Towards improved magnetic fluid hyperthermia: major-loops to diminish variations in local heating

In the context of using magnetic nanoparticles for heat-mediated applications, the need of an accurate knowledge of the local (at the nanoparticle level) heat generation in addition to the usually studied global counterpart has been recently highlighted. Such a need requires accurate knowledge of th...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 19; no. 22; pp. 14527 - 14532
Main Authors Munoz-Menendez, Cristina, Serantes, David, Ruso, Juan M, Baldomir, Daniel
Format Journal Article
LanguageEnglish
Published England 07.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the context of using magnetic nanoparticles for heat-mediated applications, the need of an accurate knowledge of the local (at the nanoparticle level) heat generation in addition to the usually studied global counterpart has been recently highlighted. Such a need requires accurate knowledge of the links among the intrinsic particle properties, system characteristics and experimental conditions. In this work we have investigated the role of the particles' anisotropy polydispersity in relation to the amplitude ( H max ) of the AC magnetic field using a Monte Carlo technique. Our results indicate that it is better to use particles with large anisotropy for enhancing global heating, whereas for achieving homogeneous local heating it is better to use lower anisotropy particles. The latter ensures that most of the system undergoes major-loop hysteresis conditions, which is the key-point. This is equivalent to say that low-anisotropy particles ( i.e. with less heating capability) may be better for accurate heat-mediated applications, which goes against some research trends in the literature that seek for large anisotropy (and hence heating) values. A low anisotropy constant allows us to decrease local heating dispersion for a given applied magnetic field amplitude.
AbstractList In the context of using magnetic nanoparticles for heat-mediated applications, the need of an accurate knowledge of the local (at the nanoparticle level) heat generation in addition to the usually studied global counterpart has been recently highlighted. Such a need requires accurate knowledge of the links among the intrinsic particle properties, system characteristics and experimental conditions. In this work we have investigated the role of the particles' anisotropy polydispersity in relation to the amplitude (Hmax) of the AC magnetic field using a Monte Carlo technique. Our results indicate that it is better to use particles with large anisotropy for enhancing global heating, whereas for achieving homogeneous local heating it is better to use lower anisotropy particles. The latter ensures that most of the system undergoes major-loop hysteresis conditions, which is the key-point. This is equivalent to say that low-anisotropy particles (i.e. with less heating capability) may be better for accurate heat-mediated applications, which goes against some research trends in the literature that seek for large anisotropy (and hence heating) values.
In the context of using magnetic nanoparticles for heat-mediated applications, the need of an accurate knowledge of the local (at the nanoparticle level) heat generation in addition to the usually studied global counterpart has been recently highlighted. Such a need requires accurate knowledge of the links among the intrinsic particle properties, system characteristics and experimental conditions. In this work we have investigated the role of the particles' anisotropy polydispersity in relation to the amplitude (H ) of the AC magnetic field using a Monte Carlo technique. Our results indicate that it is better to use particles with large anisotropy for enhancing global heating, whereas for achieving homogeneous local heating it is better to use lower anisotropy particles. The latter ensures that most of the system undergoes major-loop hysteresis conditions, which is the key-point. This is equivalent to say that low-anisotropy particles (i.e. with less heating capability) may be better for accurate heat-mediated applications, which goes against some research trends in the literature that seek for large anisotropy (and hence heating) values.
In the context of using magnetic nanoparticles for heat-mediated applications, the need of an accurate knowledge of the local (at the nanoparticle level) heat generation in addition to the usually studied global counterpart has been recently highlighted. Such a need requires accurate knowledge of the links among the intrinsic particle properties, system characteristics and experimental conditions. In this work we have investigated the role of the particles' anisotropy polydispersity in relation to the amplitude ( H max ) of the AC magnetic field using a Monte Carlo technique. Our results indicate that it is better to use particles with large anisotropy for enhancing global heating, whereas for achieving homogeneous local heating it is better to use lower anisotropy particles. The latter ensures that most of the system undergoes major-loop hysteresis conditions, which is the key-point. This is equivalent to say that low-anisotropy particles ( i.e. with less heating capability) may be better for accurate heat-mediated applications, which goes against some research trends in the literature that seek for large anisotropy (and hence heating) values.
In the context of using magnetic nanoparticles for heat-mediated applications, the need of an accurate knowledge of the local (at the nanoparticle level) heat generation in addition to the usually studied global counterpart has been recently highlighted. Such a need requires accurate knowledge of the links among the intrinsic particle properties, system characteristics and experimental conditions. In this work we have investigated the role of the particles' anisotropy polydispersity in relation to the amplitude ( H max ) of the AC magnetic field using a Monte Carlo technique. Our results indicate that it is better to use particles with large anisotropy for enhancing global heating, whereas for achieving homogeneous local heating it is better to use lower anisotropy particles. The latter ensures that most of the system undergoes major-loop hysteresis conditions, which is the key-point. This is equivalent to say that low-anisotropy particles ( i.e. with less heating capability) may be better for accurate heat-mediated applications, which goes against some research trends in the literature that seek for large anisotropy (and hence heating) values. A low anisotropy constant allows us to decrease local heating dispersion for a given applied magnetic field amplitude.
Author Munoz-Menendez, Cristina
Serantes, David
Baldomir, Daniel
Ruso, Juan M
AuthorAffiliation Instituto de Investigacións Tecnolóxicas and Departamento de Física Aplicada
Universidade de Santiago de Compostela
University of York
Department of Physics
AuthorAffiliation_xml – name: Department of Physics
– name: Universidade de Santiago de Compostela
– name: Instituto de Investigacións Tecnolóxicas and Departamento de Física Aplicada
– name: University of York
Author_xml – sequence: 1
  givenname: Cristina
  surname: Munoz-Menendez
  fullname: Munoz-Menendez, Cristina
– sequence: 2
  givenname: David
  surname: Serantes
  fullname: Serantes, David
– sequence: 3
  givenname: Juan M
  surname: Ruso
  fullname: Ruso, Juan M
– sequence: 4
  givenname: Daniel
  surname: Baldomir
  fullname: Baldomir, Daniel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28537285$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFPGzEQhS2UChLKhXsr94YqLR2v7fUuNxpRWgkJDnBeee0JMdpdb-1Nqvz7OiSEW9XLvNHMpyfNmxmZ9L5HQs4ZXDLg1TejzABMiLw5IlMmCp5VUIrJoVfFCZnF-AIATDJ-TE7yUnKVypToR_9HBxup64bg12hpp597HJ2hi3blLF1uBgzjEkPn9FVavviQtd4PkY6eWte53sUlXevg9Oh8n4x62nqjW7rENOmfP5IPC91GPNvrKXn6cfM4_5nd3d_-ml_fZUaAGLOqwcJABSDRKqg4ypyzkhc5k1YUgLasVAOaW66E1Upaq7lkTdlgCTYJPyUXO990x-8VxrHuXDTYtrpHv4o1q5jkuVA5_AcKOWOCyy36dYea4GMMuKiH4DodNjWDept-PVfzh9f0vyf489531XRoD-hb3An4sgNCNIft-_vqwS4S8-lfDP8LPDSW8g
CitedBy_id crossref_primary_10_1063_1_5025922
crossref_primary_10_1039_D1NR03484G
crossref_primary_10_1021_acsami_0c12900
crossref_primary_10_1021_acs_langmuir_7b03573
crossref_primary_10_1039_C8CP02513D
crossref_primary_10_1016_j_jmmm_2018_04_032
crossref_primary_10_1016_j_pmatsci_2024_101267
crossref_primary_10_1016_j_addr_2020_06_025
crossref_primary_10_1021_acs_jpcc_9b06599
crossref_primary_10_1021_acsnano_7b05182
crossref_primary_10_3390_cancers13184583
crossref_primary_10_3390_nano11112786
crossref_primary_10_1021_acsanm_0c00568
crossref_primary_10_3390_magnetochemistry7040049
Cites_doi 10.1063/1.4919250
10.1016/j.biomaterials.2014.04.036
10.1021/nl301499u
10.1063/1.4824649
10.1021/acs.jpcc.5b02555
10.1038/srep01652
10.1016/j.biomaterials.2016.11.008
10.1063/1.4935688
10.1016/j.jmmm.2006.06.005
10.1039/c2cs15337h
10.1088/0022-3727/46/31/312001
10.1021/acs.jpcc.6b02006
10.1002/ange.201305835
10.1016/j.jallcom.2017.01.297
10.1007/s11095-012-0710-z
10.1021/nn201822b
10.1007/s10948-012-1974-6
10.1088/0022-3727/36/13/202
10.1103/PhysRevB.90.214421
10.1088/0957-4484/22/26/265102
10.1021/nl400188q
10.1021/jp907046f
10.1039/C6SM01910B
10.1039/C5CP04539H
10.1063/1.4824079
10.1016/j.physleta.2014.09.028
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1039/c7cp01442b
DatabaseName PubMed
CrossRef
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 14532
ExternalDocumentID 10_1039_C7CP01442B
28537285
c7cp01442b
Genre Journal Article
GroupedDBID -JG
0-7
1TJ
705
70J
70~
7~J
AAEMU
ABGFH
ACLDK
ADSRN
AEFDR
AFVBQ
AGSTE
AUDPV
BSQNT
C6K
EE0
EF-
GNO
H~N
IDZ
J3G
J3I
R7B
R7C
RCNCU
RPMJG
RRC
RSCEA
SKA
SKF
SLH
VH6
---
-DZ
-~X
0R~
123
29O
2WC
4.4
53G
87K
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACNCT
ADMRA
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AGEGJ
AGKEF
AGRSR
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AZFZN
BLAPV
CS3
D0L
DU5
EBS
ECGLT
EJD
F5P
GGIMP
H13
HZ~
M4U
N9A
NHB
NPM
O9-
OK1
P2P
RAOCF
RIG
RNS
RRA
TN5
TWZ
UCJ
UHB
WH7
YNT
0UZ
6TJ
71~
9M8
AAYXX
ACHDF
ACMRT
AFFNX
AHGXI
ANLMG
ASPBG
AVWKF
BBWZM
CAG
CITATION
COF
EEHRC
FEDTE
HVGLF
H~9
IDY
J3H
KC5
L-8
MVM
NDZJH
R56
RCLXC
ROL
XJT
XOL
ZCG
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c404t-9be6c09005ed7093e5231836215d460ed897b0a3d374da75dda351b8be80db8b3
ISSN 1463-9076
IngestDate Fri Oct 25 07:19:06 EDT 2024
Fri Oct 25 00:51:26 EDT 2024
Fri Aug 23 01:24:28 EDT 2024
Sat Sep 28 08:46:13 EDT 2024
Thu May 30 17:34:35 EDT 2019
Mon Jan 28 17:10:43 EST 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c404t-9be6c09005ed7093e5231836215d460ed897b0a3d374da75dda351b8be80db8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3860-2133
0000-0003-1835-3915
OpenAccessLink https://minerva.usc.es/xmlui/bitstream/10347/16803/2/2017_PCCP_munoz_towards_improved_postprint.pdf
PMID 28537285
PQID 1902114350
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1915324720
crossref_primary_10_1039_C7CP01442B
rsc_primary_c7cp01442b
proquest_miscellaneous_1902114350
pubmed_primary_28537285
ProviderPackageCode J3I
ACLDK
RRC
7~J
AEFDR
70~
VH6
GNO
RCNCU
SLH
70J
EE0
RSCEA
AFVBQ
C6K
H~N
0-7
IDZ
RPMJG
1TJ
SKA
-JG
AGSTE
AUDPV
EF-
BSQNT
SKF
ADSRN
ABGFH
705
R7B
AAEMU
J3G
R7C
PublicationCentury 2000
PublicationDate 20170607
PublicationDateYYYYMMDD 2017-06-07
PublicationDate_xml – month: 6
  year: 2017
  text: 20170607
  day: 7
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2017
References Cruz (C7CP01442B-(cit27)/*[position()=1]) 2017; 703
Das (C7CP01442B-(cit26)/*[position()=1]) 2016; 120
Creixell (C7CP01442B-(cit14)/*[position()=1]) 2011; 5
Dutz (C7CP01442B-(cit5)/*[position()=1]) 2011; 22
Dias (C7CP01442B-(cit18)/*[position()=1]) 2013; 125
Périgo (C7CP01442B-(cit4)/*[position()=1]) 2015; 2
Martinez-Boubeta (C7CP01442B-(cit23)/*[position()=1]) 2013; 3
Asin (C7CP01442B-(cit15)/*[position()=1]) 2012; 29
Colombo (C7CP01442B-(cit1)/*[position()=1]) 2012; 41
Russier (C7CP01442B-(cit21)/*[position()=1]) 2013; 114
Di Corato (C7CP01442B-(cit6)/*[position()=1]) 2014; 35
Sanz (C7CP01442B-(cit29)/*[position()=1]) 2017; 114
Correia (C7CP01442B-(cit25)/*[position()=1]) 2014; 378
Tartaj (C7CP01442B-(cit2)/*[position()=1]) 2003; 36
Conde-Leboran (C7CP01442B-(cit10)/*[position()=1]) 2015; 119
Tan (C7CP01442B-(cit13)/*[position()=1]) 2014; 90
Khurshid (C7CP01442B-(cit24)/*[position()=1]) 2015; 117
Hergt (C7CP01442B-(cit9)/*[position()=1]) 2006; 18
Munoz-Menendez (C7CP01442B-(cit8)/*[position()=1]) 2015; 17
Villanueva (C7CP01442B-(cit16)/*[position()=1]) 2010; 114
Noh (C7CP01442B-(cit22)/*[position()=1]) 2012; 12
Vallejo-Fernandez (C7CP01442B-(cit28)/*[position()=1]) 2013; 46
Dutz (C7CP01442B-(cit11)/*[position()=1]) 2007; 308
Ortega (C7CP01442B-(cit3)/*[position()=1]) 2013
Usov (C7CP01442B-(cit20)/*[position()=1]) 2013; 26
Munoz-Menendez (C7CP01442B-(cit19)/*[position()=1]) 2016; 12
Vallejo-Fernandez (C7CP01442B-(cit12)/*[position()=1]) 2013; 103
Riedinger (C7CP01442B-(cit17)/*[position()=1]) 2013; 13
References_xml – issn: 2013
  end-page: p 60-88
  publication-title: in Nanoscience: Nanostructures through Chemistry
  doi: Ortega Pankhurst
– volume: 117
  start-page: 17A337
  year: 2015
  ident: C7CP01442B-(cit24)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4919250
  contributor:
    fullname: Khurshid
– volume: 35
  start-page: 6400
  year: 2014
  ident: C7CP01442B-(cit6)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.04.036
  contributor:
    fullname: Di Corato
– volume: 12
  start-page: 3716
  year: 2012
  ident: C7CP01442B-(cit22)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl301499u
  contributor:
    fullname: Noh
– volume: 103
  start-page: 142417
  year: 2013
  ident: C7CP01442B-(cit12)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4824649
  contributor:
    fullname: Vallejo-Fernandez
– volume: 119
  start-page: 15698
  year: 2015
  ident: C7CP01442B-(cit10)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b02555
  contributor:
    fullname: Conde-Leboran
– volume-title: in Nanoscience: Nanostructures through Chemistry
  year: 2013
  ident: C7CP01442B-(cit3)/*[position()=1]
  contributor:
    fullname: Ortega
– volume: 3
  start-page: 1652
  year: 2013
  ident: C7CP01442B-(cit23)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep01652
  contributor:
    fullname: Martinez-Boubeta
– volume: 114
  start-page: 62
  year: 2017
  ident: C7CP01442B-(cit29)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.11.008
  contributor:
    fullname: Sanz
– volume: 2
  start-page: 041302
  year: 2015
  ident: C7CP01442B-(cit4)/*[position()=1]
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4935688
  contributor:
    fullname: Périgo
– volume: 308
  start-page: 305
  year: 2007
  ident: C7CP01442B-(cit11)/*[position()=1]
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2006.06.005
  contributor:
    fullname: Dutz
– volume: 41
  start-page: 4306
  year: 2012
  ident: C7CP01442B-(cit1)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs15337h
  contributor:
    fullname: Colombo
– volume: 46
  start-page: 312001
  year: 2013
  ident: C7CP01442B-(cit28)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/46/31/312001
  contributor:
    fullname: Vallejo-Fernandez
– volume: 120
  start-page: 10086
  year: 2016
  ident: C7CP01442B-(cit26)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b02006
  contributor:
    fullname: Das
– volume: 125
  start-page: 11740
  year: 2013
  ident: C7CP01442B-(cit18)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201305835
  contributor:
    fullname: Dias
– volume: 703
  start-page: 370
  year: 2017
  ident: C7CP01442B-(cit27)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.01.297
  contributor:
    fullname: Cruz
– volume: 29
  start-page: 1319
  year: 2012
  ident: C7CP01442B-(cit15)/*[position()=1]
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-012-0710-z
  contributor:
    fullname: Asin
– volume: 5
  start-page: 7124
  year: 2011
  ident: C7CP01442B-(cit14)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn201822b
  contributor:
    fullname: Creixell
– volume: 26
  start-page: 1079
  year: 2013
  ident: C7CP01442B-(cit20)/*[position()=1]
  publication-title: J. Supercond. Novel Magn.
  doi: 10.1007/s10948-012-1974-6
  contributor:
    fullname: Usov
– volume: 36
  start-page: R182
  year: 2003
  ident: C7CP01442B-(cit2)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/36/13/202
  contributor:
    fullname: Tartaj
– volume: 90
  start-page: 214421
  year: 2014
  ident: C7CP01442B-(cit13)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.90.214421
  contributor:
    fullname: Tan
– volume: 22
  start-page: 265102
  year: 2011
  ident: C7CP01442B-(cit5)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/26/265102
  contributor:
    fullname: Dutz
– volume: 13
  start-page: 2399
  year: 2013
  ident: C7CP01442B-(cit17)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl400188q
  contributor:
    fullname: Riedinger
– volume: 114
  start-page: 1976
  year: 2010
  ident: C7CP01442B-(cit16)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp907046f
  contributor:
    fullname: Villanueva
– volume: 12
  start-page: 8815
  year: 2016
  ident: C7CP01442B-(cit19)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C6SM01910B
  contributor:
    fullname: Munoz-Menendez
– volume: 17
  start-page: 27812
  year: 2015
  ident: C7CP01442B-(cit8)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP04539H
  contributor:
    fullname: Munoz-Menendez
– volume: 114
  start-page: 143904
  year: 2013
  ident: C7CP01442B-(cit21)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4824079
  contributor:
    fullname: Russier
– volume: 18
  start-page: S2919
  year: 2006
  ident: C7CP01442B-(cit9)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: Hergt
– volume: 378
  start-page: 3366
  year: 2014
  ident: C7CP01442B-(cit25)/*[position()=1]
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2014.09.028
  contributor:
    fullname: Correia
SSID ssj0001513
Score 2.3942935
Snippet In the context of using magnetic nanoparticles for heat-mediated applications, the need of an accurate knowledge of the local (at the nanoparticle level) heat...
SourceID proquest
crossref
pubmed
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14527
SubjectTerms Anisotropy
Equivalence
Heat generation
Heating
Hysteresis
Magnetic fields
Magnetic fluids
Nanoparticles
Title Towards improved magnetic fluid hyperthermia: major-loops to diminish variations in local heating
URI https://www.ncbi.nlm.nih.gov/pubmed/28537285
https://search.proquest.com/docview/1902114350
https://search.proquest.com/docview/1915324720
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gAXxKuw5SEjuK1SvLHzMLcSFRVE0R62Um9REjtt0G6yyiY99AfwuxnbcZI-QMAlGznZRPH3aeazPZ5B6L0I3TznIYxUJXMdJqlweE6ok3th7gnCRaIn9E---8en7OuZdzaZ_BxFLbVNepBd3bmv5H9QhTbAVe2S_Qdk-4dCA5wDvnAEhOH4dxjrmNet2upYV5cgHdfJeal2Jc7yVVuI2QUMMmul8NaFLsGzTn5UtbOqqo3O6yAKnVjkYnYJA-YhqFy7N6UgG-vWOvG6sJhmtkqcOVNNZoZkq2cYFlG0GIAsqyvnBCyqnayOtFkpe3cA1kqhu70RYa-C77dmWahVC0rDlOtKVOuiHvbHjycu5jrKzlS4PZDG2DKfOpyYEnG9NeYj1pkty51tnTPPpBG4ZfUJVUlTsyDbqPGhe801wGdv1hp_F5RJ4JoCQTdybNtL99CuCwYLLOXu4dHyy7fep4Muoja5LeUfhlepZNLdn68rm1vDFRAvtS0qo8XL8hF62I068KGh0GM0keUTdD-yMD5FSUclbKmELZWwphIeU-kjHhEJNxW2RMIDkXBRYk0k3BHpGTr9fLSMjp2u-oaTMcIah6fSzwgHKy1FQDiVnqvsvw8aUTCfSBHyICUJFTRgIgk8IRLqzdMwlSER8EP30E5ZlfIFwgGVBPyCyPw8ZTljPAl95di8LCOh9MQUvbM9F29MkpVYB0dQHkdBtNBd_WmK3tpOjaF31MJWUsqq3cYgat25Ev7kT_eAb3dZ4MI9zw0i_bssglO0BxD1zQPKU7R_94V4I_L93z7vJXowEP8V2mnqVr4GDdukbzqC_QJFyKAf
link.rule.ids 315,783,787,27936,27937
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+improved+magnetic+fluid+hyperthermia%3A+major-loops+to+diminish+variations+in+local+heating&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Munoz-Menendez%2C+Cristina&rft.au=Serantes%2C+David&rft.au=Ruso%2C+Juan+M&rft.au=Baldomir%2C+Daniel&rft.date=2017-06-07&rft.eissn=1463-9084&rft.volume=19&rft.issue=22&rft.spage=14527&rft_id=info:doi/10.1039%2Fc7cp01442b&rft_id=info%3Apmid%2F28537285&rft.externalDocID=28537285
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon