Dynamical Downscaling for Climate Projection with High-Resolution MRI AGCM-RCM
High-resolution downscaling is vital to project climate extremes and their future changes by resolving fine topography reasonably well, which is a key to represent local climatology and impacts of weather extremes. A direct dynamical downscaling with a regional climate model (RCM) embedded within an...
Saved in:
Published in | Journal of the Meteorological Society of Japan Vol. 94A; pp. 1 - 16 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Meteorological Society of Japan
01.01.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0026-1165 2186-9057 |
DOI | 10.2151/jmsj.2015-022 |
Cover
Loading…
Abstract | High-resolution downscaling is vital to project climate extremes and their future changes by resolving fine topography reasonably well, which is a key to represent local climatology and impacts of weather extremes. A direct dynamical downscaling with a regional climate model (RCM) embedded within an atmosphere-ocean coupled general circulation model (AOGCM) is commonly used but is subject to systematic biases in their present-day simulations of AOGCM, which may cause unexpected effects on future projections and lead to difficult interpretation of climate change. In a high-resolution atmospheric general circulation model (AGCM)-RCM system, the present-day climate in AGCM is forced by observed sea surface temperature (SST) and sea-ice distribution. Then, the future climate is calculated with the “future” boundary conditions (SST and sea-ice), which are created by adding their future changes projected by AOGCM to the observed present-day values, besides the future radiative forcing. This system is one of methods to minimize the effects of such biases. A Meteorological Research Institute AGCM with 20-km grids is successfully applied to project future changes in weather extremes such as tropical cyclones and rain systems that cause heavy rainfall and strong winds. Regional downscaling with 5-km mesh RCM is then performed over certain area to investigate local extreme rainfall events and their future changes. In this paper, we review various downscaling methods and try to rationalize a use of high-resolution AGCM-RCM system. |
---|---|
AbstractList | High-resolution downscaling is vital to project climate extremes and their future changes by resolving fine topography reasonably well, which is a key to represent local climatology and impacts of weather extremes. A direct dynamical downscaling with a regional climate model (RCM) embedded within an atmosphere-ocean coupled general circulation model (AOGCM) is commonly used but is subject to systematic biases in their present-day simulations of AOGCM, which may cause unexpected effects on future projections and lead to difficult interpretation of climate change. In a high-resolution atmospheric general circulation model (AGCM)-RCM system, the present-day climate in AGCM is forced by observed sea surface temperature (SST) and sea-ice distribution. Then, the future climate is calculated with the “future” boundary conditions (SST and sea-ice), which are created by adding their future changes projected by AOGCM to the observed present-day values, besides the future radiative forcing. This system is one of methods to minimize the effects of such biases. A Meteorological Research Institute AGCM with 20-km grids is successfully applied to project future changes in weather extremes such as tropical cyclones and rain systems that cause heavy rainfall and strong winds. Regional downscaling with 5-km mesh RCM is then performed over certain area to investigate local extreme rainfall events and their future changes. In this paper, we review various downscaling methods and try to rationalize a use of high-resolution AGCM-RCM system. |
Author | OSE, Tomoaki KITOH, Akio TAKAYABU, Izuru |
Author_xml | – sequence: 1 fullname: TAKAYABU, Izuru organization: Meteorological Research Institute, Tsukuba, Japan – sequence: 1 fullname: KITOH, Akio organization: University of Tsukuba, Tsukuba, Japan – sequence: 1 fullname: OSE, Tomoaki organization: Meteorological Research Institute, Tsukuba, Japan |
BookMark | eNp1UE1vAiEUJI1NqrbH3vcPYGGX_eBoVqsm2jab9kwAQdmsbAM0xn_fXW09NOkFeI-Z92ZmBAa2tQqAR4wmMU7xU33w9SRGOIUojm_AMMZFBilK8wEYIhRnEOMsvQMj7-u-JHk2BC-zk-UHI3kTzdqj9d3D2F2kWxeVjTnwoKI319ZKBtPa6GjCPlqa3R5WyrfN17m5qVbRdFFuYFVu7sGt5o1XDz_3GHw8z9_LJVy_LlbldA0lQSRAgTTeIoFi3gnptBNMMq63QqhUU5oXRIs8S5ItoURknQHEcSEo17RQhUpJkYxBcpkrXeu9U5pJE3gvJzhuGoYR6yNhfSSsj4R1ezoW_MP6dJ1Hd_oXP7_gax_4Tl3R3AUjG3VBUzJl6Hz-8q7_cs8dUzb5BsPCfXo |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2017_03_086 crossref_primary_10_1002_ird_3007 crossref_primary_10_1016_j_atmosres_2022_106140 crossref_primary_10_1016_j_jhydrol_2025_132946 crossref_primary_10_2151_jmsj_2021_073 crossref_primary_10_1029_2018GL079885 crossref_primary_10_2151_jmsj_2019_007 crossref_primary_10_5194_asr_17_191_2020 crossref_primary_10_1007_s00704_021_03633_w crossref_primary_10_1016_j_qsa_2023_100157 crossref_primary_10_5359_jawe_40_380 crossref_primary_10_1007_s11430_018_9261_5 crossref_primary_10_1029_2019JD032166 crossref_primary_10_3389_feart_2023_1093543 crossref_primary_10_1186_s40645_020_00394_4 crossref_primary_10_3178_hrl_10_119 crossref_primary_10_2151_jmsj_2015_056 crossref_primary_10_2151_jmsj_2017_002 crossref_primary_10_2151_jmsj_2019_055 crossref_primary_10_2151_sola_2019_033 crossref_primary_10_1029_2018JD028677 crossref_primary_10_2151_jmsj_2019_051 crossref_primary_10_2151_sola_2017_002 crossref_primary_10_2151_sola_2022_010 crossref_primary_10_2166_wcc_2022_153 crossref_primary_10_2151_jmsj_2019_018 crossref_primary_10_2151_jmsj_2022_026 crossref_primary_10_1175_BAMS_D_16_0099_1 crossref_primary_10_1007_s10584_020_02782_7 crossref_primary_10_1186_s40645_020_00367_7 crossref_primary_10_3178_hrl_11_168 crossref_primary_10_1088_1748_9326_aa70d9 |
Cites_doi | 10.2151/jmsj.2012-A19 10.2151/sola.2005-040 10.1002/grl.50360 10.1002/joc.3733 10.1175/2010JCLI3338.1 10.1007/s00704-013-0934-9 10.1029/2010JD014920 10.20965/jdr.2008.p0015 10.1029/2004EO520005 10.2151/sola.2008-022 10.1016/j.jhydrol.2006.07.023 10.2151/sola.2011-038 10.2151/sola.2006-017 10.1007/s11069-013-0734-7 10.1029/2005GL022734 10.1029/2010JD014513 10.1007/978-1-935704-13-3_11 10.1007/s13143-012-0022-6 10.1175/MWR-D-14-00068.1 10.2151/jmsj.2012-A08 10.1002/asl2.557 10.2151/jmsj.84.259 10.1007/s00382-011-1223-x 10.2151/sola.2010-019 10.3178/hrl.4.11 10.2151/sola.2014-035 10.1175/2011JCLI3969.1 10.2151/sola.2014-015 10.2151/jmsj.84.333 10.2151/jmsj1965.78.4_477 10.1007/s00704-012-0690-2 10.1175/2010JCLI3723.1 10.2151/jmsj.84.165 10.3389/feart.2014.00019 10.1007/s00382-010-0877-0 10.3402/tellusa.v64i0.15672 10.3178/hrl.4.50 10.1007/s10584-013-0954-6 10.1007/s00382-011-1000-x 10.1038/nclimate1890 10.1029/2012GL053360 10.4236/acs.2012.24034 10.1029/2009JD011803 10.2151/jmsj.84.389 10.3178/hrl.7.36 10.1098/rsta.2010.0204 10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2 10.2151/jmsj.2012-B04 10.3178/hrl.3.49 10.1007/978-94-007-5781-3_8 10.1007/s00382-012-1407-z 10.2151/sola.2005-022 10.2151/sola.2008-027 10.1007/s00382-007-0285-2 10.2151/jmsj.2012-A12 10.1029/2009EO360002 10.2151/jmsj.2012-B08 10.2151/jmsj.2012-B07 10.2151/jmsj.84.295 10.1175/MWR-D-12-00271.1 10.1002/jgrd.50383 10.1002/jgrd.50877 10.2151/sola.2010-030 10.2151/jmsj.84.581 10.1175/BAMS-86-2-257 10.1007/s00382-013-2011-6 10.1029/2009GL041758 10.3178/hrl.4.6 10.1175/JCLI-D-13-00394.1 10.1007/s00704-012-0779-7 10.1029/2010JD014021 10.2151/sola.2012-019 10.1175/JCLI-D-12-00005.1 10.2151/jmsj1965.73.2_165 10.2151/sola.2011-052 10.3178/hrl.5.11 10.2151/jmsj.2012-A03 10.1029/2012GL053650 10.1007/s00382-012-1317-0 10.2151/jmsj.2012-A05 10.2151/jmsj.2012-206 10.3178/hrl.2.1 10.3178/hrl.2.61 10.2151/sola.2012-014 10.1175/JCLI-D-11-00415.1 10.1029/2012JD017874 10.1108/17568691211200227 10.1029/2009JD011919 10.3178/hrl.7.23 10.1175/JCLI-D-11-00526.1 10.2151/sola.2008-019 10.2151/jmsj1965.69.6_723 10.2151/sola.2005-026 |
ContentType | Journal Article |
Copyright | 2016 by Meteorological Society of Japan |
Copyright_xml | – notice: 2016 by Meteorological Society of Japan |
DBID | AAYXX CITATION |
DOI | 10.2151/jmsj.2015-022 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 2186-9057 |
EndPage | 16 |
ExternalDocumentID | 10_2151_jmsj_2015_022 article_jmsj_94A_0_94A_2015_022_article_char_en |
GroupedDBID | 29L 2WC 5GY 7.U ABEFU AENEX AI. ALMA_UNASSIGNED_HOLDINGS CS3 DU5 E3Z EBS ECGQY EJD GROUPED_DOAJ JSF KQ8 OK1 P2P RJT RNS TKC VH1 VOH ZY4 ~02 AAYXX CITATION |
ID | FETCH-LOGICAL-c404t-b0f1d0b02a0022154146afdbbe5f99784fb7633d494b60570a18b9af98e8e5483 |
ISSN | 0026-1165 |
IngestDate | Thu Apr 24 23:02:55 EDT 2025 Tue Jul 01 01:59:49 EDT 2025 Wed Sep 03 06:29:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c404t-b0f1d0b02a0022154146afdbbe5f99784fb7633d494b60570a18b9af98e8e5483 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jmsj/94A/0/94A_2015-022/_article/-char/en |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_2151_jmsj_2015_022 crossref_primary_10_2151_jmsj_2015_022 jstage_primary_article_jmsj_94A_0_94A_2015_022_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of the Meteorological Society of Japan |
PublicationYear | 2016 |
Publisher | Meteorological Society of Japan |
Publisher_xml | – name: Meteorological Society of Japan |
References | Kanada, S., M. Nakano, S. Hayashi, T. Kato, M. Nakamura, K. Kurihara, and A. Kitoh, 2008: Reproducibility of maximum daily precipitation amount over Japan by a high-resolution non-hydrostatic model. SOLA, 4, 105-108. Fu, C., S. Wang, Z. Xiong, W. J. Gutowski, D.-K. Lee, J. L. McGregor, Y. Sato, H. Kato, J.-W. Kim, and M.-S. Suh, 2005: Regional climate model intercomparison project for Asia. Bull. Amer. Meteor. Soc., 86, 257-266. Kitoh, A., T. Ose, K. Kurihara, S. Kusunoki, M. Sugi, and KAKUSHIN Team-3 Modeling Group, 2009: Projection of changes in future weather extremes using super-high-resolution global and regional atmospheric models in the KAKUSHIN Program: Results of preliminary experiments. Hydrol. Res. Lett., 3, 49-53. Mizuta, R., T. Uchiyama, K. Kamiguchi, A. Kitoh, and A. Noda, 2005: Changes in extremes indices over Japan due to global warming projected by a global 20-km-mesh atmospheric model. SOLA, 1, 153-156. Kida, H., T. Koide, H. Sasaki, and M. Chiba, 1991: A new approach to coupling a limited area model with a GCM for regional climate simulations. J. Meteor. Soc. Japan, 69, 723-728. Kusunoki, S., and R. Mizuta, 2012: Comparison of near future (2015-2039) changes in the East Asian rain band with future (2075-2099) changes projected by global atmospheric models with 20-km and 60-km grid size. SOLA, 8, 73-76. Murakami, H., T. Li, and P.-C. Hsu, 2014: Contributing factors to the recent high level of Accumulated Cyclone Energy (ACE) and Power Dissipation Index (PDI) in the North Atlantic. J. Climate, 27, 3023-3034. Murakami, H., M. Sugi, and A. Kitoh, 2013a: Future changes in tropical cyclone activity in the North Indian Ocean projected by high resolution MRI-AGCMs. Climate Dyn., 40, 1949-1968. Pérez, E. P., V. Magaña, E. Caetano, and S. Kusunoki, 2014: Cold surge activity over the Gulf of Mexico in a warmer climate. Front. Earth Sci., 2, 19, doi:10.3389/feart.2014.00019. Xu, Z., and Z.-L. Yang, 2012: An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulations. J. Climate, 25, 6271-6286. Jin, F., A. Kitoh, and P. Alpert, 2010: Water cycle changes over the Mediterranean: A comparison study of a super-high-resolution global model with CMIP3. Phil. Trans. R. Soc. A, 368, 5137-5149. Kurihara, K., K. Ishihara, H. Sasaki, Y. Fukuyama, H. Saitou, I. Takayabu, K. Murazaki, Y. Sato, S. Yukimoto, and A. Noda, 2005: Projection of climatic change over Japan due to global warming by High-Resolution Regional Climate Model in MRI. SOLA, 1, 97-100. Sato, Y., S. Yukimoto, H. Tsujino, H. Ishizaki, and A. Noda, 2006: Response of North Pacific ocean circulation in a Kuroshio-resolving ocean model to an Arctic Oscillation (AO)-like change in Northern Hemisphere atmospheric circulation due to greenhouse-gas forcing. J. Meteor. Soc. Japan, 84, 295-309. Kanada, S., M. Nakano, and T. Kato, 2010a: Changes in mean atmospheric structures around Japan during July due to global warming in regional climate experiments using a cloud-system resolving model. Hydrol. Res. Lett., 4, 11-14. NPD/JMA, 2002: Outline of the operational numerical weather prediction of the Japan Meteorological Agency. Japan Meteorological Agency, 158 pp. McGregor, J. L., K. C. Nguyen, and J. J. Katzfey, 2002: Regional climate simulations using a stretched-grid global model. Research Activities in Atmospheric and Oceanic Modelling Report 32, Ritchie, H. (ed.), World Meteorological Organisation, Geneva, 15-16 pp. Kamiguchi, K., A. Kitoh, T. Uchiyama, R. Mizuta, and A. Noda, 2006: Changes in precipitation-based extremes indices due to global warming projected by a global 20-km-mesh atmospheric model. SOLA, 2, 64-67. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley (eds.), Cambridge University Press, Cambridge, UK and New York, USA, 1535 pp. Murakami, H., and M. Sugi, 2010: Effect of model resolution on tropical cyclone climate projections. SOLA, 6, 73-76. Blázquez, J., M. N. Nuñez, and S. Kusunoki, 2012: Climate projections and uncertainties over South America from MRI/JMA global model experiments. Atmos. Climate Sci., 2, 381-400. Kawase, H., T. Yoshikane, M. Hara, B. Ailikun, F. Kimura, and T. Yasunari, 2008: Downscaling of the climatic change in the rainband in East Asia by a pseudo climate simulation method. SOLA, 4, 73-76. Mizuta, R., H. Yoshimura, H. Murakami, M. Matsueda, H. Endo, T. Ose, K. Kamiguchi, M. Hosaka, M. Sugi, S. Yukimoto, S. Kusunoki, and A. Kitoh, 2012: Climate simulations using MRI-AGCM3.2 with 20-km grid. J. Meteor. Soc. Japan, 90A, 233-258. Murakami, H., B. Wang, T. Li, and A. Kitoh, 2013b: Projected increase in tropical cyclones near Hawaii. Nat. Climate Change, 3, 749-754. Wang, B., H.-J. Kim, K. Kikuchi, and A. Kitoh, 2011: Diagnostic metrics for evaluation of annual and diurnal cycles. Climate Dyn., 37, 941-955. Kusunoki, S., and R. Mizuta, 2008: Future changes in the Baiu rain rand projected by a 20-km mesh global atmospheric model: sea surface temperature dependence. SOLA, 4, 85-88. Japan Meteorological Agency, 2013: Global Warming Projection Vol. 8. 145 pp (in Japanese). [Available at http://ds.data.jma.go.jp/tcc/tcc/products/gwp/gwp8/index.html.] Nakaegawa, T., A. Kitoh, H. Murakami, and S. Kusunoki, 2014: Annual maximum 5-day rainfall total and maximum number of consecutive dry days over Central America and the Caribbean in the late twenty-first century projected by an atmospheric general circulation model with three different horizontal resolutions. Theor. Appl. Climatol., 116, 155-168. Sugi, M., and J. Yoshimura, 2012: Decreasing trend of tropical cyclone frequency in 228-year high-resolution AGCM simulations. Geophys. Res. Lett., 39, L19805, doi:10.1029/2012GL053360. Yoshimura, H., R. Mizuta, and H. Murakami, 2015: A spectral cumulus parameterization scheme interpolating between two convective updrafts with Semi-Lagrangian calculation of transport by compensatory subsidence. Mon. Rev. Rev., 143, 597-621. Kusunoki, S., R. Mizuta, and M. Matsueda, 2011: Future changes in the East Asian rain band projected by global atmospheric models with 20-km and 60-km grid size. Climate Dyn., 37, 2481-2493. Kanada, S., M. Nakano, and T. Kato, 2012: Projections of future changes in precipitation and the vertical structure of the frontal zone during the Baiu Season in the vicinity of Japan using a 5-km-mesh regional climate model. J. Meteor. Soc. Japan, 90A, 65-86. Mizuta, R., O. Arakawa, T. Ose, S. Kusunoki, H. Endo, and A. Kitoh, 2014: Classification of CMIP5 future climate responses by the tropical sea surface temperature changes. SOLA, 10, 167-171. Yukimoto, S., A. Noda, A. Kitoh, M. Hosaka, H. Yoshimura, T. Uchiyama, K. Shibata, O. Arakawa, and S. Kusunoki, 2006: Present-day climate and climate sensitivity in the Meteorological Research Institute coupled GCM version 2.3 (MRI-CGCM2.3). J. Meteor. Soc. Japan, 84, 333-363. Haarsma, R. J., W. Hazeleger, C. Severijns, H. de Vries, A. Sterl, R. Bintanja, G. J. van Oldenborgh, and H. W. van den Brink, 2013: More hurricanes to hit western Europe due to global warming. Geophys. Res. Lett., 40, doi:10.1002/grl.50360. Nakamura, M., S. Kanada, Y. Wakazuki, C. Muroi, A. Hashimoto, T. Kato, A. Noda, M. Yoshizaki, and K. Yasunaga, 2008: Effects of global warming on heavy rainfall during the Baiu season projected by a cloud-system-resolving model. J. Disaster Res., 3, 15-24. Kimura, F., and A. Kitoh, 2007: Downscaling by pseudo global warming method. The Final Report of ICCAP. 43-46. Matsumura, S., and T. Sato, 2011: Snow/ice and cloud responses to future climate change. SOLA, 7, 205-208. Inatsu, M., T. Sato, T. J. Yamada, R. Kuno, S. Sugimoto, M. A. Farukh, Y. N. Pokhrel, and S. Kure, 2015: Multi-GCM by multi-RAM experiments for dynamical downscaling on summertime climate change in Hokkaido. Atmos. Sci. Lett., doi:10.1002/asl2.557. Mizuta, R., Y. Adachi, S. Yukimoto, and S. Kusunoki, 2008: Estimation of future distribution of sea surface temperature and sea ice using CMIP3 multi-model ensemble mean. Tech. Rep. Meteorological Research Institute, 56, 28 pp. Champathong, A., D. Komori, M. Kiguchi, T. Sukkhapunnapan, T. Nakaegawa, and T. Oki, 2013: Future projection of mean river discharge climatology for the Chao Phraya River basin. Hydrol. Res. Lett., 7, 36-41. Japan Meteorological Agency, 2008: Global Warming Projection Vol. 7. 59 pp (in Japanese). [Available at http://ds.data.jma.go.jp/tcc/tcc/products/gwp/gwp7/index-e.html.] Rahman, M. M., M. Rafiuddin, M. M. Alam, S. Kusunoki, A. Kitoh, and F. Giorgi, 2013: Summer monsoon rainfall scenario over Bangladesh using a high-resolution AGCM. Nat. Hazards, 69, 793-807. Sasaki, H., K. Kurihara, I. Takayabu, K. Murazaki, Y. Sato, and H. Tsujino, 2006: Preliminary results from the coupled atmosphere-ocean regional climate model at the Meteorological Research Institute. J. Meteor. Soc. Japan, 84, 389-403. Kawase, H., T. Yoshikane, M. Hara, B. Ailikun, F. Kimura, T. Yasunari, T. Inoue, and H. Ueda, 2009: Intermodel variability of future changes in the Baiu rainband estimated by the pseudo global warming downscaling method. J. Geophys. Res., 114, D24110, doi:10.1029/2009JD011803. McSweeney, C. F., R. G. Jones, and B. B. B. Booth, 2012: Selecting ensemble members to provide regional climate change information. J. Climate, 25, 7100-7121. Sasaki, H., K. Kurihara, and I. Takayabu, 2005: Comparison of climatic reproducibility between a super-high-resolution atmosphere general circulation model and a Metrorological Research Institute regional climate model. SOLA, 1, 81-84. Sasaki, H., A. Murata, M. Hanafusa, M. Oh’izumi, and K. Kurihara, 2012: Projection of future climate change in a non-hydrostatic regional climate model nested within an atmospheric general circulation model. SOLA, 8, 53-56. Iizuka, S., K. Daira 88 89 90 91 92 93 94 95 96 97 10 98 11 99 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 100 101 102 103 104 105 106 80 107 81 108 82 83 84 85 86 87 |
References_xml | – reference: Randall, D. A., and D. M. Pan, 1993: Implementation of the Arakawa-Schubert cumulus parameterization with a prognostic closure. The Representation of Cumulus Convection in Numerical Models of the Atmosphere. Meteor. Monog., 46, 137-147. – reference: Iizumi, T., F. Uno, and M. Nishimori, 2012: Climate downscaling as a source of uncertainty in projecting local climate change impacts. J. Meteor. Soc. Japan, 90B, 83-90. – reference: Wakazuki, Y., S. Kanada, C. Muroi, A. Hashimoto, T. Kato, M. Nakamura, A. Noda, M. Yoshizaki, and K. Yasunaga, 2007: Regional climate projection experiments on the Baiu frontal activity around the Japan Islands using a non-hydrostatic cloud-system-resolving model. J. Earth Simulator, 8, 13-25. – reference: Murakami, H., T. Li, and P.-C. Hsu, 2014: Contributing factors to the recent high level of Accumulated Cyclone Energy (ACE) and Power Dissipation Index (PDI) in the North Atlantic. J. Climate, 27, 3023-3034. – reference: Kitoh, A., A. Yatagai, and P. Alpert, 2008: First super-high-resolution model projection that the ancient “Fertile Crescent” will disappear in this century. Hydrol. Res. Lett., 2, 1-4. – reference: Mizuta, R., O. Arakawa, T. Ose, S. Kusunoki, H. Endo, and A. Kitoh, 2014: Classification of CMIP5 future climate responses by the tropical sea surface temperature changes. SOLA, 10, 167-171. – reference: Christensen, J. H., and F. Boberg, 2012: Temperature dependent climate projection deficiencies in CMIP5 models. Geophys. Res. Lett., 39, L24705, doi:10.1029/2012GL053650. – reference: Nakaegawa, T., A. Kitoh, H. Murakami, and S. Kusunoki, 2014: Annual maximum 5-day rainfall total and maximum number of consecutive dry days over Central America and the Caribbean in the late twenty-first century projected by an atmospheric general circulation model with three different horizontal resolutions. Theor. Appl. Climatol., 116, 155-168. – reference: Kanada, S., M. Nakano, and T. Kato, 2012: Projections of future changes in precipitation and the vertical structure of the frontal zone during the Baiu Season in the vicinity of Japan using a 5-km-mesh regional climate model. J. Meteor. Soc. Japan, 90A, 65-86. – reference: Kusunoki, S., and R. Mizuta, 2013: Changes in precipitation intensity over East Asia during the 20th and 21st centuries simulated by a global atmospheric model with a 60 km grid size. J. Geophys. Res., 118, 11007-11016. – reference: Murakami, H., Y. Wang, H. Yoshimura, R. Mizuta, M. Sugi, E. Shindo, Y. Adachi, S. Yukimoto, M. Hosaka, S. Kusunoki, T. Ose, and A. Kitoh, 2012b: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Climate, 25, 3237-3260. – reference: Nakaegawa, T., A. Kitoh, Y. Ishizaki, S. Kusunoki, and H. Murakami, 2013: Caribbean low-level jets and accompanying moisture fluxes in a global warming climate projected with CMIP3 multi-model ensemble and fine-mesh atmospheric general circulation models. Int. J. Climatol., 34, 964-977. – reference: Rahman, M. M., N. Ferdousi, T. Sato, S. Kusunoki, and A. Kitoh, 2012: Rainfall and temperature scenario for Bangladesh using 20km mesh AGCM. Int. J. Climate Change Strategies and Management, 4, 66-80. – reference: Sasaki, H., A. Murata, M. Hanafusa, M. Oh’izumi, and K. Kurihara, 2012: Projection of future climate change in a non-hydrostatic regional climate model nested within an atmospheric general circulation model. SOLA, 8, 53-56. – reference: van der Linden, P., and J. F. B. Mitchell, 2009: ENSEMBLES, Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, UK, 160 pp. – reference: Yoshimura, H., R. Mizuta, and H. Murakami, 2015: A spectral cumulus parameterization scheme interpolating between two convective updrafts with Semi-Lagrangian calculation of transport by compensatory subsidence. Mon. Rev. Rev., 143, 597-621. – reference: Yoshimura, K., and M. Kanamitsu, 2013: Incremental correction for the dynamical downscaling of ensemble mean atmospheric fields. Mon. Wea. Rev., 141, 3087-3101. – reference: Endo, H., A. Kitoh, T. Ose, R. Mizuta, and S. Kusunoki, 2012: Future changes and uncertainties in Asian precipitation simulated by multi-physics and multi-sea surface temperature ensemble experiments with high-resolution Meteorological Research Institute atmospheric general circulation models (MRI-AGCMs). J. Geophys. Res., 117, D16118, doi:10.1029/2012JD017874. – reference: Ishizaki, N. N., I. Takayabu, M. Oh’Izumi, H. Sasaki, K. Dairaku, S. Iizuka, F. Kimura, H. Kusaka, S. A. Adachi, K. Kurihara, K. Murazaki, and K. Tanaka, 2012: Improved performance of simulated Japanese climate with a multi-model ensemble. J. Meteor. Soc. Japan, 90, 235-254. – reference: Murakami, H., B. Wang, T. Li, and A. Kitoh, 2013b: Projected increase in tropical cyclones near Hawaii. Nat. Climate Change, 3, 749-754. – reference: Kida, H., T. Koide, H. Sasaki, and M. Chiba, 1991: A new approach to coupling a limited area model with a GCM for regional climate simulations. J. Meteor. Soc. Japan, 69, 723-728. – reference: Kanada, S., H. Tsuguti, T. Kato, and F. Fujibe, 2014: Diurnal Variation of Precipitation around Western Japan during the Warm Season. SOLA, 10, 72-77. – reference: Hara, M. T., T. Yoshikane, H. Kawase, and F. Kimura, 2008: Estimation of the impact of global warming on snow depth in Japan by the pseudo-global-warming method. Hydrol. Res. Lett., 2, 61-64. – reference: Hewitt, C. D., and D. J. Griggs, 2004: Ensembles-based predictions of climate changes and their impacts. Eos. Trans. Amer. Geophys. Union, 85, 566-567. – reference: Blázquez, J., M. N. Nuñez, and S. Kusunoki, 2012: Climate projections and uncertainties over South America from MRI/JMA global model experiments. Atmos. Climate Sci., 2, 381-400. – reference: Haarsma, R. J., W. Hazeleger, C. Severijns, H. de Vries, A. Sterl, R. Bintanja, G. J. van Oldenborgh, and H. W. van den Brink, 2013: More hurricanes to hit western Europe due to global warming. Geophys. Res. Lett., 40, doi:10.1002/grl.50360. – reference: Kitoh, A., S. Kusunoki, and T. Nakaegawa, 2011: Climate change projections over South America in the late 21st century with the 20 and 60 km mesh Meteorological Research Institute atmospheric general circulation model (MRI-AGCM). J. Geophys. Res., 116, D06105, doi:10.1029/2010JD014920. – reference: Sugi, M., and J. Yoshimura, 2012: Decreasing trend of tropical cyclone frequency in 228-year high-resolution AGCM simulations. Geophys. Res. Lett., 39, L19805, doi:10.1029/2012GL053360. – reference: Murakami, H., B. Wang, and A. Kitoh, 2011: Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. J. Climate, 24, 1154-1169. – reference: Nakano, M., T. Kato, S. Hayashi, S. Kanada, Y. Yamada, and K. Kurihara, 2012: Development of a 5-km-mesh cloud-system-resolving regional climate model at the Meteorological Research Institute. J. Meteor. Soc. Japan, 90A, 339-360. – reference: Yun, K.-S., K.-Y. Heo, J.-E. Chu, K.-J. Ha, E.-J. Lee, Y. Choi, and A. Kitoh, 2012: Changes in climate classification and extreme climate indices from a high-resolution future projection in Korea. Asia-Pacific J. Atmos. Sci., 48, 213-226. – reference: Japan Meteorological Agency, 2008: Global Warming Projection Vol. 7. 59 pp (in Japanese). [Available at http://ds.data.jma.go.jp/tcc/tcc/products/gwp/gwp7/index-e.html.] – reference: Done, J. M., G. J. Holland, C. L. Bruyere, L. R. Leung, and A. Suzuki-Parker, 2013: Modeling high-impact weather and climate: Lessons from a tropical cyclone perspective. Climate Change, 129, 381-395. – reference: Rahman, M. M., M. Rafiuddin, M. M. Alam, S. Kusunoki, A. Kitoh, and F. Giorgi, 2013: Summer monsoon rainfall scenario over Bangladesh using a high-resolution AGCM. Nat. Hazards, 69, 793-807. – reference: Yukimoto, S., A. Noda, A. Kitoh, M. Hosaka, H. Yoshimura, T. Uchiyama, K. Shibata, O. Arakawa, and S. Kusunoki, 2006: Present-day climate and climate sensitivity in the Meteorological Research Institute coupled GCM version 2.3 (MRI-CGCM2.3). J. Meteor. Soc. Japan, 84, 333-363. – reference: Champathong, A., D. Komori, M. Kiguchi, T. Sukkhapunnapan, T. Nakaegawa, and T. Oki, 2013: Future projection of mean river discharge climatology for the Chao Phraya River basin. Hydrol. Res. Lett., 7, 36-41. – reference: Kanada, S., M. Nakano, and T. Kato, 2010b: Climatological characteristics of daily precipitation over Japan in the Kakushin regional climate experiments using a non-hydrostatic 5-km-mesh model: Comparison with an outer global 20-km-mesh atmospheric climate model. SOLA, 6, 117-120. – reference: Mizuta, R., K. Oouchi, H. Yoshimura, A. Noda, K. Katayama, S. Yukimoto, M. Hosaka, S. Kusunoki, H. Kawai, and M. Nakagawa, 2006: 20-km-mesh global climate simulations using JMA-GSM model -Mean climate states-. J. Meteor. Soc. Japan, 84, 165-185. – reference: Jin, F., A. Kitoh, and P. Alpert, 2011: Climatological relationships among the moisture budget components and rainfall amounts over the Mediterranean based on a super-high-resolution climate model. J. Geophys. Res., 116, D09102, doi:10.1029/2010JD014021. – reference: Nakano, M., S. Kanada, and T. Kato, 2010: Statistical analysis of simulated direct and indirect precipitation associated with typhoons around Japan using a cloud-system resolving model. Hydrol. Res. Lett., 4, 6-10. – reference: Mizuta, R., Y. Adachi, S. Yukimoto, and S. Kusunoki, 2008: Estimation of future distribution of sea surface temperature and sea ice using CMIP3 multi-model ensemble mean. Tech. Rep. Meteorological Research Institute, 56, 28 pp. – reference: Kusunoki, S., R. Mizuta, and M. Matsueda, 2011: Future changes in the East Asian rain band projected by global atmospheric models with 20-km and 60-km grid size. Climate Dyn., 37, 2481-2493. – reference: Nakano, M., S. Kanada, T. Kato, and K. Kurihara, 2011: Monthly maximum number of consecutive dry days in Japan and its reproducibility by a 5-km-mesh cloud-system resolving regional climate model. Hydrol. Res. Lett., 5, 11-15. – reference: Yukimoto, S., A. Noda, A. Kitoh, M. Sugi, Y. Kitamura, M. Hosaka, K. Shibata, S. Maeda and T. Uchiyama, 2001: A new meteorological research institute coupled GCM (MRI-CGCM2) ―Model climate and its variability―. Pap. Meteor. Geophys., 51, 47-88. – reference: Fu, C., S. Wang, Z. Xiong, W. J. Gutowski, D.-K. Lee, J. L. McGregor, Y. Sato, H. Kato, J.-W. Kim, and M.-S. Suh, 2005: Regional climate model intercomparison project for Asia. Bull. Amer. Meteor. Soc., 86, 257-266. – reference: Kusunoki, S., and R. Mizuta, 2008: Future changes in the Baiu rain rand projected by a 20-km mesh global atmospheric model: sea surface temperature dependence. SOLA, 4, 85-88. – reference: Kusaka, H., M. Hara, and Y. Takane, 2012: Urban climate projection by the WRF model at 3-km horizontal grid increment: Dynamical downscaling and predicting heat stress in the 2070’s August for Tokyo, Osaka, and Nagoya metropolises. J. Meteor. Soc. Japan, 90B, 47-63. – reference: Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784-2802. – reference: McGregor, J. L., K. C. Nguyen, and J. J. Katzfey, 2002: Regional climate simulations using a stretched-grid global model. Research Activities in Atmospheric and Oceanic Modelling Report 32, Ritchie, H. (ed.), World Meteorological Organisation, Geneva, 15-16 pp. – reference: Kusunoki, S., and R. Mizuta, 2012: Comparison of near future (2015-2039) changes in the East Asian rain band with future (2075-2099) changes projected by global atmospheric models with 20-km and 60-km grid size. SOLA, 8, 73-76. – reference: Mizuta, R., M. Matsueda, H. Endo, and S. Yukimoto, 2011: Future change in extratropical cyclones associated with change in the upper troposphere. J. Climate, 24, 6456-6470. – reference: Sasaki, H., Y. Sato, K. Adachi, and H. Kida, 2000: Performance and evaluation of the MRI regional climate model with the spectral boundary coupling method. J. Meteor. Soc. Japan, 78, 477-489. – reference: Wakazuki, Y., M. Hara, M. Fujita, X. Ma, and F. Kimura, 2013: Development of incremental dynamical downscaling and analysis system for regional scale climate change projections. EGU General Assembly Conference Abstracts, 15, 13442-13442. – reference: Pérez, E. P., V. Magaña, E. Caetano, and S. Kusunoki, 2014: Cold surge activity over the Gulf of Mexico in a warmer climate. Front. Earth Sci., 2, 19, doi:10.3389/feart.2014.00019. – reference: Wang, B., H.-J. Kim, K. Kikuchi, and A. Kitoh, 2011: Diagnostic metrics for evaluation of annual and diurnal cycles. Climate Dyn., 37, 941-955. – reference: Kitoh, A., and S. Kusunoki, 2008: East Asian summer monsoon simulation by a 20-km mesh AGCM. Climate Dyn., 31, 389-401. – reference: Matsueda, M., R. Mizuta, and S. Kusunoki, 2009: Future change in wintertime atmospheric blocking simulated using a 20-km-mesh atmospheric global circulation model. J. Geophys. Res., 114, D12114, doi:10.1029/2009JD011919. – reference: Raible, C. C., S. Kleppek, M. Wuest, D. N. Bresch, A. Kitoh, H. Murakami, and T. F. Stocker, 2012: Atlantic hurricanes and associated insurance loss potentials in future climate scenarios. Tellus A, 64, 15672, doi:10.3402/tellusa.v64i0.15672. – reference: Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175-183. – reference: Kanada, S., M. Nakano, and T. Kato, 2010a: Changes in mean atmospheric structures around Japan during July due to global warming in regional climate experiments using a cloud-system resolving model. Hydrol. Res. Lett., 4, 11-14. – reference: Rajendran, K., and A. Kitoh, 2008: Indian summer monsoon in future climate projection by a super-high-resolution global model. Current Sci., 95, 1560-1569. – reference: Iizumi, T., M. Nishimori, K. Dairaku, S. A. Adachi, and M. Yokozawa, 2011: Evaluation and intercomparison of downscaled daily precipitation indices over Japan in present-day climate: Strengths and weaknesses of dynamical and bias correction-type statistical downscaling methods. J. Geophys. Res., 116, D01111, doi:10.1029/2010JD014513. – reference: Jin, F., A. Kitoh, and P. Alpert, 2010: Water cycle changes over the Mediterranean: A comparison study of a super-high-resolution global model with CMIP3. Phil. Trans. R. Soc. A, 368, 5137-5149. – reference: Rajendran, K., A. Kitoh, J. Srinivasan, R. Mizuta, and R. Krishnan, 2012: Monsoon circulation interaction with Western Ghats orography under changing climate: Projection by an ultra-high resolution global model. Theor. Appl. Climatol., 110, 555-571. – reference: Rajendran, K., S. Sajani, C. B. Jayasankar, and A. Kitoh, 2013: How dependent is climate change projection of Indian summer monsoon rainfall and extreme events on model resolution? Current Sci., 104, 1409-1418. – reference: Alpert, P., D. Hemmings, F. Jin, G. Kay, A. Kitoh, and A. Mariotti, 2013: The Hydrological Cycle of the Mediterranean. Regional Assessment of Climate Change in the Mediterranean. Navarra, A., and L. Tubiana (eds.), Springer Netherlands, 201-239. – reference: Sasaki, H., K. Kurihara, I. Takayabu, K. Murazaki, Y. Sato, and H. Tsujino, 2006: Preliminary results from the coupled atmosphere-ocean regional climate model at the Meteorological Research Institute. J. Meteor. Soc. Japan, 84, 389-403. – reference: Tsunematsu, N., K. Dairaku, and J. Hirano, 2013: Future changes in summertime precipitation amounts associated with topography in the Japanese islands. J. Geophys. Res., 118, 4142-4153. – reference: Iizuka, S., K. Dairaku, W. Sasaki, S. A. Adachi, N. N. Ishizaki, H. Kusaka, and I. Takayabu, 2012: Assessment of ocean surface winds and tropical cyclones around Japan by RCMs. J. Meteor. Soc. Japan, 90B, 91-102. – reference: Kitoh, A., T. Ose, K. Kurihara, S. Kusunoki, M. Sugi, and KAKUSHIN Team-3 Modeling Group, 2009: Projection of changes in future weather extremes using super-high-resolution global and regional atmospheric models in the KAKUSHIN Program: Results of preliminary experiments. Hydrol. Res. Lett., 3, 49-53. – reference: Fábrega, J., T. Nakaegawa, R. Pinzón, K. Nakayama, O. Arakawa, and SOUSEI Theme-C modeling group, 2013: Hydroclimate projections for Panama in the 21st Century. Hydrol. Res. Lett., 7, 23-29. – reference: Mearns, L. O., W. J. Gutowski, R. Jones, R. Leung, S. McGinnis, A. Nunes, and Y. Qian, 2009: A regional climate change assessment program for North America. Eos, Trans. Amer. Geophys. Union, 90, 311-312. – reference: Matsumura, S., and T. Sato, 2011: Snow/ice and cloud responses to future climate change. SOLA, 7, 205-208. – reference: Mizuta, R., T. Uchiyama, K. Kamiguchi, A. Kitoh, and A. Noda, 2005: Changes in extremes indices over Japan due to global warming projected by a global 20-km-mesh atmospheric model. SOLA, 1, 153-156. – reference: NPD/JMA, 2002: Outline of the operational numerical weather prediction of the Japan Meteorological Agency. Japan Meteorological Agency, 158 pp. – reference: Mizuta, R., H. Yoshimura, H. Murakami, M. Matsueda, H. Endo, T. Ose, K. Kamiguchi, M. Hosaka, M. Sugi, S. Yukimoto, S. Kusunoki, and A. Kitoh, 2012: Climate simulations using MRI-AGCM3.2 with 20-km grid. J. Meteor. Soc. Japan, 90A, 233-258. – reference: Hall, T. C., A. M. Sealy, T. S. Stephenson, S. Kusunoki, M. A. Taylor, A. A. Chen, and A. Kitoh, 2013: Future climate of the Caribbean from a super-high-resolution atmospheric general circulation model. Theor. Appl. Climatol., 113, 271-287. – reference: Kawase, H., T. Yoshikane, M. Hara, B. Ailikun, F. Kimura, and T. Yasunari, 2008: Downscaling of the climatic change in the rainband in East Asia by a pseudo climate simulation method. SOLA, 4, 73-76. – reference: Murakami, H., M. Sugi, and A. Kitoh, 2013a: Future changes in tropical cyclone activity in the North Indian Ocean projected by high resolution MRI-AGCMs. Climate Dyn., 40, 1949-1968. – reference: Kusunoki, S., J. Yoshimura, H. Yoshimura, A. Noda, K. Oouchi, and R. Mizuta, 2006: Change of Baiu rain band in global warming projection by an atmospheric general circulation model with a 20-km grid size. J. Meteor. Soc. Japan, 84, 581-611. – reference: Kamiguchi, K., A. Kitoh, T. Uchiyama, R. Mizuta, and A. Noda, 2006: Changes in precipitation-based extremes indices due to global warming projected by a global 20-km-mesh atmospheric model. SOLA, 2, 64-67. – reference: Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, doi:10.1029/2005GL022734. – reference: Sato, Y., S. Yukimoto, H. Tsujino, H. Ishizaki, and A. Noda, 2006: Response of North Pacific ocean circulation in a Kuroshio-resolving ocean model to an Arctic Oscillation (AO)-like change in Northern Hemisphere atmospheric circulation due to greenhouse-gas forcing. J. Meteor. Soc. Japan, 84, 295-309. – reference: Xu, Z., and Z.-L. Yang, 2012: An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulations. J. Climate, 25, 6271-6286. – reference: Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, 2006: Tropical cyclone climatology in a global warming climate as simulated in a 20 km-mesh global atmospheric model: frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259-276. – reference: Matsueda, M., H. Endo, and R. Mizuta, 2010: Future change in Southern Hemisphere summertime and wintertime atmospheric blockings simulated using a 20-km-mesh AGCM. Geophys. Res. Lett., 37, L02803, doi:10.1029/2009GL041758. – reference: Japan Meteorological Agency, 2013: Global Warming Projection Vol. 8. 145 pp (in Japanese). [Available at http://ds.data.jma.go.jp/tcc/tcc/products/gwp/gwp8/index.html.] – reference: Arakawa, O., and A. Kitoh, 2012: Elevation dependency of summertime precipitation and its change by global warming over the Tibetan Plateau and the surroundings simulated by a 60-km-mesh atmospheric general circulation model. J. Meteor. Soc. Japan, 90A, 151-165. – reference: Kawase, H., T. Yoshikane, M. Hara, B. Ailikun, F. Kimura, T. Yasunari, T. Inoue, and H. Ueda, 2009: Intermodel variability of future changes in the Baiu rainband estimated by the pseudo global warming downscaling method. J. Geophys. Res., 114, D24110, doi:10.1029/2009JD011803. – reference: Kanada, S., M. Nakano, S. Hayashi, T. Kato, M. Nakamura, K. Kurihara, and A. Kitoh, 2008: Reproducibility of maximum daily precipitation amount over Japan by a high-resolution non-hydrostatic model. SOLA, 4, 105-108. – reference: Nakamura, M., S. Kanada, Y. Wakazuki, C. Muroi, A. Hashimoto, T. Kato, A. Noda, M. Yoshizaki, and K. Yasunaga, 2008: Effects of global warming on heavy rainfall during the Baiu season projected by a cloud-system-resolving model. J. Disaster Res., 3, 15-24. – reference: Murakami, H., R. Mizuta, and E. Shindo, 2012a: Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Climate Dyn., 39, 2569-2584. – reference: Ebita, A., S. Kobayashi, Y. Ota, M. Moriya, R. Kumabe, K. Onogi, Y. Harada, S. Yasui, K. Miyaoka, K. Takahashi, H. Kamahori, C. Kobayashi, H. Endo, M. Soma, Y. Oikawa, and T. Ishimizu, 2011: The Japanese 55-year Reanalysis “JRA-55”: An interim report. SOLA, 7, 149-152. – reference: Yun, K.-S., S.-H. Shin, K.-J. Ha, A. Kitoh, and S. Kusunoki, 2008: East Asian precipitation change in the global warming climate simulated by a 20-km mesh AGCM. Asia-Pacific J. Atmos. Sci., 44, 233-247. – reference: IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley (eds.), Cambridge University Press, Cambridge, UK and New York, USA, 1535 pp. – reference: Inatsu, M., T. Sato, T. J. Yamada, R. Kuno, S. Sugimoto, M. A. Farukh, Y. N. Pokhrel, and S. Kure, 2015: Multi-GCM by multi-RAM experiments for dynamical downscaling on summertime climate change in Hokkaido. Atmos. Sci. Lett., doi:10.1002/asl2.557. – reference: McSweeney, C. F., R. G. Jones, and B. B. B. Booth, 2012: Selecting ensemble members to provide regional climate change information. J. Climate, 25, 7100-7121. – reference: Nakaegawa, T., and W. Vergara, 2010: First projection of climatological mean river discharges in the Magdalena River Basin, Colombia, in a changing climate during the 21st century. Hydrol. Res. Lett., 4, 50-54. – reference: Sasaki, H., K. Kurihara, and I. Takayabu, 2005: Comparison of climatic reproducibility between a super-high-resolution atmosphere general circulation model and a Metrorological Research Institute regional climate model. SOLA, 1, 81-84. – reference: Sasaki, H., H. Kida, T. Koide, and M. Chiba, 1995: The performance of long-term integration of a limited area model with the spectral boundary coupling method. J. Meteor. Soc. Japan, 73, 165-181. – reference: Murakami, H., and M. Sugi, 2010: Effect of model resolution on tropical cyclone climate projections. SOLA, 6, 73-76. – reference: Murakami, H., and B. Wang, 2010: Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 2699-2721. – reference: Kurihara, K., K. Ishihara, H. Sasaki, Y. Fukuyama, H. Saitou, I. Takayabu, K. Murazaki, Y. Sato, S. Yukimoto, and A. Noda, 2005: Projection of climatic change over Japan due to global warming by High-Resolution Regional Climate Model in MRI. SOLA, 1, 97-100. – reference: Japan Meteorological Agency, 2005: Global Warming Projection Vol. 6. 58 pp (in Japanese). [Available at http://ds.data.jma.go.jp/tcc/tcc/products/gwp/gwp6/index.html.] – reference: Kimura, F., and A. Kitoh, 2007: Downscaling by pseudo global warming method. The Final Report of ICCAP. 43-46. – reference: Krishnan, R., T. P. Sabin, D. C. Ayantika, A. Kitoh, M. Sugi, H. Murakami, A. G. Turner, J. M. Slingo, and K. Rajendran, 2013: Will the South Asian monsoon overturning circulation stabilize any further? Climate Dyn., 40, 187-211. – reference: Bruyere, C. L., J. M. Done, G. J. Holland, and S. Fredrick, 2014: Bias corrections of global models for regional climate simulations of high-impact weather. Climate Dyn., 43, 1847-1856. – reference: Murata, A., M. Nakano, S. Kanada, K. Kurihara, and H. Sasaki, 2012: Summertime temperature extremes over Japan in the late 21st-century climate projected by a high-resolution regional climate model. J. Meteor. Soc. Japan, 90A, 101-122. – reference: Sato, T., F. Kimura, and A. Kitoh, 2007: Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J. Hydrol., 333, 144-154. – ident: 78 doi: 10.2151/jmsj.2012-A19 – ident: 57 doi: 10.2151/sola.2005-040 – ident: 13 doi: 10.1002/grl.50360 – ident: 73 doi: 10.1002/joc.3733 – ident: 64 doi: 10.1175/2010JCLI3338.1 – ident: 74 doi: 10.1007/s00704-013-0934-9 – ident: 42 doi: 10.1029/2010JD014920 – ident: 75 doi: 10.20965/jdr.2008.p0015 – ident: 16 doi: 10.1029/2004EO520005 – ident: 46 doi: 10.2151/sola.2008-022 – ident: 94 doi: 10.1016/j.jhydrol.2006.07.023 – ident: 8 doi: 10.2151/sola.2011-038 – ident: 29 doi: 10.2151/sola.2006-017 – ident: 83 doi: 10.1007/s11069-013-0734-7 – ident: 101 doi: 10.1029/2005GL022734 – ident: 18 doi: 10.1029/2010JD014513 – ident: 88 doi: 10.1007/978-1-935704-13-3_11 – ident: 108 doi: 10.1007/s13143-012-0022-6 – ident: 59 – ident: 105 doi: 10.1175/MWR-D-14-00068.1 – ident: 2 doi: 10.2151/jmsj.2012-A08 – ident: 20 doi: 10.1002/asl2.557 – ident: 80 doi: 10.2151/jmsj.84.259 – ident: 54 – ident: 66 doi: 10.1007/s00382-011-1223-x – ident: 63 doi: 10.2151/sola.2010-019 – ident: 31 doi: 10.3178/hrl.4.11 – ident: 62 doi: 10.2151/sola.2014-035 – ident: 79 – ident: 60 doi: 10.1175/2011JCLI3969.1 – ident: 34 doi: 10.2151/sola.2014-015 – ident: 106 doi: 10.2151/jmsj.84.333 – ident: 90 doi: 10.2151/jmsj1965.78.4_477 – ident: 86 doi: 10.1007/s00704-012-0690-2 – ident: 100 – ident: 65 doi: 10.1175/2010JCLI3723.1 – ident: 58 doi: 10.2151/jmsj.84.165 – ident: 81 doi: 10.3389/feart.2014.00019 – ident: 102 doi: 10.1007/s00382-010-0877-0 – ident: 84 doi: 10.3402/tellusa.v64i0.15672 – ident: 72 doi: 10.3178/hrl.4.50 – ident: 99 – ident: 7 doi: 10.1007/s10584-013-0954-6 – ident: 24 – ident: 85 – ident: 50 doi: 10.1007/s00382-011-1000-x – ident: 69 doi: 10.1038/nclimate1890 – ident: 96 doi: 10.1029/2012GL053360 – ident: 3 doi: 10.4236/acs.2012.24034 – ident: 36 doi: 10.1029/2009JD011803 – ident: 92 doi: 10.2151/jmsj.84.389 – ident: 5 doi: 10.3178/hrl.7.36 – ident: 26 doi: 10.1098/rsta.2010.0204 – ident: 28 doi: 10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2 – ident: 45 doi: 10.2151/jmsj.2012-B04 – ident: 41 doi: 10.3178/hrl.3.49 – ident: 1 doi: 10.1007/978-94-007-5781-3_8 – ident: 68 doi: 10.1007/s00382-012-1407-z – ident: 91 doi: 10.2151/sola.2005-022 – ident: 30 doi: 10.2151/sola.2008-027 – ident: 21 – ident: 39 doi: 10.1007/s00382-007-0285-2 – ident: 61 doi: 10.2151/jmsj.2012-A12 – ident: 56 doi: 10.1029/2009EO360002 – ident: 87 – ident: 12 – ident: 17 doi: 10.2151/jmsj.2012-B08 – ident: 19 doi: 10.2151/jmsj.2012-B07 – ident: 95 doi: 10.2151/jmsj.84.295 – ident: 104 doi: 10.1175/MWR-D-12-00271.1 – ident: 97 doi: 10.1002/jgrd.50383 – ident: 48 doi: 10.1002/jgrd.50877 – ident: 32 doi: 10.2151/sola.2010-030 – ident: 49 doi: 10.2151/jmsj.84.581 – ident: 11 doi: 10.1175/BAMS-86-2-257 – ident: 4 doi: 10.1007/s00382-013-2011-6 – ident: 52 doi: 10.1029/2009GL041758 – ident: 76 doi: 10.3178/hrl.4.6 – ident: 38 – ident: 70 doi: 10.1175/JCLI-D-13-00394.1 – ident: 14 doi: 10.1007/s00704-012-0779-7 – ident: 27 doi: 10.1029/2010JD014021 – ident: 47 doi: 10.2151/sola.2012-019 – ident: 103 doi: 10.1175/JCLI-D-12-00005.1 – ident: 23 – ident: 89 doi: 10.2151/jmsj1965.73.2_165 – ident: 53 doi: 10.2151/sola.2011-052 – ident: 77 doi: 10.3178/hrl.5.11 – ident: 33 doi: 10.2151/jmsj.2012-A03 – ident: 6 doi: 10.1029/2012GL053650 – ident: 43 doi: 10.1007/s00382-012-1317-0 – ident: 71 doi: 10.2151/jmsj.2012-A05 – ident: 22 doi: 10.2151/jmsj.2012-206 – ident: 107 – ident: 40 doi: 10.3178/hrl.2.1 – ident: 15 doi: 10.3178/hrl.2.61 – ident: 93 doi: 10.2151/sola.2012-014 – ident: 67 doi: 10.1175/JCLI-D-11-00415.1 – ident: 9 doi: 10.1029/2012JD017874 – ident: 82 doi: 10.1108/17568691211200227 – ident: 51 doi: 10.1029/2009JD011919 – ident: 10 doi: 10.3178/hrl.7.23 – ident: 55 doi: 10.1175/JCLI-D-11-00526.1 – ident: 98 – ident: 35 doi: 10.2151/sola.2008-019 – ident: 37 doi: 10.2151/jmsj1965.69.6_723 – ident: 25 – ident: 44 doi: 10.2151/sola.2005-026 |
SSID | ssj0026476 ssib026971113 |
Score | 2.2822697 |
Snippet | High-resolution downscaling is vital to project climate extremes and their future changes by resolving fine topography reasonably well, which is a key to... |
SourceID | crossref jstage |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | dynamical downscaling GCM RCM regional climate information |
Title | Dynamical Downscaling for Climate Projection with High-Resolution MRI AGCM-RCM |
URI | https://www.jstage.jst.go.jp/article/jmsj/94A/0/94A_2015-022/_article/-char/en |
Volume | 94A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of the Meteorological Society of Japan. Ser. II, 2016, Vol.94A, pp.1-16 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcG2wMv09iG6D6QHyZeIJCkThq_IGXdRwEVBLQSPEVx7EiU0k5d-zD-eu7s2AmFSWwvUerY-bpff3e-3PkI-dIuC1BKcehxLBTGWI48KH2Py3YZSpFHsS6d0D-Je0N2dBld1rGqOrtkLvaKuyfzSv5HqtAGcsUs2X-QrDspNMA-yBe2IGHYPkvG30w5eWQudBLDjo2L7I6vwRRVmAcwUqYauPa4YliHhy57c1s7_fPDnfRnt--dV8stP7ZT0TLtg2k9nTmetKGecPQIlG39If9wcNrTbHNjwru0-_ZCB1wOprdTsFadpyA9Tq_Sr0PNUXeL2aLpfgia7gebDhB7uIaPUSi6DetcgfDNytOWZjlLG0QZNDSuSbZc5nK0RZDLb3-PMAIP88jDWmnZD_VLusxFGMLcBk-Q4fAMh2cwfIW8DGE2gfx9fOZoJ4x5BxjfKXAwEXVNQvdkZmlWPN3-g7t5YMq8GoE1byMBtXEyeENeV9KiqYHIOnmhJm9Jq5baH7pNDST0r3fkxEGHNqBDATpVP0Vr6FCEDl2CDgXoUAud92T44_ug2_Oq0hpewXw294RfBtKHZ8_RiAuwFnycl1IIFZWcdxJWClA8bck4EzDh7fh5kAielzxRiYJJbnuDrE6mE7VJaKJimceg-CIZsCDviEJEEgMNoLVQBW-RXfuWsqJadx7Ln4yzJ2XUItuu-y-z4MrfOh6YV-66Vf9D0w3glvl6awe445jPCPTx4blX-kjWauR_Iqvz2UJ9BlN0LrY0kO4B4s2GGg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+Downscaling+for+Climate+Projection+with+High-Resolution+MRI+AGCM-RCM&rft.jtitle=Journal+of+the+Meteorological+Society+of+Japan&rft.au=KITOH%2C+Akio&rft.au=OSE%2C+Tomoaki&rft.au=TAKAYABU%2C+Izuru&rft.date=2016-01-01&rft.issn=0026-1165&rft.eissn=2186-9057&rft.volume=94A&rft.spage=1&rft.epage=16&rft_id=info:doi/10.2151%2Fjmsj.2015-022&rft.externalDBID=n%2Fa&rft.externalDocID=10_2151_jmsj_2015_022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-1165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-1165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-1165&client=summon |