Using generalized additive models to decompose time series and waveforms, and dissect heart–lung interaction physiology

Common physiological time series and waveforms are composed of repeating cardiac and respiratory cycles. Often, the cardiac effect is the primary interest, but for, e.g., fluid responsiveness prediction, the respiratory effect on arterial blood pressure also convey important information. In either c...

Full description

Saved in:
Bibliographic Details
Published inJournal of clinical monitoring and computing Vol. 37; no. 1; pp. 165 - 177
Main Authors Enevoldsen, Johannes, Simpson, Gavin L., Vistisen, Simon T.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.02.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1387-1307
1573-2614
1573-2614
DOI10.1007/s10877-022-00873-7

Cover

Abstract Common physiological time series and waveforms are composed of repeating cardiac and respiratory cycles. Often, the cardiac effect is the primary interest, but for, e.g., fluid responsiveness prediction, the respiratory effect on arterial blood pressure also convey important information. In either case, it is relevant to disentangle the two effects. Generalized additive models (GAMs) allow estimating the effect of predictors as nonlinear, smooth functions. These smooth functions can represent the cardiac and respiratory cycles’ effects on a physiological signal. We demonstrate how GAMs allow a decomposition of physiological signals from mechanically ventilated subjects into separate effects of the cardiac and respiratory cycles. Two examples are presented. The first is a model of the respiratory variation in pulse pressure. The second demonstrates how a central venous pressure waveform can be decomposed into a cardiac effect, a respiratory effect and the interaction between the two cycles. Generalized additive models provide an intuitive and flexible approach to modelling the repeating, smooth, patterns common in medical monitoring data.
AbstractList Common physiological time series and waveforms are composed of repeating cardiac and respiratory cycles. Often, the cardiac effect is the primary interest, but for, e.g., fluid responsiveness prediction, the respiratory effect on arterial blood pressure also convey important information. In either case, it is relevant to disentangle the two effects. Generalized additive models (GAMs) allow estimating the effect of predictors as nonlinear, smooth functions. These smooth functions can represent the cardiac and respiratory cycles' effects on a physiological signal. We demonstrate how GAMs allow a decomposition of physiological signals from mechanically ventilated subjects into separate effects of the cardiac and respiratory cycles. Two examples are presented. The first is a model of the respiratory variation in pulse pressure. The second demonstrates how a central venous pressure waveform can be decomposed into a cardiac effect, a respiratory effect and the interaction between the two cycles. Generalized additive models provide an intuitive and flexible approach to modelling the repeating, smooth, patterns common in medical monitoring data.
Common physiological time series and waveforms are composed of repeating cardiac and respiratory cycles. Often, the cardiac effect is the primary interest, but for, e.g., fluid responsiveness prediction, the respiratory effect on arterial blood pressure also convey important information. In either case, it is relevant to disentangle the two effects. Generalized additive models (GAMs) allow estimating the effect of predictors as nonlinear, smooth functions. These smooth functions can represent the cardiac and respiratory cycles' effects on a physiological signal. We demonstrate how GAMs allow a decomposition of physiological signals from mechanically ventilated subjects into separate effects of the cardiac and respiratory cycles. Two examples are presented. The first is a model of the respiratory variation in pulse pressure. The second demonstrates how a central venous pressure waveform can be decomposed into a cardiac effect, a respiratory effect and the interaction between the two cycles. Generalized additive models provide an intuitive and flexible approach to modelling the repeating, smooth, patterns common in medical monitoring data.Common physiological time series and waveforms are composed of repeating cardiac and respiratory cycles. Often, the cardiac effect is the primary interest, but for, e.g., fluid responsiveness prediction, the respiratory effect on arterial blood pressure also convey important information. In either case, it is relevant to disentangle the two effects. Generalized additive models (GAMs) allow estimating the effect of predictors as nonlinear, smooth functions. These smooth functions can represent the cardiac and respiratory cycles' effects on a physiological signal. We demonstrate how GAMs allow a decomposition of physiological signals from mechanically ventilated subjects into separate effects of the cardiac and respiratory cycles. Two examples are presented. The first is a model of the respiratory variation in pulse pressure. The second demonstrates how a central venous pressure waveform can be decomposed into a cardiac effect, a respiratory effect and the interaction between the two cycles. Generalized additive models provide an intuitive and flexible approach to modelling the repeating, smooth, patterns common in medical monitoring data.
Author Vistisen, Simon T.
Simpson, Gavin L.
Enevoldsen, Johannes
Author_xml – sequence: 1
  givenname: Johannes
  orcidid: 0000-0002-9190-6566
  surname: Enevoldsen
  fullname: Enevoldsen, Johannes
  email: enevoldsen@clin.au.dk
  organization: Department of Clinical Medicine, Aarhus University, Department of Anaesthesiology and Intensive Care, Aarhus University Hospital
– sequence: 2
  givenname: Gavin L.
  orcidid: 0000-0002-9084-8413
  surname: Simpson
  fullname: Simpson, Gavin L.
  organization: Department of Animal Science, Aarhus University
– sequence: 3
  givenname: Simon T.
  orcidid: 0000-0002-1297-1459
  surname: Vistisen
  fullname: Vistisen, Simon T.
  organization: Department of Clinical Medicine, Aarhus University, Department of Anaesthesiology and Intensive Care, Aarhus University Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35695942$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtuFDEUtFAQ-cAFWCBLbFjQ4E-77d4goYifFIkNWVtu-3WPo257sD2DhhV34IacBE8mBMgiKz_LVfWqXKfoKMQACD2l5BUlRL7OlCgpG8JYQ-rEG_kAnVBRB9bR9qjOXMmGciKP0WnOV4SQXnH6CB1z0fWib9kJ2l1mHyY8QYBkZv8dHDbO-eK3gJfoYM64ROzAxmUdM-DiF8AZkoeMTXD4m9nCGNOSX15fnc8ZbMErMKn8-vFz3lRxH0oVt8XHgNerXfZxjtPuMXo4mjnDk5vzDF2-f_fl_GNz8fnDp_O3F41tSVuaYRiIYAO4YYBOCcVGqQZpBbcgXScY73s-upZJxt04UgVyoEyOvSWtY8K1_Ay9OeiuN8MCzkIoNaleJ7-YtNPReP3_S_ArPcWt7pVglHVV4MWNQIpfN5CLXny2MM8mQNxkzTopesUI3UOf34FexU0KNZ5msutUhXV7R8_-dXRr5U8rFcAOAJtizgnGWwglel-9PlSva_X6unotK0ndIVlfzP7Tayo_30_lB2que8IE6a_te1i_AQzhxww
CitedBy_id crossref_primary_10_1186_s12879_024_09892_y
crossref_primary_10_1186_s12889_024_20839_5
crossref_primary_10_1007_s10877_023_01090_6
Cites_doi 10.1080/01621459.2020.1725521
10.1007/s10877-016-9907-8
10.21105/joss.01686
10.1177/2331216519832483
10.1038/s41598-018-20062-4
10.1111/j.1467-9868.2010.00749.x
10.1213/01.ane.0000297291.01615.5c
10.1201/9781315370279
10.1186/s40560-018-0324-6
10.1016/0002-8703(74)90474-8
10.1016/j.bpa.2013.06.002
10.1186/s13054-015-0869-x
10.1111/j.1399-6576.2008.01893.x
10.1007/978-0-387-84858-7
10.1109/TBME.2004.834295
10.4103/0970-9185.117096
10.4103/0970-9185.137289
10.1177/088506660001500505
10.1007/s10877-020-00636-2
10.1097/CCM.0b013e3181a590da
10.1097/00000542-200508000-00026
10.1097/00000441-190707000-00002
10.1097/ALN.0b013e31819db2a1
10.1016/j.anclin.2021.03.007
10.3389/fevo.2018.00149
10.7717/peerj.6876
10.1016/j.bja.2020.09.039
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7SC
7SP
7U5
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
KB0
L7M
L~C
L~D
M0S
M1P
NAPCQ
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s10877-022-00873-7
DatabaseName SpringerOpen Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Health & Medical Collection
Medical Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

MEDLINE - Academic

Computer Science Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1573-2614
EndPage 177
ExternalDocumentID PMC9852126
35695942
10_1007_s10877_022_00873_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Holger & Ruth Hesse’s Mindefond
– fundername: Aarhus Universitets Forskningsfond
  funderid: http://dx.doi.org/10.13039/501100002739
– fundername: Aarhus Universitet
  funderid: http://dx.doi.org/10.13039/100007605
– fundername: ;
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
1N0
2.D
203
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
78A
7RV
7X7
88E
8AO
8FE
8FG
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUDM
ACZOJ
ADBBV
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
AXYYD
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KPH
LAK
LLZTM
M1P
M4Y
MA-
N2Q
N9A
NAPCQ
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
Q2X
QOK
QOR
QOS
R89
R9I
RNI
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7U
Z7X
Z82
Z83
Z87
Z88
Z8R
Z8V
Z8W
ZMTXR
ZOVNA
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7U5
7XB
8FD
8FK
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
K9.
L7M
L~C
L~D
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c404t-bbb052bedbbe68582f78b7c53ce7d6523993fd42723dff18e7b127f9c04d25d43
IEDL.DBID AGYKE
ISSN 1387-1307
1573-2614
IngestDate Thu Aug 21 18:38:58 EDT 2025
Thu Sep 04 16:18:11 EDT 2025
Sat Aug 23 13:23:38 EDT 2025
Thu Apr 03 06:57:18 EDT 2025
Tue Jul 01 00:30:00 EDT 2025
Thu Apr 24 23:10:36 EDT 2025
Fri Feb 21 02:45:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Signal processing
Central venous pressure
Mechanical ventilation
Statistical modelling
Hemodynamic monitoring
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-bbb052bedbbe68582f78b7c53ce7d6523993fd42723dff18e7b127f9c04d25d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9084-8413
0000-0002-9190-6566
0000-0002-1297-1459
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s10877-022-00873-7
PMID 35695942
PQID 2766898264
PQPubID 26276
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9852126
proquest_miscellaneous_2675982016
proquest_journals_2766898264
pubmed_primary_35695942
crossref_primary_10_1007_s10877_022_00873_7
crossref_citationtrail_10_1007_s10877_022_00873_7
springer_journals_10_1007_s10877_022_00873_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
PublicationTitle Journal of clinical monitoring and computing
PublicationTitleAbbrev J Clin Monit Comput
PublicationTitleAlternate J Clin Monit Comput
PublicationYear 2023
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Hastie, Tibshirani, Friedman (CR6) 2009
Simpson (CR20) 2018
Guerin, Monnet, Teboul (CR2) 2013; 27
de Keijzer, Scheeren (CR25) 2021; 39
Vistisen (CR28) 2017; 31
Aboy, McNames, Thong, Phillips, Ellenby, Goldstein (CR14) 2004; 51
Lee, Jung (CR11) 2018; 8
Wyffels, De Hert, Wouters (CR4) 2021; 126
Constant (CR19) 1974; 88
Wickham, Averick, Bryan, Chang, McGowan, François (CR10) 2019; 4
Pedersen, Miller, Simpson, Ross (CR30) 2019; 7
Raut, Maheshwari (CR23) 2014; 30
Magder, Erice, Lagonidis (CR24) 2000; 15
Wood (CR7) 2011; 73
Meijs, van Houte, Conjaerts, Bindels, Bouwman, Houterman (CR26) 2021
Cannesson, Slieker, Desebbe, Bauer, Chiari, Hénaine (CR15) 2008; 106
Vistisen, Struijk, Larsson (CR16) 2009; 53
Marik, Cavallazzi, Vasu, Hirani (CR1) 2009; 37
Vistisen, Krog, Elkmann, Vallentin, Scheeren, Sølling (CR27) 2018; 6
Mackenzie (CR18) 1907; 134
Hastie, Tibshirani (CR5) 1986; 1
(CR8) 2021
van Rij, Hendriks, van Rijn, Baayen, Wood (CR21) 2019
De Backer, Ph, Taccone, Holsten, Ibrahimi, Vincent (CR17) 2009; 110
CR9
Karippacheril, Ho (CR12) 2013; 29
Michard (CR13) 2005; 103
Wood (CR29) 2017
Michard, Chemla, Teboul (CR3) 2015; 19
Fasiolo, Wood, Zaffran, Nedellec, Goude (CR22) 2020
SN Wood (873_CR7) 2011; 73
J van Rij (873_CR21) 2019
R Core Team (873_CR8) 2021
LPB Meijs (873_CR26) 2021
873_CR9
L Guerin (873_CR2) 2013; 27
JG Karippacheril (873_CR12) 2013; 29
ST Vistisen (873_CR16) 2009; 53
M Fasiolo (873_CR22) 2020
S Magder (873_CR24) 2000; 15
M Aboy (873_CR14) 2004; 51
H-C Lee (873_CR11) 2018; 8
SN Wood (873_CR29) 2017
GL Simpson (873_CR20) 2018
T Hastie (873_CR6) 2009
ST Vistisen (873_CR27) 2018; 6
J Constant (873_CR19) 1974; 88
M Cannesson (873_CR15) 2008; 106
PAH Wyffels (873_CR4) 2021; 126
MS Raut (873_CR23) 2014; 30
IN de Keijzer (873_CR25) 2021; 39
F Michard (873_CR3) 2015; 19
H Wickham (873_CR10) 2019; 4
PE Marik (873_CR1) 2009; 37
J Mackenzie (873_CR18) 1907; 134
D De Backer (873_CR17) 2009; 110
T Hastie (873_CR5) 1986; 1
EJ Pedersen (873_CR30) 2019; 7
F Michard (873_CR13) 2005; 103
ST Vistisen (873_CR28) 2017; 31
References_xml – year: 2020
  ident: CR22
  article-title: Fast calibrated additive quantile regression
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2020.1725521
– volume: 31
  start-page: 693
  year: 2017
  end-page: 699
  ident: CR28
  article-title: Using extra systoles to predict fluid responsiveness in cardiothoracic critical care patients
  publication-title: J Clin Monit Comput
  doi: 10.1007/s10877-016-9907-8
– volume: 4
  start-page: 1686
  year: 2019
  ident: CR10
  article-title: Welcome to the tidyverse
  publication-title: J Open Source Softw
  doi: 10.21105/joss.01686
– year: 2019
  ident: CR21
  article-title: Analyzing the time course of pupillometric data
  publication-title: Trends Hear
  doi: 10.1177/2331216519832483
– volume: 8
  start-page: 1527
  year: 2018
  ident: CR11
  article-title: Vital Recorder—a free research tool for automatic recording of high-resolution time-synchronised physiological data from multiple anaesthesia devices
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-20062-4
– volume: 73
  start-page: 3
  year: 2011
  end-page: 36
  ident: CR7
  article-title: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.1467-9868.2010.00749.x
– volume: 106
  start-page: 1195
  year: 2008
  end-page: 1200
  ident: CR15
  article-title: The ability of a novel algorithm for automatic estimation of the respiratory variations in arterial pulse pressure to monitor fluid responsiveness in the operating room
  publication-title: Anesth Analg
  doi: 10.1213/01.ane.0000297291.01615.5c
– year: 2017
  ident: CR29
  publication-title: Generalized additive models: an introduction with R
  doi: 10.1201/9781315370279
– volume: 6
  start-page: 52
  year: 2018
  ident: CR27
  article-title: Extrasystoles for fluid responsiveness prediction in critically ill patients
  publication-title: J Intensive Care
  doi: 10.1186/s40560-018-0324-6
– volume: 88
  start-page: 372
  year: 1974
  end-page: 379
  ident: CR19
  article-title: The X prime descent in jugular contour nomenclature and recognition
  publication-title: Am Heart J
  doi: 10.1016/0002-8703(74)90474-8
– volume: 27
  start-page: 177
  year: 2013
  end-page: 185
  ident: CR2
  article-title: Monitoring volume and fluid responsiveness: from static to dynamic indicators
  publication-title: Best Pract Res Clin Anaesthesiol
  doi: 10.1016/j.bpa.2013.06.002
– volume: 19
  start-page: 15
  year: 2015
  end-page: 17
  ident: CR3
  article-title: Applicability of pulse pressure variation: how many shades of grey?
  publication-title: Crit Care
  doi: 10.1186/s13054-015-0869-x
– volume: 53
  start-page: 534
  year: 2009
  end-page: 542
  ident: CR16
  article-title: Automated pre-ejection period variation indexed to tidal volume predicts fluid responsiveness after cardiac surgery
  publication-title: Acta Anaesthesiol Scand
  doi: 10.1111/j.1399-6576.2008.01893.x
– year: 2009
  ident: CR6
  publication-title: The elements of statistical learning: data mining, inference, and prediction
  doi: 10.1007/978-0-387-84858-7
– volume: 51
  start-page: 2198
  year: 2004
  end-page: 2203
  ident: CR14
  article-title: A novel algorithm to estimate the pulse pressure variation index/spl Delta/PP
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2004.834295
– year: 2021
  ident: CR8
  publication-title: R: a language and environment for statistical computing
– volume: 29
  start-page: 423
  year: 2013
  end-page: 424
  ident: CR12
  article-title: Data acquisition from S/5 GE datex anesthesia monitor using VSCapture: an open source.NET/mono tool
  publication-title: J Anaesthesiol Clin Pharmacol
  doi: 10.4103/0970-9185.117096
– volume: 1
  start-page: 297
  year: 1986
  end-page: 318
  ident: CR5
  article-title: Generalized additive models
  publication-title: Stat Sci Inst Math Stat
– volume: 30
  start-page: 430
  year: 2014
  end-page: 431
  ident: CR23
  article-title: “x” descent of CVP: an indirect measure of RV dysfunction ?
  publication-title: J Anaesthesiol Clin Pharmacol
  doi: 10.4103/0970-9185.137289
– volume: 15
  start-page: 262
  year: 2000
  end-page: 269
  ident: CR24
  article-title: Determinants of the Y descent and its usefulness as a predictor of ventricular filling
  publication-title: J Intensive Care Med
  doi: 10.1177/088506660001500505
– year: 2021
  ident: CR26
  article-title: Clinical validation of a computerized algorithm to determine mean systemic filling pressure
  publication-title: J Clin Monit Comput
  doi: 10.1007/s10877-020-00636-2
– volume: 37
  start-page: 2642
  year: 2009
  end-page: 2647
  ident: CR1
  article-title: Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0b013e3181a590da
– volume: 103
  start-page: 419
  year: 2005
  end-page: 428
  ident: CR13
  article-title: Changes in arterial pressure during mechanical ventilation
  publication-title: Anesthesiology
  doi: 10.1097/00000542-200508000-00026
– volume: 134
  start-page: 12
  year: 1907
  end-page: 34
  ident: CR18
  article-title: The interpretation of the pulsations in the jugular veins
  publication-title: Am J Med Sci
  doi: 10.1097/00000441-190707000-00002
– ident: CR9
– volume: 110
  start-page: 1092
  year: 2009
  end-page: 1097
  ident: CR17
  article-title: Influence of respiratory rate on stroke volume variation in mechanically ventilated patients
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0b013e31819db2a1
– volume: 39
  start-page: 441
  year: 2021
  end-page: 456
  ident: CR25
  article-title: Perioperative hemodynamic monitoring: an overview of current methods
  publication-title: Anesthesiol Clin
  doi: 10.1016/j.anclin.2021.03.007
– year: 2018
  ident: CR20
  article-title: Modelling palaeoecological time series using generalised additive models
  publication-title: Front Ecol Evol
  doi: 10.3389/fevo.2018.00149
– volume: 7
  start-page: e6876
  year: 2019
  ident: CR30
  article-title: Hierarchical generalized additive models in ecology: an introduction with mgcv
  publication-title: PeerJ
  doi: 10.7717/peerj.6876
– volume: 126
  start-page: 111
  year: 2021
  end-page: 119
  ident: CR4
  article-title: New algorithm to quantify cardiopulmonary interaction in patients with atrial fibrillation: a proof-of-concept study
  publication-title: Br J Anaesth
  doi: 10.1016/j.bja.2020.09.039
– volume: 106
  start-page: 1195
  year: 2008
  ident: 873_CR15
  publication-title: Anesth Analg
  doi: 10.1213/01.ane.0000297291.01615.5c
– volume: 126
  start-page: 111
  year: 2021
  ident: 873_CR4
  publication-title: Br J Anaesth
  doi: 10.1016/j.bja.2020.09.039
– year: 2020
  ident: 873_CR22
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2020.1725521
– year: 2018
  ident: 873_CR20
  publication-title: Front Ecol Evol
  doi: 10.3389/fevo.2018.00149
– volume-title: The elements of statistical learning: data mining, inference, and prediction
  year: 2009
  ident: 873_CR6
  doi: 10.1007/978-0-387-84858-7
– year: 2019
  ident: 873_CR21
  publication-title: Trends Hear
  doi: 10.1177/2331216519832483
– volume: 8
  start-page: 1527
  year: 2018
  ident: 873_CR11
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-20062-4
– volume: 134
  start-page: 12
  year: 1907
  ident: 873_CR18
  publication-title: Am J Med Sci
  doi: 10.1097/00000441-190707000-00002
– volume: 7
  start-page: e6876
  year: 2019
  ident: 873_CR30
  publication-title: PeerJ
  doi: 10.7717/peerj.6876
– volume: 73
  start-page: 3
  year: 2011
  ident: 873_CR7
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.1467-9868.2010.00749.x
– volume: 15
  start-page: 262
  year: 2000
  ident: 873_CR24
  publication-title: J Intensive Care Med
  doi: 10.1177/088506660001500505
– volume: 31
  start-page: 693
  year: 2017
  ident: 873_CR28
  publication-title: J Clin Monit Comput
  doi: 10.1007/s10877-016-9907-8
– volume: 1
  start-page: 297
  year: 1986
  ident: 873_CR5
  publication-title: Stat Sci Inst Math Stat
– volume: 103
  start-page: 419
  year: 2005
  ident: 873_CR13
  publication-title: Anesthesiology
  doi: 10.1097/00000542-200508000-00026
– volume: 51
  start-page: 2198
  year: 2004
  ident: 873_CR14
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2004.834295
– volume: 37
  start-page: 2642
  year: 2009
  ident: 873_CR1
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0b013e3181a590da
– volume: 39
  start-page: 441
  year: 2021
  ident: 873_CR25
  publication-title: Anesthesiol Clin
  doi: 10.1016/j.anclin.2021.03.007
– volume: 110
  start-page: 1092
  year: 2009
  ident: 873_CR17
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0b013e31819db2a1
– year: 2021
  ident: 873_CR26
  publication-title: J Clin Monit Comput
  doi: 10.1007/s10877-020-00636-2
– volume: 6
  start-page: 52
  year: 2018
  ident: 873_CR27
  publication-title: J Intensive Care
  doi: 10.1186/s40560-018-0324-6
– volume: 88
  start-page: 372
  year: 1974
  ident: 873_CR19
  publication-title: Am Heart J
  doi: 10.1016/0002-8703(74)90474-8
– volume: 27
  start-page: 177
  year: 2013
  ident: 873_CR2
  publication-title: Best Pract Res Clin Anaesthesiol
  doi: 10.1016/j.bpa.2013.06.002
– volume-title: R: a language and environment for statistical computing
  year: 2021
  ident: 873_CR8
– volume: 4
  start-page: 1686
  year: 2019
  ident: 873_CR10
  publication-title: J Open Source Softw
  doi: 10.21105/joss.01686
– volume-title: Generalized additive models: an introduction with R
  year: 2017
  ident: 873_CR29
  doi: 10.1201/9781315370279
– volume: 30
  start-page: 430
  year: 2014
  ident: 873_CR23
  publication-title: J Anaesthesiol Clin Pharmacol
  doi: 10.4103/0970-9185.137289
– ident: 873_CR9
– volume: 29
  start-page: 423
  year: 2013
  ident: 873_CR12
  publication-title: J Anaesthesiol Clin Pharmacol
  doi: 10.4103/0970-9185.117096
– volume: 53
  start-page: 534
  year: 2009
  ident: 873_CR16
  publication-title: Acta Anaesthesiol Scand
  doi: 10.1111/j.1399-6576.2008.01893.x
– volume: 19
  start-page: 15
  year: 2015
  ident: 873_CR3
  publication-title: Crit Care
  doi: 10.1186/s13054-015-0869-x
SSID ssj0009831
Score 2.3303604
Snippet Common physiological time series and waveforms are composed of repeating cardiac and respiratory cycles. Often, the cardiac effect is the primary interest, but...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 165
SubjectTerms Anesthesiology
Blood pressure
Blood Pressure - physiology
Critical Care Medicine
Decomposition
Fluid Therapy
Health Sciences
Heart
Humans
Intensive
Lung
Medicine
Medicine & Public Health
Original Research
Physiological effects
Physiology
Pressure effects
Respiration, Artificial
Respiratory Physiological Phenomena
Statistics for Life Sciences
Time Factors
Time series
Waveforms
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYolapyqFr6YClFrtRbsZrYTuycqqrqgpDoqUjcothjt0gooSSA4MR_4B_yS-pxvLvdonKM7DyceXg8j28I-dBkvgIIFMi1ASZz7ZlujGDOltxznYGMlD74Xu4dyv2j4ig53PqUVjnTiVFRQ2fRR_6Jq7LUVTCG5efT3wy7RmF0NbXQeEQe52GnQT7X090F6K4W44ErCFLQ1SoVzaTSOa0Uw1x2RGUTTC1vTPeszftJk_9ETuOGNH1OniVLkn4ZSf-CrLh2naz9hS-4Tp4cpMj5S3IVcwPozxFl-vjaAcVUIlR2NHbD6enQUXCYYt71jmLPeYrs6XratEAvmwuH9m2_Ey9jGN8OFPthD3c3tydBZ1CEnjgbCyVo9JhEl_0rcjj99uPrHkttF5iVmRyYMSYruHFgjEN0eu6VNsoWwjoFZYHFsMKD5IoL8D7XTpmcK1_ZTAIvQIrXZLXtWrdBqPVaN0JlHjyXGmSjDS-skDIzQgOUE5LP_nltEyY5tsY4qRdoykinOtCpjnSq1YR8nN9zOiJyPDh7a0bKOklnXy94aULez4eDXGGwpGlddx7mhJNUheZR-Mg3I-XnrxNFWRWV5BOilnhiPgExu5dH2uNfEbu70lgsHZ65M-OexWf9fxWbD6_iLXnKg-01JpNvkdXh7Ny9C7bSYLajQPwB-EUThg
  priority: 102
  providerName: ProQuest
Title Using generalized additive models to decompose time series and waveforms, and dissect heart–lung interaction physiology
URI https://link.springer.com/article/10.1007/s10877-022-00873-7
https://www.ncbi.nlm.nih.gov/pubmed/35695942
https://www.proquest.com/docview/2766898264
https://www.proquest.com/docview/2675982016
https://pubmed.ncbi.nlm.nih.gov/PMC9852126
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD5inYTYw4BxK4zKSLyxTIntxM5jW7WbQKsQolJ5iuLbmJjSaUmZtqf9B_4hvwTbSdp1A6S9JIrsXGyfYx_nfOc7AO_z0KRK2RGIuFABjbgJeC5IoGWCDeahon6kjybJ4ZR-nMWzJiisbNHurUvSz9Q3gt04Y4FDnzseNRKwDdiMI57yDmz2D759Gq3IdjmpN1pWgewczZpgmb8_ZX1BumNl3gVL3vKY-oVo_BimbRNq_MmP_UUl9uXVLXbH-7bxCWw3linq16L0FB7oYge2bvAV7sDDo8YT_wwuPdYAHdes1SdXWiEHTXKTJ_LZdUpUzZHSDrI-LzVyOeyRE3ddorxQ6CL_qZ29XO75Sw8LkBVy-bWr39e_Tu0chByVxXkdeIH8HxjvAngO0_Ho6_AwaNI4BJKGtAqEEGGMhVZCaMd2jw3jgsmYSM1UErvgWmIUxQwTZUzENRMRZiaVIVU4VpS8gE4xL_QrQNJwnhMWGmUw5YrmXOBYEkpDQbhSSReidiwz2XCcu1Qbp9mKndn1cGZ7OPM9nLEufFjec1YzfPy39m4rIlmj7WWGWZJYObS2ZRfeLYutnjrnS17o-cLWsTuz1Jlb9iNf1hK1fB2JkzROKe4CW5O1ZQXHAb5eUpx891zgKXfB1_aZe61ArT7r3614fb_qb-ARtrZdDVbfhU51vtBvrS1WiR5ssBmzRz4-6Fk1HA8Gk16jjvY8GE0-f7Glw2Roj1Pc_wMoPzQY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrcTjgKC8FgoYCU40IrGd2DkgxKPVlnZXCLVSbyF-QaUqW5qUqpz4D_wPfhS_BI-T7LJU9NZjFOf5zYzHnplvAJ6WscuN8QgkUpmIJ9JFslQssjqjjsrY8ID0eJKNdvn7vXRvCX71tTCYVtnbxGCozVTjHvkLKrJM5t4Z5q8Ov0bYNQqjq30LjVYstuzpiV-y1S8333l8n1G6sb7zdhR1XQUizWPeREqpOKXKGqUskq9TJ6QSOmXaCpOlWOvJnOFUUGacS6QVKqHC5TrmhqaGM3_fS7DMsaJ1AMtv1icfPs5pfiVrl3hedf3sILoyna5YTwoRYfY88sCxSCxOhWf827Npmv_EasMUuHEDrne-K3ndCttNWLLVClz7i9FwBS6Pu1j9LTgN2Qjkc8trvf_dGoLJS2heSei_U5NmSozFpPZpbQl2uSeoELYmZWXISfnNokddr4XDkDigG4IduJvfP34eeCtFkOziqC3NIGGPJgQJbsPuhUByBwbVtLL3gGgnZclE7IyjXBpeSkVTzTiPFZPGZENI-n9e6I4FHZtxHBRz_mbEqfA4FQGnQgzh-eyaw5YD5NzRqz2URWcP6mIuvUN4MjvtNRnDM2Vlp8d-jF-75eiQ-Ze82yI_exxLszzNOR2CWJCJ2QBkCV88U-1_CWzhucTybH_PtV565q_1_6-4f_5XPIYro53xdrG9Odl6AFep9_zaVPZVGDRHx_ah99Qa9ahTDwKfLloj_wDFpVJ3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtUwEB1BkSpYVFBetxQwEjsaNbGd2FmiwlV5tGJBpe6i2GOXSlVu1aStYNV_6B_yJXic3BcFJJaRJ87jeOyxZ-YMwOs69SViQCDTBhOZaZ_o2ojE2YJ7rlOUEem9_WL3QH48zA8XsvhjtPvUJdnnNBBLU9Ntn6LfXkh800olFIlOnGoiUbfhjqSlj9y1xc6cdleLfssVVCnM1mpIm_lzH8tL0w1782bY5G--07gkje_D2mBLsrc9-A_glmvW4d4Cw-A6rO4NvvOH8D1GB7Cjnmf6-IdDRsFENN2xWA-nZd2EoaMg80nrGFWdZzRAXcvqBtllfeHIwm234mV05NuOUUXs7ufV9UmYNRiRT5z1qRIsnpnEQ_tHcDB-_3VnNxkKLyRWprJLjDFpzo1DYxzx03OvtFE2F9YpLHJKhxUeJVdcoPeZdspkXPnSphJ5jlI8hpVm0rinwKzXuhYq9ei51ChrbXhuhZSpERqxGEE2_eeVHVjJqTjGSTXnUyacqoBTFXGq1AjezO457Tk5_im9OYWyGvSzrbgqCl2GrZUcwatZc9AscpfUjZucB5mwlyrJQAov-aRHfvY4kRdlXko-ArU0JmYCxNq93NIcf4vs3aWmdOnQ59Z09Mxf6-9fsfF_4i9h9cu7cfX5w_6nZ3CXB8OsjzTfhJXu7Nw9D4ZUZ15EXfkF7OsXdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+generalized+additive+models+to+decompose+time+series+and+waveforms%2C+and+dissect+heart-lung+interaction+physiology&rft.jtitle=Journal+of+clinical+monitoring+and+computing&rft.au=Enevoldsen%2C+Johannes&rft.au=Simpson%2C+Gavin+L&rft.au=Vistisen%2C+Simon+T&rft.date=2023-02-01&rft.eissn=1573-2614&rft.volume=37&rft.issue=1&rft.spage=165&rft_id=info:doi/10.1007%2Fs10877-022-00873-7&rft_id=info%3Apmid%2F35695942&rft.externalDocID=35695942
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-1307&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-1307&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-1307&client=summon