Hydraulic differences along the water transport system of South American Nothofagus species: do leaves protect the stem functionality?

Hydraulic traits were studied for six Nothofagus species from South America (Argentina and Chile), and for three of these species two populations were studied. The main goal was to determine if properties of the water conductive pathway in stems and leaves are functionally coordinated and to assess...

Full description

Saved in:
Bibliographic Details
Published inTree physiology Vol. 32; no. 7; pp. 880 - 893
Main Authors Bucci, S. J., Scholz, F. G., Campanello, P. I., Montti, L., Jimenez-Castillo, M., Rockwell, F. A., Manna, L. L., Guerra, P., Bernal, P. L., Troncoso, O., Enricci, J., Holbrook, M. N., Goldstein, G.
Format Journal Article
LanguageEnglish
Published Canada 01.07.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydraulic traits were studied for six Nothofagus species from South America (Argentina and Chile), and for three of these species two populations were studied. The main goal was to determine if properties of the water conductive pathway in stems and leaves are functionally coordinated and to assess if leaves are more vulnerable to cavitation than stems, consistent with the theory of hydraulic segmentation along the vascular system of trees in ecosystems subject to seasonal drought. Vulnerability to cavitation, hydraulic conductivity of stems and leaves, leaf water potential, wood density and leaf water relations were examined. Large variations in vulnerability to cavitation of stems and leaves were observed across populations and species, but leaves were consistently more vulnerable than stems. Water potential at 50% loss of maximum hydraulic efficiency (P(50)) ranged from -0.94 to -2.44 MPa in leaves and from -2.6 to -5.3 MPa in stems across species and populations. Populations in the driest sites had sapwood and leaves more vulnerable to cavitation than those grown in the wettest sites. Stronger diurnal down-regulation in leaf hydraulic conductance compared with stem hydraulic conductivity apparently has the function to slow down potential water loss in stems and protect stem hydraulics from cavitation. Species-specific differences in wood density and leaf hydraulic conductance (K(Leaf)) were observed. Both traits were functionally related: species with higher wood density had lower K(Leaf). Other stem and leaf hydraulic traits were functionally coordinated, resulting in Nothofagus species with an efficient delivery of water to the leaves. The integrity of the more expensive woody portion of the water transport pathway can thus be maintained at the expense of the replaceable portion (leaves) of the stem-leaf continuum under prolonged drought. Compensatory adjustments between hydraulic traits may help to decrease the rate of embolism formation in the trees more vulnerable to cavitation.
AbstractList Hydraulic traits were studied for six Nothofagus species from South America (Argentina and Chile), and for three of these species two populations were studied. The main goal was to determine if properties of the water conductive pathway in stems and leaves are functionally coordinated and to assess if leaves are more vulnerable to cavitation than stems, consistent with the theory of hydraulic segmentation along the vascular system of trees in ecosystems subject to seasonal drought. Vulnerability to cavitation, hydraulic conductivity of stems and leaves, leaf water potential, wood density and leaf water relations were examined. Large variations in vulnerability to cavitation of stems and leaves were observed across populations and species, but leaves were consistently more vulnerable than stems. Water potential at 50% loss of maximum hydraulic efficiency (P(50)) ranged from -0.94 to -2.44 MPa in leaves and from -2.6 to -5.3 MPa in stems across species and populations. Populations in the driest sites had sapwood and leaves more vulnerable to cavitation than those grown in the wettest sites. Stronger diurnal down-regulation in leaf hydraulic conductance compared with stem hydraulic conductivity apparently has the function to slow down potential water loss in stems and protect stem hydraulics from cavitation. Species-specific differences in wood density and leaf hydraulic conductance (K(Leaf)) were observed. Both traits were functionally related: species with higher wood density had lower K(Leaf). Other stem and leaf hydraulic traits were functionally coordinated, resulting in Nothofagus species with an efficient delivery of water to the leaves. The integrity of the more expensive woody portion of the water transport pathway can thus be maintained at the expense of the replaceable portion (leaves) of the stem-leaf continuum under prolonged drought. Compensatory adjustments between hydraulic traits may help to decrease the rate of embolism formation in the trees more vulnerable to cavitation.
Hydraulic traits were studied for six Nothofagus species from South America (Argentina and Chile), and for three of these species two populations were studied. The main goal was to determine if properties of the water conductive pathway in stems and leaves are functionally coordinated and to assess if leaves are more vulnerable to cavitation than stems, consistent with the theory of hydraulic segmentation along the vascular system of trees in ecosystems subject to seasonal drought. Vulnerability to cavitation, hydraulic conductivity of stems and leaves, leaf water potential, wood density and leaf water relations were examined. Large variations in vulnerability to cavitation of stems and leaves were observed across populations and species, but leaves were consistently more vulnerable than stems. Water potential at 50% loss of maximum hydraulic efficiency (P(50)) ranged from -0.94 to -2.44 MPa in leaves and from -2.6 to -5.3 MPa in stems across species and populations. Populations in the driest sites had sapwood and leaves more vulnerable to cavitation than those grown in the wettest sites. Stronger diurnal down-regulation in leaf hydraulic conductance compared with stem hydraulic conductivity apparently has the function to slow down potential water loss in stems and protect stem hydraulics from cavitation. Species-specific differences in wood density and leaf hydraulic conductance (K(Leaf)) were observed. Both traits were functionally related: species with higher wood density had lower K(Leaf). Other stem and leaf hydraulic traits were functionally coordinated, resulting in Nothofagus species with an efficient delivery of water to the leaves. The integrity of the more expensive woody portion of the water transport pathway can thus be maintained at the expense of the replaceable portion (leaves) of the stem-leaf continuum under prolonged drought. Compensatory adjustments between hydraulic traits may help to decrease the rate of embolism formation in the trees more vulnerable to cavitation.Hydraulic traits were studied for six Nothofagus species from South America (Argentina and Chile), and for three of these species two populations were studied. The main goal was to determine if properties of the water conductive pathway in stems and leaves are functionally coordinated and to assess if leaves are more vulnerable to cavitation than stems, consistent with the theory of hydraulic segmentation along the vascular system of trees in ecosystems subject to seasonal drought. Vulnerability to cavitation, hydraulic conductivity of stems and leaves, leaf water potential, wood density and leaf water relations were examined. Large variations in vulnerability to cavitation of stems and leaves were observed across populations and species, but leaves were consistently more vulnerable than stems. Water potential at 50% loss of maximum hydraulic efficiency (P(50)) ranged from -0.94 to -2.44 MPa in leaves and from -2.6 to -5.3 MPa in stems across species and populations. Populations in the driest sites had sapwood and leaves more vulnerable to cavitation than those grown in the wettest sites. Stronger diurnal down-regulation in leaf hydraulic conductance compared with stem hydraulic conductivity apparently has the function to slow down potential water loss in stems and protect stem hydraulics from cavitation. Species-specific differences in wood density and leaf hydraulic conductance (K(Leaf)) were observed. Both traits were functionally related: species with higher wood density had lower K(Leaf). Other stem and leaf hydraulic traits were functionally coordinated, resulting in Nothofagus species with an efficient delivery of water to the leaves. The integrity of the more expensive woody portion of the water transport pathway can thus be maintained at the expense of the replaceable portion (leaves) of the stem-leaf continuum under prolonged drought. Compensatory adjustments between hydraulic traits may help to decrease the rate of embolism formation in the trees more vulnerable to cavitation.
Author Bucci, S. J.
Guerra, P.
Manna, L. L.
Troncoso, O.
Goldstein, G.
Campanello, P. I.
Holbrook, M. N.
Montti, L.
Jimenez-Castillo, M.
Scholz, F. G.
Bernal, P. L.
Enricci, J.
Rockwell, F. A.
Author_xml – sequence: 1
  givenname: S. J.
  surname: Bucci
  fullname: Bucci, S. J.
– sequence: 2
  givenname: F. G.
  surname: Scholz
  fullname: Scholz, F. G.
– sequence: 3
  givenname: P. I.
  surname: Campanello
  fullname: Campanello, P. I.
– sequence: 4
  givenname: L.
  surname: Montti
  fullname: Montti, L.
– sequence: 5
  givenname: M.
  surname: Jimenez-Castillo
  fullname: Jimenez-Castillo, M.
– sequence: 6
  givenname: F. A.
  surname: Rockwell
  fullname: Rockwell, F. A.
– sequence: 7
  givenname: L. L.
  surname: Manna
  fullname: Manna, L. L.
– sequence: 8
  givenname: P.
  surname: Guerra
  fullname: Guerra, P.
– sequence: 9
  givenname: P. L.
  surname: Bernal
  fullname: Bernal, P. L.
– sequence: 10
  givenname: O.
  surname: Troncoso
  fullname: Troncoso, O.
– sequence: 11
  givenname: J.
  surname: Enricci
  fullname: Enricci, J.
– sequence: 12
  givenname: M. N.
  surname: Holbrook
  fullname: Holbrook, M. N.
– sequence: 13
  givenname: G.
  surname: Goldstein
  fullname: Goldstein, G.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22684354$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFv1DAQhS1URLeFMzfkI5d07cTJxlxQVUGLVMEBkLhFE2fcNUrs4HGK8gf43bjd7gWJ02ik9z7NvHfGTnzwyNhrKS6k0NU2RcR5v9I2zSRq9Yxt5K5uC6UafcI2oi11Ucn2xyk7I_ophKzbVr9gp2XZtKqq1Yb9uVmHCMvoDB-ctRjRGyQOY_B3PO2R_4aEkacInuYQE6eVEk48WP41LGnPLyeMzoDnn0PaBwt3C3Ga0Tikd3wIfES4z8A5hoQmPSIfAXbxJrngYXRpff-SPbcwEr56mufs-8cP365uitsv15-uLm8Lo4RKRb8re1lpDY0ErWXVo9Iyb0Otdq3sjdhZIWqJjTbYt6iksKBKif0AwhoYqnP29sDN9_xakFI3OTI4juAxLNRJkZNpaimbLH3zJF36CYdujm6CuHbH7LKgPghMDEQRbWdcgoefclpuzKzuoaPu2FF36Cj7tv_4juj_Of4Cw-GcTA
CitedBy_id crossref_primary_10_1111_nph_15048
crossref_primary_10_1007_s00468_018_1795_8
crossref_primary_10_1093_treephys_tpac113
crossref_primary_10_1093_jxb_erac451
crossref_primary_10_1111_nph_19000
crossref_primary_10_1016_j_foreco_2021_119676
crossref_primary_10_1093_treephys_tpy013
crossref_primary_10_1111_pce_15249
crossref_primary_10_1007_s40725_019_00109_z
crossref_primary_10_1093_treephys_tpv061
crossref_primary_10_1086_706188
crossref_primary_10_1111_1365_2745_12211
crossref_primary_10_1063_1_4964327
crossref_primary_10_1093_treephys_tpt042
crossref_primary_10_1016_j_foreco_2023_121039
crossref_primary_10_1111_nph_12850
crossref_primary_10_3389_fpls_2022_902509
crossref_primary_10_1007_s13595_018_0768_9
crossref_primary_10_1093_treephys_tpv102
crossref_primary_10_3390_plants10122604
crossref_primary_10_1111_1365_2435_12246
crossref_primary_10_1016_j_envexpbot_2013_09_018
crossref_primary_10_1016_j_foreco_2019_06_021
crossref_primary_10_1016_j_indcrop_2017_12_066
crossref_primary_10_1071_BT13015
crossref_primary_10_1111_nph_13979
crossref_primary_10_1111_pce_13512
crossref_primary_10_1111_pce_12225
crossref_primary_10_1016_j_agrformet_2025_110495
crossref_primary_10_1016_j_scitotenv_2022_159334
crossref_primary_10_1071_FP16097
crossref_primary_10_1007_s00468_014_1050_x
crossref_primary_10_1093_treephys_tpt098
crossref_primary_10_1111_pce_12581
crossref_primary_10_1016_j_foreco_2024_122190
crossref_primary_10_1111_ppl_14132
crossref_primary_10_1071_FP13302
crossref_primary_10_1080_02827581_2019_1674917
crossref_primary_10_1093_jpe_rtx011
crossref_primary_10_1093_treephys_tpu101
crossref_primary_10_1111_1440_1703_12008
crossref_primary_10_1111_nph_16723
crossref_primary_10_1016_j_plaphy_2023_107658
crossref_primary_10_1071_FP15324
crossref_primary_10_1093_treephys_tpw048
crossref_primary_10_1093_jxb_eru380
crossref_primary_10_1093_treephys_tpv039
crossref_primary_10_1111_nph_14450
crossref_primary_10_1093_treephys_tpad108
crossref_primary_10_1139_cjb_2020_0155
crossref_primary_10_3390_f10060489
crossref_primary_10_1111_nph_14256
crossref_primary_10_1016_j_foreco_2020_117997
crossref_primary_10_1111_pce_14649
crossref_primary_10_1016_j_foreco_2018_08_027
crossref_primary_10_1016_j_jtbi_2020_110318
crossref_primary_10_1093_treephys_tpw098
crossref_primary_10_1093_treephys_tpw131
crossref_primary_10_1093_treephys_tpy111
crossref_primary_10_3389_fpls_2016_02075
crossref_primary_10_1007_s11056_021_09843_4
crossref_primary_10_1071_FP14201
crossref_primary_10_3389_fpls_2024_1516824
crossref_primary_10_1111_ppl_13617
crossref_primary_10_1093_treephys_tpy032
crossref_primary_10_1016_j_agrformet_2021_108670
crossref_primary_10_3390_f15081355
crossref_primary_10_1111_nph_13246
crossref_primary_10_1007_s11258_018_0845_z
crossref_primary_10_1073_pnas_1604088113
crossref_primary_10_1111_1365_2435_12656
crossref_primary_10_1016_j_envexpbot_2015_03_006
crossref_primary_10_1080_17550874_2016_1212288
crossref_primary_10_1016_j_sajb_2015_07_018
crossref_primary_10_1093_plphys_kiac034
crossref_primary_10_1007_s00468_016_1408_3
crossref_primary_10_1111_nph_15135
crossref_primary_10_1016_j_foreco_2020_117943
crossref_primary_10_1007_s10342_021_01389_6
crossref_primary_10_1016_j_foreco_2019_117796
crossref_primary_10_1093_treephys_tpz058
crossref_primary_10_1007_s11284_016_1396_1
crossref_primary_10_1007_s12374_022_09361_6
crossref_primary_10_1111_pce_12126
crossref_primary_10_1007_s00468_013_0935_4
crossref_primary_10_1111_1442_1984_12047
crossref_primary_10_1093_treephys_tpu087
crossref_primary_10_3390_f11030349
crossref_primary_10_1016_j_palaeo_2023_111474
crossref_primary_10_1016_j_scitotenv_2023_164762
crossref_primary_10_1111_nph_16941
crossref_primary_10_1111_1365_2435_70017
crossref_primary_10_1007_s10457_017_0167_5
crossref_primary_10_1016_j_foreco_2020_118719
crossref_primary_10_1080_17550874_2018_1507056
crossref_primary_10_1016_j_jplph_2017_09_006
Cites_doi 10.1071/BT06026
10.1139/b81-248
10.1007/s00442-009-1331-z
10.1371/journal.pbio.0030001
10.1111/j.1365-3040.2006.01623.x
10.1093/treephys/tpr101
10.1104/pp.109.138305
10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2
10.1093/jxb/32.3.643
10.1093/treephys/tpp018
10.1111/j.1365-2745.2004.00941.x
10.1046/j.1365-3040.2003.01039.x
10.1111/j.1365-2435.2009.01613.x
10.1093/treephys/28.1.85
10.4067/S0717-66432011000200005
10.1023/A:1010251425995
10.1146/annurev.arplant.56.032604.144141
10.1093/jxb/36.4.590
10.1073/pnas.94.25.13730
10.1007/s00468-010-0412-2
10.1093/treephys/tpr050
10.1046/j.1365-3040.2003.00991.x
10.1111/j.1469-8137.2007.02137.x
10.1093/treephys/23.13.907
10.1046/j.0140-7791.2003.01082.x
10.1104/pp.88.3.574
10.1093/treephys/19.7.445
10.1007/BF00329432
10.1093/treephys/tpq043
10.1007/978-1-4612-5088-3_4
10.1007/s00442-004-1624-1
10.1104/pp.103.023879
10.3732/ajb.91.3.386
10.1080/11956860.1999.11682519
10.1046/j.1365-3040.2001.00660.x
10.1038/nature02403
10.1093/jxb/23.1.267
10.1093/jxb/erf069
10.1007/s00425-009-0959-6
10.1111/j.1469-8137.2009.02954.x
10.1016/j.foreco.2007.03.034
10.1016/S0378-1127(01)00495-9
10.1111/j.1365-3040.1990.tb02142.x
10.1111/j.1365-3040.2004.01188.x
10.1007/s00442-002-1088-0
10.1111/j.1365-3040.2009.02012.x
10.1007/s00442-007-0918-5
10.1093/treephys/24.8.891
10.2307/1224719
10.1111/j.1365-3040.2005.01404.x
10.1111/j.1365-3040.2006.01539.x
10.1111/j.1469-8137.2006.01712.x
10.17221/66/2008-JFS
10.1111/j.1365-3040.2007.01652.x
10.1111/j.1365-3040.1994.tb02021.x
10.1007/s004680000071
10.1111/j.1365-2699.2010.02346.x
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/treephys/tps054
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
Botany
EISSN 1758-4469
EndPage 893
ExternalDocumentID 22684354
10_1093_treephys_tps054
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.2P
.I3
0R~
123
1TH
4.4
48X
53G
5VS
5WD
70D
AAHBH
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAVLN
AAYXX
ABDBF
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABMNT
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFS
ACUFI
ACUHS
ACUTJ
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHXPO
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
C45
CDBKE
CITATION
CZ4
DAKXR
DIK
DILTD
D~K
E3Z
EBD
EBS
EDH
EE~
EJD
EMOBN
ESX
F5P
F9B
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KBUDW
KOP
KSI
KSN
N9A
NGC
NLBLG
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OVD
OWPYF
O~Y
PAFKI
PEELM
Q1.
Q5Y
RD5
ROX
ROZ
RSU
RUSNO
RW1
RXO
SJN
SV3
TEORI
TLC
TR2
TUS
W8F
X7H
Y6R
YAYTL
YKOAZ
YXANX
~91
~KM
AAUQX
AAWDT
ABIME
ABPIB
ABSMQ
ABZEO
ACFRR
ACVCV
ACZBC
AFYAG
AGKRT
AGMDO
AHGBF
AJDVS
ANFBD
APJGH
AQDSO
ASAOO
ATDFG
CGR
CUY
CVF
CXTWN
DFGAJ
ECM
EIF
ELUNK
MBTAY
NPM
TCN
WHG
ZY4
7X8
ID FETCH-LOGICAL-c404t-b72b1399a61a9913be4919a6d54781bc07f0051e69ceb8e410fa421ebda0fcad3
ISSN 0829-318X
1758-4469
IngestDate Fri Jul 11 09:15:07 EDT 2025
Mon Jul 21 06:00:58 EDT 2025
Tue Jul 01 03:58:38 EDT 2025
Thu Apr 24 23:12:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c404t-b72b1399a61a9913be4919a6d54781bc07f0051e69ceb8e410fa421ebda0fcad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/treephys/article-pdf/32/7/880/4635731/tps054.pdf
PMID 22684354
PQID 1026865116
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_1026865116
pubmed_primary_22684354
crossref_citationtrail_10_1093_treephys_tps054
crossref_primary_10_1093_treephys_tps054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-07-01
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Canada
PublicationPlace_xml – name: Canada
PublicationTitle Tree physiology
PublicationTitleAlternate Tree Physiol
PublicationYear 2012
References (33_28383369) 2003; 26
(38_42359197) 2009; 55
(7_32708583) 2004; 24
(39_32756990) 2003; 23
(32_35380004) 1995; 101
Tyree (59_21382222) 1988; 88
(22_28628015) 2001; 24
Wright (66_18150535) 2004; 428
Martinez-Vilalta (29_35450802) 2009; 184
(45_42806694) 2010; 37
(11_37382326) 2010; 30
(43_42806693) 2011; 21
(19_35051009) 2008; 155
(1_42806688) 2011; 31
Hacke (18_20231900) 2004; 91
(42_40333163) 2007; 55
(30_35032310) 2003; 134
(64_40969689) 2011; 31
(56_2603694) 2001; 50
TYREE (57_21473873) 1972; 23
(51_35336734) 2004; 140
(35_28407170) 2003; 26
(37_36933756) 2000; 15
(62_42806698) 1985; 2
(3_34460535) 2009; 29
(61_42806697) 2010; 24
(24_42806690) 2011; 68
Meinzer (34_22948273) 2006; 29
Bucci (8_34486958) 2009; 160
TYREE (58_21301428) 1981; 32
(27_42806691) 2007; 243
(31_33155767) 1990; 13
Zhang (67_35208358) 2009; 32
(28_42806692) 2002; 161
Scholz (52_27936569) 2007; 30
Reich (46_19135376) 1997; 94
(9_32639327) 2008; 28
(55_42806696) 2004; 92
(41_41130524) 2010; 24
Chen (10_35015546) 2009; 230
(13_35345479) 2009; 151
(6_28383365) 2003; 26
Choat (12_29218671) 2007; 175
Sack (50_17282924) 2002; 53
Pittermann (40_22477828) 2006; 29
(14_24467364) 1999; 6
(20_42806689) 2006; 33
(25_40248621) 2011; 31
Preston (44_22113519) 2006; 170
(68_24588056) 1981; 59
GAUDREAULT (53_21308826) 1985; 36
(4_17763281) 2003; 132
(17_19155009) 2005; 3
(54_28626891) 1994; 17
(49_42806695) 2006; 57
(5_28383364) 2004; 27
(2_32420098) 1999; 19
(36_24754566) 2001; 44
(47_24465222) 1999; 80
Woodruff (65_28302813) 2007; 30
References_xml – volume: 55
  start-page: 585
  issn: 0067-1924
  year: 2007
  ident: 42_40333163
  publication-title: Australian Journal of Botany
  doi: 10.1071/BT06026
– volume: 59
  start-page: 1882
  year: 1981
  ident: 68_24588056
  publication-title: CANADIAN JOURNAL OF BOTANY
  doi: 10.1139/b81-248
– volume: 160
  start-page: 631
  issn: 1432-1939
  issue: 4
  year: 2009
  ident: 8_34486958
  doi: 10.1007/s00442-009-1331-z
– volume: 3
  start-page: 1
  issn: 1544-9173
  issue: 4
  year: 2005
  ident: 17_19155009
  publication-title: PLoS biology
  doi: 10.1371/journal.pbio.0030001
– volume: 30
  start-page: 236
  issn: 1365-3040
  issue: 2
  year: 2007
  ident: 52_27936569
  publication-title: Plant, Cell, and Environment (Print)
  doi: 10.1111/j.1365-3040.2006.01623.x
– volume: 31
  start-page: 1175
  issn: 0829-318X
  issue: 11
  year: 2011
  ident: 64_40969689
  publication-title: Tree Physiology
  doi: 10.1093/treephys/tpr101
– volume: 151
  start-page: 949
  issn: 0032-0889
  issue: 2
  year: 2009
  ident: 13_35345479
  publication-title: Plant Physiology
  doi: 10.1104/pp.109.138305
– volume: 80
  start-page: 1955
  issn: 0012-9658
  year: 1999
  ident: 47_24465222
  publication-title: Ecology
  doi: 10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2
– volume: 32
  start-page: 643
  issn: 0022-0957
  issue: 3
  year: 1981
  ident: 58_21301428
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/32.3.643
– volume: 29
  start-page: 765
  issn: 0829-318X
  issue: 6
  year: 2009
  ident: 3_34460535
  publication-title: Tree Physiology
  doi: 10.1093/treephys/tpp018
– volume: 92
  start-page: 954
  issn: 1365-2745
  year: 2004
  ident: 55_42806696
  doi: 10.1111/j.1365-2745.2004.00941.x
– volume: 26
  start-page: 1147
  issn: 1365-3040
  year: 2003
  ident: 33_28383369
  publication-title: Plant, Cell, and Environment (Print)
  doi: 10.1046/j.1365-3040.2003.01039.x
– volume: 24
  start-page: 70
  year: 2010
  ident: 41_41130524
  publication-title: FUNCT ECOL
  doi: 10.1111/j.1365-2435.2009.01613.x
– volume: 28
  start-page: 85
  issn: 0829-318X
  issue: 1
  year: 2008
  ident: 9_32639327
  publication-title: Tree Physiology
  doi: 10.1093/treephys/28.1.85
– volume: 68
  start-page: 155
  year: 2011
  ident: 24_42806690
  publication-title: GAYANA BOT
  doi: 10.4067/S0717-66432011000200005
– volume: 44
  start-page: 239
  year: 2001
  ident: 36_24754566
  publication-title: BIOL PLANT
  doi: 10.1023/A:1010251425995
– volume: 57
  start-page: 361
  year: 2006
  ident: 49_42806695
  publication-title: PLANT BIOL
  doi: 10.1146/annurev.arplant.56.032604.144141
– volume: 36
  start-page: 590
  issn: 0022-0957
  issue: 4
  year: 1985
  ident: 53_21308826
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/36.4.590
– volume: 94
  start-page: 13730
  issn: 0027-8424
  issue: 25
  year: 1997
  ident: 46_19135376
  publication-title: PNAS
  doi: 10.1073/pnas.94.25.13730
– volume: 24
  start-page: 443
  year: 2010
  ident: 61_42806697
  publication-title: TREES
  doi: 10.1007/s00468-010-0412-2
– volume: 31
  start-page: 659
  issn: 0829-318X
  issue: 6
  year: 2011
  ident: 25_40248621
  publication-title: Tree Physiology
  doi: 10.1093/treephys/tpr050
– volume: 26
  start-page: 163
  issn: 1365-3040
  year: 2003
  ident: 35_28407170
  publication-title: Plant, Cell, and Environment (Print)
  doi: 10.1046/j.1365-3040.2003.00991.x
– volume: 175
  start-page: 686
  issn: 1469-8137
  issue: 4
  year: 2007
  ident: 12_29218671
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2007.02137.x
– volume: 23
  start-page: 907
  issn: 0829-318X
  issue: 13
  year: 2003
  ident: 39_32756990
  publication-title: Tree Physiology
  doi: 10.1093/treephys/23.13.907
– volume: 26
  start-page: 1633
  issn: 1365-3040
  year: 2003
  ident: 6_28383365
  publication-title: Plant, Cell, and Environment (Print)
  doi: 10.1046/j.0140-7791.2003.01082.x
– volume: 88
  start-page: 574
  issn: 0032-0889
  issue: 3
  year: 1988
  ident: 59_21382222
  publication-title: Plant Physiology
  doi: 10.1104/pp.88.3.574
– volume: 19
  start-page: 445
  issn: 0829-318X
  issue: 7
  year: 1999
  ident: 2_32420098
  publication-title: Tree Physiology
  doi: 10.1093/treephys/19.7.445
– volume: 101
  start-page: 514
  issn: 1432-1939
  year: 1995
  ident: 32_35380004
  doi: 10.1007/BF00329432
– volume: 30
  start-page: 876
  issn: 0829-318X
  issue: 7
  year: 2010
  ident: 11_37382326
  publication-title: Tree Physiology
  doi: 10.1093/treephys/tpq043
– volume: 2
  start-page: 173
  year: 1985
  ident: 62_42806698
  publication-title: ADV SOIL SCI
  doi: 10.1007/978-1-4612-5088-3_4
– volume: 21
  start-page: 251
  year: 2011
  ident: 43_42806693
  publication-title: ECOL AUSTRAL
– volume: 140
  start-page: 543
  issn: 1432-1939
  year: 2004
  ident: 51_35336734
  doi: 10.1007/s00442-004-1624-1
– volume: 132
  start-page: 2166
  issn: 0032-0889
  issue: 4
  year: 2003
  ident: 4_17763281
  publication-title: Plant Physiology
  doi: 10.1104/pp.103.023879
– volume: 91
  start-page: 386
  issn: 0002-9122
  issue: 3
  year: 2004
  ident: 18_20231900
  publication-title: American Journal of Botany
  doi: 10.3732/ajb.91.3.386
– volume: 6
  start-page: 180
  year: 1999
  ident: 14_24467364
  publication-title: ECOSCIENCE
  doi: 10.1080/11956860.1999.11682519
– volume: 24
  start-page: 113
  issn: 1365-3040
  year: 2001
  ident: 22_28628015
  publication-title: Plant, Cell, and Environment (Print)
  doi: 10.1046/j.1365-3040.2001.00660.x
– volume: 428
  start-page: 821
  issn: 1476-4687
  issue: 6985
  year: 2004
  ident: 66_18150535
  publication-title: Nature; Physical Science (London)
  doi: 10.1038/nature02403
– volume: 23
  start-page: 267
  issn: 0022-0957
  issue: 1
  year: 1972
  ident: 57_21473873
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/23.1.267
– volume: 53
  start-page: 2177
  issn: 0022-0957
  issue: 378
  year: 2002
  ident: 50_17282924
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erf069
– volume: 230
  start-page: 459
  issn: 1432-2048
  issue: 3
  year: 2009
  ident: 10_35015546
  doi: 10.1007/s00425-009-0959-6
– volume: 184
  start-page: 353
  issn: 1469-8137
  issue: 2
  year: 2009
  ident: 29_35450802
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2009.02954.x
– volume: 243
  start-page: 274
  year: 2007
  ident: 27_42806691
  publication-title: FOR ECOL MANAG
  doi: 10.1016/j.foreco.2007.03.034
– volume: 161
  start-page: 247
  year: 2002
  ident: 28_42806692
  publication-title: FOR ECOL MANAG
  doi: 10.1016/S0378-1127(01)00495-9
– volume: 13
  start-page: 383
  issn: 1365-3040
  year: 1990
  ident: 31_33155767
  publication-title: Plant, Cell, and Environment (Print)
  doi: 10.1111/j.1365-3040.1990.tb02142.x
– volume: 27
  start-page: 820
  issn: 1365-3040
  year: 2004
  ident: 5_28383364
  publication-title: Plant, Cell, and Environment (Print)
  doi: 10.1111/j.1365-3040.2004.01188.x
– volume: 134
  start-page: 1
  issn: 1432-1939
  year: 2003
  ident: 30_35032310
  doi: 10.1007/s00442-002-1088-0
– volume: 32
  start-page: 1456
  issn: 1365-3040
  issue: 10
  year: 2009
  ident: 67_35208358
  publication-title: Plant, Cell, and Environment (Print)
  doi: 10.1111/j.1365-3040.2009.02012.x
– volume: 155
  start-page: 405
  issn: 1432-1939
  year: 2008
  ident: 19_35051009
  doi: 10.1007/s00442-007-0918-5
– volume: 24
  start-page: 891
  issn: 0829-318X
  issue: 8
  year: 2004
  ident: 7_32708583
  publication-title: Tree Physiology
  doi: 10.1093/treephys/24.8.891
– volume: 50
  start-page: 1025
  issn: 0040-0262
  issue: 4
  year: 2001
  ident: 56_2603694
  publication-title: Taxon
  doi: 10.2307/1224719
– volume: 29
  start-page: 105
  issn: 1365-3040
  issue: 1
  year: 2006
  ident: 34_22948273
  publication-title: Plant, Cell, and Environment (Print)
  doi: 10.1111/j.1365-3040.2005.01404.x
– volume: 29
  start-page: 1618
  issn: 1365-3040
  issue: 8
  year: 2006
  ident: 40_22477828
  publication-title: Plant, Cell, and Environment (Print)
  doi: 10.1111/j.1365-3040.2006.01539.x
– volume: 170
  start-page: 807
  issn: 1469-8137
  issue: 4
  year: 2006
  ident: 44_22113519
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2006.01712.x
– volume: 55
  start-page: 101
  year: 2009
  ident: 38_42359197
  publication-title: J FOR SCI
  doi: 10.17221/66/2008-JFS
– volume: 30
  start-page: 559
  issn: 1365-3040
  issue: 5
  year: 2007
  ident: 65_28302813
  publication-title: Plant, Cell, and Environment (Print)
  doi: 10.1111/j.1365-3040.2007.01652.x
– volume: 33
  start-page: 1006
  issn: 1365-2699
  year: 2006
  ident: 20_42806689
– volume: 17
  start-page: 1233
  issn: 1365-3040
  year: 1994
  ident: 54_28626891
  publication-title: Plant, Cell, and Environment (Print)
  doi: 10.1111/j.1365-3040.1994.tb02021.x
– volume: 15
  start-page: 14
  year: 2000
  ident: 37_36933756
  publication-title: TREES
  doi: 10.1007/s004680000071
– volume: 37
  start-page: 1962
  issn: 1365-2699
  year: 2010
  ident: 45_42806694
  doi: 10.1111/j.1365-2699.2010.02346.x
– volume: 31
  start-page: 659
  issn: 1365-3040
  year: 2011
  ident: 1_42806688
  publication-title: Plant, Cell, and Environment (Print)
SSID ssj0015889
Score 2.3708444
Snippet Hydraulic traits were studied for six Nothofagus species from South America (Argentina and Chile), and for three of these species two populations were studied....
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 880
SubjectTerms Altitude
Biological Transport
Humidity
Magnoliopsida - physiology
Plant Leaves - physiology
Plant Stems - physiology
Rain
Soil
South America
Species Specificity
Temperature
Water - metabolism
Wood - physiology
Title Hydraulic differences along the water transport system of South American Nothofagus species: do leaves protect the stem functionality?
URI https://www.ncbi.nlm.nih.gov/pubmed/22684354
https://www.proquest.com/docview/1026865116
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKQIgXBANG-Scj8YBUJUti5x8viAGjGzAh0Ul9i-zEQUhTM7WJ0PgAfBw-I3d27LRApcFLlLrpRen9cvb57n5HyLMkrkXIZOIxxmuPx3XsCSWEFzGlEjCHkkmsHf54kkxP-fE8no9GP9eylrpW-uX3v9aV_I9WYQz0ilWy_6BZJxQG4Bz0C0fQMBwvpePpRbUUHdJU2z4nmF8lzpq-BOqbQArE1vKX97TNpk6lWw_XnIC-mlp86VYTLL38ahLlqgabSiAtbc_moIVqETgdml1E7CqwmRw4Wypldkw2tuwPurLUqQOf_cmxPwSAwPzqTexDf_LODWNIRCxsYOiTPzlyX4EVak0Owgd_fc8iHPJbnWmLcqzbnptZyJhe8Fw8cE7zdds87H12NqPYGNrM9H-yc7bpsvjHdGCosjC8j0-Np-erwJBWb1Jv_zYlukRFE6JnhRVRGAFXyNUI3BLsmPHm6L2LWsWZbrnons5SSeVs3wrYNwI2V0FbXBu9xJndIjd734S-MkC7TUZqsUuuHTTgP1zskuvYxRVbA94hPxzw6BrwqAYeBYxQDTzqgEcN8GhTUw08aoFHB-DRHngvaNVQAzvaw06L1AI2YPfyLjk9fDt7PfX6hh5eyQPeejKNJHgcuUhCAX4Jk4rnIXyqkFQulGWQ1jhJqCQvlcwUD4Na8ChUshJBXYqK3SM7i2ah7hMayDSQAS9lnAZcxHGWpEyEVZ3VZZgFqRoT3_7BRdmz3WPTlbNii0rH5Ln7wbkhetl-6VOrsQKMMUbY4I1ouhVcHSVZAj5MMiZ7RpVOWIS8SizmDy5_o4fkxvD2PCI77bJTj2EN3MonGni_AD8EvYY
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydraulic+differences+along+the+water+transport+system+of+South+American+Nothofagus+species%3A+do+leaves+protect+the+stem+functionality%3F&rft.jtitle=Tree+physiology&rft.au=Bucci%2C+S.+J.&rft.au=Scholz%2C+F.+G.&rft.au=Campanello%2C+P.+I.&rft.au=Montti%2C+L.&rft.date=2012-07-01&rft.issn=0829-318X&rft.eissn=1758-4469&rft.volume=32&rft.issue=7&rft.spage=880&rft.epage=893&rft_id=info:doi/10.1093%2Ftreephys%2Ftps054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_treephys_tps054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0829-318X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0829-318X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0829-318X&client=summon