Dynamical Downscaling for Climate Projection with High-Resolution MRI AGCM-RCM

High-resolution downscaling is vital to project climate extremes and their future changes by resolving fine topography reasonably well, which is a key to represent local climatology and impacts of weather extremes. A direct dynamical downscaling with a regional climate model (RCM) embedded within an...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Meteorological Society of Japan Vol. 94A; pp. 1 - 16
Main Authors TAKAYABU, Izuru, KITOH, Akio, OSE, Tomoaki
Format Journal Article
LanguageEnglish
Published Meteorological Society of Japan 01.01.2016
Subjects
Online AccessGet full text
ISSN0026-1165
2186-9057
DOI10.2151/jmsj.2015-022

Cover

Loading…
Abstract High-resolution downscaling is vital to project climate extremes and their future changes by resolving fine topography reasonably well, which is a key to represent local climatology and impacts of weather extremes. A direct dynamical downscaling with a regional climate model (RCM) embedded within an atmosphere-ocean coupled general circulation model (AOGCM) is commonly used but is subject to systematic biases in their present-day simulations of AOGCM, which may cause unexpected effects on future projections and lead to difficult interpretation of climate change. In a high-resolution atmospheric general circulation model (AGCM)-RCM system, the present-day climate in AGCM is forced by observed sea surface temperature (SST) and sea-ice distribution. Then, the future climate is calculated with the “future” boundary conditions (SST and sea-ice), which are created by adding their future changes projected by AOGCM to the observed present-day values, besides the future radiative forcing. This system is one of methods to minimize the effects of such biases. A Meteorological Research Institute AGCM with 20-km grids is successfully applied to project future changes in weather extremes such as tropical cyclones and rain systems that cause heavy rainfall and strong winds. Regional downscaling with 5-km mesh RCM is then performed over certain area to investigate local extreme rainfall events and their future changes. In this paper, we review various downscaling methods and try to rationalize a use of high-resolution AGCM-RCM system.
AbstractList High-resolution downscaling is vital to project climate extremes and their future changes by resolving fine topography reasonably well, which is a key to represent local climatology and impacts of weather extremes. A direct dynamical downscaling with a regional climate model (RCM) embedded within an atmosphere-ocean coupled general circulation model (AOGCM) is commonly used but is subject to systematic biases in their present-day simulations of AOGCM, which may cause unexpected effects on future projections and lead to difficult interpretation of climate change. In a high-resolution atmospheric general circulation model (AGCM)-RCM system, the present-day climate in AGCM is forced by observed sea surface temperature (SST) and sea-ice distribution. Then, the future climate is calculated with the “future” boundary conditions (SST and sea-ice), which are created by adding their future changes projected by AOGCM to the observed present-day values, besides the future radiative forcing. This system is one of methods to minimize the effects of such biases. A Meteorological Research Institute AGCM with 20-km grids is successfully applied to project future changes in weather extremes such as tropical cyclones and rain systems that cause heavy rainfall and strong winds. Regional downscaling with 5-km mesh RCM is then performed over certain area to investigate local extreme rainfall events and their future changes. In this paper, we review various downscaling methods and try to rationalize a use of high-resolution AGCM-RCM system.
Author OSE, Tomoaki
KITOH, Akio
TAKAYABU, Izuru
Author_xml – sequence: 1
  fullname: TAKAYABU, Izuru
  organization: Meteorological Research Institute, Tsukuba, Japan
– sequence: 1
  fullname: KITOH, Akio
  organization: University of Tsukuba, Tsukuba, Japan
– sequence: 1
  fullname: OSE, Tomoaki
  organization: Meteorological Research Institute, Tsukuba, Japan
BookMark eNp1UE1vAiEUJI1NqrbH3vcPYGGX_eBoVqsm2jab9kwAQdmsbAM0xn_fXW09NOkFeI-Z92ZmBAa2tQqAR4wmMU7xU33w9SRGOIUojm_AMMZFBilK8wEYIhRnEOMsvQMj7-u-JHk2BC-zk-UHI3kTzdqj9d3D2F2kWxeVjTnwoKI319ZKBtPa6GjCPlqa3R5WyrfN17m5qVbRdFFuYFVu7sGt5o1XDz_3GHw8z9_LJVy_LlbldA0lQSRAgTTeIoFi3gnptBNMMq63QqhUU5oXRIs8S5ItoURknQHEcSEo17RQhUpJkYxBcpkrXeu9U5pJE3gvJzhuGoYR6yNhfSSsj4R1ezoW_MP6dJ1Hd_oXP7_gax_4Tl3R3AUjG3VBUzJl6Hz-8q7_cs8dUzb5BsPCfXo
CitedBy_id crossref_primary_10_1016_j_scitotenv_2017_03_086
crossref_primary_10_1002_ird_3007
crossref_primary_10_1016_j_atmosres_2022_106140
crossref_primary_10_1016_j_jhydrol_2025_132946
crossref_primary_10_2151_jmsj_2021_073
crossref_primary_10_1029_2018GL079885
crossref_primary_10_2151_jmsj_2019_007
crossref_primary_10_5194_asr_17_191_2020
crossref_primary_10_1007_s00704_021_03633_w
crossref_primary_10_1016_j_qsa_2023_100157
crossref_primary_10_5359_jawe_40_380
crossref_primary_10_1007_s11430_018_9261_5
crossref_primary_10_1029_2019JD032166
crossref_primary_10_3389_feart_2023_1093543
crossref_primary_10_1186_s40645_020_00394_4
crossref_primary_10_3178_hrl_10_119
crossref_primary_10_2151_jmsj_2015_056
crossref_primary_10_2151_jmsj_2017_002
crossref_primary_10_2151_jmsj_2019_055
crossref_primary_10_2151_sola_2019_033
crossref_primary_10_1029_2018JD028677
crossref_primary_10_2151_jmsj_2019_051
crossref_primary_10_2151_sola_2017_002
crossref_primary_10_2151_sola_2022_010
crossref_primary_10_2166_wcc_2022_153
crossref_primary_10_2151_jmsj_2019_018
crossref_primary_10_2151_jmsj_2022_026
crossref_primary_10_1175_BAMS_D_16_0099_1
crossref_primary_10_1007_s10584_020_02782_7
crossref_primary_10_1186_s40645_020_00367_7
crossref_primary_10_3178_hrl_11_168
crossref_primary_10_1088_1748_9326_aa70d9
Cites_doi 10.2151/jmsj.2012-A19
10.2151/sola.2005-040
10.1002/grl.50360
10.1002/joc.3733
10.1175/2010JCLI3338.1
10.1007/s00704-013-0934-9
10.1029/2010JD014920
10.20965/jdr.2008.p0015
10.1029/2004EO520005
10.2151/sola.2008-022
10.1016/j.jhydrol.2006.07.023
10.2151/sola.2011-038
10.2151/sola.2006-017
10.1007/s11069-013-0734-7
10.1029/2005GL022734
10.1029/2010JD014513
10.1007/978-1-935704-13-3_11
10.1007/s13143-012-0022-6
10.1175/MWR-D-14-00068.1
10.2151/jmsj.2012-A08
10.1002/asl2.557
10.2151/jmsj.84.259
10.1007/s00382-011-1223-x
10.2151/sola.2010-019
10.3178/hrl.4.11
10.2151/sola.2014-035
10.1175/2011JCLI3969.1
10.2151/sola.2014-015
10.2151/jmsj.84.333
10.2151/jmsj1965.78.4_477
10.1007/s00704-012-0690-2
10.1175/2010JCLI3723.1
10.2151/jmsj.84.165
10.3389/feart.2014.00019
10.1007/s00382-010-0877-0
10.3402/tellusa.v64i0.15672
10.3178/hrl.4.50
10.1007/s10584-013-0954-6
10.1007/s00382-011-1000-x
10.1038/nclimate1890
10.1029/2012GL053360
10.4236/acs.2012.24034
10.1029/2009JD011803
10.2151/jmsj.84.389
10.3178/hrl.7.36
10.1098/rsta.2010.0204
10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2
10.2151/jmsj.2012-B04
10.3178/hrl.3.49
10.1007/978-94-007-5781-3_8
10.1007/s00382-012-1407-z
10.2151/sola.2005-022
10.2151/sola.2008-027
10.1007/s00382-007-0285-2
10.2151/jmsj.2012-A12
10.1029/2009EO360002
10.2151/jmsj.2012-B08
10.2151/jmsj.2012-B07
10.2151/jmsj.84.295
10.1175/MWR-D-12-00271.1
10.1002/jgrd.50383
10.1002/jgrd.50877
10.2151/sola.2010-030
10.2151/jmsj.84.581
10.1175/BAMS-86-2-257
10.1007/s00382-013-2011-6
10.1029/2009GL041758
10.3178/hrl.4.6
10.1175/JCLI-D-13-00394.1
10.1007/s00704-012-0779-7
10.1029/2010JD014021
10.2151/sola.2012-019
10.1175/JCLI-D-12-00005.1
10.2151/jmsj1965.73.2_165
10.2151/sola.2011-052
10.3178/hrl.5.11
10.2151/jmsj.2012-A03
10.1029/2012GL053650
10.1007/s00382-012-1317-0
10.2151/jmsj.2012-A05
10.2151/jmsj.2012-206
10.3178/hrl.2.1
10.3178/hrl.2.61
10.2151/sola.2012-014
10.1175/JCLI-D-11-00415.1
10.1029/2012JD017874
10.1108/17568691211200227
10.1029/2009JD011919
10.3178/hrl.7.23
10.1175/JCLI-D-11-00526.1
10.2151/sola.2008-019
10.2151/jmsj1965.69.6_723
10.2151/sola.2005-026
ContentType Journal Article
Copyright 2016 by Meteorological Society of Japan
Copyright_xml – notice: 2016 by Meteorological Society of Japan
DBID AAYXX
CITATION
DOI 10.2151/jmsj.2015-022
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 2186-9057
EndPage 16
ExternalDocumentID 10_2151_jmsj_2015_022
article_jmsj_94A_0_94A_2015_022_article_char_en
GroupedDBID 29L
2WC
5GY
7.U
ABEFU
AENEX
AI.
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
E3Z
EBS
ECGQY
EJD
GROUPED_DOAJ
JSF
KQ8
OK1
P2P
RJT
RNS
TKC
VH1
VOH
ZY4
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c404t-b0f1d0b02a0022154146afdbbe5f99784fb7633d494b60570a18b9af98e8e5483
ISSN 0026-1165
IngestDate Thu Apr 24 23:02:55 EDT 2025
Tue Jul 01 01:59:49 EDT 2025
Wed Sep 03 06:29:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c404t-b0f1d0b02a0022154146afdbbe5f99784fb7633d494b60570a18b9af98e8e5483
OpenAccessLink https://www.jstage.jst.go.jp/article/jmsj/94A/0/94A_2015-022/_article/-char/en
PageCount 16
ParticipantIDs crossref_citationtrail_10_2151_jmsj_2015_022
crossref_primary_10_2151_jmsj_2015_022
jstage_primary_article_jmsj_94A_0_94A_2015_022_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of the Meteorological Society of Japan
PublicationYear 2016
Publisher Meteorological Society of Japan
Publisher_xml – name: Meteorological Society of Japan
References Kanada, S., M. Nakano, S. Hayashi, T. Kato, M. Nakamura, K. Kurihara, and A. Kitoh, 2008: Reproducibility of maximum daily precipitation amount over Japan by a high-resolution non-hydrostatic model. SOLA, 4, 105-108.
Fu, C., S. Wang, Z. Xiong, W. J. Gutowski, D.-K. Lee, J. L. McGregor, Y. Sato, H. Kato, J.-W. Kim, and M.-S. Suh, 2005: Regional climate model intercomparison project for Asia. Bull. Amer. Meteor. Soc., 86, 257-266.
Kitoh, A., T. Ose, K. Kurihara, S. Kusunoki, M. Sugi, and KAKUSHIN Team-3 Modeling Group, 2009: Projection of changes in future weather extremes using super-high-resolution global and regional atmospheric models in the KAKUSHIN Program: Results of preliminary experiments. Hydrol. Res. Lett., 3, 49-53.
Mizuta, R., T. Uchiyama, K. Kamiguchi, A. Kitoh, and A. Noda, 2005: Changes in extremes indices over Japan due to global warming projected by a global 20-km-mesh atmospheric model. SOLA, 1, 153-156.
Kida, H., T. Koide, H. Sasaki, and M. Chiba, 1991: A new approach to coupling a limited area model with a GCM for regional climate simulations. J. Meteor. Soc. Japan, 69, 723-728.
Kusunoki, S., and R. Mizuta, 2012: Comparison of near future (2015-2039) changes in the East Asian rain band with future (2075-2099) changes projected by global atmospheric models with 20-km and 60-km grid size. SOLA, 8, 73-76.
Murakami, H., T. Li, and P.-C. Hsu, 2014: Contributing factors to the recent high level of Accumulated Cyclone Energy (ACE) and Power Dissipation Index (PDI) in the North Atlantic. J. Climate, 27, 3023-3034.
Murakami, H., M. Sugi, and A. Kitoh, 2013a: Future changes in tropical cyclone activity in the North Indian Ocean projected by high resolution MRI-AGCMs. Climate Dyn., 40, 1949-1968.
Pérez, E. P., V. Magaña, E. Caetano, and S. Kusunoki, 2014: Cold surge activity over the Gulf of Mexico in a warmer climate. Front. Earth Sci., 2, 19, doi:10.3389/feart.2014.00019.
Xu, Z., and Z.-L. Yang, 2012: An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulations. J. Climate, 25, 6271-6286.
Jin, F., A. Kitoh, and P. Alpert, 2010: Water cycle changes over the Mediterranean: A comparison study of a super-high-resolution global model with CMIP3. Phil. Trans. R. Soc. A, 368, 5137-5149.
Kurihara, K., K. Ishihara, H. Sasaki, Y. Fukuyama, H. Saitou, I. Takayabu, K. Murazaki, Y. Sato, S. Yukimoto, and A. Noda, 2005: Projection of climatic change over Japan due to global warming by High-Resolution Regional Climate Model in MRI. SOLA, 1, 97-100.
Sato, Y., S. Yukimoto, H. Tsujino, H. Ishizaki, and A. Noda, 2006: Response of North Pacific ocean circulation in a Kuroshio-resolving ocean model to an Arctic Oscillation (AO)-like change in Northern Hemisphere atmospheric circulation due to greenhouse-gas forcing. J. Meteor. Soc. Japan, 84, 295-309.
Kanada, S., M. Nakano, and T. Kato, 2010a: Changes in mean atmospheric structures around Japan during July due to global warming in regional climate experiments using a cloud-system resolving model. Hydrol. Res. Lett., 4, 11-14.
NPD/JMA, 2002: Outline of the operational numerical weather prediction of the Japan Meteorological Agency. Japan Meteorological Agency, 158 pp.
McGregor, J. L., K. C. Nguyen, and J. J. Katzfey, 2002: Regional climate simulations using a stretched-grid global model. Research Activities in Atmospheric and Oceanic Modelling Report 32, Ritchie, H. (ed.), World Meteorological Organisation, Geneva, 15-16 pp.
Kamiguchi, K., A. Kitoh, T. Uchiyama, R. Mizuta, and A. Noda, 2006: Changes in precipitation-based extremes indices due to global warming projected by a global 20-km-mesh atmospheric model. SOLA, 2, 64-67.
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley (eds.), Cambridge University Press, Cambridge, UK and New York, USA, 1535 pp.
Murakami, H., and M. Sugi, 2010: Effect of model resolution on tropical cyclone climate projections. SOLA, 6, 73-76.
Blázquez, J., M. N. Nuñez, and S. Kusunoki, 2012: Climate projections and uncertainties over South America from MRI/JMA global model experiments. Atmos. Climate Sci., 2, 381-400.
Kawase, H., T. Yoshikane, M. Hara, B. Ailikun, F. Kimura, and T. Yasunari, 2008: Downscaling of the climatic change in the rainband in East Asia by a pseudo climate simulation method. SOLA, 4, 73-76.
Mizuta, R., H. Yoshimura, H. Murakami, M. Matsueda, H. Endo, T. Ose, K. Kamiguchi, M. Hosaka, M. Sugi, S. Yukimoto, S. Kusunoki, and A. Kitoh, 2012: Climate simulations using MRI-AGCM3.2 with 20-km grid. J. Meteor. Soc. Japan, 90A, 233-258.
Murakami, H., B. Wang, T. Li, and A. Kitoh, 2013b: Projected increase in tropical cyclones near Hawaii. Nat. Climate Change, 3, 749-754.
Wang, B., H.-J. Kim, K. Kikuchi, and A. Kitoh, 2011: Diagnostic metrics for evaluation of annual and diurnal cycles. Climate Dyn., 37, 941-955.
Kusunoki, S., and R. Mizuta, 2008: Future changes in the Baiu rain rand projected by a 20-km mesh global atmospheric model: sea surface temperature dependence. SOLA, 4, 85-88.
Japan Meteorological Agency, 2013: Global Warming Projection Vol. 8. 145 pp (in Japanese). [Available at http://ds.data.jma.go.jp/tcc/tcc/products/gwp/gwp8/index.html.]
Nakaegawa, T., A. Kitoh, H. Murakami, and S. Kusunoki, 2014: Annual maximum 5-day rainfall total and maximum number of consecutive dry days over Central America and the Caribbean in the late twenty-first century projected by an atmospheric general circulation model with three different horizontal resolutions. Theor. Appl. Climatol., 116, 155-168.
Sugi, M., and J. Yoshimura, 2012: Decreasing trend of tropical cyclone frequency in 228-year high-resolution AGCM simulations. Geophys. Res. Lett., 39, L19805, doi:10.1029/2012GL053360.
Yoshimura, H., R. Mizuta, and H. Murakami, 2015: A spectral cumulus parameterization scheme interpolating between two convective updrafts with Semi-Lagrangian calculation of transport by compensatory subsidence. Mon. Rev. Rev., 143, 597-621.
Kusunoki, S., R. Mizuta, and M. Matsueda, 2011: Future changes in the East Asian rain band projected by global atmospheric models with 20-km and 60-km grid size. Climate Dyn., 37, 2481-2493.
Kanada, S., M. Nakano, and T. Kato, 2012: Projections of future changes in precipitation and the vertical structure of the frontal zone during the Baiu Season in the vicinity of Japan using a 5-km-mesh regional climate model. J. Meteor. Soc. Japan, 90A, 65-86.
Mizuta, R., O. Arakawa, T. Ose, S. Kusunoki, H. Endo, and A. Kitoh, 2014: Classification of CMIP5 future climate responses by the tropical sea surface temperature changes. SOLA, 10, 167-171.
Yukimoto, S., A. Noda, A. Kitoh, M. Hosaka, H. Yoshimura, T. Uchiyama, K. Shibata, O. Arakawa, and S. Kusunoki, 2006: Present-day climate and climate sensitivity in the Meteorological Research Institute coupled GCM version 2.3 (MRI-CGCM2.3). J. Meteor. Soc. Japan, 84, 333-363.
Haarsma, R. J., W. Hazeleger, C. Severijns, H. de Vries, A. Sterl, R. Bintanja, G. J. van Oldenborgh, and H. W. van den Brink, 2013: More hurricanes to hit western Europe due to global warming. Geophys. Res. Lett., 40, doi:10.1002/grl.50360.
Nakamura, M., S. Kanada, Y. Wakazuki, C. Muroi, A. Hashimoto, T. Kato, A. Noda, M. Yoshizaki, and K. Yasunaga, 2008: Effects of global warming on heavy rainfall during the Baiu season projected by a cloud-system-resolving model. J. Disaster Res., 3, 15-24.
Kimura, F., and A. Kitoh, 2007: Downscaling by pseudo global warming method. The Final Report of ICCAP. 43-46.
Matsumura, S., and T. Sato, 2011: Snow/ice and cloud responses to future climate change. SOLA, 7, 205-208.
Inatsu, M., T. Sato, T. J. Yamada, R. Kuno, S. Sugimoto, M. A. Farukh, Y. N. Pokhrel, and S. Kure, 2015: Multi-GCM by multi-RAM experiments for dynamical downscaling on summertime climate change in Hokkaido. Atmos. Sci. Lett., doi:10.1002/asl2.557.
Mizuta, R., Y. Adachi, S. Yukimoto, and S. Kusunoki, 2008: Estimation of future distribution of sea surface temperature and sea ice using CMIP3 multi-model ensemble mean. Tech. Rep. Meteorological Research Institute, 56, 28 pp.
Champathong, A., D. Komori, M. Kiguchi, T. Sukkhapunnapan, T. Nakaegawa, and T. Oki, 2013: Future projection of mean river discharge climatology for the Chao Phraya River basin. Hydrol. Res. Lett., 7, 36-41.
Japan Meteorological Agency, 2008: Global Warming Projection Vol. 7. 59 pp (in Japanese). [Available at http://ds.data.jma.go.jp/tcc/tcc/products/gwp/gwp7/index-e.html.]
Rahman, M. M., M. Rafiuddin, M. M. Alam, S. Kusunoki, A. Kitoh, and F. Giorgi, 2013: Summer monsoon rainfall scenario over Bangladesh using a high-resolution AGCM. Nat. Hazards, 69, 793-807.
Sasaki, H., K. Kurihara, I. Takayabu, K. Murazaki, Y. Sato, and H. Tsujino, 2006: Preliminary results from the coupled atmosphere-ocean regional climate model at the Meteorological Research Institute. J. Meteor. Soc. Japan, 84, 389-403.
Kawase, H., T. Yoshikane, M. Hara, B. Ailikun, F. Kimura, T. Yasunari, T. Inoue, and H. Ueda, 2009: Intermodel variability of future changes in the Baiu rainband estimated by the pseudo global warming downscaling method. J. Geophys. Res., 114, D24110, doi:10.1029/2009JD011803.
McSweeney, C. F., R. G. Jones, and B. B. B. Booth, 2012: Selecting ensemble members to provide regional climate change information. J. Climate, 25, 7100-7121.
Sasaki, H., K. Kurihara, and I. Takayabu, 2005: Comparison of climatic reproducibility between a super-high-resolution atmosphere general circulation model and a Metrorological Research Institute regional climate model. SOLA, 1, 81-84.
Sasaki, H., A. Murata, M. Hanafusa, M. Oh’izumi, and K. Kurihara, 2012: Projection of future climate change in a non-hydrostatic regional climate model nested within an atmospheric general circulation model. SOLA, 8, 53-56.
Iizuka, S., K. Daira
88
89
90
91
92
93
94
95
96
97
10
98
11
99
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
100
101
102
103
104
105
106
80
107
81
108
82
83
84
85
86
87
References_xml – reference: Randall, D. A., and D. M. Pan, 1993: Implementation of the Arakawa-Schubert cumulus parameterization with a prognostic closure. The Representation of Cumulus Convection in Numerical Models of the Atmosphere. Meteor. Monog., 46, 137-147.
– reference: Iizumi, T., F. Uno, and M. Nishimori, 2012: Climate downscaling as a source of uncertainty in projecting local climate change impacts. J. Meteor. Soc. Japan, 90B, 83-90.
– reference: Wakazuki, Y., S. Kanada, C. Muroi, A. Hashimoto, T. Kato, M. Nakamura, A. Noda, M. Yoshizaki, and K. Yasunaga, 2007: Regional climate projection experiments on the Baiu frontal activity around the Japan Islands using a non-hydrostatic cloud-system-resolving model. J. Earth Simulator, 8, 13-25.
– reference: Murakami, H., T. Li, and P.-C. Hsu, 2014: Contributing factors to the recent high level of Accumulated Cyclone Energy (ACE) and Power Dissipation Index (PDI) in the North Atlantic. J. Climate, 27, 3023-3034.
– reference: Kitoh, A., A. Yatagai, and P. Alpert, 2008: First super-high-resolution model projection that the ancient “Fertile Crescent” will disappear in this century. Hydrol. Res. Lett., 2, 1-4.
– reference: Mizuta, R., O. Arakawa, T. Ose, S. Kusunoki, H. Endo, and A. Kitoh, 2014: Classification of CMIP5 future climate responses by the tropical sea surface temperature changes. SOLA, 10, 167-171.
– reference: Christensen, J. H., and F. Boberg, 2012: Temperature dependent climate projection deficiencies in CMIP5 models. Geophys. Res. Lett., 39, L24705, doi:10.1029/2012GL053650.
– reference: Nakaegawa, T., A. Kitoh, H. Murakami, and S. Kusunoki, 2014: Annual maximum 5-day rainfall total and maximum number of consecutive dry days over Central America and the Caribbean in the late twenty-first century projected by an atmospheric general circulation model with three different horizontal resolutions. Theor. Appl. Climatol., 116, 155-168.
– reference: Kanada, S., M. Nakano, and T. Kato, 2012: Projections of future changes in precipitation and the vertical structure of the frontal zone during the Baiu Season in the vicinity of Japan using a 5-km-mesh regional climate model. J. Meteor. Soc. Japan, 90A, 65-86.
– reference: Kusunoki, S., and R. Mizuta, 2013: Changes in precipitation intensity over East Asia during the 20th and 21st centuries simulated by a global atmospheric model with a 60 km grid size. J. Geophys. Res., 118, 11007-11016.
– reference: Murakami, H., Y. Wang, H. Yoshimura, R. Mizuta, M. Sugi, E. Shindo, Y. Adachi, S. Yukimoto, M. Hosaka, S. Kusunoki, T. Ose, and A. Kitoh, 2012b: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Climate, 25, 3237-3260.
– reference: Nakaegawa, T., A. Kitoh, Y. Ishizaki, S. Kusunoki, and H. Murakami, 2013: Caribbean low-level jets and accompanying moisture fluxes in a global warming climate projected with CMIP3 multi-model ensemble and fine-mesh atmospheric general circulation models. Int. J. Climatol., 34, 964-977.
– reference: Rahman, M. M., N. Ferdousi, T. Sato, S. Kusunoki, and A. Kitoh, 2012: Rainfall and temperature scenario for Bangladesh using 20km mesh AGCM. Int. J. Climate Change Strategies and Management, 4, 66-80.
– reference: Sasaki, H., A. Murata, M. Hanafusa, M. Oh’izumi, and K. Kurihara, 2012: Projection of future climate change in a non-hydrostatic regional climate model nested within an atmospheric general circulation model. SOLA, 8, 53-56.
– reference: van der Linden, P., and J. F. B. Mitchell, 2009: ENSEMBLES, Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, UK, 160 pp.
– reference: Yoshimura, H., R. Mizuta, and H. Murakami, 2015: A spectral cumulus parameterization scheme interpolating between two convective updrafts with Semi-Lagrangian calculation of transport by compensatory subsidence. Mon. Rev. Rev., 143, 597-621.
– reference: Yoshimura, K., and M. Kanamitsu, 2013: Incremental correction for the dynamical downscaling of ensemble mean atmospheric fields. Mon. Wea. Rev., 141, 3087-3101.
– reference: Endo, H., A. Kitoh, T. Ose, R. Mizuta, and S. Kusunoki, 2012: Future changes and uncertainties in Asian precipitation simulated by multi-physics and multi-sea surface temperature ensemble experiments with high-resolution Meteorological Research Institute atmospheric general circulation models (MRI-AGCMs). J. Geophys. Res., 117, D16118, doi:10.1029/2012JD017874.
– reference: Ishizaki, N. N., I. Takayabu, M. Oh’Izumi, H. Sasaki, K. Dairaku, S. Iizuka, F. Kimura, H. Kusaka, S. A. Adachi, K. Kurihara, K. Murazaki, and K. Tanaka, 2012: Improved performance of simulated Japanese climate with a multi-model ensemble. J. Meteor. Soc. Japan, 90, 235-254.
– reference: Murakami, H., B. Wang, T. Li, and A. Kitoh, 2013b: Projected increase in tropical cyclones near Hawaii. Nat. Climate Change, 3, 749-754.
– reference: Kida, H., T. Koide, H. Sasaki, and M. Chiba, 1991: A new approach to coupling a limited area model with a GCM for regional climate simulations. J. Meteor. Soc. Japan, 69, 723-728.
– reference: Kanada, S., H. Tsuguti, T. Kato, and F. Fujibe, 2014: Diurnal Variation of Precipitation around Western Japan during the Warm Season. SOLA, 10, 72-77.
– reference: Hara, M. T., T. Yoshikane, H. Kawase, and F. Kimura, 2008: Estimation of the impact of global warming on snow depth in Japan by the pseudo-global-warming method. Hydrol. Res. Lett., 2, 61-64.
– reference: Hewitt, C. D., and D. J. Griggs, 2004: Ensembles-based predictions of climate changes and their impacts. Eos. Trans. Amer. Geophys. Union, 85, 566-567.
– reference: Blázquez, J., M. N. Nuñez, and S. Kusunoki, 2012: Climate projections and uncertainties over South America from MRI/JMA global model experiments. Atmos. Climate Sci., 2, 381-400.
– reference: Haarsma, R. J., W. Hazeleger, C. Severijns, H. de Vries, A. Sterl, R. Bintanja, G. J. van Oldenborgh, and H. W. van den Brink, 2013: More hurricanes to hit western Europe due to global warming. Geophys. Res. Lett., 40, doi:10.1002/grl.50360.
– reference: Kitoh, A., S. Kusunoki, and T. Nakaegawa, 2011: Climate change projections over South America in the late 21st century with the 20 and 60 km mesh Meteorological Research Institute atmospheric general circulation model (MRI-AGCM). J. Geophys. Res., 116, D06105, doi:10.1029/2010JD014920.
– reference: Sugi, M., and J. Yoshimura, 2012: Decreasing trend of tropical cyclone frequency in 228-year high-resolution AGCM simulations. Geophys. Res. Lett., 39, L19805, doi:10.1029/2012GL053360.
– reference: Murakami, H., B. Wang, and A. Kitoh, 2011: Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. J. Climate, 24, 1154-1169.
– reference: Nakano, M., T. Kato, S. Hayashi, S. Kanada, Y. Yamada, and K. Kurihara, 2012: Development of a 5-km-mesh cloud-system-resolving regional climate model at the Meteorological Research Institute. J. Meteor. Soc. Japan, 90A, 339-360.
– reference: Yun, K.-S., K.-Y. Heo, J.-E. Chu, K.-J. Ha, E.-J. Lee, Y. Choi, and A. Kitoh, 2012: Changes in climate classification and extreme climate indices from a high-resolution future projection in Korea. Asia-Pacific J. Atmos. Sci., 48, 213-226.
– reference: Japan Meteorological Agency, 2008: Global Warming Projection Vol. 7. 59 pp (in Japanese). [Available at http://ds.data.jma.go.jp/tcc/tcc/products/gwp/gwp7/index-e.html.]
– reference: Done, J. M., G. J. Holland, C. L. Bruyere, L. R. Leung, and A. Suzuki-Parker, 2013: Modeling high-impact weather and climate: Lessons from a tropical cyclone perspective. Climate Change, 129, 381-395.
– reference: Rahman, M. M., M. Rafiuddin, M. M. Alam, S. Kusunoki, A. Kitoh, and F. Giorgi, 2013: Summer monsoon rainfall scenario over Bangladesh using a high-resolution AGCM. Nat. Hazards, 69, 793-807.
– reference: Yukimoto, S., A. Noda, A. Kitoh, M. Hosaka, H. Yoshimura, T. Uchiyama, K. Shibata, O. Arakawa, and S. Kusunoki, 2006: Present-day climate and climate sensitivity in the Meteorological Research Institute coupled GCM version 2.3 (MRI-CGCM2.3). J. Meteor. Soc. Japan, 84, 333-363.
– reference: Champathong, A., D. Komori, M. Kiguchi, T. Sukkhapunnapan, T. Nakaegawa, and T. Oki, 2013: Future projection of mean river discharge climatology for the Chao Phraya River basin. Hydrol. Res. Lett., 7, 36-41.
– reference: Kanada, S., M. Nakano, and T. Kato, 2010b: Climatological characteristics of daily precipitation over Japan in the Kakushin regional climate experiments using a non-hydrostatic 5-km-mesh model: Comparison with an outer global 20-km-mesh atmospheric climate model. SOLA, 6, 117-120.
– reference: Mizuta, R., K. Oouchi, H. Yoshimura, A. Noda, K. Katayama, S. Yukimoto, M. Hosaka, S. Kusunoki, H. Kawai, and M. Nakagawa, 2006: 20-km-mesh global climate simulations using JMA-GSM model -Mean climate states-. J. Meteor. Soc. Japan, 84, 165-185.
– reference: Jin, F., A. Kitoh, and P. Alpert, 2011: Climatological relationships among the moisture budget components and rainfall amounts over the Mediterranean based on a super-high-resolution climate model. J. Geophys. Res., 116, D09102, doi:10.1029/2010JD014021.
– reference: Nakano, M., S. Kanada, and T. Kato, 2010: Statistical analysis of simulated direct and indirect precipitation associated with typhoons around Japan using a cloud-system resolving model. Hydrol. Res. Lett., 4, 6-10.
– reference: Mizuta, R., Y. Adachi, S. Yukimoto, and S. Kusunoki, 2008: Estimation of future distribution of sea surface temperature and sea ice using CMIP3 multi-model ensemble mean. Tech. Rep. Meteorological Research Institute, 56, 28 pp.
– reference: Kusunoki, S., R. Mizuta, and M. Matsueda, 2011: Future changes in the East Asian rain band projected by global atmospheric models with 20-km and 60-km grid size. Climate Dyn., 37, 2481-2493.
– reference: Nakano, M., S. Kanada, T. Kato, and K. Kurihara, 2011: Monthly maximum number of consecutive dry days in Japan and its reproducibility by a 5-km-mesh cloud-system resolving regional climate model. Hydrol. Res. Lett., 5, 11-15.
– reference: Yukimoto, S., A. Noda, A. Kitoh, M. Sugi, Y. Kitamura, M. Hosaka, K. Shibata, S. Maeda and T. Uchiyama, 2001: A new meteorological research institute coupled GCM (MRI-CGCM2) ―Model climate and its variability―. Pap. Meteor. Geophys., 51, 47-88.
– reference: Fu, C., S. Wang, Z. Xiong, W. J. Gutowski, D.-K. Lee, J. L. McGregor, Y. Sato, H. Kato, J.-W. Kim, and M.-S. Suh, 2005: Regional climate model intercomparison project for Asia. Bull. Amer. Meteor. Soc., 86, 257-266.
– reference: Kusunoki, S., and R. Mizuta, 2008: Future changes in the Baiu rain rand projected by a 20-km mesh global atmospheric model: sea surface temperature dependence. SOLA, 4, 85-88.
– reference: Kusaka, H., M. Hara, and Y. Takane, 2012: Urban climate projection by the WRF model at 3-km horizontal grid increment: Dynamical downscaling and predicting heat stress in the 2070’s August for Tokyo, Osaka, and Nagoya metropolises. J. Meteor. Soc. Japan, 90B, 47-63.
– reference: Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784-2802.
– reference: McGregor, J. L., K. C. Nguyen, and J. J. Katzfey, 2002: Regional climate simulations using a stretched-grid global model. Research Activities in Atmospheric and Oceanic Modelling Report 32, Ritchie, H. (ed.), World Meteorological Organisation, Geneva, 15-16 pp.
– reference: Kusunoki, S., and R. Mizuta, 2012: Comparison of near future (2015-2039) changes in the East Asian rain band with future (2075-2099) changes projected by global atmospheric models with 20-km and 60-km grid size. SOLA, 8, 73-76.
– reference: Mizuta, R., M. Matsueda, H. Endo, and S. Yukimoto, 2011: Future change in extratropical cyclones associated with change in the upper troposphere. J. Climate, 24, 6456-6470.
– reference: Sasaki, H., Y. Sato, K. Adachi, and H. Kida, 2000: Performance and evaluation of the MRI regional climate model with the spectral boundary coupling method. J. Meteor. Soc. Japan, 78, 477-489.
– reference: Wakazuki, Y., M. Hara, M. Fujita, X. Ma, and F. Kimura, 2013: Development of incremental dynamical downscaling and analysis system for regional scale climate change projections. EGU General Assembly Conference Abstracts, 15, 13442-13442.
– reference: Pérez, E. P., V. Magaña, E. Caetano, and S. Kusunoki, 2014: Cold surge activity over the Gulf of Mexico in a warmer climate. Front. Earth Sci., 2, 19, doi:10.3389/feart.2014.00019.
– reference: Wang, B., H.-J. Kim, K. Kikuchi, and A. Kitoh, 2011: Diagnostic metrics for evaluation of annual and diurnal cycles. Climate Dyn., 37, 941-955.
– reference: Kitoh, A., and S. Kusunoki, 2008: East Asian summer monsoon simulation by a 20-km mesh AGCM. Climate Dyn., 31, 389-401.
– reference: Matsueda, M., R. Mizuta, and S. Kusunoki, 2009: Future change in wintertime atmospheric blocking simulated using a 20-km-mesh atmospheric global circulation model. J. Geophys. Res., 114, D12114, doi:10.1029/2009JD011919.
– reference: Raible, C. C., S. Kleppek, M. Wuest, D. N. Bresch, A. Kitoh, H. Murakami, and T. F. Stocker, 2012: Atlantic hurricanes and associated insurance loss potentials in future climate scenarios. Tellus A, 64, 15672, doi:10.3402/tellusa.v64i0.15672.
– reference: Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175-183.
– reference: Kanada, S., M. Nakano, and T. Kato, 2010a: Changes in mean atmospheric structures around Japan during July due to global warming in regional climate experiments using a cloud-system resolving model. Hydrol. Res. Lett., 4, 11-14.
– reference: Rajendran, K., and A. Kitoh, 2008: Indian summer monsoon in future climate projection by a super-high-resolution global model. Current Sci., 95, 1560-1569.
– reference: Iizumi, T., M. Nishimori, K. Dairaku, S. A. Adachi, and M. Yokozawa, 2011: Evaluation and intercomparison of downscaled daily precipitation indices over Japan in present-day climate: Strengths and weaknesses of dynamical and bias correction-type statistical downscaling methods. J. Geophys. Res., 116, D01111, doi:10.1029/2010JD014513.
– reference: Jin, F., A. Kitoh, and P. Alpert, 2010: Water cycle changes over the Mediterranean: A comparison study of a super-high-resolution global model with CMIP3. Phil. Trans. R. Soc. A, 368, 5137-5149.
– reference: Rajendran, K., A. Kitoh, J. Srinivasan, R. Mizuta, and R. Krishnan, 2012: Monsoon circulation interaction with Western Ghats orography under changing climate: Projection by an ultra-high resolution global model. Theor. Appl. Climatol., 110, 555-571.
– reference: Rajendran, K., S. Sajani, C. B. Jayasankar, and A. Kitoh, 2013: How dependent is climate change projection of Indian summer monsoon rainfall and extreme events on model resolution? Current Sci., 104, 1409-1418.
– reference: Alpert, P., D. Hemmings, F. Jin, G. Kay, A. Kitoh, and A. Mariotti, 2013: The Hydrological Cycle of the Mediterranean. Regional Assessment of Climate Change in the Mediterranean. Navarra, A., and L. Tubiana (eds.), Springer Netherlands, 201-239.
– reference: Sasaki, H., K. Kurihara, I. Takayabu, K. Murazaki, Y. Sato, and H. Tsujino, 2006: Preliminary results from the coupled atmosphere-ocean regional climate model at the Meteorological Research Institute. J. Meteor. Soc. Japan, 84, 389-403.
– reference: Tsunematsu, N., K. Dairaku, and J. Hirano, 2013: Future changes in summertime precipitation amounts associated with topography in the Japanese islands. J. Geophys. Res., 118, 4142-4153.
– reference: Iizuka, S., K. Dairaku, W. Sasaki, S. A. Adachi, N. N. Ishizaki, H. Kusaka, and I. Takayabu, 2012: Assessment of ocean surface winds and tropical cyclones around Japan by RCMs. J. Meteor. Soc. Japan, 90B, 91-102.
– reference: Kitoh, A., T. Ose, K. Kurihara, S. Kusunoki, M. Sugi, and KAKUSHIN Team-3 Modeling Group, 2009: Projection of changes in future weather extremes using super-high-resolution global and regional atmospheric models in the KAKUSHIN Program: Results of preliminary experiments. Hydrol. Res. Lett., 3, 49-53.
– reference: Fábrega, J., T. Nakaegawa, R. Pinzón, K. Nakayama, O. Arakawa, and SOUSEI Theme-C modeling group, 2013: Hydroclimate projections for Panama in the 21st Century. Hydrol. Res. Lett., 7, 23-29.
– reference: Mearns, L. O., W. J. Gutowski, R. Jones, R. Leung, S. McGinnis, A. Nunes, and Y. Qian, 2009: A regional climate change assessment program for North America. Eos, Trans. Amer. Geophys. Union, 90, 311-312.
– reference: Matsumura, S., and T. Sato, 2011: Snow/ice and cloud responses to future climate change. SOLA, 7, 205-208.
– reference: Mizuta, R., T. Uchiyama, K. Kamiguchi, A. Kitoh, and A. Noda, 2005: Changes in extremes indices over Japan due to global warming projected by a global 20-km-mesh atmospheric model. SOLA, 1, 153-156.
– reference: NPD/JMA, 2002: Outline of the operational numerical weather prediction of the Japan Meteorological Agency. Japan Meteorological Agency, 158 pp.
– reference: Mizuta, R., H. Yoshimura, H. Murakami, M. Matsueda, H. Endo, T. Ose, K. Kamiguchi, M. Hosaka, M. Sugi, S. Yukimoto, S. Kusunoki, and A. Kitoh, 2012: Climate simulations using MRI-AGCM3.2 with 20-km grid. J. Meteor. Soc. Japan, 90A, 233-258.
– reference: Hall, T. C., A. M. Sealy, T. S. Stephenson, S. Kusunoki, M. A. Taylor, A. A. Chen, and A. Kitoh, 2013: Future climate of the Caribbean from a super-high-resolution atmospheric general circulation model. Theor. Appl. Climatol., 113, 271-287.
– reference: Kawase, H., T. Yoshikane, M. Hara, B. Ailikun, F. Kimura, and T. Yasunari, 2008: Downscaling of the climatic change in the rainband in East Asia by a pseudo climate simulation method. SOLA, 4, 73-76.
– reference: Murakami, H., M. Sugi, and A. Kitoh, 2013a: Future changes in tropical cyclone activity in the North Indian Ocean projected by high resolution MRI-AGCMs. Climate Dyn., 40, 1949-1968.
– reference: Kusunoki, S., J. Yoshimura, H. Yoshimura, A. Noda, K. Oouchi, and R. Mizuta, 2006: Change of Baiu rain band in global warming projection by an atmospheric general circulation model with a 20-km grid size. J. Meteor. Soc. Japan, 84, 581-611.
– reference: Kamiguchi, K., A. Kitoh, T. Uchiyama, R. Mizuta, and A. Noda, 2006: Changes in precipitation-based extremes indices due to global warming projected by a global 20-km-mesh atmospheric model. SOLA, 2, 64-67.
– reference: Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, doi:10.1029/2005GL022734.
– reference: Sato, Y., S. Yukimoto, H. Tsujino, H. Ishizaki, and A. Noda, 2006: Response of North Pacific ocean circulation in a Kuroshio-resolving ocean model to an Arctic Oscillation (AO)-like change in Northern Hemisphere atmospheric circulation due to greenhouse-gas forcing. J. Meteor. Soc. Japan, 84, 295-309.
– reference: Xu, Z., and Z.-L. Yang, 2012: An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulations. J. Climate, 25, 6271-6286.
– reference: Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, 2006: Tropical cyclone climatology in a global warming climate as simulated in a 20 km-mesh global atmospheric model: frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259-276.
– reference: Matsueda, M., H. Endo, and R. Mizuta, 2010: Future change in Southern Hemisphere summertime and wintertime atmospheric blockings simulated using a 20-km-mesh AGCM. Geophys. Res. Lett., 37, L02803, doi:10.1029/2009GL041758.
– reference: Japan Meteorological Agency, 2013: Global Warming Projection Vol. 8. 145 pp (in Japanese). [Available at http://ds.data.jma.go.jp/tcc/tcc/products/gwp/gwp8/index.html.]
– reference: Arakawa, O., and A. Kitoh, 2012: Elevation dependency of summertime precipitation and its change by global warming over the Tibetan Plateau and the surroundings simulated by a 60-km-mesh atmospheric general circulation model. J. Meteor. Soc. Japan, 90A, 151-165.
– reference: Kawase, H., T. Yoshikane, M. Hara, B. Ailikun, F. Kimura, T. Yasunari, T. Inoue, and H. Ueda, 2009: Intermodel variability of future changes in the Baiu rainband estimated by the pseudo global warming downscaling method. J. Geophys. Res., 114, D24110, doi:10.1029/2009JD011803.
– reference: Kanada, S., M. Nakano, S. Hayashi, T. Kato, M. Nakamura, K. Kurihara, and A. Kitoh, 2008: Reproducibility of maximum daily precipitation amount over Japan by a high-resolution non-hydrostatic model. SOLA, 4, 105-108.
– reference: Nakamura, M., S. Kanada, Y. Wakazuki, C. Muroi, A. Hashimoto, T. Kato, A. Noda, M. Yoshizaki, and K. Yasunaga, 2008: Effects of global warming on heavy rainfall during the Baiu season projected by a cloud-system-resolving model. J. Disaster Res., 3, 15-24.
– reference: Murakami, H., R. Mizuta, and E. Shindo, 2012a: Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Climate Dyn., 39, 2569-2584.
– reference: Ebita, A., S. Kobayashi, Y. Ota, M. Moriya, R. Kumabe, K. Onogi, Y. Harada, S. Yasui, K. Miyaoka, K. Takahashi, H. Kamahori, C. Kobayashi, H. Endo, M. Soma, Y. Oikawa, and T. Ishimizu, 2011: The Japanese 55-year Reanalysis “JRA-55”: An interim report. SOLA, 7, 149-152.
– reference: Yun, K.-S., S.-H. Shin, K.-J. Ha, A. Kitoh, and S. Kusunoki, 2008: East Asian precipitation change in the global warming climate simulated by a 20-km mesh AGCM. Asia-Pacific J. Atmos. Sci., 44, 233-247.
– reference: IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley (eds.), Cambridge University Press, Cambridge, UK and New York, USA, 1535 pp.
– reference: Inatsu, M., T. Sato, T. J. Yamada, R. Kuno, S. Sugimoto, M. A. Farukh, Y. N. Pokhrel, and S. Kure, 2015: Multi-GCM by multi-RAM experiments for dynamical downscaling on summertime climate change in Hokkaido. Atmos. Sci. Lett., doi:10.1002/asl2.557.
– reference: McSweeney, C. F., R. G. Jones, and B. B. B. Booth, 2012: Selecting ensemble members to provide regional climate change information. J. Climate, 25, 7100-7121.
– reference: Nakaegawa, T., and W. Vergara, 2010: First projection of climatological mean river discharges in the Magdalena River Basin, Colombia, in a changing climate during the 21st century. Hydrol. Res. Lett., 4, 50-54.
– reference: Sasaki, H., K. Kurihara, and I. Takayabu, 2005: Comparison of climatic reproducibility between a super-high-resolution atmosphere general circulation model and a Metrorological Research Institute regional climate model. SOLA, 1, 81-84.
– reference: Sasaki, H., H. Kida, T. Koide, and M. Chiba, 1995: The performance of long-term integration of a limited area model with the spectral boundary coupling method. J. Meteor. Soc. Japan, 73, 165-181.
– reference: Murakami, H., and M. Sugi, 2010: Effect of model resolution on tropical cyclone climate projections. SOLA, 6, 73-76.
– reference: Murakami, H., and B. Wang, 2010: Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 2699-2721.
– reference: Kurihara, K., K. Ishihara, H. Sasaki, Y. Fukuyama, H. Saitou, I. Takayabu, K. Murazaki, Y. Sato, S. Yukimoto, and A. Noda, 2005: Projection of climatic change over Japan due to global warming by High-Resolution Regional Climate Model in MRI. SOLA, 1, 97-100.
– reference: Japan Meteorological Agency, 2005: Global Warming Projection Vol. 6. 58 pp (in Japanese). [Available at http://ds.data.jma.go.jp/tcc/tcc/products/gwp/gwp6/index.html.]
– reference: Kimura, F., and A. Kitoh, 2007: Downscaling by pseudo global warming method. The Final Report of ICCAP. 43-46.
– reference: Krishnan, R., T. P. Sabin, D. C. Ayantika, A. Kitoh, M. Sugi, H. Murakami, A. G. Turner, J. M. Slingo, and K. Rajendran, 2013: Will the South Asian monsoon overturning circulation stabilize any further? Climate Dyn., 40, 187-211.
– reference: Bruyere, C. L., J. M. Done, G. J. Holland, and S. Fredrick, 2014: Bias corrections of global models for regional climate simulations of high-impact weather. Climate Dyn., 43, 1847-1856.
– reference: Murata, A., M. Nakano, S. Kanada, K. Kurihara, and H. Sasaki, 2012: Summertime temperature extremes over Japan in the late 21st-century climate projected by a high-resolution regional climate model. J. Meteor. Soc. Japan, 90A, 101-122.
– reference: Sato, T., F. Kimura, and A. Kitoh, 2007: Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J. Hydrol., 333, 144-154.
– ident: 78
  doi: 10.2151/jmsj.2012-A19
– ident: 57
  doi: 10.2151/sola.2005-040
– ident: 13
  doi: 10.1002/grl.50360
– ident: 73
  doi: 10.1002/joc.3733
– ident: 64
  doi: 10.1175/2010JCLI3338.1
– ident: 74
  doi: 10.1007/s00704-013-0934-9
– ident: 42
  doi: 10.1029/2010JD014920
– ident: 75
  doi: 10.20965/jdr.2008.p0015
– ident: 16
  doi: 10.1029/2004EO520005
– ident: 46
  doi: 10.2151/sola.2008-022
– ident: 94
  doi: 10.1016/j.jhydrol.2006.07.023
– ident: 8
  doi: 10.2151/sola.2011-038
– ident: 29
  doi: 10.2151/sola.2006-017
– ident: 83
  doi: 10.1007/s11069-013-0734-7
– ident: 101
  doi: 10.1029/2005GL022734
– ident: 18
  doi: 10.1029/2010JD014513
– ident: 88
  doi: 10.1007/978-1-935704-13-3_11
– ident: 108
  doi: 10.1007/s13143-012-0022-6
– ident: 59
– ident: 105
  doi: 10.1175/MWR-D-14-00068.1
– ident: 2
  doi: 10.2151/jmsj.2012-A08
– ident: 20
  doi: 10.1002/asl2.557
– ident: 80
  doi: 10.2151/jmsj.84.259
– ident: 54
– ident: 66
  doi: 10.1007/s00382-011-1223-x
– ident: 63
  doi: 10.2151/sola.2010-019
– ident: 31
  doi: 10.3178/hrl.4.11
– ident: 62
  doi: 10.2151/sola.2014-035
– ident: 79
– ident: 60
  doi: 10.1175/2011JCLI3969.1
– ident: 34
  doi: 10.2151/sola.2014-015
– ident: 106
  doi: 10.2151/jmsj.84.333
– ident: 90
  doi: 10.2151/jmsj1965.78.4_477
– ident: 86
  doi: 10.1007/s00704-012-0690-2
– ident: 100
– ident: 65
  doi: 10.1175/2010JCLI3723.1
– ident: 58
  doi: 10.2151/jmsj.84.165
– ident: 81
  doi: 10.3389/feart.2014.00019
– ident: 102
  doi: 10.1007/s00382-010-0877-0
– ident: 84
  doi: 10.3402/tellusa.v64i0.15672
– ident: 72
  doi: 10.3178/hrl.4.50
– ident: 99
– ident: 7
  doi: 10.1007/s10584-013-0954-6
– ident: 24
– ident: 85
– ident: 50
  doi: 10.1007/s00382-011-1000-x
– ident: 69
  doi: 10.1038/nclimate1890
– ident: 96
  doi: 10.1029/2012GL053360
– ident: 3
  doi: 10.4236/acs.2012.24034
– ident: 36
  doi: 10.1029/2009JD011803
– ident: 92
  doi: 10.2151/jmsj.84.389
– ident: 5
  doi: 10.3178/hrl.7.36
– ident: 26
  doi: 10.1098/rsta.2010.0204
– ident: 28
  doi: 10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2
– ident: 45
  doi: 10.2151/jmsj.2012-B04
– ident: 41
  doi: 10.3178/hrl.3.49
– ident: 1
  doi: 10.1007/978-94-007-5781-3_8
– ident: 68
  doi: 10.1007/s00382-012-1407-z
– ident: 91
  doi: 10.2151/sola.2005-022
– ident: 30
  doi: 10.2151/sola.2008-027
– ident: 21
– ident: 39
  doi: 10.1007/s00382-007-0285-2
– ident: 61
  doi: 10.2151/jmsj.2012-A12
– ident: 56
  doi: 10.1029/2009EO360002
– ident: 87
– ident: 12
– ident: 17
  doi: 10.2151/jmsj.2012-B08
– ident: 19
  doi: 10.2151/jmsj.2012-B07
– ident: 95
  doi: 10.2151/jmsj.84.295
– ident: 104
  doi: 10.1175/MWR-D-12-00271.1
– ident: 97
  doi: 10.1002/jgrd.50383
– ident: 48
  doi: 10.1002/jgrd.50877
– ident: 32
  doi: 10.2151/sola.2010-030
– ident: 49
  doi: 10.2151/jmsj.84.581
– ident: 11
  doi: 10.1175/BAMS-86-2-257
– ident: 4
  doi: 10.1007/s00382-013-2011-6
– ident: 52
  doi: 10.1029/2009GL041758
– ident: 76
  doi: 10.3178/hrl.4.6
– ident: 38
– ident: 70
  doi: 10.1175/JCLI-D-13-00394.1
– ident: 14
  doi: 10.1007/s00704-012-0779-7
– ident: 27
  doi: 10.1029/2010JD014021
– ident: 47
  doi: 10.2151/sola.2012-019
– ident: 103
  doi: 10.1175/JCLI-D-12-00005.1
– ident: 23
– ident: 89
  doi: 10.2151/jmsj1965.73.2_165
– ident: 53
  doi: 10.2151/sola.2011-052
– ident: 77
  doi: 10.3178/hrl.5.11
– ident: 33
  doi: 10.2151/jmsj.2012-A03
– ident: 6
  doi: 10.1029/2012GL053650
– ident: 43
  doi: 10.1007/s00382-012-1317-0
– ident: 71
  doi: 10.2151/jmsj.2012-A05
– ident: 22
  doi: 10.2151/jmsj.2012-206
– ident: 107
– ident: 40
  doi: 10.3178/hrl.2.1
– ident: 15
  doi: 10.3178/hrl.2.61
– ident: 93
  doi: 10.2151/sola.2012-014
– ident: 67
  doi: 10.1175/JCLI-D-11-00415.1
– ident: 9
  doi: 10.1029/2012JD017874
– ident: 82
  doi: 10.1108/17568691211200227
– ident: 51
  doi: 10.1029/2009JD011919
– ident: 10
  doi: 10.3178/hrl.7.23
– ident: 55
  doi: 10.1175/JCLI-D-11-00526.1
– ident: 98
– ident: 35
  doi: 10.2151/sola.2008-019
– ident: 37
  doi: 10.2151/jmsj1965.69.6_723
– ident: 25
– ident: 44
  doi: 10.2151/sola.2005-026
SSID ssj0026476
ssib026971113
Score 2.2822697
Snippet High-resolution downscaling is vital to project climate extremes and their future changes by resolving fine topography reasonably well, which is a key to...
SourceID crossref
jstage
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms dynamical downscaling
GCM
RCM
regional climate information
Title Dynamical Downscaling for Climate Projection with High-Resolution MRI AGCM-RCM
URI https://www.jstage.jst.go.jp/article/jmsj/94A/0/94A_2015-022/_article/-char/en
Volume 94A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of the Meteorological Society of Japan. Ser. II, 2016, Vol.94A, pp.1-16
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcG2wMv09iG6D6QHyZeIJCkThq_IGXdRwEVBLQSPEVx7EiU0k5d-zD-eu7s2AmFSWwvUerY-bpff3e-3PkI-dIuC1BKcehxLBTGWI48KH2Py3YZSpFHsS6d0D-Je0N2dBld1rGqOrtkLvaKuyfzSv5HqtAGcsUs2X-QrDspNMA-yBe2IGHYPkvG30w5eWQudBLDjo2L7I6vwRRVmAcwUqYauPa4YliHhy57c1s7_fPDnfRnt--dV8stP7ZT0TLtg2k9nTmetKGecPQIlG39If9wcNrTbHNjwru0-_ZCB1wOprdTsFadpyA9Tq_Sr0PNUXeL2aLpfgia7gebDhB7uIaPUSi6DetcgfDNytOWZjlLG0QZNDSuSbZc5nK0RZDLb3-PMAIP88jDWmnZD_VLusxFGMLcBk-Q4fAMh2cwfIW8DGE2gfx9fOZoJ4x5BxjfKXAwEXVNQvdkZmlWPN3-g7t5YMq8GoE1byMBtXEyeENeV9KiqYHIOnmhJm9Jq5baH7pNDST0r3fkxEGHNqBDATpVP0Vr6FCEDl2CDgXoUAud92T44_ug2_Oq0hpewXw294RfBtKHZ8_RiAuwFnycl1IIFZWcdxJWClA8bck4EzDh7fh5kAielzxRiYJJbnuDrE6mE7VJaKJimceg-CIZsCDviEJEEgMNoLVQBW-RXfuWsqJadx7Ln4yzJ2XUItuu-y-z4MrfOh6YV-66Vf9D0w3glvl6awe445jPCPTx4blX-kjWauR_Iqvz2UJ9BlN0LrY0kO4B4s2GGg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+Downscaling+for+Climate+Projection+with+High-Resolution+MRI+AGCM-RCM&rft.jtitle=Journal+of+the+Meteorological+Society+of+Japan&rft.au=KITOH%2C+Akio&rft.au=OSE%2C+Tomoaki&rft.au=TAKAYABU%2C+Izuru&rft.date=2016-01-01&rft.issn=0026-1165&rft.eissn=2186-9057&rft.volume=94A&rft.spage=1&rft.epage=16&rft_id=info:doi/10.2151%2Fjmsj.2015-022&rft.externalDBID=n%2Fa&rft.externalDocID=10_2151_jmsj_2015_022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-1165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-1165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-1165&client=summon