com/docview/2834231831
Volume 870
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8h0CQkhKAbrAyQkfaaktqpk-ytQqBuFTxMQ-PN8ldE0ZSWNuXjhb-duzop4gF42FPkyI4c-3z3s_27O4DvVvYM17GJulghSrTPIh1jkYvc6Sy1Ird0Dnl-IQeXya-r3tUKnDS-MESrrHV_0OkLbV2_Oa5H83gyGpGPb5LlkrJmkR0W5FGeJClJeefpheZBwWzCLTMubKz9iuOF363GiE3vOpRFvIPoB3cfb1motxDowhKdbcFmDSFZP_RyG1Z82YJPIankYwt2Tl9817BavXhnLdgIR3QseB59hoc-I35o5Kak8VgTXZxVY-YbZh5DfMisns_wS9OGN3c9msxYTfBijiLvUtIs79gEZYMakbPE3SJUK9OlY_p2TgQa5qb63uGu_wtcnp3-ORlEdSKGyCZxUkXGCm6zotsrPN2DFsIgKMtczyEyz1MhjUytNLHNc6Ndjqit6AqHyKEwuAW2ToodWC3Hpf8KjGthuOdp4bxH-6mN54anqJFd7hB98TbIZvCVraOUU7KMf6qho92o5awpmjUVZq0N8bLhJATq-LjJj2Z21SuZU2hOPm581MiDwhVJ1yy69OP5TOHvCMQDSfxenYwiL6I67bZhNwjTstdCpoJi6uz9T_e-wTqV6N6Lx_uwWk3n_gDhU2UOF-vjENb6P4eDC3oOf_8dPgPBwh-2
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-xommTpmnrxlb25Ul7DaR24iS8VQhUBvQJJN4sf0XrhNLSpmz773dXO0U8MB72mMRnOb7z3c_2fQB8szI3XKcmGWKDJNO-THSKj1xUTpeFFZWlc8jziRxfZt-v8qstOOxiYcitMur-oNPX2jq-2Y-zuT-fTinGNysrSVWzyA6L4glsU3aqvAfbo5PT8eROIRdlKJyX4dpGgntuXth1O0N4ertHhcT3EADhBuQhI_UQCF0bo-NX8DKiSDYKA30NW77pw9NQV_JPH3aO7sLXsFlcv8s-vAindCwEH72B3yNGLqKJW5DSY12CcdbOmO-c8xhCRGb1aok9LTrXuR_T-ZJFHy_mKPku1c3yjs1RPIiI4iVu19lamW4c0zcr8qFhbqF_Odz4v4XL46OLw3ESazEkNkuzNjFWcFvWw7z2dBVaC4O4rHS5Q3BeFUIaWVhpUltVRrsKgVs9FA7BQ21wF2ydFDvQa2aNfw-Ma2G450XtvEcTqo3nhheolF3lEIDxAchu8pWNicqpXsa16jzSfqoN1xRxTQWuDSDdEM5Dro7HSQ467qp7YqfQojxO_LWTB4WLkm5adONnq6XC3xEICbL0X21KSr6IGnU4gHdBmDajFrIQlFZn93-G9wWejS_Oz9TZyeT0AzynL3QNxtOP0GsXK_8J0VRrPsfV8hd9rCDE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+approach+to+exploring+the+causal+relationships+between+distributed+pumping+activities+and+aquifer+drawdown&rft.jtitle=The+Science+of+the+total+environment&rft.au=Pang%2C+Min&rft.au=Du%2C+Erhu&rft.au=Zheng%2C+Chunmiao&rft.date=2023-04-20&rft.issn=0048-9697&rft.volume=870&rft.spage=161998&rft_id=info:doi/10.1016%2Fj.scitotenv.2023.161998&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2023_161998
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon