Deep Transfer Learning based Fusion Model for Environmental Remote Sensing Image Classification Model

Remote-sensing images comprise massive amount of spatial and semantic data that can be employed for several applications. Presently, deep learning (DL) models for RS image processing become a familiar research area. Due to the advancements of recent satellite imaging sensors , the issue of huge amou...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of remote sensing Vol. 55; no. sup1; pp. 12 - 23
Main Authors Hilal, Anwer Mustafa, Al-Wesabi, Fahd N., Alzahrani​, Khalid J, Al Duhayyim, Mesfer, Ahmed Hamza, Manar, Rizwanullah, Mohammed, García Díaz, Vicente
Format Journal Article
LanguageEnglish
Published Cagiari Taylor & Francis 21.10.2022
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Remote-sensing images comprise massive amount of spatial and semantic data that can be employed for several applications. Presently, deep learning (DL) models for RS image processing become a familiar research area. Due to the advancements of recent satellite imaging sensors , the issue of huge amount of data processing becomes a challenging problem. To accomplish this, deep transfer learning (DTL) models are developed to resolve the semantic gap among various datasets This study develops a new DTL-based fusion model for environmental remote-sensing image classification, called DTLF-ERSIC technique. The proposed technique focuses on the design of fusion model to combine multiple feature vectors and thereby attains maximum classification performance. The DTLF-ERSIC technique incorporates the entropy-based fusion of three feature extraction techniques, namely, Discrete Local Binary Pattern (DLBP), Residual Network (ResNet50), and EfficientNet models. Besides, a rain optimization algorithm (ROA) with fuzzy rule-based classifier (FRC) is applied to predict the class labels of the test RS images and shows the novelty of the work. A comprehensive experimental analysis of the DTLF-ERSIC technique takes place on benchmark dataset and examined the results in terms of different performance measures. The simulation results reported the supremacy of the DTLF-ERSIC technique over the recent state-of-art techniques.
AbstractList Remote-sensing images comprise massive amount of spatial and semantic data that can be employed for several applications. Presently, deep learning (DL) models for RS image processing become a familiar research area. Due to the advancements of recent satellite imaging sensors , the issue of huge amount of data processing becomes a challenging problem. To accomplish this, deep transfer learning (DTL) models are developed to resolve the semantic gap among various datasets This study develops a new DTL-based fusion model for environmental remote-sensing image classification, called DTLF-ERSIC technique. The proposed technique focuses on the design of fusion model to combine multiple feature vectors and thereby attains maximum classification performance. The DTLF-ERSIC technique incorporates the entropy-based fusion of three feature extraction techniques, namely, Discrete Local Binary Pattern (DLBP), Residual Network (ResNet50), and EfficientNet models. Besides, a rain optimization algorithm (ROA) with fuzzy rule-based classifier (FRC) is applied to predict the class labels of the test RS images and shows the novelty of the work. A comprehensive experimental analysis of the DTLF-ERSIC technique takes place on benchmark dataset and examined the results in terms of different performance measures. The simulation results reported the supremacy of the DTLF-ERSIC technique over the recent state-of-art techniques.
Author Ahmed Hamza, Manar
Alzahrani​, Khalid J
Al Duhayyim, Mesfer
Rizwanullah, Mohammed
García Díaz, Vicente
Hilal, Anwer Mustafa
Al-Wesabi, Fahd N.
Author_xml – sequence: 1
  givenname: Anwer Mustafa
  surname: Hilal
  fullname: Hilal, Anwer Mustafa
  email: a.hilal@psau.edu.sa
  organization: Prince Sattam Bin Abdulaziz University
– sequence: 2
  givenname: Fahd N.
  surname: Al-Wesabi
  fullname: Al-Wesabi, Fahd N.
  organization: Sana'a University
– sequence: 3
  givenname: Khalid J
  surname: Alzahrani​
  fullname: Alzahrani​, Khalid J
  organization: Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
– sequence: 4
  givenname: Mesfer
  surname: Al Duhayyim
  fullname: Al Duhayyim, Mesfer
  organization: College of Community - Aflaj, Prince Sattam Bin Abdulaziz University
– sequence: 5
  givenname: Manar
  surname: Ahmed Hamza
  fullname: Ahmed Hamza, Manar
  organization: Prince Sattam Bin Abdulaziz University
– sequence: 6
  givenname: Mohammed
  surname: Rizwanullah
  fullname: Rizwanullah, Mohammed
  organization: Prince Sattam Bin Abdulaziz University
– sequence: 7
  givenname: Vicente
  surname: García Díaz
  fullname: García Díaz, Vicente
  organization: School of Computer Science Engineering, University of Oviedo
BookMark eNp9kVFvFCEUhYmpibX2J5iQ-LwVGFjgTbO2uskaE63P5A5z2bCZgRVmNf33Mm5tfJIHuLmc80HueUkuUk5IyGvObjgz7K0Q2mqh5I1ggreNa23tM3K59FfLxcU_9QtyXeuBtWUY08ZeEvyAeKT3BVINWOgOoaSY9rSHigO9O9WYE_2cBxxpyIXepp-x5DRhmmGkX3HKM9JvmOri2U6wR7oZodYYoof5yfuKPA8wVrx-PK_I97vb-82n1e7Lx-3m_W7lJZPzqrcsrDnzFiQqiwEZSN97vu60DVqiVIPqhsGgMmiNVp0d1r3SAhlK7gforsj2zB0yHNyxxAnKg8sQ3Z9GLnsHZY5-RNc1EgvBaA5GKq2MwN60EQbQtu-1aKw3Z9ax5B8nrLM75FNJ7ftONLlUa2t4U6mzypdca8Hw9CpnbgnI_Q3ILQG5x4Ca793ZF1Ob6wS_chkHN8PDmEtoafhYXfd_xG_9WJiR
CitedBy_id crossref_primary_10_3934_math_2024500
crossref_primary_10_3390_electronics11050775
crossref_primary_10_3390_s24030770
crossref_primary_10_1109_TGRS_2023_3260121
crossref_primary_10_3390_rs14174423
crossref_primary_10_4316_AECE_2023_04004
crossref_primary_10_3390_su15107854
crossref_primary_10_1016_j_aej_2023_05_049
crossref_primary_10_1155_2022_2004716
crossref_primary_10_1080_22797254_2022_2128432
crossref_primary_10_1155_2022_4063354
Cites_doi 10.1007/s11760-013-0516-4
10.1109/TGRS.2020.3007523
10.3390/rs12020260
10.3390/agriculture11070617
10.1007/s40747-021-00353-6
10.1016/j.patcog.2016.07.001
10.1016/j.ijleo.2020.165356
10.3390/rs10010016
10.1049/cvi2.12046
10.1016/j.cogsys.2019.09.007
10.1080/01431161.2019.1694725
10.1109/JSTARS.2020.2988477
10.3390/sym11111423
10.3390/rs13112221
10.1109/IGARSS.2015.7326158
10.1016/j.ijleo.2018.06.024
10.1109/TGRS.2020.2984703
10.1016/j.neucom.2018.03.076
10.1109/TGRS.2020.2977248
10.1109/ACCESS.2019.2960931
10.1016/j.patrec.2020.03.007
10.1016/j.rse.2019.111322
10.3390/jimaging6120143
10.3390/rs13030526
10.1016/j.infrared.2020.103621
ContentType Journal Article
Copyright 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022
2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022
– notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
3V.
7TG
7XB
8FD
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
H8D
KL.
L7M
M2O
MBDVC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1080/22797254.2021.2017799
DatabaseName Taylor & Francis Open Access
CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
ProQuest research library
Research Library (Corporate)
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
Aerospace Database
Meteorological & Geoastrophysical Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest One Academic
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2279-7254
EndPage 23
ExternalDocumentID oai_doaj_org_article_353d0ff871a8457582eb8021fa79bb72
10_1080_22797254_2021_2017799
2017799
Genre Articles
GroupedDBID .4S
0YH
5VS
8G5
ABUWG
ACGFS
ADBBV
AEGXH
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AZQEC
BCNDV
BENPR
BPHCQ
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
GUQSH
KQ8
M2O
M4Z
M~E
OK1
PIMPY
PQEST
PQQKQ
PQUKI
PROAC
RNS
TFW
TUS
AAHBH
AAYXX
CCPQU
CITATION
H13
TDBHL
3V.
7TG
7XB
8FD
8FK
H8D
KL.
L7M
MBDVC
PRINS
Q9U
ID FETCH-LOGICAL-c404t-b90f610c9a4e59efe0a4cbc16379f74e45d53dd8e58e987539d6b572e0e41cda3
IEDL.DBID 0YH
ISSN 2279-7254
IngestDate Tue Oct 22 14:50:54 EDT 2024
Thu Oct 10 20:39:28 EDT 2024
Fri Aug 23 01:15:16 EDT 2024
Tue Jun 13 19:31:11 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue sup1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-b90f610c9a4e59efe0a4cbc16379f74e45d53dd8e58e987539d6b572e0e41cda3
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/22797254.2021.2017799
PQID 2758456981
PQPubID 3933194
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_353d0ff871a8457582eb8021fa79bb72
crossref_primary_10_1080_22797254_2021_2017799
informaworld_taylorfrancis_310_1080_22797254_2021_2017799
proquest_journals_2758456981
PublicationCentury 2000
PublicationDate 2022-10-21
PublicationDateYYYYMMDD 2022-10-21
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-21
  day: 21
PublicationDecade 2020
PublicationPlace Cagiari
PublicationPlace_xml – name: Cagiari
PublicationTitle European journal of remote sensing
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References e_1_3_4_4_1
e_1_3_4_3_1
e_1_3_4_2_1
e_1_3_4_9_1
e_1_3_4_8_1
e_1_3_4_7_1
e_1_3_4_20_1
e_1_3_4_6_1
e_1_3_4_5_1
e_1_3_4_23_1
e_1_3_4_24_1
e_1_3_4_21_1
e_1_3_4_22_1
e_1_3_4_27_1
e_1_3_4_25_1
e_1_3_4_26_1
e_1_3_4_12_1
e_1_3_4_13_1
e_1_3_4_10_1
e_1_3_4_11_1
e_1_3_4_16_1
e_1_3_4_17_1
e_1_3_4_14_1
e_1_3_4_15_1
e_1_3_4_18_1
e_1_3_4_19_1
References_xml – ident: e_1_3_4_7_1
  doi: 10.1007/s11760-013-0516-4
– ident: e_1_3_4_5_1
  doi: 10.1109/TGRS.2020.3007523
– ident: e_1_3_4_15_1
  doi: 10.3390/rs12020260
– ident: e_1_3_4_3_1
  doi: 10.3390/agriculture11070617
– ident: e_1_3_4_20_1
  doi: 10.1007/s40747-021-00353-6
– ident: e_1_3_4_17_1
  doi: 10.1016/j.patcog.2016.07.001
– ident: e_1_3_4_22_1
  doi: 10.1016/j.ijleo.2020.165356
– ident: e_1_3_4_10_1
  doi: 10.3390/rs10010016
– ident: e_1_3_4_25_1
  doi: 10.1049/cvi2.12046
– ident: e_1_3_4_21_1
  doi: 10.1016/j.cogsys.2019.09.007
– ident: e_1_3_4_4_1
  doi: 10.1080/01431161.2019.1694725
– ident: e_1_3_4_9_1
  doi: 10.1109/JSTARS.2020.2988477
– ident: e_1_3_4_8_1
  doi: 10.3390/sym11111423
– ident: e_1_3_4_2_1
  doi: 10.3390/rs13112221
– ident: e_1_3_4_24_1
  doi: 10.1109/IGARSS.2015.7326158
– ident: e_1_3_4_26_1
  doi: 10.1016/j.ijleo.2018.06.024
– ident: e_1_3_4_11_1
  doi: 10.1109/TGRS.2020.2984703
– ident: e_1_3_4_18_1
– ident: e_1_3_4_12_1
  doi: 10.1016/j.neucom.2018.03.076
– ident: e_1_3_4_14_1
  doi: 10.1109/TGRS.2020.2977248
– ident: e_1_3_4_27_1
  doi: 10.1109/ACCESS.2019.2960931
– ident: e_1_3_4_13_1
  doi: 10.1016/j.patrec.2020.03.007
– ident: e_1_3_4_23_1
  doi: 10.1016/j.rse.2019.111322
– ident: e_1_3_4_16_1
  doi: 10.3390/jimaging6120143
– ident: e_1_3_4_19_1
  doi: 10.3390/rs13030526
– ident: e_1_3_4_6_1
  doi: 10.1016/j.infrared.2020.103621
SSID ssj0000800789
Score 2.3766599
Snippet Remote-sensing images comprise massive amount of spatial and semantic data that can be employed for several applications. Presently, deep learning (DL) models...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Publisher
StartPage 12
SubjectTerms Algorithms
Classification
Data processing
Datasets
Deep learning
Deep transfer learning
Entropy
Environmental monitoring
Feature extraction
Fusion model
Image classification
Image processing
Machine learning
Modelling
Optimization
Parameter tuning
Remote sensing
Satellite imagery
Satellites
Semantics
Spatial data
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQF1gQT1EoyANraOI4sT3yaFWQYAAqdbOS-AxCUKqSDvx7zo4DFQxdWKM4tr6L777z4ztCTn1aIY2NrGQiwniLc86gM0ysETIvMsN8FYXbu3w05jeTbLJU6sudCWvkgRvg-mmWmtha5PWF5MgtJINSYmCyhVBlKRrvG6ulZOol8CAhVXtlR8Z9p5QnmF9GYS4vTITweq8_wchr9v9SLP3joX3YGW6RzcAX6Xkzzm2yBtMdsh5Klz9_7hK4AphRH3IszGnQS32iLjwZOly41TDqKp69UuyQDn4utuFn7wEtBfTBnWLHNtdv6F2or5PpThB5ozVt98h4OHi8HEWhdkJU8ZjXUalii8yoUgWHTIGFuOBVWSH7EsoKDjwzCKyRkElQLmdRJi8zwSAGnlSmSPdJZ_o-hQNCc7c1aWJEvVDYMFcVgyoFm_FCClNBl5y1IOpZI5Ghk6A82qKuHeo6oN4lFw7q75edwrV_gHbXwe56ld27RC0bStd-gcM21Uh0umIAvdaqOkzZD82wD2STSiaH_zG-I7LB3E0JDHMs6ZFOPV_AMfKXujzxv-oXnp3oSQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELbKcigXVNqiLi_50GuK4zixfULQ7opWKqpokbhZiT2mB9hdluXAv--M12ErkOCaxI41Y8_L9vcx9jmlFSbEIhqpC_S3uOYCGsMyBm2atg4ysSj8PGtOL9SPy_oyF9zu8rHK3iYmQx2mnmrkhxIDW3T21pRHs9uCWKNodzVTaKyxdYmZghiw9ZPR2a_zxyoLxUPa2P7qjhGHhJinZSqnSMoPS60T7uvKKSXs_ifIpc8sdXI_43dsM8eN_Hip6C32Bibv2dtMYf734QODbwAznlxPhDnPuKlXnNxU4ON7qopxYj675vhDPlpdcMNuzwE1Bvw3nWbHNt9v0MrwxJdJJ4mS8pZtP7KL8ejP19MicygUXgm1KDorIkZI3rYKagsRRKt85zEK0zZqBaoOdRWCgdqApdzFhqartQQBqvShrbbZYDKdwCfGG9qiDKIzorXYsLFegq8g1qo1OngYsi-9EN1sCZXhyoxA2kvdkdRdlvqQnZCoHz8mpOv0YDq_cnnhuAqHJ2LEvK5F_eMkkIAjkGVste06LYfM_q8ot0iFjrhkJXHVKwPY67Xq8tK9c6uJtvPy6122IekuBDoyWe6xwWJ-D_sYoSy6gzwN_wF6wOHV
  priority: 102
  providerName: ProQuest
Title Deep Transfer Learning based Fusion Model for Environmental Remote Sensing Image Classification Model
URI https://www.tandfonline.com/doi/abs/10.1080/22797254.2021.2017799
https://www.proquest.com/docview/2758456981
https://doaj.org/article/353d0ff871a8457582eb8021fa79bb72
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwELU4CmgQp1iOlQvaQOI4sV1y7GpBAiEOCSrLicdQwIJ2l4K_Z-w4nEIUtFHGsWY8Z8ZvCNkJaYW0LnGSiQT9LeqcRWOYOStkaQrLwhSF07NycM1Pboq2m3Ac2yp9Du0aoIhgq71ym2rcdsTtedA7wUJFhPkULxNCqWkyywR6fzzS6e3gvcziAyIhVXt35zfqL14pgPd_gy79YaqD_-kvkoUYONL9RtJLZAqGy2QuzjC_f10hcATwTIPvcTCiETj1jno_ZWn_xZfFqB999kDxg7T3ccMNl70AFBnQS9_OjjTHj2hmaBiY6VuJgvQa2lVy3e9dHQ6SOEQhqXnKJ0mlUochUq0Mh0KBg9TwuqoxDBPKCQ68sEVurYRCgvLJi7JlVQgGKfCstiZfIzPDpyGsE1r6f5Q2rWRqFBKWqmZQ5-AKbqSwNXTIbstE_dxgZegsQpC2XNee6zpyvUMOPKvfX_ZQ1-HB0-hOR83ROW4vdQ4TOyM5BpeSAe6AZc4IVVWCdYj6LCg9CZUO14wl0fkfG9hqpaqj7o41HiP8UKlktvGPpTfJPPM3JdDNsWyLzExGL7CN8cuk6oYT2iWzB72z84tuqAK8Ab9R6F4
link.rule.ids 315,783,787,867,2109,21400,27514,27936,27937,33756,43817,59471,59472
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3PT9swFLYGHOCCtgGi0G0-cM1IHCe2T9PYWpUNqomBxM1K7Gc4bG0p7WH__d5zHTptErsmsWO9Z79ftr-PsZOYVmgfsqCFytDf4przaAyL4JWum8qLyKJwOa5HN_LLbXWbCm6P6VhlZxOjofZTRzXyU4GBLTp7o4sPs4eMWKNodzVRaGywLYKqwuRr62ww_nb1VGWheEhp013d0fkpIeYpEcspgvLDQqmI-7p2ShG7_y_k0n8sdXQ_w5dsN8WN_ONK0a_YC5i8ZtuJwvz-1x6DzwAzHl1PgDlPuKl3nNyU58MlVcU4MZ_94PhDPlhfcMNurwA1Bvw7nWbHNuc_0crwyJdJJ4mi8lZt99nNcHD9aZQlDoXMyVwustbkASMkZxoJlYEAeSNd6zAKUyYoCbLyVem9hkqDodzF-LqtlIAcZOF8Ux6wzcl0AoeM17RF6fNW543BhrVxAlwJoZKNVt5Bj73vhGhnK6gMWyQE0k7qlqRuk9R77IxE_fQxIV3HB9P5nU0Lx5Y4vDwEzOsa1D9OAgE4AlGERpm2VaLHzJ-KsotY6AgrVhJb_mcA_U6rNi3dR7ueaEfPv37HtkfXlxf24nz89ZjtCLoXgU5NFH22uZgv4Q1GK4v2bZqSvwFayuTP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdGkQaXCTamFQrzYddA4tixfWS0VfdVTRuTxslK4uftsHVVmx7473l2nI6B0A5cozzHes_vM8-_R8hBSCuUdYlTTCbob1HnLBrDzFmpilJYFqYonE2LyRU_vhZdN-EytlX6HNq1QBHBVnvlnlvXdcR98aB3koWKCPMpXial1i_IS6HR0uKRTn9M1mUWHxBJpbu7O_-ifuKVAnj_H9Clf5nq4H_Gb8hWDBzp11bSb8kGzLbJqzjD_PbnDoEhwJwG3-NgQSNw6g31fsrS8cqXxagffXZH8YN09HjDDZe9ABQZ0Evfzo40R_doZmgYmOlbiYL0Wtp35Go8-v5tksQhCknNU94klU4dhki1LjkIDQ7SktdVjWGY1E5y4MKK3FoFQoH2yYu2RSUkgxR4Vtsy3yW92cMM9ggt_D9Km1YqLTUSFrpmUOfgBC-VtDX0yeeOiWbeYmWYLEKQdlw3nusmcr1PDj2r1y97qOvw4GFxY6LmmBy3lzqHiV2pOAaXigHugGWulLqqJOsT_bugTBMqHa4dS2LyZzYw6KRqou4uDcNvYFipVfb-P5beJ5vnw7E5PZqefCCvmb80gR6PZQPSaxYr-IihTFN9Cof1FzQp6Gg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Transfer+Learning+based+Fusion+Model+for+Environmental+Remote+Sensing+Image+Classification+Model&rft.jtitle=European+journal+of+remote+sensing&rft.au=Hilal%2C+Anwer+Mustafa&rft.au=Al-Wesabi%2C+Fahd+N.&rft.au=Alzahrani%E2%80%8B%2C+Khalid+J&rft.au=Al+Duhayyim%2C+Mesfer&rft.date=2022-10-21&rft.issn=2279-7254&rft.eissn=2279-7254&rft.volume=55&rft.issue=sup1&rft.spage=12&rft.epage=23&rft_id=info:doi/10.1080%2F22797254.2021.2017799&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_22797254_2021_2017799
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2279-7254&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2279-7254&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2279-7254&client=summon