Deep Transfer Learning based Fusion Model for Environmental Remote Sensing Image Classification Model
Remote-sensing images comprise massive amount of spatial and semantic data that can be employed for several applications. Presently, deep learning (DL) models for RS image processing become a familiar research area. Due to the advancements of recent satellite imaging sensors , the issue of huge amou...
Saved in:
Published in | European journal of remote sensing Vol. 55; no. sup1; pp. 12 - 23 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cagiari
Taylor & Francis
21.10.2022
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Remote-sensing images comprise massive amount of spatial and semantic data that can be employed for several applications. Presently, deep learning (DL) models for RS image processing become a familiar research area. Due to the advancements of recent satellite imaging sensors , the issue of huge amount of data processing becomes a challenging problem. To accomplish this, deep transfer learning (DTL) models are developed to resolve the semantic gap among various datasets This study develops a new DTL-based fusion model for environmental remote-sensing image classification, called DTLF-ERSIC technique. The proposed technique focuses on the design of fusion model to combine multiple feature vectors and thereby attains maximum classification performance. The DTLF-ERSIC technique incorporates the entropy-based fusion of three feature extraction techniques, namely, Discrete Local Binary Pattern (DLBP), Residual Network (ResNet50), and EfficientNet models. Besides, a rain optimization algorithm (ROA) with fuzzy rule-based classifier (FRC) is applied to predict the class labels of the test RS images and shows the novelty of the work. A comprehensive experimental analysis of the DTLF-ERSIC technique takes place on benchmark dataset and examined the results in terms of different performance measures. The simulation results reported the supremacy of the DTLF-ERSIC technique over the recent state-of-art techniques. |
---|---|
AbstractList | Remote-sensing images comprise massive amount of spatial and semantic data that can be employed for several applications. Presently, deep learning (DL) models for RS image processing become a familiar research area. Due to the advancements of recent satellite imaging sensors , the issue of huge amount of data processing becomes a challenging problem. To accomplish this, deep transfer learning (DTL) models are developed to resolve the semantic gap among various datasets This study develops a new DTL-based fusion model for environmental remote-sensing image classification, called DTLF-ERSIC technique. The proposed technique focuses on the design of fusion model to combine multiple feature vectors and thereby attains maximum classification performance. The DTLF-ERSIC technique incorporates the entropy-based fusion of three feature extraction techniques, namely, Discrete Local Binary Pattern (DLBP), Residual Network (ResNet50), and EfficientNet models. Besides, a rain optimization algorithm (ROA) with fuzzy rule-based classifier (FRC) is applied to predict the class labels of the test RS images and shows the novelty of the work. A comprehensive experimental analysis of the DTLF-ERSIC technique takes place on benchmark dataset and examined the results in terms of different performance measures. The simulation results reported the supremacy of the DTLF-ERSIC technique over the recent state-of-art techniques. |
Author | Ahmed Hamza, Manar Alzahrani, Khalid J Al Duhayyim, Mesfer Rizwanullah, Mohammed García Díaz, Vicente Hilal, Anwer Mustafa Al-Wesabi, Fahd N. |
Author_xml | – sequence: 1 givenname: Anwer Mustafa surname: Hilal fullname: Hilal, Anwer Mustafa email: a.hilal@psau.edu.sa organization: Prince Sattam Bin Abdulaziz University – sequence: 2 givenname: Fahd N. surname: Al-Wesabi fullname: Al-Wesabi, Fahd N. organization: Sana'a University – sequence: 3 givenname: Khalid J surname: Alzahrani fullname: Alzahrani, Khalid J organization: Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia – sequence: 4 givenname: Mesfer surname: Al Duhayyim fullname: Al Duhayyim, Mesfer organization: College of Community - Aflaj, Prince Sattam Bin Abdulaziz University – sequence: 5 givenname: Manar surname: Ahmed Hamza fullname: Ahmed Hamza, Manar organization: Prince Sattam Bin Abdulaziz University – sequence: 6 givenname: Mohammed surname: Rizwanullah fullname: Rizwanullah, Mohammed organization: Prince Sattam Bin Abdulaziz University – sequence: 7 givenname: Vicente surname: García Díaz fullname: García Díaz, Vicente organization: School of Computer Science Engineering, University of Oviedo |
BookMark | eNp9kVFvFCEUhYmpibX2J5iQ-LwVGFjgTbO2uskaE63P5A5z2bCZgRVmNf33Mm5tfJIHuLmc80HueUkuUk5IyGvObjgz7K0Q2mqh5I1ggreNa23tM3K59FfLxcU_9QtyXeuBtWUY08ZeEvyAeKT3BVINWOgOoaSY9rSHigO9O9WYE_2cBxxpyIXepp-x5DRhmmGkX3HKM9JvmOri2U6wR7oZodYYoof5yfuKPA8wVrx-PK_I97vb-82n1e7Lx-3m_W7lJZPzqrcsrDnzFiQqiwEZSN97vu60DVqiVIPqhsGgMmiNVp0d1r3SAhlK7gforsj2zB0yHNyxxAnKg8sQ3Z9GLnsHZY5-RNc1EgvBaA5GKq2MwN60EQbQtu-1aKw3Z9ax5B8nrLM75FNJ7ftONLlUa2t4U6mzypdca8Hw9CpnbgnI_Q3ILQG5x4Ca793ZF1Ob6wS_chkHN8PDmEtoafhYXfd_xG_9WJiR |
CitedBy_id | crossref_primary_10_3934_math_2024500 crossref_primary_10_3390_electronics11050775 crossref_primary_10_3390_s24030770 crossref_primary_10_1109_TGRS_2023_3260121 crossref_primary_10_3390_rs14174423 crossref_primary_10_4316_AECE_2023_04004 crossref_primary_10_3390_su15107854 crossref_primary_10_1016_j_aej_2023_05_049 crossref_primary_10_1155_2022_2004716 crossref_primary_10_1080_22797254_2022_2128432 crossref_primary_10_1155_2022_4063354 |
Cites_doi | 10.1007/s11760-013-0516-4 10.1109/TGRS.2020.3007523 10.3390/rs12020260 10.3390/agriculture11070617 10.1007/s40747-021-00353-6 10.1016/j.patcog.2016.07.001 10.1016/j.ijleo.2020.165356 10.3390/rs10010016 10.1049/cvi2.12046 10.1016/j.cogsys.2019.09.007 10.1080/01431161.2019.1694725 10.1109/JSTARS.2020.2988477 10.3390/sym11111423 10.3390/rs13112221 10.1109/IGARSS.2015.7326158 10.1016/j.ijleo.2018.06.024 10.1109/TGRS.2020.2984703 10.1016/j.neucom.2018.03.076 10.1109/TGRS.2020.2977248 10.1109/ACCESS.2019.2960931 10.1016/j.patrec.2020.03.007 10.1016/j.rse.2019.111322 10.3390/jimaging6120143 10.3390/rs13030526 10.1016/j.infrared.2020.103621 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 3V. 7TG 7XB 8FD 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH H8D KL. L7M M2O MBDVC PIMPY PQEST PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1080/22797254.2021.2017799 |
DatabaseName | Taylor & Francis Open Access CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace ProQuest research library Research Library (Corporate) Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Research Database ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central Aerospace Database Meteorological & Geoastrophysical Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest One Academic Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2279-7254 |
EndPage | 23 |
ExternalDocumentID | oai_doaj_org_article_353d0ff871a8457582eb8021fa79bb72 10_1080_22797254_2021_2017799 2017799 |
Genre | Articles |
GroupedDBID | .4S 0YH 5VS 8G5 ABUWG ACGFS ADBBV AEGXH AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BCNDV BENPR BPHCQ DWQXO EBS GNUQQ GROUPED_DOAJ GUQSH KQ8 M2O M4Z M~E OK1 PIMPY PQEST PQQKQ PQUKI PROAC RNS TFW TUS AAHBH AAYXX CCPQU CITATION H13 TDBHL 3V. 7TG 7XB 8FD 8FK H8D KL. L7M MBDVC PRINS Q9U |
ID | FETCH-LOGICAL-c404t-b90f610c9a4e59efe0a4cbc16379f74e45d53dd8e58e987539d6b572e0e41cda3 |
IEDL.DBID | 0YH |
ISSN | 2279-7254 |
IngestDate | Tue Oct 22 14:50:54 EDT 2024 Thu Oct 10 20:39:28 EDT 2024 Fri Aug 23 01:15:16 EDT 2024 Tue Jun 13 19:31:11 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | sup1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-b90f610c9a4e59efe0a4cbc16379f74e45d53dd8e58e987539d6b572e0e41cda3 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/22797254.2021.2017799 |
PQID | 2758456981 |
PQPubID | 3933194 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_353d0ff871a8457582eb8021fa79bb72 crossref_primary_10_1080_22797254_2021_2017799 informaworld_taylorfrancis_310_1080_22797254_2021_2017799 proquest_journals_2758456981 |
PublicationCentury | 2000 |
PublicationDate | 2022-10-21 |
PublicationDateYYYYMMDD | 2022-10-21 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Cagiari |
PublicationPlace_xml | – name: Cagiari |
PublicationTitle | European journal of remote sensing |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | e_1_3_4_4_1 e_1_3_4_3_1 e_1_3_4_2_1 e_1_3_4_9_1 e_1_3_4_8_1 e_1_3_4_7_1 e_1_3_4_20_1 e_1_3_4_6_1 e_1_3_4_5_1 e_1_3_4_23_1 e_1_3_4_24_1 e_1_3_4_21_1 e_1_3_4_22_1 e_1_3_4_27_1 e_1_3_4_25_1 e_1_3_4_26_1 e_1_3_4_12_1 e_1_3_4_13_1 e_1_3_4_10_1 e_1_3_4_11_1 e_1_3_4_16_1 e_1_3_4_17_1 e_1_3_4_14_1 e_1_3_4_15_1 e_1_3_4_18_1 e_1_3_4_19_1 |
References_xml | – ident: e_1_3_4_7_1 doi: 10.1007/s11760-013-0516-4 – ident: e_1_3_4_5_1 doi: 10.1109/TGRS.2020.3007523 – ident: e_1_3_4_15_1 doi: 10.3390/rs12020260 – ident: e_1_3_4_3_1 doi: 10.3390/agriculture11070617 – ident: e_1_3_4_20_1 doi: 10.1007/s40747-021-00353-6 – ident: e_1_3_4_17_1 doi: 10.1016/j.patcog.2016.07.001 – ident: e_1_3_4_22_1 doi: 10.1016/j.ijleo.2020.165356 – ident: e_1_3_4_10_1 doi: 10.3390/rs10010016 – ident: e_1_3_4_25_1 doi: 10.1049/cvi2.12046 – ident: e_1_3_4_21_1 doi: 10.1016/j.cogsys.2019.09.007 – ident: e_1_3_4_4_1 doi: 10.1080/01431161.2019.1694725 – ident: e_1_3_4_9_1 doi: 10.1109/JSTARS.2020.2988477 – ident: e_1_3_4_8_1 doi: 10.3390/sym11111423 – ident: e_1_3_4_2_1 doi: 10.3390/rs13112221 – ident: e_1_3_4_24_1 doi: 10.1109/IGARSS.2015.7326158 – ident: e_1_3_4_26_1 doi: 10.1016/j.ijleo.2018.06.024 – ident: e_1_3_4_11_1 doi: 10.1109/TGRS.2020.2984703 – ident: e_1_3_4_18_1 – ident: e_1_3_4_12_1 doi: 10.1016/j.neucom.2018.03.076 – ident: e_1_3_4_14_1 doi: 10.1109/TGRS.2020.2977248 – ident: e_1_3_4_27_1 doi: 10.1109/ACCESS.2019.2960931 – ident: e_1_3_4_13_1 doi: 10.1016/j.patrec.2020.03.007 – ident: e_1_3_4_23_1 doi: 10.1016/j.rse.2019.111322 – ident: e_1_3_4_16_1 doi: 10.3390/jimaging6120143 – ident: e_1_3_4_19_1 doi: 10.3390/rs13030526 – ident: e_1_3_4_6_1 doi: 10.1016/j.infrared.2020.103621 |
SSID | ssj0000800789 |
Score | 2.3766599 |
Snippet | Remote-sensing images comprise massive amount of spatial and semantic data that can be employed for several applications. Presently, deep learning (DL) models... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 12 |
SubjectTerms | Algorithms Classification Data processing Datasets Deep learning Deep transfer learning Entropy Environmental monitoring Feature extraction Fusion model Image classification Image processing Machine learning Modelling Optimization Parameter tuning Remote sensing Satellite imagery Satellites Semantics Spatial data |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQF1gQT1EoyANraOI4sT3yaFWQYAAqdbOS-AxCUKqSDvx7zo4DFQxdWKM4tr6L777z4ztCTn1aIY2NrGQiwniLc86gM0ysETIvMsN8FYXbu3w05jeTbLJU6sudCWvkgRvg-mmWmtha5PWF5MgtJINSYmCyhVBlKRrvG6ulZOol8CAhVXtlR8Z9p5QnmF9GYS4vTITweq8_wchr9v9SLP3joX3YGW6RzcAX6Xkzzm2yBtMdsh5Klz9_7hK4AphRH3IszGnQS32iLjwZOly41TDqKp69UuyQDn4utuFn7wEtBfTBnWLHNtdv6F2or5PpThB5ozVt98h4OHi8HEWhdkJU8ZjXUalii8yoUgWHTIGFuOBVWSH7EsoKDjwzCKyRkElQLmdRJi8zwSAGnlSmSPdJZ_o-hQNCc7c1aWJEvVDYMFcVgyoFm_FCClNBl5y1IOpZI5Ghk6A82qKuHeo6oN4lFw7q75edwrV_gHbXwe56ld27RC0bStd-gcM21Uh0umIAvdaqOkzZD82wD2STSiaH_zG-I7LB3E0JDHMs6ZFOPV_AMfKXujzxv-oXnp3oSQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELbKcigXVNqiLi_50GuK4zixfULQ7opWKqpokbhZiT2mB9hdluXAv--M12ErkOCaxI41Y8_L9vcx9jmlFSbEIhqpC_S3uOYCGsMyBm2atg4ysSj8PGtOL9SPy_oyF9zu8rHK3iYmQx2mnmrkhxIDW3T21pRHs9uCWKNodzVTaKyxdYmZghiw9ZPR2a_zxyoLxUPa2P7qjhGHhJinZSqnSMoPS60T7uvKKSXs_ifIpc8sdXI_43dsM8eN_Hip6C32Bibv2dtMYf734QODbwAznlxPhDnPuKlXnNxU4ON7qopxYj675vhDPlpdcMNuzwE1Bvw3nWbHNt9v0MrwxJdJJ4mS8pZtP7KL8ejP19MicygUXgm1KDorIkZI3rYKagsRRKt85zEK0zZqBaoOdRWCgdqApdzFhqartQQBqvShrbbZYDKdwCfGG9qiDKIzorXYsLFegq8g1qo1OngYsi-9EN1sCZXhyoxA2kvdkdRdlvqQnZCoHz8mpOv0YDq_cnnhuAqHJ2LEvK5F_eMkkIAjkGVste06LYfM_q8ot0iFjrhkJXHVKwPY67Xq8tK9c6uJtvPy6122IekuBDoyWe6xwWJ-D_sYoSy6gzwN_wF6wOHV priority: 102 providerName: ProQuest |
Title | Deep Transfer Learning based Fusion Model for Environmental Remote Sensing Image Classification Model |
URI | https://www.tandfonline.com/doi/abs/10.1080/22797254.2021.2017799 https://www.proquest.com/docview/2758456981 https://doaj.org/article/353d0ff871a8457582eb8021fa79bb72 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwELU4CmgQp1iOlQvaQOI4sV1y7GpBAiEOCSrLicdQwIJ2l4K_Z-w4nEIUtFHGsWY8Z8ZvCNkJaYW0LnGSiQT9LeqcRWOYOStkaQrLwhSF07NycM1Pboq2m3Ac2yp9Du0aoIhgq71ym2rcdsTtedA7wUJFhPkULxNCqWkyywR6fzzS6e3gvcziAyIhVXt35zfqL14pgPd_gy79YaqD_-kvkoUYONL9RtJLZAqGy2QuzjC_f10hcATwTIPvcTCiETj1jno_ZWn_xZfFqB999kDxg7T3ccMNl70AFBnQS9_OjjTHj2hmaBiY6VuJgvQa2lVy3e9dHQ6SOEQhqXnKJ0mlUochUq0Mh0KBg9TwuqoxDBPKCQ68sEVurYRCgvLJi7JlVQgGKfCstiZfIzPDpyGsE1r6f5Q2rWRqFBKWqmZQ5-AKbqSwNXTIbstE_dxgZegsQpC2XNee6zpyvUMOPKvfX_ZQ1-HB0-hOR83ROW4vdQ4TOyM5BpeSAe6AZc4IVVWCdYj6LCg9CZUO14wl0fkfG9hqpaqj7o41HiP8UKlktvGPpTfJPPM3JdDNsWyLzExGL7CN8cuk6oYT2iWzB72z84tuqAK8Ab9R6F4 |
link.rule.ids | 315,783,787,867,2109,21400,27514,27936,27937,33756,43817,59471,59472 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3PT9swFLYGHOCCtgGi0G0-cM1IHCe2T9PYWpUNqomBxM1K7Gc4bG0p7WH__d5zHTptErsmsWO9Z79ftr-PsZOYVmgfsqCFytDf4przaAyL4JWum8qLyKJwOa5HN_LLbXWbCm6P6VhlZxOjofZTRzXyU4GBLTp7o4sPs4eMWKNodzVRaGywLYKqwuRr62ww_nb1VGWheEhp013d0fkpIeYpEcspgvLDQqmI-7p2ShG7_y_k0n8sdXQ_w5dsN8WN_ONK0a_YC5i8ZtuJwvz-1x6DzwAzHl1PgDlPuKl3nNyU58MlVcU4MZ_94PhDPlhfcMNurwA1Bvw7nWbHNuc_0crwyJdJJ4mi8lZt99nNcHD9aZQlDoXMyVwustbkASMkZxoJlYEAeSNd6zAKUyYoCbLyVem9hkqDodzF-LqtlIAcZOF8Ux6wzcl0AoeM17RF6fNW543BhrVxAlwJoZKNVt5Bj73vhGhnK6gMWyQE0k7qlqRuk9R77IxE_fQxIV3HB9P5nU0Lx5Y4vDwEzOsa1D9OAgE4AlGERpm2VaLHzJ-KsotY6AgrVhJb_mcA_U6rNi3dR7ueaEfPv37HtkfXlxf24nz89ZjtCLoXgU5NFH22uZgv4Q1GK4v2bZqSvwFayuTP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdGkQaXCTamFQrzYddA4tixfWS0VfdVTRuTxslK4uftsHVVmx7473l2nI6B0A5cozzHes_vM8-_R8hBSCuUdYlTTCbob1HnLBrDzFmpilJYFqYonE2LyRU_vhZdN-EytlX6HNq1QBHBVnvlnlvXdcR98aB3koWKCPMpXial1i_IS6HR0uKRTn9M1mUWHxBJpbu7O_-ifuKVAnj_H9Clf5nq4H_Gb8hWDBzp11bSb8kGzLbJqzjD_PbnDoEhwJwG3-NgQSNw6g31fsrS8cqXxagffXZH8YN09HjDDZe9ABQZ0Evfzo40R_doZmgYmOlbiYL0Wtp35Go8-v5tksQhCknNU94klU4dhki1LjkIDQ7SktdVjWGY1E5y4MKK3FoFQoH2yYu2RSUkgxR4Vtsy3yW92cMM9ggt_D9Km1YqLTUSFrpmUOfgBC-VtDX0yeeOiWbeYmWYLEKQdlw3nusmcr1PDj2r1y97qOvw4GFxY6LmmBy3lzqHiV2pOAaXigHugGWulLqqJOsT_bugTBMqHa4dS2LyZzYw6KRqou4uDcNvYFipVfb-P5beJ5vnw7E5PZqefCCvmb80gR6PZQPSaxYr-IihTFN9Cof1FzQp6Gg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Transfer+Learning+based+Fusion+Model+for+Environmental+Remote+Sensing+Image+Classification+Model&rft.jtitle=European+journal+of+remote+sensing&rft.au=Hilal%2C+Anwer+Mustafa&rft.au=Al-Wesabi%2C+Fahd+N.&rft.au=Alzahrani%E2%80%8B%2C+Khalid+J&rft.au=Al+Duhayyim%2C+Mesfer&rft.date=2022-10-21&rft.issn=2279-7254&rft.eissn=2279-7254&rft.volume=55&rft.issue=sup1&rft.spage=12&rft.epage=23&rft_id=info:doi/10.1080%2F22797254.2021.2017799&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_22797254_2021_2017799 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2279-7254&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2279-7254&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2279-7254&client=summon |