Using generalized additive models to decompose time series and waveforms, and dissect heart–lung interaction physiology
Common physiological time series and waveforms are composed of repeating cardiac and respiratory cycles. Often, the cardiac effect is the primary interest, but for, e.g., fluid responsiveness prediction, the respiratory effect on arterial blood pressure also convey important information. In either c...
Saved in:
Published in | Journal of clinical monitoring and computing Vol. 37; no. 1; pp. 165 - 177 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.02.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1387-1307 1573-2614 1573-2614 |
DOI | 10.1007/s10877-022-00873-7 |
Cover
Abstract | Common physiological time series and waveforms are composed of repeating cardiac and respiratory cycles. Often, the cardiac effect is the primary interest, but for, e.g., fluid responsiveness prediction, the respiratory effect on arterial blood pressure also convey important information. In either case, it is relevant to disentangle the two effects. Generalized additive models (GAMs) allow estimating the effect of predictors as nonlinear, smooth functions. These smooth functions can represent the cardiac and respiratory cycles’ effects on a physiological signal. We demonstrate how GAMs allow a decomposition of physiological signals from mechanically ventilated subjects into separate effects of the cardiac and respiratory cycles. Two examples are presented. The first is a model of the respiratory variation in pulse pressure. The second demonstrates how a central venous pressure waveform can be decomposed into a cardiac effect, a respiratory effect and the interaction between the two cycles. Generalized additive models provide an intuitive and flexible approach to modelling the repeating, smooth, patterns common in medical monitoring data. |
---|---|
AbstractList | Common physiological time series and waveforms are composed of repeating cardiac and respiratory cycles. Often, the cardiac effect is the primary interest, but for, e.g., fluid responsiveness prediction, the respiratory effect on arterial blood pressure also convey important information. In either case, it is relevant to disentangle the two effects. Generalized additive models (GAMs) allow estimating the effect of predictors as nonlinear, smooth functions. These smooth functions can represent the cardiac and respiratory cycles' effects on a physiological signal. We demonstrate how GAMs allow a decomposition of physiological signals from mechanically ventilated subjects into separate effects of the cardiac and respiratory cycles. Two examples are presented. The first is a model of the respiratory variation in pulse pressure. The second demonstrates how a central venous pressure waveform can be decomposed into a cardiac effect, a respiratory effect and the interaction between the two cycles. Generalized additive models provide an intuitive and flexible approach to modelling the repeating, smooth, patterns common in medical monitoring data. Common physiological time series and waveforms are composed of repeating cardiac and respiratory cycles. Often, the cardiac effect is the primary interest, but for, e.g., fluid responsiveness prediction, the respiratory effect on arterial blood pressure also convey important information. In either case, it is relevant to disentangle the two effects. Generalized additive models (GAMs) allow estimating the effect of predictors as nonlinear, smooth functions. These smooth functions can represent the cardiac and respiratory cycles' effects on a physiological signal. We demonstrate how GAMs allow a decomposition of physiological signals from mechanically ventilated subjects into separate effects of the cardiac and respiratory cycles. Two examples are presented. The first is a model of the respiratory variation in pulse pressure. The second demonstrates how a central venous pressure waveform can be decomposed into a cardiac effect, a respiratory effect and the interaction between the two cycles. Generalized additive models provide an intuitive and flexible approach to modelling the repeating, smooth, patterns common in medical monitoring data.Common physiological time series and waveforms are composed of repeating cardiac and respiratory cycles. Often, the cardiac effect is the primary interest, but for, e.g., fluid responsiveness prediction, the respiratory effect on arterial blood pressure also convey important information. In either case, it is relevant to disentangle the two effects. Generalized additive models (GAMs) allow estimating the effect of predictors as nonlinear, smooth functions. These smooth functions can represent the cardiac and respiratory cycles' effects on a physiological signal. We demonstrate how GAMs allow a decomposition of physiological signals from mechanically ventilated subjects into separate effects of the cardiac and respiratory cycles. Two examples are presented. The first is a model of the respiratory variation in pulse pressure. The second demonstrates how a central venous pressure waveform can be decomposed into a cardiac effect, a respiratory effect and the interaction between the two cycles. Generalized additive models provide an intuitive and flexible approach to modelling the repeating, smooth, patterns common in medical monitoring data. |
Author | Vistisen, Simon T. Simpson, Gavin L. Enevoldsen, Johannes |
Author_xml | – sequence: 1 givenname: Johannes orcidid: 0000-0002-9190-6566 surname: Enevoldsen fullname: Enevoldsen, Johannes email: enevoldsen@clin.au.dk organization: Department of Clinical Medicine, Aarhus University, Department of Anaesthesiology and Intensive Care, Aarhus University Hospital – sequence: 2 givenname: Gavin L. orcidid: 0000-0002-9084-8413 surname: Simpson fullname: Simpson, Gavin L. organization: Department of Animal Science, Aarhus University – sequence: 3 givenname: Simon T. orcidid: 0000-0002-1297-1459 surname: Vistisen fullname: Vistisen, Simon T. organization: Department of Clinical Medicine, Aarhus University, Department of Anaesthesiology and Intensive Care, Aarhus University Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35695942$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUtuFDEUtFAQ-cAFWCBLbFjQ4E-77d4goYifFIkNWVtu-3WPo257sD2DhhV34IacBE8mBMgiKz_LVfWqXKfoKMQACD2l5BUlRL7OlCgpG8JYQ-rEG_kAnVBRB9bR9qjOXMmGciKP0WnOV4SQXnH6CB1z0fWib9kJ2l1mHyY8QYBkZv8dHDbO-eK3gJfoYM64ROzAxmUdM-DiF8AZkoeMTXD4m9nCGNOSX15fnc8ZbMErMKn8-vFz3lRxH0oVt8XHgNerXfZxjtPuMXo4mjnDk5vzDF2-f_fl_GNz8fnDp_O3F41tSVuaYRiIYAO4YYBOCcVGqQZpBbcgXScY73s-upZJxt04UgVyoEyOvSWtY8K1_Ay9OeiuN8MCzkIoNaleJ7-YtNPReP3_S_ArPcWt7pVglHVV4MWNQIpfN5CLXny2MM8mQNxkzTopesUI3UOf34FexU0KNZ5msutUhXV7R8_-dXRr5U8rFcAOAJtizgnGWwglel-9PlSva_X6unotK0ndIVlfzP7Tayo_30_lB2que8IE6a_te1i_AQzhxww |
CitedBy_id | crossref_primary_10_1186_s12879_024_09892_y crossref_primary_10_1186_s12889_024_20839_5 crossref_primary_10_1007_s10877_023_01090_6 |
Cites_doi | 10.1080/01621459.2020.1725521 10.1007/s10877-016-9907-8 10.21105/joss.01686 10.1177/2331216519832483 10.1038/s41598-018-20062-4 10.1111/j.1467-9868.2010.00749.x 10.1213/01.ane.0000297291.01615.5c 10.1201/9781315370279 10.1186/s40560-018-0324-6 10.1016/0002-8703(74)90474-8 10.1016/j.bpa.2013.06.002 10.1186/s13054-015-0869-x 10.1111/j.1399-6576.2008.01893.x 10.1007/978-0-387-84858-7 10.1109/TBME.2004.834295 10.4103/0970-9185.117096 10.4103/0970-9185.137289 10.1177/088506660001500505 10.1007/s10877-020-00636-2 10.1097/CCM.0b013e3181a590da 10.1097/00000542-200508000-00026 10.1097/00000441-190707000-00002 10.1097/ALN.0b013e31819db2a1 10.1016/j.anclin.2021.03.007 10.3389/fevo.2018.00149 10.7717/peerj.6876 10.1016/j.bja.2020.09.039 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7SC 7SP 7U5 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. KB0 L7M L~C L~D M0S M1P NAPCQ P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1007/s10877-022-00873-7 |
DatabaseName | SpringerOpen Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Health & Medical Collection Medical Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) Advanced Technologies Database with Aerospace ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Computer Science Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1573-2614 |
EndPage | 177 |
ExternalDocumentID | PMC9852126 35695942 10_1007_s10877_022_00873_7 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Holger & Ruth Hesse’s Mindefond – fundername: Aarhus Universitets Forskningsfond funderid: http://dx.doi.org/10.13039/501100002739 – fundername: Aarhus Universitet funderid: http://dx.doi.org/10.13039/100007605 – fundername: ; |
GroupedDBID | --- -5E -5G -BR -EM -Y2 -~C .86 .GJ .VR 04C 06C 06D 0R~ 0VY 1N0 2.D 203 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 78A 7RV 7X7 88E 8AO 8FE 8FG 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUDM ACZOJ ADBBV ADHIR ADINQ ADJJI ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ AXYYD AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BKEYQ BMSDO BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIHBH EIOEI EJD EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KPH LAK LLZTM M1P M4Y MA- N2Q N9A NAPCQ NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P62 P9S PF0 PQQKQ PROAC PSQYO PT4 Q2X QOK QOR QOS R89 R9I RNI ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7U Z7X Z82 Z83 Z87 Z88 Z8R Z8V Z8W ZMTXR ZOVNA AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7SC 7SP 7U5 7XB 8FD 8FK ABRTQ AZQEC DWQXO GNUQQ JQ2 K9. L7M L~C L~D PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c404t-bbb052bedbbe68582f78b7c53ce7d6523993fd42723dff18e7b127f9c04d25d43 |
IEDL.DBID | AGYKE |
ISSN | 1387-1307 1573-2614 |
IngestDate | Thu Aug 21 18:38:58 EDT 2025 Thu Sep 04 16:18:11 EDT 2025 Sat Aug 23 13:23:38 EDT 2025 Thu Apr 03 06:57:18 EDT 2025 Tue Jul 01 00:30:00 EDT 2025 Thu Apr 24 23:10:36 EDT 2025 Fri Feb 21 02:45:26 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Signal processing Central venous pressure Mechanical ventilation Statistical modelling Hemodynamic monitoring |
Language | English |
License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-bbb052bedbbe68582f78b7c53ce7d6523993fd42723dff18e7b127f9c04d25d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9084-8413 0000-0002-9190-6566 0000-0002-1297-1459 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s10877-022-00873-7 |
PMID | 35695942 |
PQID | 2766898264 |
PQPubID | 26276 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9852126 proquest_miscellaneous_2675982016 proquest_journals_2766898264 pubmed_primary_35695942 crossref_primary_10_1007_s10877_022_00873_7 crossref_citationtrail_10_1007_s10877_022_00873_7 springer_journals_10_1007_s10877_022_00873_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Netherlands |
PublicationTitle | Journal of clinical monitoring and computing |
PublicationTitleAbbrev | J Clin Monit Comput |
PublicationTitleAlternate | J Clin Monit Comput |
PublicationYear | 2023 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Hastie, Tibshirani, Friedman (CR6) 2009 Simpson (CR20) 2018 Guerin, Monnet, Teboul (CR2) 2013; 27 de Keijzer, Scheeren (CR25) 2021; 39 Vistisen (CR28) 2017; 31 Aboy, McNames, Thong, Phillips, Ellenby, Goldstein (CR14) 2004; 51 Lee, Jung (CR11) 2018; 8 Wyffels, De Hert, Wouters (CR4) 2021; 126 Constant (CR19) 1974; 88 Wickham, Averick, Bryan, Chang, McGowan, François (CR10) 2019; 4 Pedersen, Miller, Simpson, Ross (CR30) 2019; 7 Raut, Maheshwari (CR23) 2014; 30 Magder, Erice, Lagonidis (CR24) 2000; 15 Wood (CR7) 2011; 73 Meijs, van Houte, Conjaerts, Bindels, Bouwman, Houterman (CR26) 2021 Cannesson, Slieker, Desebbe, Bauer, Chiari, Hénaine (CR15) 2008; 106 Vistisen, Struijk, Larsson (CR16) 2009; 53 Marik, Cavallazzi, Vasu, Hirani (CR1) 2009; 37 Vistisen, Krog, Elkmann, Vallentin, Scheeren, Sølling (CR27) 2018; 6 Mackenzie (CR18) 1907; 134 Hastie, Tibshirani (CR5) 1986; 1 (CR8) 2021 van Rij, Hendriks, van Rijn, Baayen, Wood (CR21) 2019 De Backer, Ph, Taccone, Holsten, Ibrahimi, Vincent (CR17) 2009; 110 CR9 Karippacheril, Ho (CR12) 2013; 29 Michard (CR13) 2005; 103 Wood (CR29) 2017 Michard, Chemla, Teboul (CR3) 2015; 19 Fasiolo, Wood, Zaffran, Nedellec, Goude (CR22) 2020 SN Wood (873_CR7) 2011; 73 J van Rij (873_CR21) 2019 R Core Team (873_CR8) 2021 LPB Meijs (873_CR26) 2021 873_CR9 L Guerin (873_CR2) 2013; 27 JG Karippacheril (873_CR12) 2013; 29 ST Vistisen (873_CR16) 2009; 53 M Fasiolo (873_CR22) 2020 S Magder (873_CR24) 2000; 15 M Aboy (873_CR14) 2004; 51 H-C Lee (873_CR11) 2018; 8 SN Wood (873_CR29) 2017 GL Simpson (873_CR20) 2018 T Hastie (873_CR6) 2009 ST Vistisen (873_CR27) 2018; 6 J Constant (873_CR19) 1974; 88 M Cannesson (873_CR15) 2008; 106 PAH Wyffels (873_CR4) 2021; 126 MS Raut (873_CR23) 2014; 30 IN de Keijzer (873_CR25) 2021; 39 F Michard (873_CR3) 2015; 19 H Wickham (873_CR10) 2019; 4 PE Marik (873_CR1) 2009; 37 J Mackenzie (873_CR18) 1907; 134 D De Backer (873_CR17) 2009; 110 T Hastie (873_CR5) 1986; 1 EJ Pedersen (873_CR30) 2019; 7 F Michard (873_CR13) 2005; 103 ST Vistisen (873_CR28) 2017; 31 |
References_xml | – year: 2020 ident: CR22 article-title: Fast calibrated additive quantile regression publication-title: J Am Stat Assoc doi: 10.1080/01621459.2020.1725521 – volume: 31 start-page: 693 year: 2017 end-page: 699 ident: CR28 article-title: Using extra systoles to predict fluid responsiveness in cardiothoracic critical care patients publication-title: J Clin Monit Comput doi: 10.1007/s10877-016-9907-8 – volume: 4 start-page: 1686 year: 2019 ident: CR10 article-title: Welcome to the tidyverse publication-title: J Open Source Softw doi: 10.21105/joss.01686 – year: 2019 ident: CR21 article-title: Analyzing the time course of pupillometric data publication-title: Trends Hear doi: 10.1177/2331216519832483 – volume: 8 start-page: 1527 year: 2018 ident: CR11 article-title: Vital Recorder—a free research tool for automatic recording of high-resolution time-synchronised physiological data from multiple anaesthesia devices publication-title: Sci Rep doi: 10.1038/s41598-018-20062-4 – volume: 73 start-page: 3 year: 2011 end-page: 36 ident: CR7 article-title: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models publication-title: J R Stat Soc Ser B doi: 10.1111/j.1467-9868.2010.00749.x – volume: 106 start-page: 1195 year: 2008 end-page: 1200 ident: CR15 article-title: The ability of a novel algorithm for automatic estimation of the respiratory variations in arterial pulse pressure to monitor fluid responsiveness in the operating room publication-title: Anesth Analg doi: 10.1213/01.ane.0000297291.01615.5c – year: 2017 ident: CR29 publication-title: Generalized additive models: an introduction with R doi: 10.1201/9781315370279 – volume: 6 start-page: 52 year: 2018 ident: CR27 article-title: Extrasystoles for fluid responsiveness prediction in critically ill patients publication-title: J Intensive Care doi: 10.1186/s40560-018-0324-6 – volume: 88 start-page: 372 year: 1974 end-page: 379 ident: CR19 article-title: The X prime descent in jugular contour nomenclature and recognition publication-title: Am Heart J doi: 10.1016/0002-8703(74)90474-8 – volume: 27 start-page: 177 year: 2013 end-page: 185 ident: CR2 article-title: Monitoring volume and fluid responsiveness: from static to dynamic indicators publication-title: Best Pract Res Clin Anaesthesiol doi: 10.1016/j.bpa.2013.06.002 – volume: 19 start-page: 15 year: 2015 end-page: 17 ident: CR3 article-title: Applicability of pulse pressure variation: how many shades of grey? publication-title: Crit Care doi: 10.1186/s13054-015-0869-x – volume: 53 start-page: 534 year: 2009 end-page: 542 ident: CR16 article-title: Automated pre-ejection period variation indexed to tidal volume predicts fluid responsiveness after cardiac surgery publication-title: Acta Anaesthesiol Scand doi: 10.1111/j.1399-6576.2008.01893.x – year: 2009 ident: CR6 publication-title: The elements of statistical learning: data mining, inference, and prediction doi: 10.1007/978-0-387-84858-7 – volume: 51 start-page: 2198 year: 2004 end-page: 2203 ident: CR14 article-title: A novel algorithm to estimate the pulse pressure variation index/spl Delta/PP publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2004.834295 – year: 2021 ident: CR8 publication-title: R: a language and environment for statistical computing – volume: 29 start-page: 423 year: 2013 end-page: 424 ident: CR12 article-title: Data acquisition from S/5 GE datex anesthesia monitor using VSCapture: an open source.NET/mono tool publication-title: J Anaesthesiol Clin Pharmacol doi: 10.4103/0970-9185.117096 – volume: 1 start-page: 297 year: 1986 end-page: 318 ident: CR5 article-title: Generalized additive models publication-title: Stat Sci Inst Math Stat – volume: 30 start-page: 430 year: 2014 end-page: 431 ident: CR23 article-title: “x” descent of CVP: an indirect measure of RV dysfunction ? publication-title: J Anaesthesiol Clin Pharmacol doi: 10.4103/0970-9185.137289 – volume: 15 start-page: 262 year: 2000 end-page: 269 ident: CR24 article-title: Determinants of the Y descent and its usefulness as a predictor of ventricular filling publication-title: J Intensive Care Med doi: 10.1177/088506660001500505 – year: 2021 ident: CR26 article-title: Clinical validation of a computerized algorithm to determine mean systemic filling pressure publication-title: J Clin Monit Comput doi: 10.1007/s10877-020-00636-2 – volume: 37 start-page: 2642 year: 2009 end-page: 2647 ident: CR1 article-title: Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature publication-title: Crit Care Med doi: 10.1097/CCM.0b013e3181a590da – volume: 103 start-page: 419 year: 2005 end-page: 428 ident: CR13 article-title: Changes in arterial pressure during mechanical ventilation publication-title: Anesthesiology doi: 10.1097/00000542-200508000-00026 – volume: 134 start-page: 12 year: 1907 end-page: 34 ident: CR18 article-title: The interpretation of the pulsations in the jugular veins publication-title: Am J Med Sci doi: 10.1097/00000441-190707000-00002 – ident: CR9 – volume: 110 start-page: 1092 year: 2009 end-page: 1097 ident: CR17 article-title: Influence of respiratory rate on stroke volume variation in mechanically ventilated patients publication-title: Anesthesiology doi: 10.1097/ALN.0b013e31819db2a1 – volume: 39 start-page: 441 year: 2021 end-page: 456 ident: CR25 article-title: Perioperative hemodynamic monitoring: an overview of current methods publication-title: Anesthesiol Clin doi: 10.1016/j.anclin.2021.03.007 – year: 2018 ident: CR20 article-title: Modelling palaeoecological time series using generalised additive models publication-title: Front Ecol Evol doi: 10.3389/fevo.2018.00149 – volume: 7 start-page: e6876 year: 2019 ident: CR30 article-title: Hierarchical generalized additive models in ecology: an introduction with mgcv publication-title: PeerJ doi: 10.7717/peerj.6876 – volume: 126 start-page: 111 year: 2021 end-page: 119 ident: CR4 article-title: New algorithm to quantify cardiopulmonary interaction in patients with atrial fibrillation: a proof-of-concept study publication-title: Br J Anaesth doi: 10.1016/j.bja.2020.09.039 – volume: 106 start-page: 1195 year: 2008 ident: 873_CR15 publication-title: Anesth Analg doi: 10.1213/01.ane.0000297291.01615.5c – volume: 126 start-page: 111 year: 2021 ident: 873_CR4 publication-title: Br J Anaesth doi: 10.1016/j.bja.2020.09.039 – year: 2020 ident: 873_CR22 publication-title: J Am Stat Assoc doi: 10.1080/01621459.2020.1725521 – year: 2018 ident: 873_CR20 publication-title: Front Ecol Evol doi: 10.3389/fevo.2018.00149 – volume-title: The elements of statistical learning: data mining, inference, and prediction year: 2009 ident: 873_CR6 doi: 10.1007/978-0-387-84858-7 – year: 2019 ident: 873_CR21 publication-title: Trends Hear doi: 10.1177/2331216519832483 – volume: 8 start-page: 1527 year: 2018 ident: 873_CR11 publication-title: Sci Rep doi: 10.1038/s41598-018-20062-4 – volume: 134 start-page: 12 year: 1907 ident: 873_CR18 publication-title: Am J Med Sci doi: 10.1097/00000441-190707000-00002 – volume: 7 start-page: e6876 year: 2019 ident: 873_CR30 publication-title: PeerJ doi: 10.7717/peerj.6876 – volume: 73 start-page: 3 year: 2011 ident: 873_CR7 publication-title: J R Stat Soc Ser B doi: 10.1111/j.1467-9868.2010.00749.x – volume: 15 start-page: 262 year: 2000 ident: 873_CR24 publication-title: J Intensive Care Med doi: 10.1177/088506660001500505 – volume: 31 start-page: 693 year: 2017 ident: 873_CR28 publication-title: J Clin Monit Comput doi: 10.1007/s10877-016-9907-8 – volume: 1 start-page: 297 year: 1986 ident: 873_CR5 publication-title: Stat Sci Inst Math Stat – volume: 103 start-page: 419 year: 2005 ident: 873_CR13 publication-title: Anesthesiology doi: 10.1097/00000542-200508000-00026 – volume: 51 start-page: 2198 year: 2004 ident: 873_CR14 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2004.834295 – volume: 37 start-page: 2642 year: 2009 ident: 873_CR1 publication-title: Crit Care Med doi: 10.1097/CCM.0b013e3181a590da – volume: 39 start-page: 441 year: 2021 ident: 873_CR25 publication-title: Anesthesiol Clin doi: 10.1016/j.anclin.2021.03.007 – volume: 110 start-page: 1092 year: 2009 ident: 873_CR17 publication-title: Anesthesiology doi: 10.1097/ALN.0b013e31819db2a1 – year: 2021 ident: 873_CR26 publication-title: J Clin Monit Comput doi: 10.1007/s10877-020-00636-2 – volume: 6 start-page: 52 year: 2018 ident: 873_CR27 publication-title: J Intensive Care doi: 10.1186/s40560-018-0324-6 – volume: 88 start-page: 372 year: 1974 ident: 873_CR19 publication-title: Am Heart J doi: 10.1016/0002-8703(74)90474-8 – volume: 27 start-page: 177 year: 2013 ident: 873_CR2 publication-title: Best Pract Res Clin Anaesthesiol doi: 10.1016/j.bpa.2013.06.002 – volume-title: R: a language and environment for statistical computing year: 2021 ident: 873_CR8 – volume: 4 start-page: 1686 year: 2019 ident: 873_CR10 publication-title: J Open Source Softw doi: 10.21105/joss.01686 – volume-title: Generalized additive models: an introduction with R year: 2017 ident: 873_CR29 doi: 10.1201/9781315370279 – volume: 30 start-page: 430 year: 2014 ident: 873_CR23 publication-title: J Anaesthesiol Clin Pharmacol doi: 10.4103/0970-9185.137289 – ident: 873_CR9 – volume: 29 start-page: 423 year: 2013 ident: 873_CR12 publication-title: J Anaesthesiol Clin Pharmacol doi: 10.4103/0970-9185.117096 – volume: 53 start-page: 534 year: 2009 ident: 873_CR16 publication-title: Acta Anaesthesiol Scand doi: 10.1111/j.1399-6576.2008.01893.x – volume: 19 start-page: 15 year: 2015 ident: 873_CR3 publication-title: Crit Care doi: 10.1186/s13054-015-0869-x |
SSID | ssj0009831 |
Score | 2.3303604 |
Snippet | Common physiological time series and waveforms are composed of repeating cardiac and respiratory cycles. Often, the cardiac effect is the primary interest, but... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 165 |
SubjectTerms | Anesthesiology Blood pressure Blood Pressure - physiology Critical Care Medicine Decomposition Fluid Therapy Health Sciences Heart Humans Intensive Lung Medicine Medicine & Public Health Original Research Physiological effects Physiology Pressure effects Respiration, Artificial Respiratory Physiological Phenomena Statistics for Life Sciences Time Factors Time series Waveforms |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYolapyqFr6YClFrtRbsZrYTuycqqrqgpDoqUjcothjt0gooSSA4MR_4B_yS-pxvLvdonKM7DyceXg8j28I-dBkvgIIFMi1ASZz7ZlujGDOltxznYGMlD74Xu4dyv2j4ig53PqUVjnTiVFRQ2fRR_6Jq7LUVTCG5efT3wy7RmF0NbXQeEQe52GnQT7X090F6K4W44ErCFLQ1SoVzaTSOa0Uw1x2RGUTTC1vTPeszftJk_9ETuOGNH1OniVLkn4ZSf-CrLh2naz9hS-4Tp4cpMj5S3IVcwPozxFl-vjaAcVUIlR2NHbD6enQUXCYYt71jmLPeYrs6XratEAvmwuH9m2_Ey9jGN8OFPthD3c3tydBZ1CEnjgbCyVo9JhEl_0rcjj99uPrHkttF5iVmRyYMSYruHFgjEN0eu6VNsoWwjoFZYHFsMKD5IoL8D7XTpmcK1_ZTAIvQIrXZLXtWrdBqPVaN0JlHjyXGmSjDS-skDIzQgOUE5LP_nltEyY5tsY4qRdoykinOtCpjnSq1YR8nN9zOiJyPDh7a0bKOklnXy94aULez4eDXGGwpGlddx7mhJNUheZR-Mg3I-XnrxNFWRWV5BOilnhiPgExu5dH2uNfEbu70lgsHZ65M-OexWf9fxWbD6_iLXnKg-01JpNvkdXh7Ny9C7bSYLajQPwB-EUThg priority: 102 providerName: ProQuest |
Title | Using generalized additive models to decompose time series and waveforms, and dissect heart–lung interaction physiology |
URI | https://link.springer.com/article/10.1007/s10877-022-00873-7 https://www.ncbi.nlm.nih.gov/pubmed/35695942 https://www.proquest.com/docview/2766898264 https://www.proquest.com/docview/2675982016 https://pubmed.ncbi.nlm.nih.gov/PMC9852126 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD5inYTYw4BxK4zKSLyxTIntxM5jW7WbQKsQolJ5iuLbmJjSaUmZtqf9B_4hvwTbSdp1A6S9JIrsXGyfYx_nfOc7AO_z0KRK2RGIuFABjbgJeC5IoGWCDeahon6kjybJ4ZR-nMWzJiisbNHurUvSz9Q3gt04Y4FDnzseNRKwDdiMI57yDmz2D759Gq3IdjmpN1pWgewczZpgmb8_ZX1BumNl3gVL3vKY-oVo_BimbRNq_MmP_UUl9uXVLXbH-7bxCWw3linq16L0FB7oYge2bvAV7sDDo8YT_wwuPdYAHdes1SdXWiEHTXKTJ_LZdUpUzZHSDrI-LzVyOeyRE3ddorxQ6CL_qZ29XO75Sw8LkBVy-bWr39e_Tu0chByVxXkdeIH8HxjvAngO0_Ho6_AwaNI4BJKGtAqEEGGMhVZCaMd2jw3jgsmYSM1UErvgWmIUxQwTZUzENRMRZiaVIVU4VpS8gE4xL_QrQNJwnhMWGmUw5YrmXOBYEkpDQbhSSReidiwz2XCcu1Qbp9mKndn1cGZ7OPM9nLEufFjec1YzfPy39m4rIlmj7WWGWZJYObS2ZRfeLYutnjrnS17o-cLWsTuz1Jlb9iNf1hK1fB2JkzROKe4CW5O1ZQXHAb5eUpx891zgKXfB1_aZe61ArT7r3614fb_qb-ARtrZdDVbfhU51vtBvrS1WiR5ssBmzRz4-6Fk1HA8Gk16jjvY8GE0-f7Glw2Roj1Pc_wMoPzQY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrcTjgKC8FgoYCU40IrGd2DkgxKPVlnZXCLVSbyF-QaUqW5qUqpz4D_wPfhS_BI-T7LJU9NZjFOf5zYzHnplvAJ6WscuN8QgkUpmIJ9JFslQssjqjjsrY8ID0eJKNdvn7vXRvCX71tTCYVtnbxGCozVTjHvkLKrJM5t4Z5q8Ov0bYNQqjq30LjVYstuzpiV-y1S8333l8n1G6sb7zdhR1XQUizWPeREqpOKXKGqUskq9TJ6QSOmXaCpOlWOvJnOFUUGacS6QVKqHC5TrmhqaGM3_fS7DMsaJ1AMtv1icfPs5pfiVrl3hedf3sILoyna5YTwoRYfY88sCxSCxOhWf827Npmv_EasMUuHEDrne-K3ndCttNWLLVClz7i9FwBS6Pu1j9LTgN2Qjkc8trvf_dGoLJS2heSei_U5NmSozFpPZpbQl2uSeoELYmZWXISfnNokddr4XDkDigG4IduJvfP34eeCtFkOziqC3NIGGPJgQJbsPuhUByBwbVtLL3gGgnZclE7IyjXBpeSkVTzTiPFZPGZENI-n9e6I4FHZtxHBRz_mbEqfA4FQGnQgzh-eyaw5YD5NzRqz2URWcP6mIuvUN4MjvtNRnDM2Vlp8d-jF-75eiQ-Ze82yI_exxLszzNOR2CWJCJ2QBkCV88U-1_CWzhucTybH_PtV565q_1_6-4f_5XPIYro53xdrG9Odl6AFep9_zaVPZVGDRHx_ah99Qa9ahTDwKfLloj_wDFpVJ3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtUwEB1BkSpYVFBetxQwEjsaNbGd2FmiwlV5tGJBpe6i2GOXSlVu1aStYNV_6B_yJXic3BcFJJaRJ87jeOyxZ-YMwOs69SViQCDTBhOZaZ_o2ojE2YJ7rlOUEem9_WL3QH48zA8XsvhjtPvUJdnnNBBLU9Ntn6LfXkh800olFIlOnGoiUbfhjqSlj9y1xc6cdleLfssVVCnM1mpIm_lzH8tL0w1782bY5G--07gkje_D2mBLsrc9-A_glmvW4d4Cw-A6rO4NvvOH8D1GB7Cjnmf6-IdDRsFENN2xWA-nZd2EoaMg80nrGFWdZzRAXcvqBtllfeHIwm234mV05NuOUUXs7ufV9UmYNRiRT5z1qRIsnpnEQ_tHcDB-_3VnNxkKLyRWprJLjDFpzo1DYxzx03OvtFE2F9YpLHJKhxUeJVdcoPeZdspkXPnSphJ5jlI8hpVm0rinwKzXuhYq9ei51ChrbXhuhZSpERqxGEE2_eeVHVjJqTjGSTXnUyacqoBTFXGq1AjezO457Tk5_im9OYWyGvSzrbgqCl2GrZUcwatZc9AscpfUjZucB5mwlyrJQAov-aRHfvY4kRdlXko-ArU0JmYCxNq93NIcf4vs3aWmdOnQ59Z09Mxf6-9fsfF_4i9h9cu7cfX5w_6nZ3CXB8OsjzTfhJXu7Nw9D4ZUZ15EXfkF7OsXdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+generalized+additive+models+to+decompose+time+series+and+waveforms%2C+and+dissect+heart-lung+interaction+physiology&rft.jtitle=Journal+of+clinical+monitoring+and+computing&rft.au=Enevoldsen%2C+Johannes&rft.au=Simpson%2C+Gavin+L&rft.au=Vistisen%2C+Simon+T&rft.date=2023-02-01&rft.eissn=1573-2614&rft.volume=37&rft.issue=1&rft.spage=165&rft_id=info:doi/10.1007%2Fs10877-022-00873-7&rft_id=info%3Apmid%2F35695942&rft.externalDocID=35695942 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-1307&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-1307&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-1307&client=summon |