COMMON AND INDIVIDUAL STRUCTURE OF BRAIN NETWORKS
This article focuses on the problem of studying shared- and individual-specific structure in replicated networks or graph-valued data. In particular, the observed data consist of graphs, , , with each graph consisting of a collection of edges between nodes. In brain connectomics, the graph for an in...
Saved in:
Published in | The annals of applied statistics Vol. 13; no. 1; p. 85 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
01.03.2019
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | This article focuses on the problem of studying shared- and individual-specific structure in replicated networks or graph-valued data. In particular, the observed data consist of
graphs,
,
, with each graph consisting of a collection of edges between
nodes. In brain connectomics, the graph for an individual corresponds to a set of interconnections among brain regions. Such data can be organized as a
binary adjacency matrix
for each
, with ones indicating an edge between a pair of nodes and zeros indicating no edge. When nodes have a shared meaning across replicates
, it becomes of substantial interest to study similarities and differences in the adjacency matrices. To address this problem, we propose a method to estimate a common structure and low-dimensional individual-specific deviations from replicated networks. The proposed Multiple GRAph Factorization (M-GRAF) model relies on a logistic regression mapping combined with a hierarchical eigenvalue decomposition. We develop an efficient algorithm for estimation and study basic properties of our approach. Simulation studies show excellent operating characteristics and we apply the method to human brain connectomics data. |
---|---|
AbstractList | This article focuses on the problem of studying shared- and individual-specific structure in replicated networks or graph-valued data. In particular, the observed data consist of
graphs,
,
, with each graph consisting of a collection of edges between
nodes. In brain connectomics, the graph for an individual corresponds to a set of interconnections among brain regions. Such data can be organized as a
binary adjacency matrix
for each
, with ones indicating an edge between a pair of nodes and zeros indicating no edge. When nodes have a shared meaning across replicates
, it becomes of substantial interest to study similarities and differences in the adjacency matrices. To address this problem, we propose a method to estimate a common structure and low-dimensional individual-specific deviations from replicated networks. The proposed Multiple GRAph Factorization (M-GRAF) model relies on a logistic regression mapping combined with a hierarchical eigenvalue decomposition. We develop an efficient algorithm for estimation and study basic properties of our approach. Simulation studies show excellent operating characteristics and we apply the method to human brain connectomics data. |
Author | Dunson, David Zhang, Zhengwu Wang, L U |
Author_xml | – sequence: 1 givenname: L U surname: Wang fullname: Wang, L U organization: DEPARTMENT OF STATISTICS, CENTRAL SOUTH UNIVERSITY, CHANGSHA HUNAN 410083, P.R. CHINA – sequence: 2 givenname: Zhengwu surname: Zhang fullname: Zhang, Zhengwu organization: DEPARTMENT OF BIOSTATISTICS AND COMPUTATIONAL BIOLOGY, UNIVERSITY OF ROCHESTER, ROCHESTER, NEW YORK 14642, USA – sequence: 3 givenname: David surname: Dunson fullname: Dunson, David organization: DEPARTMENT OF STATISTICAL SCIENCE, DUKE UNIVERSITY, DURHAM, NORTH CAROLINA 27708-0251, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40236978$$D View this record in MEDLINE/PubMed |
BookMark | eNo1jrtOwzAUQD0U0QdM7Mg_ELjXcZyb0SQpRKSxlAeMVeLYEog-1JSBvwcJWM7Zjs6SzfaHvWPsBuEOBcp7pEAb3SAm4YwtfigChVE8Z8tpegeIJEm8ZHMJIlRJTAuGqdlsTMV1lfGiyoqXIut0yZu27tK2q3Nu1vyh1kXFq7x9NfVzc8UufP8xues_r1i3ztv0KSjNY5HqMrAS5DlIxl5Y51E58ORoSIZEhZEcQyWcAFLgwfpYegUOgASFVkqMqR_IElqPYsVuf7vHz2Hnxu3x9LbrT1_b_3fxDSdRP2M |
CitedBy_id | crossref_primary_10_1080_10618600_2020_1736085 crossref_primary_10_1093_comnet_cnaa046 crossref_primary_10_1093_biostatistics_kxae048 crossref_primary_10_1038_s42005_023_01270_5 crossref_primary_10_1080_10618600_2022_2074434 crossref_primary_10_1287_moor_2022_0201 crossref_primary_10_1214_19_STS757 crossref_primary_10_1016_j_csda_2024_108070 crossref_primary_10_1016_j_socnet_2020_12_002 crossref_primary_10_1093_bioinformatics_btac431 crossref_primary_10_1103_PhysRevE_105_014312 crossref_primary_10_1146_annurev_statistics_042720_023234 crossref_primary_10_1080_01621459_2022_2156349 crossref_primary_10_1214_23_AOS2264 crossref_primary_10_1214_23_AOAS1858 crossref_primary_10_1016_j_jad_2024_01_247 crossref_primary_10_1016_j_csda_2022_107432 crossref_primary_10_1080_01621459_2022_2063131 crossref_primary_10_1080_10618600_2022_2164289 crossref_primary_10_1093_biomet_asab058 crossref_primary_10_1080_02664763_2024_2431736 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1214/18-AOAS1193 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | 40236978 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH118927 |
GroupedDBID | 123 23M 2AX 6J9 AAWIL ABAWQ ABBHK ABFAN ABQDR ABXSQ ABYWD ABZEH ACDIW ACGFO ACHJO ACMTB ACTMH ADODI ADULT AELLO AENEX AETVE AEUPB AFFOW AFVYC AGLNM AIHAF AKBRZ ALMA_UNASSIGNED_HOLDINGS ALRMG AS~ CS3 DQDLB DSRWC EBS ECEWR EJD F5P FEDTE GIFXF GR0 HDK HQ6 HVGLF IPSME J9A JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST NPM OK1 P2P PUASD RBU RNS RPE SA0 SJN TN5 WHG WS9 |
ID | FETCH-LOGICAL-c404t-9da2cef16e0f8e8b9b96354d362e20860f0cf74f60e008283c44178ab8c81cf12 |
ISSN | 1932-6157 |
IngestDate | Sat Apr 19 01:23:01 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | random effects spectral embedding penalized logistic regression multiple graphs Binary networks |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c404t-9da2cef16e0f8e8b9b96354d362e20860f0cf74f60e008283c44178ab8c81cf12 |
OpenAccessLink | https://projecteuclid.org/journals/annals-of-applied-statistics/volume-13/issue-1/Common-and-individual-structure-of-brain-networks/10.1214/18-AOAS1193.pdf |
PMID | 40236978 |
ParticipantIDs | pubmed_primary_40236978 |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The annals of applied statistics |
PublicationTitleAlternate | Ann Appl Stat |
PublicationYear | 2019 |
SSID | ssj0054841 |
Score | 2.3997092 |
Snippet | This article focuses on the problem of studying shared- and individual-specific structure in replicated networks or graph-valued data. In particular, the... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 85 |
Title | COMMON AND INDIVIDUAL STRUCTURE OF BRAIN NETWORKS |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40236978 |
Volume | 13 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5OQeaDeL9LH3wb1bbLtvSx7MKqroVt1eHLSLNEX5wDJ4K_3pOkNzYV9SWUBkKbL3w553DOdxC6AJOe2LZwTAbEJ0W1bZMS6poOEzzGcAUyKuMdvaDejfD1qDbKG12q6pJ5fMk-vqwr-Q-q8A5wlVWyf0A2WxRewDPgCyMgDOOvMG6GkhKVQpQftPw7vyUTHgbDftRU2Qwh2KB9zw8qQXt4H_ZvBkVTVB4Qmskn08QalQVGWrs5D7VrOritREtR5ocnPn18fytYw0kBV54qn0QUZBFTmlKVkCDYdOBSauHojCWrS6dBU57uuLPExI6NZVCAmF7oAWXqNogFTGbPChQsFexd3cXn59kFWex0qoRK4CDIjqcyTKOvYPDCVMvS7EeSwkz4pqvCF5XRerrKglOhjIvhFtpMvALD0xBvoxU-3UEbvUxS93UX2RpsA8A2crCNDGwj7BgKbCMFew9Fnfaw2TWTfhcmwxaem-6EOowLu84tQTiJ3RjYsYYnYGNwB1xPS1hMNLCoW1wpD1aZ7B9HaEwYsZmwnX20On2Z8kNk8FoMxGqRCW6oBVzBhUUFlYmkAjzMI3Sg_3c806Im43Qnjr-dOUHl_LScojUBB5SfgUk2j8_V9n8CURkohA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COMMON+AND+INDIVIDUAL+STRUCTURE+OF+BRAIN+NETWORKS&rft.jtitle=The+annals+of+applied+statistics&rft.au=Wang%2C+L+U&rft.au=Zhang%2C+Zhengwu&rft.au=Dunson%2C+David&rft.date=2019-03-01&rft.issn=1932-6157&rft.volume=13&rft.issue=1&rft.spage=85&rft_id=info:doi/10.1214%2F18-AOAS1193&rft_id=info%3Apmid%2F40236978&rft_id=info%3Apmid%2F40236978&rft.externalDocID=40236978 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6157&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6157&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6157&client=summon |