Towards improved magnetic fluid hyperthermia: major-loops to diminish variations in local heating
In the context of using magnetic nanoparticles for heat-mediated applications, the need of an accurate knowledge of the local (at the nanoparticle level) heat generation in addition to the usually studied global counterpart has been recently highlighted. Such a need requires accurate knowledge of th...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 19; no. 22; pp. 14527 - 14532 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
07.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the context of using magnetic nanoparticles for heat-mediated applications, the need of an accurate knowledge of the local (at the nanoparticle level) heat generation in addition to the usually studied global counterpart has been recently highlighted. Such a need requires accurate knowledge of the links among the intrinsic particle properties, system characteristics and experimental conditions. In this work we have investigated the role of the particles' anisotropy polydispersity in relation to the amplitude (
H
max
) of the AC magnetic field using a Monte Carlo technique. Our results indicate that it is better to use particles with large anisotropy for enhancing global heating, whereas for achieving homogeneous local heating it is better to use lower anisotropy particles. The latter ensures that most of the system undergoes major-loop hysteresis conditions, which is the key-point. This is equivalent to say that low-anisotropy particles (
i.e.
with less heating capability) may be better for accurate heat-mediated applications, which goes against some research trends in the literature that seek for large anisotropy (and hence heating) values.
A low anisotropy constant allows us to decrease local heating dispersion for a given applied magnetic field amplitude. |
---|---|
AbstractList | In the context of using magnetic nanoparticles for heat-mediated applications, the need of an accurate knowledge of the local (at the nanoparticle level) heat generation in addition to the usually studied global counterpart has been recently highlighted. Such a need requires accurate knowledge of the links among the intrinsic particle properties, system characteristics and experimental conditions. In this work we have investigated the role of the particles' anisotropy polydispersity in relation to the amplitude (Hmax) of the AC magnetic field using a Monte Carlo technique. Our results indicate that it is better to use particles with large anisotropy for enhancing global heating, whereas for achieving homogeneous local heating it is better to use lower anisotropy particles. The latter ensures that most of the system undergoes major-loop hysteresis conditions, which is the key-point. This is equivalent to say that low-anisotropy particles (i.e. with less heating capability) may be better for accurate heat-mediated applications, which goes against some research trends in the literature that seek for large anisotropy (and hence heating) values. In the context of using magnetic nanoparticles for heat-mediated applications, the need of an accurate knowledge of the local (at the nanoparticle level) heat generation in addition to the usually studied global counterpart has been recently highlighted. Such a need requires accurate knowledge of the links among the intrinsic particle properties, system characteristics and experimental conditions. In this work we have investigated the role of the particles' anisotropy polydispersity in relation to the amplitude (H ) of the AC magnetic field using a Monte Carlo technique. Our results indicate that it is better to use particles with large anisotropy for enhancing global heating, whereas for achieving homogeneous local heating it is better to use lower anisotropy particles. The latter ensures that most of the system undergoes major-loop hysteresis conditions, which is the key-point. This is equivalent to say that low-anisotropy particles (i.e. with less heating capability) may be better for accurate heat-mediated applications, which goes against some research trends in the literature that seek for large anisotropy (and hence heating) values. In the context of using magnetic nanoparticles for heat-mediated applications, the need of an accurate knowledge of the local (at the nanoparticle level) heat generation in addition to the usually studied global counterpart has been recently highlighted. Such a need requires accurate knowledge of the links among the intrinsic particle properties, system characteristics and experimental conditions. In this work we have investigated the role of the particles' anisotropy polydispersity in relation to the amplitude ( H max ) of the AC magnetic field using a Monte Carlo technique. Our results indicate that it is better to use particles with large anisotropy for enhancing global heating, whereas for achieving homogeneous local heating it is better to use lower anisotropy particles. The latter ensures that most of the system undergoes major-loop hysteresis conditions, which is the key-point. This is equivalent to say that low-anisotropy particles ( i.e. with less heating capability) may be better for accurate heat-mediated applications, which goes against some research trends in the literature that seek for large anisotropy (and hence heating) values. In the context of using magnetic nanoparticles for heat-mediated applications, the need of an accurate knowledge of the local (at the nanoparticle level) heat generation in addition to the usually studied global counterpart has been recently highlighted. Such a need requires accurate knowledge of the links among the intrinsic particle properties, system characteristics and experimental conditions. In this work we have investigated the role of the particles' anisotropy polydispersity in relation to the amplitude ( H max ) of the AC magnetic field using a Monte Carlo technique. Our results indicate that it is better to use particles with large anisotropy for enhancing global heating, whereas for achieving homogeneous local heating it is better to use lower anisotropy particles. The latter ensures that most of the system undergoes major-loop hysteresis conditions, which is the key-point. This is equivalent to say that low-anisotropy particles ( i.e. with less heating capability) may be better for accurate heat-mediated applications, which goes against some research trends in the literature that seek for large anisotropy (and hence heating) values. A low anisotropy constant allows us to decrease local heating dispersion for a given applied magnetic field amplitude. |
Author | Munoz-Menendez, Cristina Serantes, David Baldomir, Daniel Ruso, Juan M |
AuthorAffiliation | Instituto de Investigacións Tecnolóxicas and Departamento de Física Aplicada Universidade de Santiago de Compostela University of York Department of Physics |
AuthorAffiliation_xml | – name: Department of Physics – name: Universidade de Santiago de Compostela – name: Instituto de Investigacións Tecnolóxicas and Departamento de Física Aplicada – name: University of York |
Author_xml | – sequence: 1 givenname: Cristina surname: Munoz-Menendez fullname: Munoz-Menendez, Cristina – sequence: 2 givenname: David surname: Serantes fullname: Serantes, David – sequence: 3 givenname: Juan M surname: Ruso fullname: Ruso, Juan M – sequence: 4 givenname: Daniel surname: Baldomir fullname: Baldomir, Daniel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28537285$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFPGzEQhS2UChLKhXsr94YqLR2v7fUuNxpRWgkJDnBeee0JMdpdb-1Nqvz7OiSEW9XLvNHMpyfNmxmZ9L5HQs4ZXDLg1TejzABMiLw5IlMmCp5VUIrJoVfFCZnF-AIATDJ-TE7yUnKVypToR_9HBxup64bg12hpp597HJ2hi3blLF1uBgzjEkPn9FVavviQtd4PkY6eWte53sUlXevg9Oh8n4x62nqjW7rENOmfP5IPC91GPNvrKXn6cfM4_5nd3d_-ml_fZUaAGLOqwcJABSDRKqg4ypyzkhc5k1YUgLasVAOaW66E1Upaq7lkTdlgCTYJPyUXO990x-8VxrHuXDTYtrpHv4o1q5jkuVA5_AcKOWOCyy36dYea4GMMuKiH4DodNjWDept-PVfzh9f0vyf489531XRoD-hb3An4sgNCNIft-_vqwS4S8-lfDP8LPDSW8g |
CitedBy_id | crossref_primary_10_1063_1_5025922 crossref_primary_10_1039_D1NR03484G crossref_primary_10_1021_acsami_0c12900 crossref_primary_10_1021_acs_langmuir_7b03573 crossref_primary_10_1039_C8CP02513D crossref_primary_10_1016_j_jmmm_2018_04_032 crossref_primary_10_1016_j_pmatsci_2024_101267 crossref_primary_10_1016_j_addr_2020_06_025 crossref_primary_10_1021_acs_jpcc_9b06599 crossref_primary_10_1021_acsnano_7b05182 crossref_primary_10_3390_cancers13184583 crossref_primary_10_3390_nano11112786 crossref_primary_10_1021_acsanm_0c00568 crossref_primary_10_3390_magnetochemistry7040049 |
Cites_doi | 10.1063/1.4919250 10.1016/j.biomaterials.2014.04.036 10.1021/nl301499u 10.1063/1.4824649 10.1021/acs.jpcc.5b02555 10.1038/srep01652 10.1016/j.biomaterials.2016.11.008 10.1063/1.4935688 10.1016/j.jmmm.2006.06.005 10.1039/c2cs15337h 10.1088/0022-3727/46/31/312001 10.1021/acs.jpcc.6b02006 10.1002/ange.201305835 10.1016/j.jallcom.2017.01.297 10.1007/s11095-012-0710-z 10.1021/nn201822b 10.1007/s10948-012-1974-6 10.1088/0022-3727/36/13/202 10.1103/PhysRevB.90.214421 10.1088/0957-4484/22/26/265102 10.1021/nl400188q 10.1021/jp907046f 10.1039/C6SM01910B 10.1039/C5CP04539H 10.1063/1.4824079 10.1016/j.physleta.2014.09.028 |
ContentType | Journal Article |
DBID | NPM AAYXX CITATION 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1039/c7cp01442b |
DatabaseName | PubMed CrossRef MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 14532 |
ExternalDocumentID | 10_1039_C7CP01442B 28537285 c7cp01442b |
Genre | Journal Article |
GroupedDBID | -JG 0-7 1TJ 705 70J 70~ 7~J AAEMU ABGFH ACLDK ADSRN AEFDR AFVBQ AGSTE AUDPV BSQNT C6K EE0 EF- GNO H~N IDZ J3G J3I R7B R7C RCNCU RPMJG RRC RSCEA SKA SKF SLH VH6 --- -DZ -~X 0R~ 123 29O 2WC 4.4 53G 87K AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACNCT ADMRA AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AGEGJ AGKEF AGRSR AHGCF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AZFZN BLAPV CS3 D0L DU5 EBS ECGLT EJD F5P GGIMP H13 HZ~ M4U N9A NHB NPM O9- OK1 P2P RAOCF RIG RNS RRA TN5 TWZ UCJ UHB WH7 YNT 0UZ 6TJ 71~ 9M8 AAYXX ACHDF ACMRT AFFNX AHGXI ANLMG ASPBG AVWKF BBWZM CAG CITATION COF EEHRC FEDTE HVGLF H~9 IDY J3H KC5 L-8 MVM NDZJH R56 RCLXC ROL XJT XOL ZCG 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c404t-9be6c09005ed7093e5231836215d460ed897b0a3d374da75dda351b8be80db8b3 |
ISSN | 1463-9076 |
IngestDate | Fri Oct 25 07:19:06 EDT 2024 Fri Oct 25 00:51:26 EDT 2024 Fri Aug 23 01:24:28 EDT 2024 Sat Sep 28 08:46:13 EDT 2024 Thu May 30 17:34:35 EDT 2019 Mon Jan 28 17:10:43 EST 2019 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c404t-9be6c09005ed7093e5231836215d460ed897b0a3d374da75dda351b8be80db8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3860-2133 0000-0003-1835-3915 |
OpenAccessLink | https://minerva.usc.es/xmlui/bitstream/10347/16803/2/2017_PCCP_munoz_towards_improved_postprint.pdf |
PMID | 28537285 |
PQID | 1902114350 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1915324720 crossref_primary_10_1039_C7CP01442B rsc_primary_c7cp01442b proquest_miscellaneous_1902114350 pubmed_primary_28537285 |
ProviderPackageCode | J3I ACLDK RRC 7~J AEFDR 70~ VH6 GNO RCNCU SLH 70J EE0 RSCEA AFVBQ C6K H~N 0-7 IDZ RPMJG 1TJ SKA -JG AGSTE AUDPV EF- BSQNT SKF ADSRN ABGFH 705 R7B AAEMU J3G R7C |
PublicationCentury | 2000 |
PublicationDate | 20170607 |
PublicationDateYYYYMMDD | 2017-06-07 |
PublicationDate_xml | – month: 6 year: 2017 text: 20170607 day: 7 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2017 |
References | Cruz (C7CP01442B-(cit27)/*[position()=1]) 2017; 703 Das (C7CP01442B-(cit26)/*[position()=1]) 2016; 120 Creixell (C7CP01442B-(cit14)/*[position()=1]) 2011; 5 Dutz (C7CP01442B-(cit5)/*[position()=1]) 2011; 22 Dias (C7CP01442B-(cit18)/*[position()=1]) 2013; 125 Périgo (C7CP01442B-(cit4)/*[position()=1]) 2015; 2 Martinez-Boubeta (C7CP01442B-(cit23)/*[position()=1]) 2013; 3 Asin (C7CP01442B-(cit15)/*[position()=1]) 2012; 29 Colombo (C7CP01442B-(cit1)/*[position()=1]) 2012; 41 Russier (C7CP01442B-(cit21)/*[position()=1]) 2013; 114 Di Corato (C7CP01442B-(cit6)/*[position()=1]) 2014; 35 Sanz (C7CP01442B-(cit29)/*[position()=1]) 2017; 114 Correia (C7CP01442B-(cit25)/*[position()=1]) 2014; 378 Tartaj (C7CP01442B-(cit2)/*[position()=1]) 2003; 36 Conde-Leboran (C7CP01442B-(cit10)/*[position()=1]) 2015; 119 Tan (C7CP01442B-(cit13)/*[position()=1]) 2014; 90 Khurshid (C7CP01442B-(cit24)/*[position()=1]) 2015; 117 Hergt (C7CP01442B-(cit9)/*[position()=1]) 2006; 18 Munoz-Menendez (C7CP01442B-(cit8)/*[position()=1]) 2015; 17 Villanueva (C7CP01442B-(cit16)/*[position()=1]) 2010; 114 Noh (C7CP01442B-(cit22)/*[position()=1]) 2012; 12 Vallejo-Fernandez (C7CP01442B-(cit28)/*[position()=1]) 2013; 46 Dutz (C7CP01442B-(cit11)/*[position()=1]) 2007; 308 Ortega (C7CP01442B-(cit3)/*[position()=1]) 2013 Usov (C7CP01442B-(cit20)/*[position()=1]) 2013; 26 Munoz-Menendez (C7CP01442B-(cit19)/*[position()=1]) 2016; 12 Vallejo-Fernandez (C7CP01442B-(cit12)/*[position()=1]) 2013; 103 Riedinger (C7CP01442B-(cit17)/*[position()=1]) 2013; 13 |
References_xml | – issn: 2013 end-page: p 60-88 publication-title: in Nanoscience: Nanostructures through Chemistry doi: Ortega Pankhurst – volume: 117 start-page: 17A337 year: 2015 ident: C7CP01442B-(cit24)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.4919250 contributor: fullname: Khurshid – volume: 35 start-page: 6400 year: 2014 ident: C7CP01442B-(cit6)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.04.036 contributor: fullname: Di Corato – volume: 12 start-page: 3716 year: 2012 ident: C7CP01442B-(cit22)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl301499u contributor: fullname: Noh – volume: 103 start-page: 142417 year: 2013 ident: C7CP01442B-(cit12)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4824649 contributor: fullname: Vallejo-Fernandez – volume: 119 start-page: 15698 year: 2015 ident: C7CP01442B-(cit10)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b02555 contributor: fullname: Conde-Leboran – volume-title: in Nanoscience: Nanostructures through Chemistry year: 2013 ident: C7CP01442B-(cit3)/*[position()=1] contributor: fullname: Ortega – volume: 3 start-page: 1652 year: 2013 ident: C7CP01442B-(cit23)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep01652 contributor: fullname: Martinez-Boubeta – volume: 114 start-page: 62 year: 2017 ident: C7CP01442B-(cit29)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.11.008 contributor: fullname: Sanz – volume: 2 start-page: 041302 year: 2015 ident: C7CP01442B-(cit4)/*[position()=1] publication-title: Appl. Phys. Rev. doi: 10.1063/1.4935688 contributor: fullname: Périgo – volume: 308 start-page: 305 year: 2007 ident: C7CP01442B-(cit11)/*[position()=1] publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2006.06.005 contributor: fullname: Dutz – volume: 41 start-page: 4306 year: 2012 ident: C7CP01442B-(cit1)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs15337h contributor: fullname: Colombo – volume: 46 start-page: 312001 year: 2013 ident: C7CP01442B-(cit28)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/46/31/312001 contributor: fullname: Vallejo-Fernandez – volume: 120 start-page: 10086 year: 2016 ident: C7CP01442B-(cit26)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b02006 contributor: fullname: Das – volume: 125 start-page: 11740 year: 2013 ident: C7CP01442B-(cit18)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/ange.201305835 contributor: fullname: Dias – volume: 703 start-page: 370 year: 2017 ident: C7CP01442B-(cit27)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.01.297 contributor: fullname: Cruz – volume: 29 start-page: 1319 year: 2012 ident: C7CP01442B-(cit15)/*[position()=1] publication-title: Pharm. Res. doi: 10.1007/s11095-012-0710-z contributor: fullname: Asin – volume: 5 start-page: 7124 year: 2011 ident: C7CP01442B-(cit14)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn201822b contributor: fullname: Creixell – volume: 26 start-page: 1079 year: 2013 ident: C7CP01442B-(cit20)/*[position()=1] publication-title: J. Supercond. Novel Magn. doi: 10.1007/s10948-012-1974-6 contributor: fullname: Usov – volume: 36 start-page: R182 year: 2003 ident: C7CP01442B-(cit2)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/36/13/202 contributor: fullname: Tartaj – volume: 90 start-page: 214421 year: 2014 ident: C7CP01442B-(cit13)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.90.214421 contributor: fullname: Tan – volume: 22 start-page: 265102 year: 2011 ident: C7CP01442B-(cit5)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/22/26/265102 contributor: fullname: Dutz – volume: 13 start-page: 2399 year: 2013 ident: C7CP01442B-(cit17)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl400188q contributor: fullname: Riedinger – volume: 114 start-page: 1976 year: 2010 ident: C7CP01442B-(cit16)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp907046f contributor: fullname: Villanueva – volume: 12 start-page: 8815 year: 2016 ident: C7CP01442B-(cit19)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C6SM01910B contributor: fullname: Munoz-Menendez – volume: 17 start-page: 27812 year: 2015 ident: C7CP01442B-(cit8)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP04539H contributor: fullname: Munoz-Menendez – volume: 114 start-page: 143904 year: 2013 ident: C7CP01442B-(cit21)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.4824079 contributor: fullname: Russier – volume: 18 start-page: S2919 year: 2006 ident: C7CP01442B-(cit9)/*[position()=1] publication-title: J. Phys.: Condens. Matter contributor: fullname: Hergt – volume: 378 start-page: 3366 year: 2014 ident: C7CP01442B-(cit25)/*[position()=1] publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2014.09.028 contributor: fullname: Correia |
SSID | ssj0001513 |
Score | 2.3942935 |
Snippet | In the context of using magnetic nanoparticles for heat-mediated applications, the need of an accurate knowledge of the local (at the nanoparticle level) heat... |
SourceID | proquest crossref pubmed rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14527 |
SubjectTerms | Anisotropy Equivalence Heat generation Heating Hysteresis Magnetic fields Magnetic fluids Nanoparticles |
Title | Towards improved magnetic fluid hyperthermia: major-loops to diminish variations in local heating |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28537285 https://search.proquest.com/docview/1902114350 https://search.proquest.com/docview/1915324720 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gAXxKuw5SEjuK1SvLHzMLcSFRVE0R62Um9REjtt0G6yyiY99AfwuxnbcZI-QMAlGznZRPH3aeazPZ5B6L0I3TznIYxUJXMdJqlweE6ok3th7gnCRaIn9E---8en7OuZdzaZ_BxFLbVNepBd3bmv5H9QhTbAVe2S_Qdk-4dCA5wDvnAEhOH4dxjrmNet2upYV5cgHdfJeal2Jc7yVVuI2QUMMmul8NaFLsGzTn5UtbOqqo3O6yAKnVjkYnYJA-YhqFy7N6UgG-vWOvG6sJhmtkqcOVNNZoZkq2cYFlG0GIAsqyvnBCyqnayOtFkpe3cA1kqhu70RYa-C77dmWahVC0rDlOtKVOuiHvbHjycu5jrKzlS4PZDG2DKfOpyYEnG9NeYj1pkty51tnTPPpBG4ZfUJVUlTsyDbqPGhe801wGdv1hp_F5RJ4JoCQTdybNtL99CuCwYLLOXu4dHyy7fep4Muoja5LeUfhlepZNLdn68rm1vDFRAvtS0qo8XL8hF62I068KGh0GM0keUTdD-yMD5FSUclbKmELZWwphIeU-kjHhEJNxW2RMIDkXBRYk0k3BHpGTr9fLSMjp2u-oaTMcIah6fSzwgHKy1FQDiVnqvsvw8aUTCfSBHyICUJFTRgIgk8IRLqzdMwlSER8EP30E5ZlfIFwgGVBPyCyPw8ZTljPAl95di8LCOh9MQUvbM9F29MkpVYB0dQHkdBtNBd_WmK3tpOjaF31MJWUsqq3cYgat25Ev7kT_eAb3dZ4MI9zw0i_bssglO0BxD1zQPKU7R_94V4I_L93z7vJXowEP8V2mnqVr4GDdukbzqC_QJFyKAf |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+improved+magnetic+fluid+hyperthermia%3A+major-loops+to+diminish+variations+in+local+heating&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Munoz-Menendez%2C+Cristina&rft.au=Serantes%2C+David&rft.au=Ruso%2C+Juan+M&rft.au=Baldomir%2C+Daniel&rft.date=2017-06-07&rft.eissn=1463-9084&rft.volume=19&rft.issue=22&rft.spage=14527&rft_id=info:doi/10.1039%2Fc7cp01442b&rft_id=info%3Apmid%2F28537285&rft.externalDocID=28537285 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |