COMMON AND INDIVIDUAL STRUCTURE OF BRAIN NETWORKS

This article focuses on the problem of studying shared- and individual-specific structure in replicated networks or graph-valued data. In particular, the observed data consist of graphs, , , with each graph consisting of a collection of edges between nodes. In brain connectomics, the graph for an in...

Full description

Saved in:
Bibliographic Details
Published inThe annals of applied statistics Vol. 13; no. 1; p. 85
Main Authors Wang, L U, Zhang, Zhengwu, Dunson, David
Format Journal Article
LanguageEnglish
Published United States 01.03.2019
Subjects
Online AccessGet more information

Cover

Loading…
Abstract This article focuses on the problem of studying shared- and individual-specific structure in replicated networks or graph-valued data. In particular, the observed data consist of graphs, , , with each graph consisting of a collection of edges between nodes. In brain connectomics, the graph for an individual corresponds to a set of interconnections among brain regions. Such data can be organized as a binary adjacency matrix for each , with ones indicating an edge between a pair of nodes and zeros indicating no edge. When nodes have a shared meaning across replicates , it becomes of substantial interest to study similarities and differences in the adjacency matrices. To address this problem, we propose a method to estimate a common structure and low-dimensional individual-specific deviations from replicated networks. The proposed Multiple GRAph Factorization (M-GRAF) model relies on a logistic regression mapping combined with a hierarchical eigenvalue decomposition. We develop an efficient algorithm for estimation and study basic properties of our approach. Simulation studies show excellent operating characteristics and we apply the method to human brain connectomics data.
AbstractList This article focuses on the problem of studying shared- and individual-specific structure in replicated networks or graph-valued data. In particular, the observed data consist of graphs, , , with each graph consisting of a collection of edges between nodes. In brain connectomics, the graph for an individual corresponds to a set of interconnections among brain regions. Such data can be organized as a binary adjacency matrix for each , with ones indicating an edge between a pair of nodes and zeros indicating no edge. When nodes have a shared meaning across replicates , it becomes of substantial interest to study similarities and differences in the adjacency matrices. To address this problem, we propose a method to estimate a common structure and low-dimensional individual-specific deviations from replicated networks. The proposed Multiple GRAph Factorization (M-GRAF) model relies on a logistic regression mapping combined with a hierarchical eigenvalue decomposition. We develop an efficient algorithm for estimation and study basic properties of our approach. Simulation studies show excellent operating characteristics and we apply the method to human brain connectomics data.
Author Dunson, David
Zhang, Zhengwu
Wang, L U
Author_xml – sequence: 1
  givenname: L U
  surname: Wang
  fullname: Wang, L U
  organization: DEPARTMENT OF STATISTICS, CENTRAL SOUTH UNIVERSITY, CHANGSHA HUNAN 410083, P.R. CHINA
– sequence: 2
  givenname: Zhengwu
  surname: Zhang
  fullname: Zhang, Zhengwu
  organization: DEPARTMENT OF BIOSTATISTICS AND COMPUTATIONAL BIOLOGY, UNIVERSITY OF ROCHESTER, ROCHESTER, NEW YORK 14642, USA
– sequence: 3
  givenname: David
  surname: Dunson
  fullname: Dunson, David
  organization: DEPARTMENT OF STATISTICAL SCIENCE, DUKE UNIVERSITY, DURHAM, NORTH CAROLINA 27708-0251, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40236978$$D View this record in MEDLINE/PubMed
BookMark eNo1jrtOwzAUQD0U0QdM7Mg_ELjXcZyb0SQpRKSxlAeMVeLYEog-1JSBvwcJWM7Zjs6SzfaHvWPsBuEOBcp7pEAb3SAm4YwtfigChVE8Z8tpegeIJEm8ZHMJIlRJTAuGqdlsTMV1lfGiyoqXIut0yZu27tK2q3Nu1vyh1kXFq7x9NfVzc8UufP8xues_r1i3ztv0KSjNY5HqMrAS5DlIxl5Y51E58ORoSIZEhZEcQyWcAFLgwfpYegUOgASFVkqMqR_IElqPYsVuf7vHz2Hnxu3x9LbrT1_b_3fxDSdRP2M
CitedBy_id crossref_primary_10_1080_10618600_2020_1736085
crossref_primary_10_1093_comnet_cnaa046
crossref_primary_10_1093_biostatistics_kxae048
crossref_primary_10_1038_s42005_023_01270_5
crossref_primary_10_1080_10618600_2022_2074434
crossref_primary_10_1287_moor_2022_0201
crossref_primary_10_1214_19_STS757
crossref_primary_10_1016_j_csda_2024_108070
crossref_primary_10_1016_j_socnet_2020_12_002
crossref_primary_10_1093_bioinformatics_btac431
crossref_primary_10_1103_PhysRevE_105_014312
crossref_primary_10_1146_annurev_statistics_042720_023234
crossref_primary_10_1080_01621459_2022_2156349
crossref_primary_10_1214_23_AOS2264
crossref_primary_10_1214_23_AOAS1858
crossref_primary_10_1016_j_jad_2024_01_247
crossref_primary_10_1016_j_csda_2022_107432
crossref_primary_10_1080_01621459_2022_2063131
crossref_primary_10_1080_10618600_2022_2164289
crossref_primary_10_1093_biomet_asab058
crossref_primary_10_1080_02664763_2024_2431736
ContentType Journal Article
DBID NPM
DOI 10.1214/18-AOAS1193
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 40236978
Genre Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH118927
GroupedDBID 123
23M
2AX
6J9
AAWIL
ABAWQ
ABBHK
ABFAN
ABQDR
ABXSQ
ABYWD
ABZEH
ACDIW
ACGFO
ACHJO
ACMTB
ACTMH
ADODI
ADULT
AELLO
AENEX
AETVE
AEUPB
AFFOW
AFVYC
AGLNM
AIHAF
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AS~
CS3
DQDLB
DSRWC
EBS
ECEWR
EJD
F5P
FEDTE
GIFXF
GR0
HDK
HQ6
HVGLF
IPSME
J9A
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
NPM
OK1
P2P
PUASD
RBU
RNS
RPE
SA0
SJN
TN5
WHG
WS9
ID FETCH-LOGICAL-c404t-9da2cef16e0f8e8b9b96354d362e20860f0cf74f60e008283c44178ab8c81cf12
ISSN 1932-6157
IngestDate Sat Apr 19 01:23:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords random effects
spectral embedding
penalized logistic regression
multiple graphs
Binary networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c404t-9da2cef16e0f8e8b9b96354d362e20860f0cf74f60e008283c44178ab8c81cf12
OpenAccessLink https://projecteuclid.org/journals/annals-of-applied-statistics/volume-13/issue-1/Common-and-individual-structure-of-brain-networks/10.1214/18-AOAS1193.pdf
PMID 40236978
ParticipantIDs pubmed_primary_40236978
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The annals of applied statistics
PublicationTitleAlternate Ann Appl Stat
PublicationYear 2019
SSID ssj0054841
Score 2.3997092
Snippet This article focuses on the problem of studying shared- and individual-specific structure in replicated networks or graph-valued data. In particular, the...
SourceID pubmed
SourceType Index Database
StartPage 85
Title COMMON AND INDIVIDUAL STRUCTURE OF BRAIN NETWORKS
URI https://www.ncbi.nlm.nih.gov/pubmed/40236978
Volume 13
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5OQeaDeL9LH3wb1bbLtvSx7MKqroVt1eHLSLNEX5wDJ4K_3pOkNzYV9SWUBkKbL3w553DOdxC6AJOe2LZwTAbEJ0W1bZMS6poOEzzGcAUyKuMdvaDejfD1qDbKG12q6pJ5fMk-vqwr-Q-q8A5wlVWyf0A2WxRewDPgCyMgDOOvMG6GkhKVQpQftPw7vyUTHgbDftRU2Qwh2KB9zw8qQXt4H_ZvBkVTVB4Qmskn08QalQVGWrs5D7VrOritREtR5ocnPn18fytYw0kBV54qn0QUZBFTmlKVkCDYdOBSauHojCWrS6dBU57uuLPExI6NZVCAmF7oAWXqNogFTGbPChQsFexd3cXn59kFWex0qoRK4CDIjqcyTKOvYPDCVMvS7EeSwkz4pqvCF5XRerrKglOhjIvhFtpMvALD0xBvoxU-3UEbvUxS93UX2RpsA8A2crCNDGwj7BgKbCMFew9Fnfaw2TWTfhcmwxaem-6EOowLu84tQTiJ3RjYsYYnYGNwB1xPS1hMNLCoW1wpD1aZ7B9HaEwYsZmwnX20On2Z8kNk8FoMxGqRCW6oBVzBhUUFlYmkAjzMI3Sg_3c806Im43Qnjr-dOUHl_LScojUBB5SfgUk2j8_V9n8CURkohA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COMMON+AND+INDIVIDUAL+STRUCTURE+OF+BRAIN+NETWORKS&rft.jtitle=The+annals+of+applied+statistics&rft.au=Wang%2C+L+U&rft.au=Zhang%2C+Zhengwu&rft.au=Dunson%2C+David&rft.date=2019-03-01&rft.issn=1932-6157&rft.volume=13&rft.issue=1&rft.spage=85&rft_id=info:doi/10.1214%2F18-AOAS1193&rft_id=info%3Apmid%2F40236978&rft_id=info%3Apmid%2F40236978&rft.externalDocID=40236978
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6157&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6157&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6157&client=summon