Substrate Specificity of Carboxylesterase Isozymes and Their Contribution to Hydrolase Activity in Human Liver and Small Intestine
Hydrolase activity from human liver and small intestine microsomes was compared with that of recombinant human carboxylesterases, hCE-1 and hCE-2. Although both hCE-1 and hCE-2 are present in human liver, the dominant component was found to be hCE-1, whereas the hydrolase activity of the human small...
Saved in:
Published in | Drug metabolism and disposition Vol. 34; no. 10; pp. 1734 - 1741 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bethesda, MD
Elsevier Inc
01.10.2006
American Society for Pharmacology and Experimental Therapeutics |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrolase activity from human liver and small intestine microsomes was compared with that of recombinant human carboxylesterases, hCE-1 and hCE-2. Although both hCE-1 and hCE-2 are present in human liver, the dominant component was found to be hCE-1, whereas the hydrolase activity of the human small intestine was found to be predominantly hCE-2. hCE-2 has a limited ability to hydrolyze large acyl compound substrates. Interestingly, propranolol derivatives, good substrates for hCE-2, were easily hydrolyzed by substitution of the methyl group on the 2-position of the acyl moiety, but were barely hydrolyzed when the methyl group was substituted on the 3-position. These findings suggest that hCE-2 does not easily form acylated intermediates because of conformational interference in its active site. In contrast, hCE-1 could hydrolyze a variety of substrates. The hydrolytic activity of hCE-2 increased with increasing alcohol chain length in benzoic acid derivative substrates, whereas hCE-1 preferentially catalyzed the hydrolysis of substrates with short alcohol chains. Kinetic data showed that the determining factor for the rate of hydrolysis of p-aminobenzoic acid esters was Vmax for hCE-1 and Km for hCE-2. Furthermore, the addition of hydrophobic alcohols to the reaction mixture with p-aminobenzoic acid propyl ester induced high and low levels of transesterification by hCE-1 and hCE-2, respectively. When considering the substrate specificities of hCE-1, it is necessary to consider the transesterification ability of hCE-1, in addition to the binding structure of the substrate in the active site of the enzyme. |
---|---|
AbstractList | Hydrolase activity from human liver and small intestine microsomes was compared with that of recombinant human carboxylesterases, hCE-1 and hCE-2. Although both hCE-1 and hCE-2 are present in human liver, the dominant component was found to be hCE-1, whereas the hydrolase activity of the human small intestine was found to be predominantly hCE-2. hCE-2 has a limited ability to hydrolyze large acyl compound substrates. Interestingly, propranolol derivatives, good substrates for hCE-2, were easily hydrolyzed by substitution of the methyl group on the 2-position of the acyl moiety, but were barely hydrolyzed when the methyl group was substituted on the 3-position. These findings suggest that hCE-2 does not easily form acylated intermediates because of conformational interference in its active site. In contrast, hCE-1 could hydrolyze a variety of substrates. The hydrolytic activity of hCE-2 increased with increasing alcohol chain length in benzoic acid derivative substrates, whereas hCE-1 preferentially catalyzed the hydrolysis of substrates with short alcohol chains. Kinetic data showed that the determining factor for the rate of hydrolysis of p-aminobenzoic acid esters was V(max) for hCE-1 and K(m) for hCE-2. Furthermore, the addition of hydrophobic alcohols to the reaction mixture with p-aminobenzoic acid propyl ester induced high and low levels of transesterification by hCE-1 and hCE-2, respectively. When considering the substrate specificities of hCE-1, it is necessary to consider the transesterification ability of hCE-1, in addition to the binding structure of the substrate in the active site of the enzyme. Hydrolase activity from human liver and small intestine microsomes was compared with that of recombinant human carboxylesterases, hCE-1 and hCE-2. Although both hCE-1 and hCE-2 are present in human liver, the dominant component was found to be hCE-1, whereas the hydrolase activity of the human small intestine was found to be predominantly hCE-2. hCE-2 has a limited ability to hydrolyze large acyl compound substrates. Interestingly, propranolol derivatives, good substrates for hCE-2, were easily hydrolyzed by substitution of the methyl group on the 2-position of the acyl moiety, but were barely hydrolyzed when the methyl group was substituted on the 3-position. These findings suggest that hCE-2 does not easily form acylated intermediates because of conformational interference in its active site. In contrast, hCE-1 could hydrolyze a variety of substrates. The hydrolytic activity of hCE-2 increased with increasing alcohol chain length in benzoic acid derivative substrates, whereas hCE-1 preferentially catalyzed the hydrolysis of substrates with short alcohol chains. Kinetic data showed that the determining factor for the rate of hydrolysis of p-aminobenzoic acid esters was Vmax for hCE-1 and Km for hCE-2. Furthermore, the addition of hydrophobic alcohols to the reaction mixture with p-aminobenzoic acid propyl ester induced high and low levels of transesterification by hCE-1 and hCE-2, respectively. When considering the substrate specificities of hCE-1, it is necessary to consider the transesterification ability of hCE-1, in addition to the binding structure of the substrate in the active site of the enzyme. Hydrolase activity from human liver and small intestine microsomes was compared with that of recombinant human carboxylesterases, hCE-1 and hCE-2. Although both hCE-1 and hCE-2 are present in human liver, the dominant component was found to be hCE-1, whereas the hydrolase activity of the human small intestine was found to be predominantly hCE-2. hCE-2 has a limited ability to hydrolyze large acyl compound substrates. Interestingly, propranolol derivatives, good substrates for hCE-2, were easily hydrolyzed by substitution of the methyl group on the 2-position of the acyl moiety, but were barely hydrolyzed when the methyl group was substituted on the 3-position. These findings suggest that hCE-2 does not easily form acylated intermediates because of conformational interference in its active site. In contrast, hCE-1 could hydrolyze a variety of substrates. The hydrolytic activity of hCE-2 increased with increasing alcohol chain length in benzoic acid derivative substrates, whereas hCE-1 preferentially catalyzed the hydrolysis of substrates with short alcohol chains. Kinetic data showed that the determining factor for the rate of hydrolysis of p -aminobenzoic acid esters was V max for hCE-1 and K m for hCE-2. Furthermore, the addition of hydrophobic alcohols to the reaction mixture with p -aminobenzoic acid propyl ester induced high and low levels of transesterification by hCE-1 and hCE-2, respectively. When considering the substrate specificities of hCE-1, it is necessary to consider the transesterification ability of hCE-1, in addition to the binding structure of the substrate in the active site of the enzyme. |
Author | Hosokawa, Masakiyo Chiba, Kan Imai, Teruko Taketani, Megumi Shii, Mayumi |
Author_xml | – sequence: 1 givenname: Teruko surname: Imai fullname: Imai, Teruko email: iteruko@gpo.kumamoto-u.ac.jp – sequence: 2 givenname: Megumi surname: Taketani fullname: Taketani, Megumi – sequence: 3 givenname: Mayumi surname: Shii fullname: Shii, Mayumi – sequence: 4 givenname: Masakiyo surname: Hosokawa fullname: Hosokawa, Masakiyo – sequence: 5 givenname: Kan surname: Chiba fullname: Chiba, Kan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18154520$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16837570$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kEGP0zAQhS20iO0uXDkiX4BTih3HcXJcVUArVeLQReJmOc5ka5TYxXa6hCO_HGdTaU9cZsbS956f3g26ss4CQm8pWVOaF5_aoV1TUq4JqVlFX6AV5TnN0uvHFVqlRbKa8_Ia3YTwkxBaFKx-ha5pWTHBBVmhv4exCdGrCPhwAm06o02csOvwRvnG_Z56CBG8CoB3wf2ZBghY2RbfH8F4vHE2etOM0TiLo8PbqfWun-E7Hc15djIWb8dBWbw3Z_BP2sOg-h7vbEzWxsJr9LJTfYA3l32Lvn_5fL_ZZvtvX3ebu32mC1LETImO5DnNBROqY5QrkgZrOavrsiN1Tru8LkC0ggLJVVOLCqBqeC1qrRkHwm7Rh8X35N2vMf0tBxM09L2y4MYgy6oSJSdFAtcLqL0LwUMnT94Myk-SEjm3LlPr6S7l0noSvLs4j80A7TN-qTkB7y-AClr1nVdWm_DMVZQXPJ-5jwt3NA_HR-NBno7KD0q73j1MkhVPCQSbM1YLCamxswEvgzZgNbRJpaNsnflf2n-CAq39 |
CODEN | DMDSAI |
CitedBy_id | crossref_primary_10_1016_j_snb_2024_135284 crossref_primary_10_1016_j_bcp_2008_12_017 crossref_primary_10_1016_j_ejphar_2017_11_036 crossref_primary_10_1002_pmic_202200176 crossref_primary_10_1016_j_bcp_2007_06_022 crossref_primary_10_1016_j_xphs_2017_12_004 crossref_primary_10_1016_j_ecoenv_2021_113124 crossref_primary_10_1016_j_xphs_2017_04_019 crossref_primary_10_1007_s40262_022_01129_y crossref_primary_10_1016_j_bbrc_2017_03_014 crossref_primary_10_1007_s11356_016_7452_0 crossref_primary_10_1016_j_bcp_2021_114766 crossref_primary_10_1016_j_bcp_2021_114887 crossref_primary_10_1124_jpet_112_201640 crossref_primary_10_1016_j_bcp_2016_09_003 crossref_primary_10_1016_j_fct_2012_08_013 crossref_primary_10_1016_j_cbi_2019_108871 crossref_primary_10_1124_dmd_109_028209 crossref_primary_10_1007_s11095_014_1579_9 crossref_primary_10_1016_j_molmed_2018_06_001 crossref_primary_10_1124_dmd_108_024943 crossref_primary_10_1016_j_taap_2017_05_019 crossref_primary_10_1021_acs_jafc_9b03894 crossref_primary_10_3109_00498254_2010_526653 crossref_primary_10_1124_dmd_119_089011 crossref_primary_10_1016_j_dmpk_2022_100479 crossref_primary_10_1016_j_cbi_2021_109566 crossref_primary_10_1002_phar_1194 crossref_primary_10_1080_00498254_2019_1678078 crossref_primary_10_1124_dmd_120_000065 crossref_primary_10_1158_1078_0432_CCR_12_1184 crossref_primary_10_1016_j_bmcl_2018_02_035 crossref_primary_10_1016_j_rvsc_2019_07_013 crossref_primary_10_1016_j_ejpb_2012_11_008 crossref_primary_10_1124_dmd_107_015727 crossref_primary_10_1093_molbev_msn235 crossref_primary_10_1016_j_biopha_2023_114232 crossref_primary_10_1016_j_dmpk_2017_02_003 crossref_primary_10_1021_acs_molpharmaceut_6b00394 crossref_primary_10_1016_j_lfs_2021_119486 crossref_primary_10_1002_arch_21245 crossref_primary_10_1007_s00216_012_6576_4 crossref_primary_10_1038_ja_2014_91 crossref_primary_10_1038_srep44820 crossref_primary_10_1139_cjc_2015_0582 crossref_primary_10_1002_jps_23258 crossref_primary_10_1002_jps_24467 crossref_primary_10_1002_jps_21510 crossref_primary_10_1080_17425255_2018_1420164 crossref_primary_10_1111_bcpt_12625 crossref_primary_10_1016_j_bioorg_2019_103388 crossref_primary_10_1039_D0FO01732A crossref_primary_10_1124_dmd_113_054049 crossref_primary_10_1124_dmd_107_016154 crossref_primary_10_1016_j_ejps_2017_09_040 crossref_primary_10_2133_dmpk_23_73 crossref_primary_10_5012_bkcs_2009_30_11_2631 crossref_primary_10_1016_j_bmcl_2011_12_005 crossref_primary_10_2217_pgs_2017_0052 crossref_primary_10_1186_s13287_023_03629_5 crossref_primary_10_1007_s10822_010_9373_1 crossref_primary_10_1080_00498254_2018_1435927 crossref_primary_10_3109_00498254_2013_802059 crossref_primary_10_1007_s11095_011_0637_9 crossref_primary_10_1124_dmd_119_089680 crossref_primary_10_1002_chir_23141 crossref_primary_10_1016_j_xphs_2023_01_025 crossref_primary_10_1097_MNM_0000000000000875 crossref_primary_10_1016_j_canlet_2016_04_041 crossref_primary_10_1016_j_toxlet_2014_10_026 crossref_primary_10_1038_tpj_2015_42 crossref_primary_10_1007_s13238_017_0437_z crossref_primary_10_1016_j_ejps_2019_03_009 crossref_primary_10_1097_FPC_0b013e32830b0c5e crossref_primary_10_1248_yakushi_127_611 crossref_primary_10_1016_j_fct_2019_110792 crossref_primary_10_1038_s41598_019_40487_9 crossref_primary_10_1074_jbc_M110_161802 crossref_primary_10_1124_dmd_112_044537 crossref_primary_10_1016_j_fct_2015_08_024 crossref_primary_10_1007_s11419_019_00491_0 crossref_primary_10_1128_AAC_02350_13 crossref_primary_10_1016_j_bcp_2024_116128 crossref_primary_10_1080_17512433_2022_2148655 crossref_primary_10_1021_acs_analchem_8b02101 crossref_primary_10_1080_03602532_2024_2368247 crossref_primary_10_1124_dmd_109_026567 crossref_primary_10_1186_s12885_024_12537_7 crossref_primary_10_2131_fts_5_185 crossref_primary_10_1007_s00228_012_1315_5 crossref_primary_10_3389_fnins_2019_00771 crossref_primary_10_1016_j_ejps_2019_105143 crossref_primary_10_1016_j_intimp_2014_12_003 crossref_primary_10_1124_dmd_121_000823 crossref_primary_10_2139_ssrn_2314621 crossref_primary_10_1016_j_bios_2016_04_075 crossref_primary_10_1186_s12859_018_2194_2 crossref_primary_10_1016_j_bmcl_2009_01_069 crossref_primary_10_1021_acs_jmedchem_0c00797 crossref_primary_10_1016_j_xphs_2020_10_018 crossref_primary_10_1016_j_cbi_2021_109744 crossref_primary_10_1124_dmd_124_001699 crossref_primary_10_1016_j_snb_2020_129312 crossref_primary_10_1124_dmd_113_051805 crossref_primary_10_1124_dmd_121_000513 crossref_primary_10_1016_j_xphs_2016_12_003 crossref_primary_10_1016_j_xphs_2016_12_001 crossref_primary_10_1016_j_ejmech_2020_112856 crossref_primary_10_1016_j_apsb_2018_05_005 crossref_primary_10_1021_acs_jmedchem_2c01039 crossref_primary_10_1016_j_bmcl_2017_02_037 crossref_primary_10_1124_dmd_111_041335 crossref_primary_10_1021_acs_jmedchem_7b01444 crossref_primary_10_1124_dmd_106_013862 crossref_primary_10_4062_biomolther_2009_17_4_335 crossref_primary_10_1016_j_cbi_2019_108914 crossref_primary_10_1007_s11745_010_3434_z crossref_primary_10_3390_ijerph19127051 crossref_primary_10_1016_j_yrtph_2021_104918 crossref_primary_10_1124_dmd_118_086074 crossref_primary_10_1584_jpestics_R10_03 crossref_primary_10_1584_jpestics_R10_02 crossref_primary_10_1186_s13619_022_00118_7 crossref_primary_10_1002_bio_4392 crossref_primary_10_3390_molecules23020455 crossref_primary_10_1021_acs_jmedchem_0c02194 crossref_primary_10_1016_j_bbrc_2008_02_120 crossref_primary_10_1002_jps_24648 crossref_primary_10_1016_j_bcp_2016_12_010 crossref_primary_10_1080_00498254_2018_1474283 crossref_primary_10_1016_j_dmpk_2024_101005 crossref_primary_10_3390_pharmaceutics5030371 crossref_primary_10_1016_j_phytochem_2012_06_015 crossref_primary_10_1002_cpt_641 crossref_primary_10_1007_s11356_020_09427_3 crossref_primary_10_1097_FPC_0000000000000376 crossref_primary_10_1038_s41589_023_01301_w crossref_primary_10_1248_bpb_b17_00880 crossref_primary_10_1038_s42003_024_06223_4 crossref_primary_10_1002_jps_24632 crossref_primary_10_1039_D1MD00073J crossref_primary_10_1007_s00280_020_04087_z crossref_primary_10_18632_oncotarget_6169 crossref_primary_10_3389_fchem_2014_00046 crossref_primary_10_1007_s00604_020_04296_6 crossref_primary_10_1016_j_fct_2013_12_013 crossref_primary_10_1080_00498254_2023_2298270 crossref_primary_10_1016_j_ijbiomac_2020_11_080 crossref_primary_10_1124_dmd_113_054551 crossref_primary_10_1007_s11172_019_2507_2 crossref_primary_10_1002_chem_201404675 crossref_primary_10_1124_dmd_113_051714 crossref_primary_10_3390_molecules13020412 crossref_primary_10_1371_journal_pone_0278111 crossref_primary_10_1016_j_dmpk_2023_100497 crossref_primary_10_1039_C5RA23614B crossref_primary_10_3389_fphar_2017_00435 crossref_primary_10_1124_dmd_115_068221 crossref_primary_10_1016_j_bioorg_2023_106625 crossref_primary_10_1021_acs_jproteome_0c00787 crossref_primary_10_1124_dmd_113_056184 crossref_primary_10_3390_biom14020153 crossref_primary_10_1016_j_bcp_2018_01_028 crossref_primary_10_1016_j_ab_2017_10_014 crossref_primary_10_1208_s12248_009_9103_6 crossref_primary_10_1124_dmd_120_000283 crossref_primary_10_1124_dmd_108_020412 crossref_primary_10_1124_dmd_110_037937 crossref_primary_10_1097_JCP_0000000000001089 crossref_primary_10_1016_j_envint_2014_02_007 crossref_primary_10_1097_FPC_0b013e32834f03eb crossref_primary_10_1007_s00216_020_02494_y crossref_primary_10_1016_j_omtm_2021_05_005 crossref_primary_10_1002_chem_201504388 crossref_primary_10_1016_j_xphs_2023_03_018 crossref_primary_10_1021_acs_jproteome_3c00496 crossref_primary_10_1124_dmd_107_020248 crossref_primary_10_1111_acer_12364 crossref_primary_10_1016_j_xphs_2018_09_022 crossref_primary_10_1021_jacs_1c05908 crossref_primary_10_2133_dmpk_DMPK_12_RG_143 crossref_primary_10_1016_j_etap_2020_103561 crossref_primary_10_1039_C6DT01399F crossref_primary_10_1124_dmd_111_039628 crossref_primary_10_1007_s11095_013_1158_5 crossref_primary_10_1016_j_comtox_2018_08_005 crossref_primary_10_1016_j_bioorg_2018_01_011 crossref_primary_10_2133_dmpk_21_173 crossref_primary_10_1007_s40262_014_0226_2 crossref_primary_10_1021_acs_jmedchem_5b00308 crossref_primary_10_1016_j_jconrel_2013_12_031 crossref_primary_10_1021_acs_jmedchem_7b01052 crossref_primary_10_1016_j_tiv_2017_06_020 crossref_primary_10_1517_17425255_2015_1042858 crossref_primary_10_1007_s00204_022_03332_z crossref_primary_10_1093_toxsci_kfz149 crossref_primary_10_1016_j_fct_2013_03_036 crossref_primary_10_1016_j_ijpharm_2011_06_013 crossref_primary_10_1016_j_jpba_2019_02_004 crossref_primary_10_1016_j_stemcr_2018_10_019 crossref_primary_10_1016_j_eng_2021_09_014 crossref_primary_10_1016_j_cbi_2011_12_006 crossref_primary_10_1124_dmd_113_054353 crossref_primary_10_1016_j_lfs_2007_07_026 crossref_primary_10_1016_j_fitote_2017_01_010 crossref_primary_10_1517_17460441_2_7_923 crossref_primary_10_2174_1389200221666201217141025 crossref_primary_10_1016_j_ejps_2015_07_006 |
Cites_doi | 10.1038/nsb790 10.1038/nsb0102-4 10.1248/bpb1978.4.879 10.1124/dmd.104.000554 10.1021/tx050072+ 10.1016/S1074-5521(03)00071-1 10.1124/dmd.30.5.541 10.1016/S0006-8993(09)90022-1 10.1124/dmd.30.5.488 10.1038/nsb919 10.1016/0006-2952(80)90105-7 10.1111/j.2042-7158.1993.tb05547.x 10.1016/0006-2952(94)90461-8 10.1016/0003-9861(80)90386-0 10.1074/jbc.272.23.14769 10.1006/abbi.2001.2346 10.1248/bpb.20.869 10.1016/S0014-5793(99)01111-4 10.2174/1389200033489253 10.1016/S0003-9861(03)00286-8 10.1161/01.ATV.14.8.1346 10.1016/0003-2697(76)90527-3 10.1146/annurev.pharmtox.38.1.257 |
ContentType | Journal Article |
Copyright | 2006 American Society for Pharmacology and Experimental Therapeutics 2006 INIST-CNRS |
Copyright_xml | – notice: 2006 American Society for Pharmacology and Experimental Therapeutics – notice: 2006 INIST-CNRS |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1124/dmd.106.009381 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1521-009X |
EndPage | 1741 |
ExternalDocumentID | 10_1124_dmd_106_009381 16837570 18154520 34_10_1734 S0090955624036286 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .GJ 0R~ 18M 2WC 4.4 53G 5GY 5RE 5VS AAXUO ABJNI ABSQV ACGFO ACGFS ACIWK ACPRK ADBBV AENEX AERNN AFFNX AFOSN AFRAH AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CS3 DIK DU5 E3Z EBS EJD F5P F9R FDB FRP GX1 H13 HZ~ IH2 INIJC KQ8 LSO O9- OK1 P2P R0Z RHF RHI RPT SJN TR2 VH1 W2D W8F WH7 WOQ YCJ YHG ZGI ZXP ~KM - 08R 0R AAPBV AAWZA ABFLS ABSGY ADACO FH7 GJ HZ KM O0- IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c404t-a7f02212737af315a03153d53996f0921f294e7d71e02ab978ee8b5979cc35e03 |
ISSN | 0090-9556 |
IngestDate | Sat Aug 17 00:51:00 EDT 2024 Fri Dec 06 04:38:34 EST 2024 Sat Sep 28 07:42:04 EDT 2024 Sun Oct 22 16:05:13 EDT 2023 Tue Jan 05 21:17:01 EST 2021 Sat Dec 14 16:13:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Human Digestive system Enzyme Isozyme Liver Substrate specificity Hydrolases Esterases Carboxylesterase Small intestine Biological activity Carboxylic ester hydrolases |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c404t-a7f02212737af315a03153d53996f0921f294e7d71e02ab978ee8b5979cc35e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 16837570 |
PQID | 68876504 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_68876504 crossref_primary_10_1124_dmd_106_009381 pubmed_primary_16837570 pascalfrancis_primary_18154520 highwire_pharmacology_34_10_1734 elsevier_sciencedirect_doi_10_1124_dmd_106_009381 |
ProviderPackageCode | RHF RHI |
PublicationCentury | 2000 |
PublicationDate | 2006-10-01 |
PublicationDateYYYYMMDD | 2006-10-01 |
PublicationDate_xml | – month: 10 year: 2006 text: 2006-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Bethesda, MD |
PublicationPlace_xml | – name: Bethesda, MD – name: United States |
PublicationTitle | Drug metabolism and disposition |
PublicationTitleAlternate | Drug Metab Dispos |
PublicationYear | 2006 |
Publisher | Elsevier Inc American Society for Pharmacology and Experimental Therapeutics |
Publisher_xml | – sequence: 0 name: Elsevier Inc – name: American Society for Pharmacology and Experimental Therapeutics |
References | Beaumont, Webster, Gardner, Dack (bib1) 2003; 4 Xu, Zhang, Ma, McLeod (bib28) 2002; 8 Imai, Fukuhara, Ueda, Otagiri (bib18) 1993; 265 Pindel, Kedishvili, Abraham, Brzezinski, Zhang, Dean, Bosron (bib21) 1997; 272 Yamada, Hosokawa, Satoh, Moroo, Takahashi, Akatsu, Yamamoto (bib29) 1994; 658 Bencharit, Morton, Howard-Williams, Danks, Potter, Redinbo (bib3) 2002; 9 Takai, Matsuda, Usami, Adachi, Sugiyama, Katagiri, Tatematsu, Hirano (bib26) 1997; 20 Brzezinski, Abraham, Stone, Dean, Bosron (bib10) 1994; 48 Shameem, Imai, Otagiri (bib24) 1993; 45 Bencharit, Morton, Hyatt, Kuhn, Danks, Potter, Redinbo (bib4) 2003; 10 Furihata, Hosokawa, Nakata, Satoh, Chiba (bib13) 2003; 416 Bradford (bib8) 1976; 72 Yamaoka, Tanigawara, Nakagawa, Uno (bib30) 1981; 4 Zhang, Burnell, Dumaual, Bosron (bib31) 1999; 290 Huang, Fleming, Nishi, Redinbo, Hammock (bib16) 2005; 18 Mentlein, Heiland, Heymann (bib19) 1980; 200 Mori, Hosokawa, Ogasawara, Tsukada, Chiba (bib20) 1999; 458 Satoh, Hosokawa (bib22) 1998; 38 Bodor, Buchwald (bib6) 2002; 186 Becker, Bottcher, Lackner, Fehringer, Notka, Aslanidis, Schmitz (bib2) 1994; 14 Hosokawa, Endo, Fujisawa, Hara, Iwata, Sato, Satoh (bib14) 1995; 23 Bencharit, Morton, Xue, Potter, Redinbo (bib5) 2003; 10 Humerickhouse, Lohrbach, Li, Bosron, Dolan (bib17) 2000; 60 Xie, Yang, Liu, Xue, Yan (bib27) 2002; 30 Satoh, Taylor, Bosron, Sanghani, Hosokawa, Du (bib23) 2002; 30 Bosron, Hurley (bib7) 2002; 9 Brzezinski, Spink, Dean, Berkman, Cashman, Bosron (bib11) 1997; 25 Hosokawa, Suzuki, Takahashi, Mori, Satoh, Chiba (bib15) 2001; 389 Brandt, Heymann, Mentlein (bib9) 1980; 29 Buchwald, Bodor (bib12) 2002; 57 Tabata, Katoh, Tokudome, Nakajima, Yokoi (bib25) 2004; 32 2019091113262231000_34.10.1734.2 2019091113262231000_34.10.1734.1 (2019091113262231000_34.10.1734.28) 2002; 8 (2019091113262231000_34.10.1734.12) 2002; 57 (2019091113262231000_34.10.1734.17) 2000; 60 2019091113262231000_34.10.1734.27 (2019091113262231000_34.10.1734.18) 1993; 265 (2019091113262231000_34.10.1734.29) 1994; 658 (2019091113262231000_34.10.1734.11) 1997; 25 2019091113262231000_34.10.1734.9 2019091113262231000_34.10.1734.20 2019091113262231000_34.10.1734.8 (2019091113262231000_34.10.1734.14) 1995; 23 2019091113262231000_34.10.1734.21 2019091113262231000_34.10.1734.7 2019091113262231000_34.10.1734.22 2019091113262231000_34.10.1734.23 2019091113262231000_34.10.1734.5 2019091113262231000_34.10.1734.24 2019091113262231000_34.10.1734.4 2019091113262231000_34.10.1734.25 2019091113262231000_34.10.1734.3 2019091113262231000_34.10.1734.26 (2019091113262231000_34.10.1734.31) 1999; 290 2019091113262231000_34.10.1734.16 2019091113262231000_34.10.1734.19 2019091113262231000_34.10.1734.30 (2019091113262231000_34.10.1734.6) 2002; 186 2019091113262231000_34.10.1734.10 2019091113262231000_34.10.1734.13 2019091113262231000_34.10.1734.15 |
References_xml | – volume: 9 start-page: 4 year: 2002 end-page: 5 ident: bib7 article-title: Lessons from a bacterial cocaine esterase. publication-title: Nat Struct Biol contributor: fullname: Hurley – volume: 32 start-page: 1103 year: 2004 end-page: 1110 ident: bib25 article-title: Identification of the cytosolic carboxylesterase catalyzing the 5′-deoxy-5-fluorocytidine formation from capecitabine in human liver. publication-title: Drug Metab Dispos contributor: fullname: Yokoi – volume: 20 start-page: 869 year: 1997 end-page: 873 ident: bib26 article-title: Hydrolytic profile for ester- or amide-linkage by carboxylesterases pI 5.3 and 4.5 from human liver. publication-title: Biol Pharm Bull contributor: fullname: Hirano – volume: 265 start-page: 328 year: 1993 end-page: 333 ident: bib18 article-title: An evaluation of an anti-inflammatory-histamine H publication-title: J Pharmacol Exp Ther contributor: fullname: Otagiri – volume: 10 start-page: 341 year: 2003 end-page: 349 ident: bib4 article-title: Crystal structure of human carboxylesterase 1 complexed with the Alzheimer’s drug tacrine: from binding promiscuity to selective inhibition. publication-title: Chem-Biol contributor: fullname: Redinbo – volume: 14 start-page: 1346 year: 1994 end-page: 1355 ident: bib2 article-title: Purification, cloning, and expression of human enzyme with acyl coenzyme A:cholesterol acyl-transferase activity, which is identical to liver carboxylesterase. publication-title: Arterioscler Thromb contributor: fullname: Schmitz – volume: 389 start-page: 245 year: 2001 end-page: 253 ident: bib15 article-title: Purification, molecular cloning and expression of dog liver microsomal acyl-CoA hydrolase: a member of the carboxylesterase multigene family. publication-title: Arch Biochem Biophys contributor: fullname: Chiba – volume: 72 start-page: 248 year: 1976 end-page: 254 ident: bib8 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. publication-title: Anal Biochem contributor: fullname: Bradford – volume: 458 start-page: 17 year: 1999 end-page: 22 ident: bib20 article-title: cDNA cloning, characterization and stable expression of novel human brain carboxylesterase. publication-title: FEBS Lett contributor: fullname: Chiba – volume: 8 start-page: 2605 year: 2002 end-page: 2611 ident: bib28 article-title: Human carboxylesterase 2 is commonly expressed in tumor tissue and is correlated with activation of irinotecan. publication-title: Clin Cancer Res contributor: fullname: McLeod – volume: 9 start-page: 337 year: 2002 end-page: 342 ident: bib3 article-title: Structural insights into CPT-11 activation by mammalian carboxylesterases. publication-title: Nat Struct Biol contributor: fullname: Redinbo – volume: 4 start-page: 461 year: 2003 end-page: 485 ident: bib1 article-title: Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: challenges to the discovery scientist. publication-title: Curr Drug Metab contributor: fullname: Dack – volume: 25 start-page: 1089 year: 1997 end-page: 1096 ident: bib11 article-title: Human liver carboxylesterase hCE-1: binding specificity for cocaine, heroin, and their metabolites and analogs. publication-title: Drug Metab Dispos contributor: fullname: Bosron – volume: 38 start-page: 257 year: 1998 end-page: 288 ident: bib22 article-title: The mammalian carboxylesterases: from molecules to functions. publication-title: Annu Rev Pharmacol Toxicol contributor: fullname: Hosokawa – volume: 29 start-page: 1927 year: 1980 end-page: 1931 ident: bib9 article-title: Selective inhibition of rat liver carboxylesterases by various organophosphorus diesters publication-title: Biochem Pharmacol contributor: fullname: Mentlein – volume: 10 start-page: 349 year: 2003 end-page: 356 ident: bib5 article-title: Structural basis of heroin and cocaine metabolism by a promiscuous human drug-processing enzyme. publication-title: Nat Struct Biol contributor: fullname: Redinbo – volume: 186 start-page: 301 year: 2002 end-page: 312 ident: bib6 article-title: Designing safer (soft) drugs by avoiding the formation of toxic and oxidative metabolites. publication-title: Methods Mol Biol contributor: fullname: Buchwald – volume: 30 start-page: 488 year: 2002 end-page: 493 ident: bib23 article-title: Current progress on esterases: from molecular structure to function. publication-title: Drug Metab Dispos contributor: fullname: Du – volume: 18 start-page: 1371 year: 2005 end-page: 1377 ident: bib16 article-title: Stereoselective hydrolysis of pyrethroid-like fluorescent substrates by human and other mammalian liver carboxylesterases. publication-title: Chem Res Toxicol contributor: fullname: Hammock – volume: 60 start-page: 1189 year: 2000 end-page: 1192 ident: bib17 article-title: Characterization of CPT-11 hydrolysis by human liver carboxylesterase isoforms hCE-1 and hCE-2. publication-title: Cancer Res contributor: fullname: Dolan – volume: 416 start-page: 101 year: 2003 end-page: 109 ident: bib13 article-title: Purification, molecular cloning, and functional expression of C57BL/6 inducible mouse liver acylcarnitine hydrolase, belonging to the carboxylesterase multigene family publication-title: Arch Biochem Biophys contributor: fullname: Chiba – volume: 200 start-page: 547 year: 1980 end-page: 559 ident: bib19 article-title: Simultaneous purification and comparative characterization of six serine hydrolases from rat liver microsomes. publication-title: Arch Biochem Biophys contributor: fullname: Heymann – volume: 45 start-page: 246 year: 1993 end-page: 252 ident: bib24 article-title: An in-vitro and in-vivo correlative approach to the evaluation of ester prodrugs to improve oral delivery of propranolol. publication-title: J Pharm Pharmacol contributor: fullname: Otagiri – volume: 57 start-page: 87 year: 2002 end-page: 93 ident: bib12 article-title: Physicochemical aspects of the enzymatic hydrolysis of carboxylic esters. publication-title: Pharmazie contributor: fullname: Bodor – volume: 23 start-page: 1022 year: 1995 end-page: 1027 ident: bib14 article-title: Interindividual variation in carboxylesterase levels in human liver microsomes. publication-title: Drug Metab Dispos contributor: fullname: Satoh – volume: 290 start-page: 314 year: 1999 end-page: 318 ident: bib31 article-title: Binding and hydrolysis of meperidine by human liver carboxylesterase hCE-1. publication-title: J Pharmacol Exp Ther contributor: fullname: Bosron – volume: 4 start-page: 879 year: 1981 end-page: 885 ident: bib30 article-title: A pharmacokinetic analysis program (MULTI) for microcomputer. publication-title: J Pharmacobio-Dyn contributor: fullname: Uno – volume: 272 start-page: 14769 year: 1997 end-page: 14775 ident: bib21 article-title: Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin. publication-title: J Biol Chem contributor: fullname: Bosron – volume: 30 start-page: 541 year: 2002 end-page: 547 ident: bib27 article-title: Human and rodent carboxylesterases: immunorelatedness, overlapping substrate specificity, differential sensitivity to serine enzyme inhibitors, and tumor-related expression. publication-title: Drug Metab Dispos contributor: fullname: Yan – volume: 48 start-page: 1747 year: 1994 end-page: 1755 ident: bib10 article-title: Purification and characterization of a human liver cocaine carboxylesterase that catalyzes the production of benzoylecgonine and the formation of cocaethylene from alcohol and cocaine. publication-title: Biochem Pharmacol contributor: fullname: Bosron – volume: 658 start-page: 163 year: 1994 end-page: 167 ident: bib29 article-title: Immunohistochemistry with an antibody to human liver carboxylesterase in human brain tissues. publication-title: Brain Res contributor: fullname: Yamamoto – ident: 2019091113262231000_34.10.1734.3 doi: 10.1038/nsb790 – ident: 2019091113262231000_34.10.1734.7 doi: 10.1038/nsb0102-4 – ident: 2019091113262231000_34.10.1734.30 doi: 10.1248/bpb1978.4.879 – ident: 2019091113262231000_34.10.1734.25 doi: 10.1124/dmd.104.000554 – ident: 2019091113262231000_34.10.1734.16 doi: 10.1021/tx050072+ – ident: 2019091113262231000_34.10.1734.4 doi: 10.1016/S1074-5521(03)00071-1 – ident: 2019091113262231000_34.10.1734.27 doi: 10.1124/dmd.30.5.541 – volume: 8 start-page: 2605 year: 2002 ident: 2019091113262231000_34.10.1734.28 publication-title: Clin Cancer Res – volume: 60 start-page: 1189 year: 2000 ident: 2019091113262231000_34.10.1734.17 publication-title: Cancer Res – volume: 658 start-page: 163 year: 1994 ident: 2019091113262231000_34.10.1734.29 publication-title: Brain Res doi: 10.1016/S0006-8993(09)90022-1 – volume: 186 start-page: 301 year: 2002 ident: 2019091113262231000_34.10.1734.6 publication-title: Methods Mol Biol – ident: 2019091113262231000_34.10.1734.23 doi: 10.1124/dmd.30.5.488 – ident: 2019091113262231000_34.10.1734.5 doi: 10.1038/nsb919 – ident: 2019091113262231000_34.10.1734.9 doi: 10.1016/0006-2952(80)90105-7 – ident: 2019091113262231000_34.10.1734.24 doi: 10.1111/j.2042-7158.1993.tb05547.x – ident: 2019091113262231000_34.10.1734.10 doi: 10.1016/0006-2952(94)90461-8 – ident: 2019091113262231000_34.10.1734.19 doi: 10.1016/0003-9861(80)90386-0 – ident: 2019091113262231000_34.10.1734.21 doi: 10.1074/jbc.272.23.14769 – ident: 2019091113262231000_34.10.1734.15 doi: 10.1006/abbi.2001.2346 – ident: 2019091113262231000_34.10.1734.26 doi: 10.1248/bpb.20.869 – ident: 2019091113262231000_34.10.1734.20 doi: 10.1016/S0014-5793(99)01111-4 – ident: 2019091113262231000_34.10.1734.1 doi: 10.2174/1389200033489253 – ident: 2019091113262231000_34.10.1734.13 doi: 10.1016/S0003-9861(03)00286-8 – ident: 2019091113262231000_34.10.1734.2 doi: 10.1161/01.ATV.14.8.1346 – volume: 265 start-page: 328 year: 1993 ident: 2019091113262231000_34.10.1734.18 publication-title: J Pharmacol Exp Ther – ident: 2019091113262231000_34.10.1734.8 doi: 10.1016/0003-2697(76)90527-3 – ident: 2019091113262231000_34.10.1734.22 doi: 10.1146/annurev.pharmtox.38.1.257 – volume: 25 start-page: 1089 year: 1997 ident: 2019091113262231000_34.10.1734.11 publication-title: Drug Metab Dispos – volume: 57 start-page: 87 year: 2002 ident: 2019091113262231000_34.10.1734.12 publication-title: Pharmazie – volume: 23 start-page: 1022 year: 1995 ident: 2019091113262231000_34.10.1734.14 publication-title: Drug Metab Dispos – volume: 290 start-page: 314 year: 1999 ident: 2019091113262231000_34.10.1734.31 publication-title: J Pharmacol Exp Ther |
SSID | ssj0014439 |
Score | 2.371805 |
Snippet | Hydrolase activity from human liver and small intestine microsomes was compared with that of recombinant human carboxylesterases, hCE-1 and hCE-2. Although... Hydrolase activity from human liver and small intestine microsomes was compared with that of recombinant human carboxylesterases, hCE-1 and hCE-2. Although... |
SourceID | proquest crossref pubmed pascalfrancis highwire elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1734 |
SubjectTerms | Animals Benzoates - chemistry Benzoates - metabolism Biological and medical sciences Carboxylesterase - genetics Carboxylesterase - metabolism Carboxylic Ester Hydrolases - genetics Carboxylic Ester Hydrolases - metabolism Cell Line Flurbiprofen - chemistry Flurbiprofen - metabolism Humans Hydrolases - metabolism Hydrolysis Intestine, Small - enzymology Intestine, Small - metabolism Isoenzymes - genetics Isoenzymes - metabolism Liver - enzymology Liver - metabolism Medical sciences Microsomes - enzymology Microsomes - metabolism Microsomes, Liver - enzymology Microsomes, Liver - metabolism Molecular Structure Pharmacology. Drug treatments Propranolol - chemistry Propranolol - metabolism Substrate Specificity |
Title | Substrate Specificity of Carboxylesterase Isozymes and Their Contribution to Hydrolase Activity in Human Liver and Small Intestine |
URI | https://dx.doi.org/10.1124/dmd.106.009381 http://dmd.aspetjournals.org/content/34/10/1734.abstract https://www.ncbi.nlm.nih.gov/pubmed/16837570 https://search.proquest.com/docview/68876504 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCeFMeiw9oOXSz5OEkzRHBoi4vgehKe4ucxFmqbpOqTQTZIz-bEzO2k7iFisclihw5cfvN2DPj8TeEPE0ckQuRB1bkscRijKcWtz1uOTBNch6AgStrRr7_EExO2Zsz_2ww-GFkLdVVcpRe_vZcyf-gCm2AK56S_Qdku5dCA9wDvnAFhOH6Vxij1kt2WVVGHskg2hNXq6T81lxIGgRYp0Yn6_KyQV4mjJNP5eYA8lK11a7QAp002Qr8XCQqSXVJCeTBkkH-d5i9obI8F7iXjXFEmBuKjTyiV6v6HCtSg1hdtKU3slmXFtbFCMSqnpejkwWfdWiL83oxG035HHoXfTNvsPnzl5nRtAaTtymx3kk551_5VtSizX-rjIMCOIMZuakfe7JuxT11bBY5mPbn0cwwph3ZVuT7mk5bT-KuY8GDM3OW1yFTLc22MWc7oXr262LiMpCAbJEdOXLLKvJUdRlDspYLKVpOAH6-ryqgbHJ6b621XQakx2J0v-DTV8hVJHHEug9vP_U7YIx5ynXTv08TjsKYnm-OCGlv9ed32VYd9TVm_vI1KH-uqrbsdqukeTW9Qa5rv4i-UEJ-kwxEcYscaKyaQ2rickgPqInibfK90wRqaAItc7qtCbTVBArQU6kJ1NQEWpW00wTaagKdFVRqApWaIPtKTaCdJtwhp6-Ppy8nlq4uYqXMZpXFwxzsVwfM95DnnuNzrHfiZcjUHOR25Dq5GzERZqEjbJcnUTgWYpyA_x2lqecL27tL9oqyEPcJTfIo8H3ugfMgGAvGCSyaKUvcSIQ-z1w-JM9aXOKlIpGR6AOYMYAJ95hbimAOidPCFmsTWJm2MQjlzj60xTdeGn9-3MvYkOxv4N6PYowulGsPyZNWEGJYX3DTkBeirNdxAFYIeHHwintKPvq-Wuoe_Pn7D8m1fhJ4RPaqVS0egzFfJftS6n8CBJ79Aw |
link.rule.ids | 314,780,784,27924,27925 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Substrate+Specificity+of+Carboxylesterase+Isozymes+and+Their+Contribution+to+Hydrolase+Activity+in+Human+Liver+and+Small+Intestine&rft.jtitle=Drug+metabolism+and+disposition&rft.au=Teruko+Imai&rft.au=Megumi+Taketani&rft.au=Mayumi+Shii&rft.au=Masakiyo+Hosokawa&rft.date=2006-10-01&rft.pub=American+Society+for+Pharmacology+and+Experimental+Therapeutics&rft.issn=0090-9556&rft.eissn=1521-009X&rft.volume=34&rft.issue=10&rft.spage=1734&rft_id=info:doi/10.1124%2Fdmd.106.009381&rft_id=info%3Apmid%2F16837570&rft.externalDBID=n%2Fa&rft.externalDocID=34_10_1734 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-9556&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-9556&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-9556&client=summon |