Hydraulic differences along the water transport system of South American Nothofagus species: do leaves protect the stem functionality?
Hydraulic traits were studied for six Nothofagus species from South America (Argentina and Chile), and for three of these species two populations were studied. The main goal was to determine if properties of the water conductive pathway in stems and leaves are functionally coordinated and to assess...
Saved in:
Published in | Tree physiology Vol. 32; no. 7; pp. 880 - 893 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Canada
01.07.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydraulic traits were studied for six Nothofagus species from South America (Argentina and Chile), and for three of these species two populations were studied. The main goal was to determine if properties of the water conductive pathway in stems and leaves are functionally coordinated and to assess if leaves are more vulnerable to cavitation than stems, consistent with the theory of hydraulic segmentation along the vascular system of trees in ecosystems subject to seasonal drought. Vulnerability to cavitation, hydraulic conductivity of stems and leaves, leaf water potential, wood density and leaf water relations were examined. Large variations in vulnerability to cavitation of stems and leaves were observed across populations and species, but leaves were consistently more vulnerable than stems. Water potential at 50% loss of maximum hydraulic efficiency (P(50)) ranged from -0.94 to -2.44 MPa in leaves and from -2.6 to -5.3 MPa in stems across species and populations. Populations in the driest sites had sapwood and leaves more vulnerable to cavitation than those grown in the wettest sites. Stronger diurnal down-regulation in leaf hydraulic conductance compared with stem hydraulic conductivity apparently has the function to slow down potential water loss in stems and protect stem hydraulics from cavitation. Species-specific differences in wood density and leaf hydraulic conductance (K(Leaf)) were observed. Both traits were functionally related: species with higher wood density had lower K(Leaf). Other stem and leaf hydraulic traits were functionally coordinated, resulting in Nothofagus species with an efficient delivery of water to the leaves. The integrity of the more expensive woody portion of the water transport pathway can thus be maintained at the expense of the replaceable portion (leaves) of the stem-leaf continuum under prolonged drought. Compensatory adjustments between hydraulic traits may help to decrease the rate of embolism formation in the trees more vulnerable to cavitation. |
---|---|
AbstractList | Hydraulic traits were studied for six Nothofagus species from South America (Argentina and Chile), and for three of these species two populations were studied. The main goal was to determine if properties of the water conductive pathway in stems and leaves are functionally coordinated and to assess if leaves are more vulnerable to cavitation than stems, consistent with the theory of hydraulic segmentation along the vascular system of trees in ecosystems subject to seasonal drought. Vulnerability to cavitation, hydraulic conductivity of stems and leaves, leaf water potential, wood density and leaf water relations were examined. Large variations in vulnerability to cavitation of stems and leaves were observed across populations and species, but leaves were consistently more vulnerable than stems. Water potential at 50% loss of maximum hydraulic efficiency (P(50)) ranged from -0.94 to -2.44 MPa in leaves and from -2.6 to -5.3 MPa in stems across species and populations. Populations in the driest sites had sapwood and leaves more vulnerable to cavitation than those grown in the wettest sites. Stronger diurnal down-regulation in leaf hydraulic conductance compared with stem hydraulic conductivity apparently has the function to slow down potential water loss in stems and protect stem hydraulics from cavitation. Species-specific differences in wood density and leaf hydraulic conductance (K(Leaf)) were observed. Both traits were functionally related: species with higher wood density had lower K(Leaf). Other stem and leaf hydraulic traits were functionally coordinated, resulting in Nothofagus species with an efficient delivery of water to the leaves. The integrity of the more expensive woody portion of the water transport pathway can thus be maintained at the expense of the replaceable portion (leaves) of the stem-leaf continuum under prolonged drought. Compensatory adjustments between hydraulic traits may help to decrease the rate of embolism formation in the trees more vulnerable to cavitation. Hydraulic traits were studied for six Nothofagus species from South America (Argentina and Chile), and for three of these species two populations were studied. The main goal was to determine if properties of the water conductive pathway in stems and leaves are functionally coordinated and to assess if leaves are more vulnerable to cavitation than stems, consistent with the theory of hydraulic segmentation along the vascular system of trees in ecosystems subject to seasonal drought. Vulnerability to cavitation, hydraulic conductivity of stems and leaves, leaf water potential, wood density and leaf water relations were examined. Large variations in vulnerability to cavitation of stems and leaves were observed across populations and species, but leaves were consistently more vulnerable than stems. Water potential at 50% loss of maximum hydraulic efficiency (P(50)) ranged from -0.94 to -2.44 MPa in leaves and from -2.6 to -5.3 MPa in stems across species and populations. Populations in the driest sites had sapwood and leaves more vulnerable to cavitation than those grown in the wettest sites. Stronger diurnal down-regulation in leaf hydraulic conductance compared with stem hydraulic conductivity apparently has the function to slow down potential water loss in stems and protect stem hydraulics from cavitation. Species-specific differences in wood density and leaf hydraulic conductance (K(Leaf)) were observed. Both traits were functionally related: species with higher wood density had lower K(Leaf). Other stem and leaf hydraulic traits were functionally coordinated, resulting in Nothofagus species with an efficient delivery of water to the leaves. The integrity of the more expensive woody portion of the water transport pathway can thus be maintained at the expense of the replaceable portion (leaves) of the stem-leaf continuum under prolonged drought. Compensatory adjustments between hydraulic traits may help to decrease the rate of embolism formation in the trees more vulnerable to cavitation.Hydraulic traits were studied for six Nothofagus species from South America (Argentina and Chile), and for three of these species two populations were studied. The main goal was to determine if properties of the water conductive pathway in stems and leaves are functionally coordinated and to assess if leaves are more vulnerable to cavitation than stems, consistent with the theory of hydraulic segmentation along the vascular system of trees in ecosystems subject to seasonal drought. Vulnerability to cavitation, hydraulic conductivity of stems and leaves, leaf water potential, wood density and leaf water relations were examined. Large variations in vulnerability to cavitation of stems and leaves were observed across populations and species, but leaves were consistently more vulnerable than stems. Water potential at 50% loss of maximum hydraulic efficiency (P(50)) ranged from -0.94 to -2.44 MPa in leaves and from -2.6 to -5.3 MPa in stems across species and populations. Populations in the driest sites had sapwood and leaves more vulnerable to cavitation than those grown in the wettest sites. Stronger diurnal down-regulation in leaf hydraulic conductance compared with stem hydraulic conductivity apparently has the function to slow down potential water loss in stems and protect stem hydraulics from cavitation. Species-specific differences in wood density and leaf hydraulic conductance (K(Leaf)) were observed. Both traits were functionally related: species with higher wood density had lower K(Leaf). Other stem and leaf hydraulic traits were functionally coordinated, resulting in Nothofagus species with an efficient delivery of water to the leaves. The integrity of the more expensive woody portion of the water transport pathway can thus be maintained at the expense of the replaceable portion (leaves) of the stem-leaf continuum under prolonged drought. Compensatory adjustments between hydraulic traits may help to decrease the rate of embolism formation in the trees more vulnerable to cavitation. |
Author | Bucci, S. J. Guerra, P. Manna, L. L. Troncoso, O. Goldstein, G. Campanello, P. I. Holbrook, M. N. Montti, L. Jimenez-Castillo, M. Scholz, F. G. Bernal, P. L. Enricci, J. Rockwell, F. A. |
Author_xml | – sequence: 1 givenname: S. J. surname: Bucci fullname: Bucci, S. J. – sequence: 2 givenname: F. G. surname: Scholz fullname: Scholz, F. G. – sequence: 3 givenname: P. I. surname: Campanello fullname: Campanello, P. I. – sequence: 4 givenname: L. surname: Montti fullname: Montti, L. – sequence: 5 givenname: M. surname: Jimenez-Castillo fullname: Jimenez-Castillo, M. – sequence: 6 givenname: F. A. surname: Rockwell fullname: Rockwell, F. A. – sequence: 7 givenname: L. L. surname: Manna fullname: Manna, L. L. – sequence: 8 givenname: P. surname: Guerra fullname: Guerra, P. – sequence: 9 givenname: P. L. surname: Bernal fullname: Bernal, P. L. – sequence: 10 givenname: O. surname: Troncoso fullname: Troncoso, O. – sequence: 11 givenname: J. surname: Enricci fullname: Enricci, J. – sequence: 12 givenname: M. N. surname: Holbrook fullname: Holbrook, M. N. – sequence: 13 givenname: G. surname: Goldstein fullname: Goldstein, G. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22684354$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUFv1DAQhS1URLeFMzfkI5d07cTJxlxQVUGLVMEBkLhFE2fcNUrs4HGK8gf43bjd7gWJ02ik9z7NvHfGTnzwyNhrKS6k0NU2RcR5v9I2zSRq9Yxt5K5uC6UafcI2oi11Ucn2xyk7I_ophKzbVr9gp2XZtKqq1Yb9uVmHCMvoDB-ctRjRGyQOY_B3PO2R_4aEkacInuYQE6eVEk48WP41LGnPLyeMzoDnn0PaBwt3C3Ga0Tikd3wIfES4z8A5hoQmPSIfAXbxJrngYXRpff-SPbcwEr56mufs-8cP365uitsv15-uLm8Lo4RKRb8re1lpDY0ErWXVo9Iyb0Otdq3sjdhZIWqJjTbYt6iksKBKif0AwhoYqnP29sDN9_xakFI3OTI4juAxLNRJkZNpaimbLH3zJF36CYdujm6CuHbH7LKgPghMDEQRbWdcgoefclpuzKzuoaPu2FF36Cj7tv_4juj_Of4Cw-GcTA |
CitedBy_id | crossref_primary_10_1111_nph_15048 crossref_primary_10_1007_s00468_018_1795_8 crossref_primary_10_1093_treephys_tpac113 crossref_primary_10_1093_jxb_erac451 crossref_primary_10_1111_nph_19000 crossref_primary_10_1016_j_foreco_2021_119676 crossref_primary_10_1093_treephys_tpy013 crossref_primary_10_1111_pce_15249 crossref_primary_10_1007_s40725_019_00109_z crossref_primary_10_1093_treephys_tpv061 crossref_primary_10_1086_706188 crossref_primary_10_1111_1365_2745_12211 crossref_primary_10_1063_1_4964327 crossref_primary_10_1093_treephys_tpt042 crossref_primary_10_1016_j_foreco_2023_121039 crossref_primary_10_1111_nph_12850 crossref_primary_10_3389_fpls_2022_902509 crossref_primary_10_1007_s13595_018_0768_9 crossref_primary_10_1093_treephys_tpv102 crossref_primary_10_3390_plants10122604 crossref_primary_10_1111_1365_2435_12246 crossref_primary_10_1016_j_envexpbot_2013_09_018 crossref_primary_10_1016_j_foreco_2019_06_021 crossref_primary_10_1016_j_indcrop_2017_12_066 crossref_primary_10_1071_BT13015 crossref_primary_10_1111_nph_13979 crossref_primary_10_1111_pce_13512 crossref_primary_10_1111_pce_12225 crossref_primary_10_1016_j_agrformet_2025_110495 crossref_primary_10_1016_j_scitotenv_2022_159334 crossref_primary_10_1071_FP16097 crossref_primary_10_1007_s00468_014_1050_x crossref_primary_10_1093_treephys_tpt098 crossref_primary_10_1111_pce_12581 crossref_primary_10_1016_j_foreco_2024_122190 crossref_primary_10_1111_ppl_14132 crossref_primary_10_1071_FP13302 crossref_primary_10_1080_02827581_2019_1674917 crossref_primary_10_1093_jpe_rtx011 crossref_primary_10_1093_treephys_tpu101 crossref_primary_10_1111_1440_1703_12008 crossref_primary_10_1111_nph_16723 crossref_primary_10_1016_j_plaphy_2023_107658 crossref_primary_10_1071_FP15324 crossref_primary_10_1093_treephys_tpw048 crossref_primary_10_1093_jxb_eru380 crossref_primary_10_1093_treephys_tpv039 crossref_primary_10_1111_nph_14450 crossref_primary_10_1093_treephys_tpad108 crossref_primary_10_1139_cjb_2020_0155 crossref_primary_10_3390_f10060489 crossref_primary_10_1111_nph_14256 crossref_primary_10_1016_j_foreco_2020_117997 crossref_primary_10_1111_pce_14649 crossref_primary_10_1016_j_foreco_2018_08_027 crossref_primary_10_1016_j_jtbi_2020_110318 crossref_primary_10_1093_treephys_tpw098 crossref_primary_10_1093_treephys_tpw131 crossref_primary_10_1093_treephys_tpy111 crossref_primary_10_3389_fpls_2016_02075 crossref_primary_10_1007_s11056_021_09843_4 crossref_primary_10_1071_FP14201 crossref_primary_10_3389_fpls_2024_1516824 crossref_primary_10_1111_ppl_13617 crossref_primary_10_1093_treephys_tpy032 crossref_primary_10_1016_j_agrformet_2021_108670 crossref_primary_10_3390_f15081355 crossref_primary_10_1111_nph_13246 crossref_primary_10_1007_s11258_018_0845_z crossref_primary_10_1073_pnas_1604088113 crossref_primary_10_1111_1365_2435_12656 crossref_primary_10_1016_j_envexpbot_2015_03_006 crossref_primary_10_1080_17550874_2016_1212288 crossref_primary_10_1016_j_sajb_2015_07_018 crossref_primary_10_1093_plphys_kiac034 crossref_primary_10_1007_s00468_016_1408_3 crossref_primary_10_1111_nph_15135 crossref_primary_10_1016_j_foreco_2020_117943 crossref_primary_10_1007_s10342_021_01389_6 crossref_primary_10_1016_j_foreco_2019_117796 crossref_primary_10_1093_treephys_tpz058 crossref_primary_10_1007_s11284_016_1396_1 crossref_primary_10_1007_s12374_022_09361_6 crossref_primary_10_1111_pce_12126 crossref_primary_10_1007_s00468_013_0935_4 crossref_primary_10_1111_1442_1984_12047 crossref_primary_10_1093_treephys_tpu087 crossref_primary_10_3390_f11030349 crossref_primary_10_1016_j_palaeo_2023_111474 crossref_primary_10_1016_j_scitotenv_2023_164762 crossref_primary_10_1111_nph_16941 crossref_primary_10_1111_1365_2435_70017 crossref_primary_10_1007_s10457_017_0167_5 crossref_primary_10_1016_j_foreco_2020_118719 crossref_primary_10_1080_17550874_2018_1507056 crossref_primary_10_1016_j_jplph_2017_09_006 |
Cites_doi | 10.1071/BT06026 10.1139/b81-248 10.1007/s00442-009-1331-z 10.1371/journal.pbio.0030001 10.1111/j.1365-3040.2006.01623.x 10.1093/treephys/tpr101 10.1104/pp.109.138305 10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2 10.1093/jxb/32.3.643 10.1093/treephys/tpp018 10.1111/j.1365-2745.2004.00941.x 10.1046/j.1365-3040.2003.01039.x 10.1111/j.1365-2435.2009.01613.x 10.1093/treephys/28.1.85 10.4067/S0717-66432011000200005 10.1023/A:1010251425995 10.1146/annurev.arplant.56.032604.144141 10.1093/jxb/36.4.590 10.1073/pnas.94.25.13730 10.1007/s00468-010-0412-2 10.1093/treephys/tpr050 10.1046/j.1365-3040.2003.00991.x 10.1111/j.1469-8137.2007.02137.x 10.1093/treephys/23.13.907 10.1046/j.0140-7791.2003.01082.x 10.1104/pp.88.3.574 10.1093/treephys/19.7.445 10.1007/BF00329432 10.1093/treephys/tpq043 10.1007/978-1-4612-5088-3_4 10.1007/s00442-004-1624-1 10.1104/pp.103.023879 10.3732/ajb.91.3.386 10.1080/11956860.1999.11682519 10.1046/j.1365-3040.2001.00660.x 10.1038/nature02403 10.1093/jxb/23.1.267 10.1093/jxb/erf069 10.1007/s00425-009-0959-6 10.1111/j.1469-8137.2009.02954.x 10.1016/j.foreco.2007.03.034 10.1016/S0378-1127(01)00495-9 10.1111/j.1365-3040.1990.tb02142.x 10.1111/j.1365-3040.2004.01188.x 10.1007/s00442-002-1088-0 10.1111/j.1365-3040.2009.02012.x 10.1007/s00442-007-0918-5 10.1093/treephys/24.8.891 10.2307/1224719 10.1111/j.1365-3040.2005.01404.x 10.1111/j.1365-3040.2006.01539.x 10.1111/j.1469-8137.2006.01712.x 10.17221/66/2008-JFS 10.1111/j.1365-3040.2007.01652.x 10.1111/j.1365-3040.1994.tb02021.x 10.1007/s004680000071 10.1111/j.1365-2699.2010.02346.x |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/treephys/tps054 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry Botany |
EISSN | 1758-4469 |
EndPage | 893 |
ExternalDocumentID | 22684354 10_1093_treephys_tps054 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .2P .I3 0R~ 123 1TH 4.4 48X 53G 5VS 5WD 70D AAHBH AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAVAP AAVLN AAYXX ABDBF ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABMNT ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABXZS ABZBJ ACGFS ACUFI ACUHS ACUTJ ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AGINJ AGKEF AGORE AGQXC AGSYK AHXPO AIJHB AJBYB AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC C45 CDBKE CITATION CZ4 DAKXR DIK DILTD D~K E3Z EBD EBS EDH EE~ EJD EMOBN ESX F5P F9B FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KBUDW KOP KSI KSN N9A NGC NLBLG NOMLY NU- NVLIB O0~ O9- OAWHX OBOKY ODMLO OJQWA OJZSN OVD OWPYF O~Y PAFKI PEELM Q1. Q5Y RD5 ROX ROZ RSU RUSNO RW1 RXO SJN SV3 TEORI TLC TR2 TUS W8F X7H Y6R YAYTL YKOAZ YXANX ~91 ~KM AAUQX AAWDT ABIME ABPIB ABSMQ ABZEO ACFRR ACVCV ACZBC AFYAG AGKRT AGMDO AHGBF AJDVS ANFBD APJGH AQDSO ASAOO ATDFG CGR CUY CVF CXTWN DFGAJ ECM EIF ELUNK MBTAY NPM TCN WHG ZY4 7X8 |
ID | FETCH-LOGICAL-c404t-b72b1399a61a9913be4919a6d54781bc07f0051e69ceb8e410fa421ebda0fcad3 |
ISSN | 0829-318X 1758-4469 |
IngestDate | Fri Jul 11 09:15:07 EDT 2025 Mon Jul 21 06:00:58 EDT 2025 Tue Jul 01 03:58:38 EDT 2025 Thu Apr 24 23:12:32 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c404t-b72b1399a61a9913be4919a6d54781bc07f0051e69ceb8e410fa421ebda0fcad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/treephys/article-pdf/32/7/880/4635731/tps054.pdf |
PMID | 22684354 |
PQID | 1026865116 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1026865116 pubmed_primary_22684354 crossref_citationtrail_10_1093_treephys_tps054 crossref_primary_10_1093_treephys_tps054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-07-01 |
PublicationDateYYYYMMDD | 2012-07-01 |
PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Canada |
PublicationPlace_xml | – name: Canada |
PublicationTitle | Tree physiology |
PublicationTitleAlternate | Tree Physiol |
PublicationYear | 2012 |
References | (33_28383369) 2003; 26 (38_42359197) 2009; 55 (7_32708583) 2004; 24 (39_32756990) 2003; 23 (32_35380004) 1995; 101 Tyree (59_21382222) 1988; 88 (22_28628015) 2001; 24 Wright (66_18150535) 2004; 428 Martinez-Vilalta (29_35450802) 2009; 184 (45_42806694) 2010; 37 (11_37382326) 2010; 30 (43_42806693) 2011; 21 (19_35051009) 2008; 155 (1_42806688) 2011; 31 Hacke (18_20231900) 2004; 91 (42_40333163) 2007; 55 (30_35032310) 2003; 134 (64_40969689) 2011; 31 (56_2603694) 2001; 50 TYREE (57_21473873) 1972; 23 (51_35336734) 2004; 140 (35_28407170) 2003; 26 (37_36933756) 2000; 15 (62_42806698) 1985; 2 (3_34460535) 2009; 29 (61_42806697) 2010; 24 (24_42806690) 2011; 68 Meinzer (34_22948273) 2006; 29 Bucci (8_34486958) 2009; 160 TYREE (58_21301428) 1981; 32 (27_42806691) 2007; 243 (31_33155767) 1990; 13 Zhang (67_35208358) 2009; 32 (28_42806692) 2002; 161 Scholz (52_27936569) 2007; 30 Reich (46_19135376) 1997; 94 (9_32639327) 2008; 28 (55_42806696) 2004; 92 (41_41130524) 2010; 24 Chen (10_35015546) 2009; 230 (13_35345479) 2009; 151 (6_28383365) 2003; 26 Choat (12_29218671) 2007; 175 Sack (50_17282924) 2002; 53 Pittermann (40_22477828) 2006; 29 (14_24467364) 1999; 6 (20_42806689) 2006; 33 (25_40248621) 2011; 31 Preston (44_22113519) 2006; 170 (68_24588056) 1981; 59 GAUDREAULT (53_21308826) 1985; 36 (4_17763281) 2003; 132 (17_19155009) 2005; 3 (54_28626891) 1994; 17 (49_42806695) 2006; 57 (5_28383364) 2004; 27 (2_32420098) 1999; 19 (36_24754566) 2001; 44 (47_24465222) 1999; 80 Woodruff (65_28302813) 2007; 30 |
References_xml | – volume: 55 start-page: 585 issn: 0067-1924 year: 2007 ident: 42_40333163 publication-title: Australian Journal of Botany doi: 10.1071/BT06026 – volume: 59 start-page: 1882 year: 1981 ident: 68_24588056 publication-title: CANADIAN JOURNAL OF BOTANY doi: 10.1139/b81-248 – volume: 160 start-page: 631 issn: 1432-1939 issue: 4 year: 2009 ident: 8_34486958 doi: 10.1007/s00442-009-1331-z – volume: 3 start-page: 1 issn: 1544-9173 issue: 4 year: 2005 ident: 17_19155009 publication-title: PLoS biology doi: 10.1371/journal.pbio.0030001 – volume: 30 start-page: 236 issn: 1365-3040 issue: 2 year: 2007 ident: 52_27936569 publication-title: Plant, Cell, and Environment (Print) doi: 10.1111/j.1365-3040.2006.01623.x – volume: 31 start-page: 1175 issn: 0829-318X issue: 11 year: 2011 ident: 64_40969689 publication-title: Tree Physiology doi: 10.1093/treephys/tpr101 – volume: 151 start-page: 949 issn: 0032-0889 issue: 2 year: 2009 ident: 13_35345479 publication-title: Plant Physiology doi: 10.1104/pp.109.138305 – volume: 80 start-page: 1955 issn: 0012-9658 year: 1999 ident: 47_24465222 publication-title: Ecology doi: 10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2 – volume: 32 start-page: 643 issn: 0022-0957 issue: 3 year: 1981 ident: 58_21301428 publication-title: Journal of Experimental Botany doi: 10.1093/jxb/32.3.643 – volume: 29 start-page: 765 issn: 0829-318X issue: 6 year: 2009 ident: 3_34460535 publication-title: Tree Physiology doi: 10.1093/treephys/tpp018 – volume: 92 start-page: 954 issn: 1365-2745 year: 2004 ident: 55_42806696 doi: 10.1111/j.1365-2745.2004.00941.x – volume: 26 start-page: 1147 issn: 1365-3040 year: 2003 ident: 33_28383369 publication-title: Plant, Cell, and Environment (Print) doi: 10.1046/j.1365-3040.2003.01039.x – volume: 24 start-page: 70 year: 2010 ident: 41_41130524 publication-title: FUNCT ECOL doi: 10.1111/j.1365-2435.2009.01613.x – volume: 28 start-page: 85 issn: 0829-318X issue: 1 year: 2008 ident: 9_32639327 publication-title: Tree Physiology doi: 10.1093/treephys/28.1.85 – volume: 68 start-page: 155 year: 2011 ident: 24_42806690 publication-title: GAYANA BOT doi: 10.4067/S0717-66432011000200005 – volume: 44 start-page: 239 year: 2001 ident: 36_24754566 publication-title: BIOL PLANT doi: 10.1023/A:1010251425995 – volume: 57 start-page: 361 year: 2006 ident: 49_42806695 publication-title: PLANT BIOL doi: 10.1146/annurev.arplant.56.032604.144141 – volume: 36 start-page: 590 issn: 0022-0957 issue: 4 year: 1985 ident: 53_21308826 publication-title: Journal of Experimental Botany doi: 10.1093/jxb/36.4.590 – volume: 94 start-page: 13730 issn: 0027-8424 issue: 25 year: 1997 ident: 46_19135376 publication-title: PNAS doi: 10.1073/pnas.94.25.13730 – volume: 24 start-page: 443 year: 2010 ident: 61_42806697 publication-title: TREES doi: 10.1007/s00468-010-0412-2 – volume: 31 start-page: 659 issn: 0829-318X issue: 6 year: 2011 ident: 25_40248621 publication-title: Tree Physiology doi: 10.1093/treephys/tpr050 – volume: 26 start-page: 163 issn: 1365-3040 year: 2003 ident: 35_28407170 publication-title: Plant, Cell, and Environment (Print) doi: 10.1046/j.1365-3040.2003.00991.x – volume: 175 start-page: 686 issn: 1469-8137 issue: 4 year: 2007 ident: 12_29218671 publication-title: New Phytologist doi: 10.1111/j.1469-8137.2007.02137.x – volume: 23 start-page: 907 issn: 0829-318X issue: 13 year: 2003 ident: 39_32756990 publication-title: Tree Physiology doi: 10.1093/treephys/23.13.907 – volume: 26 start-page: 1633 issn: 1365-3040 year: 2003 ident: 6_28383365 publication-title: Plant, Cell, and Environment (Print) doi: 10.1046/j.0140-7791.2003.01082.x – volume: 88 start-page: 574 issn: 0032-0889 issue: 3 year: 1988 ident: 59_21382222 publication-title: Plant Physiology doi: 10.1104/pp.88.3.574 – volume: 19 start-page: 445 issn: 0829-318X issue: 7 year: 1999 ident: 2_32420098 publication-title: Tree Physiology doi: 10.1093/treephys/19.7.445 – volume: 101 start-page: 514 issn: 1432-1939 year: 1995 ident: 32_35380004 doi: 10.1007/BF00329432 – volume: 30 start-page: 876 issn: 0829-318X issue: 7 year: 2010 ident: 11_37382326 publication-title: Tree Physiology doi: 10.1093/treephys/tpq043 – volume: 2 start-page: 173 year: 1985 ident: 62_42806698 publication-title: ADV SOIL SCI doi: 10.1007/978-1-4612-5088-3_4 – volume: 21 start-page: 251 year: 2011 ident: 43_42806693 publication-title: ECOL AUSTRAL – volume: 140 start-page: 543 issn: 1432-1939 year: 2004 ident: 51_35336734 doi: 10.1007/s00442-004-1624-1 – volume: 132 start-page: 2166 issn: 0032-0889 issue: 4 year: 2003 ident: 4_17763281 publication-title: Plant Physiology doi: 10.1104/pp.103.023879 – volume: 91 start-page: 386 issn: 0002-9122 issue: 3 year: 2004 ident: 18_20231900 publication-title: American Journal of Botany doi: 10.3732/ajb.91.3.386 – volume: 6 start-page: 180 year: 1999 ident: 14_24467364 publication-title: ECOSCIENCE doi: 10.1080/11956860.1999.11682519 – volume: 24 start-page: 113 issn: 1365-3040 year: 2001 ident: 22_28628015 publication-title: Plant, Cell, and Environment (Print) doi: 10.1046/j.1365-3040.2001.00660.x – volume: 428 start-page: 821 issn: 1476-4687 issue: 6985 year: 2004 ident: 66_18150535 publication-title: Nature; Physical Science (London) doi: 10.1038/nature02403 – volume: 23 start-page: 267 issn: 0022-0957 issue: 1 year: 1972 ident: 57_21473873 publication-title: Journal of Experimental Botany doi: 10.1093/jxb/23.1.267 – volume: 53 start-page: 2177 issn: 0022-0957 issue: 378 year: 2002 ident: 50_17282924 publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erf069 – volume: 230 start-page: 459 issn: 1432-2048 issue: 3 year: 2009 ident: 10_35015546 doi: 10.1007/s00425-009-0959-6 – volume: 184 start-page: 353 issn: 1469-8137 issue: 2 year: 2009 ident: 29_35450802 publication-title: New Phytologist doi: 10.1111/j.1469-8137.2009.02954.x – volume: 243 start-page: 274 year: 2007 ident: 27_42806691 publication-title: FOR ECOL MANAG doi: 10.1016/j.foreco.2007.03.034 – volume: 161 start-page: 247 year: 2002 ident: 28_42806692 publication-title: FOR ECOL MANAG doi: 10.1016/S0378-1127(01)00495-9 – volume: 13 start-page: 383 issn: 1365-3040 year: 1990 ident: 31_33155767 publication-title: Plant, Cell, and Environment (Print) doi: 10.1111/j.1365-3040.1990.tb02142.x – volume: 27 start-page: 820 issn: 1365-3040 year: 2004 ident: 5_28383364 publication-title: Plant, Cell, and Environment (Print) doi: 10.1111/j.1365-3040.2004.01188.x – volume: 134 start-page: 1 issn: 1432-1939 year: 2003 ident: 30_35032310 doi: 10.1007/s00442-002-1088-0 – volume: 32 start-page: 1456 issn: 1365-3040 issue: 10 year: 2009 ident: 67_35208358 publication-title: Plant, Cell, and Environment (Print) doi: 10.1111/j.1365-3040.2009.02012.x – volume: 155 start-page: 405 issn: 1432-1939 year: 2008 ident: 19_35051009 doi: 10.1007/s00442-007-0918-5 – volume: 24 start-page: 891 issn: 0829-318X issue: 8 year: 2004 ident: 7_32708583 publication-title: Tree Physiology doi: 10.1093/treephys/24.8.891 – volume: 50 start-page: 1025 issn: 0040-0262 issue: 4 year: 2001 ident: 56_2603694 publication-title: Taxon doi: 10.2307/1224719 – volume: 29 start-page: 105 issn: 1365-3040 issue: 1 year: 2006 ident: 34_22948273 publication-title: Plant, Cell, and Environment (Print) doi: 10.1111/j.1365-3040.2005.01404.x – volume: 29 start-page: 1618 issn: 1365-3040 issue: 8 year: 2006 ident: 40_22477828 publication-title: Plant, Cell, and Environment (Print) doi: 10.1111/j.1365-3040.2006.01539.x – volume: 170 start-page: 807 issn: 1469-8137 issue: 4 year: 2006 ident: 44_22113519 publication-title: New Phytologist doi: 10.1111/j.1469-8137.2006.01712.x – volume: 55 start-page: 101 year: 2009 ident: 38_42359197 publication-title: J FOR SCI doi: 10.17221/66/2008-JFS – volume: 30 start-page: 559 issn: 1365-3040 issue: 5 year: 2007 ident: 65_28302813 publication-title: Plant, Cell, and Environment (Print) doi: 10.1111/j.1365-3040.2007.01652.x – volume: 33 start-page: 1006 issn: 1365-2699 year: 2006 ident: 20_42806689 – volume: 17 start-page: 1233 issn: 1365-3040 year: 1994 ident: 54_28626891 publication-title: Plant, Cell, and Environment (Print) doi: 10.1111/j.1365-3040.1994.tb02021.x – volume: 15 start-page: 14 year: 2000 ident: 37_36933756 publication-title: TREES doi: 10.1007/s004680000071 – volume: 37 start-page: 1962 issn: 1365-2699 year: 2010 ident: 45_42806694 doi: 10.1111/j.1365-2699.2010.02346.x – volume: 31 start-page: 659 issn: 1365-3040 year: 2011 ident: 1_42806688 publication-title: Plant, Cell, and Environment (Print) |
SSID | ssj0015889 |
Score | 2.3708444 |
Snippet | Hydraulic traits were studied for six Nothofagus species from South America (Argentina and Chile), and for three of these species two populations were studied.... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 880 |
SubjectTerms | Altitude Biological Transport Humidity Magnoliopsida - physiology Plant Leaves - physiology Plant Stems - physiology Rain Soil South America Species Specificity Temperature Water - metabolism Wood - physiology |
Title | Hydraulic differences along the water transport system of South American Nothofagus species: do leaves protect the stem functionality? |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22684354 https://www.proquest.com/docview/1026865116 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKQIgXBANG-Scj8YBUJUti5x8viAGjGzAh0Ul9i-zEQUhTM7WJ0PgAfBw-I3d27LRApcFLlLrpRen9cvb57n5HyLMkrkXIZOIxxmuPx3XsCSWEFzGlEjCHkkmsHf54kkxP-fE8no9GP9eylrpW-uX3v9aV_I9WYQz0ilWy_6BZJxQG4Bz0C0fQMBwvpePpRbUUHdJU2z4nmF8lzpq-BOqbQArE1vKX97TNpk6lWw_XnIC-mlp86VYTLL38ahLlqgabSiAtbc_moIVqETgdml1E7CqwmRw4Wypldkw2tuwPurLUqQOf_cmxPwSAwPzqTexDf_LODWNIRCxsYOiTPzlyX4EVak0Owgd_fc8iHPJbnWmLcqzbnptZyJhe8Fw8cE7zdds87H12NqPYGNrM9H-yc7bpsvjHdGCosjC8j0-Np-erwJBWb1Jv_zYlukRFE6JnhRVRGAFXyNUI3BLsmPHm6L2LWsWZbrnons5SSeVs3wrYNwI2V0FbXBu9xJndIjd734S-MkC7TUZqsUuuHTTgP1zskuvYxRVbA94hPxzw6BrwqAYeBYxQDTzqgEcN8GhTUw08aoFHB-DRHngvaNVQAzvaw06L1AI2YPfyLjk9fDt7PfX6hh5eyQPeejKNJHgcuUhCAX4Jk4rnIXyqkFQulGWQ1jhJqCQvlcwUD4Na8ChUshJBXYqK3SM7i2ah7hMayDSQAS9lnAZcxHGWpEyEVZ3VZZgFqRoT3_7BRdmz3WPTlbNii0rH5Ln7wbkhetl-6VOrsQKMMUbY4I1ouhVcHSVZAj5MMiZ7RpVOWIS8SizmDy5_o4fkxvD2PCI77bJTj2EN3MonGni_AD8EvYY |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydraulic+differences+along+the+water+transport+system+of+South+American+Nothofagus+species%3A+do+leaves+protect+the+stem+functionality%3F&rft.jtitle=Tree+physiology&rft.au=Bucci%2C+S.+J.&rft.au=Scholz%2C+F.+G.&rft.au=Campanello%2C+P.+I.&rft.au=Montti%2C+L.&rft.date=2012-07-01&rft.issn=0829-318X&rft.eissn=1758-4469&rft.volume=32&rft.issue=7&rft.spage=880&rft.epage=893&rft_id=info:doi/10.1093%2Ftreephys%2Ftps054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_treephys_tps054 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0829-318X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0829-318X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0829-318X&client=summon |