Distribution approximation of covariance matrix eigenvalues

In multivariate analysis, the eigenvalues of the covariance matrix are crucial. Thus, there is a demand among users to find a good, easy-to-use chi-squared approximation. However, there are few good approximations for eigenvalues. Therefore, in this paper, we focus on the chi-squared approximation,...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 52; no. 9; pp. 4313 - 4325
Main Authors Tsukada, Shin-ichi, Sugiyama, Takatoshi
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.09.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0361-0918
1532-4141
DOI10.1080/03610918.2021.1960998

Cover

Abstract In multivariate analysis, the eigenvalues of the covariance matrix are crucial. Thus, there is a demand among users to find a good, easy-to-use chi-squared approximation. However, there are few good approximations for eigenvalues. Therefore, in this paper, we focus on the chi-squared approximation, proposing a new approximation and investigating its accuracy.
AbstractList In multivariate analysis, the eigenvalues of the covariance matrix are crucial. Thus, there is a demand among users to find a good, easy-to-use chi-squared approximation. However, there are few good approximations for eigenvalues. Therefore, in this paper, we focus on the chi-squared approximation, proposing a new approximation and investigating its accuracy.
Author Tsukada, Shin-ichi
Sugiyama, Takatoshi
Author_xml – sequence: 1
  givenname: Shin-ichi
  surname: Tsukada
  fullname: Tsukada, Shin-ichi
  organization: School of Education, Meisei University
– sequence: 2
  givenname: Takatoshi
  surname: Sugiyama
  fullname: Sugiyama, Takatoshi
  organization: Institute of Statistical Science
BookMark eNqFkE9LAzEQxYNUsK1-BKHgeesk2c0m9KLUv1DwoueQzSaSst3UZKvttzfb1osHPQ0zvPdm5jdCg9a3BqFLDFMMHK6BMgwC8ykBgqdYMBCCn6AhLijJcpzjARr2mqwXnaFRjEsAoDznQzS7c7ELrtp0zrcTtV4Hv3Urte-8nWj_qYJTrTaTNAxuOzHu3bSfqtmYeI5OrWqiuTjWMXp7uH-dP2WLl8fn-e0i0znkXSZKWuS00gRKgpk1DAtdK1srVQPnJSeMCYOxssLUtCyNtrqGmlpRFbSyOqdjdHXITcd9pL2dXPpNaNNKSXiJC0aY4ElVHFQ6-BiDsXId0idhJzHInpP84SR7TvLIKflmv3zadXsAXVCu-dd9c3C71vqwUl8-NLXs1K7xwYYEzkVJ_474BuY6g8c
CitedBy_id crossref_primary_10_3390_math12060921
Cites_doi 10.1090/S0025-5718-06-01824-2
10.1111/j.1467-842X.1972.tb00332.x
10.1214/aoms/1177732180
10.14490/jjss1995.28.227
10.1214/aoms/1177698783
10.1016/j.jmva.2004.05.003
10.1214/aoms/1177699989
10.1504/IJKESDP.2013.058126
10.1093/biomet/67.1.45
10.1016/j.jmva.2013.03.011
10.1080/03610929908832328
10.1214/aoms/1177704248
10.5183/jjscs1988.19.45
10.1080/03610929908832323
10.1007/BF02480916
10.1080/03610917308548243
ContentType Journal Article
Copyright 2021 Taylor & Francis Group, LLC 2021
2021 Taylor & Francis Group, LLC
Copyright_xml – notice: 2021 Taylor & Francis Group, LLC 2021
– notice: 2021 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610918.2021.1960998
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 4325
ExternalDocumentID 10_1080_03610918_2021_1960998
1960998
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
K1G
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c404t-973543bc207216fe619cdafdaad088782669e11af9ed377ecfcd0d3f9b53bfc43
ISSN 0361-0918
IngestDate Wed Aug 13 10:41:47 EDT 2025
Thu Apr 24 23:00:01 EDT 2025
Tue Jul 01 02:09:42 EDT 2025
Wed Dec 25 09:03:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c404t-973543bc207216fe619cdafdaad088782669e11af9ed377ecfcd0d3f9b53bfc43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2871562698
PQPubID 186203
PageCount 13
ParticipantIDs proquest_journals_2871562698
informaworld_taylorfrancis_310_1080_03610918_2021_1960998
crossref_citationtrail_10_1080_03610918_2021_1960998
crossref_primary_10_1080_03610918_2021_1960998
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-02
PublicationDateYYYYMMDD 2023-09-02
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-02
  day: 02
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Johnson R. A. (e_1_3_1_8_1) 2007
Sugiyama T. (e_1_3_1_17_1) 2014
e_1_3_1_10_1
e_1_3_1_22_1
e_1_3_1_14_1
e_1_3_1_13_1
e_1_3_1_12_1
Sugiyama T. (e_1_3_1_15_1) 1972; 3
e_1_3_1_20_1
e_1_3_1_11_1
e_1_3_1_5_1
e_1_3_1_18_1
Takeuchi K. (e_1_3_1_21_1) 1975
e_1_3_1_4_1
e_1_3_1_7_1
e_1_3_1_16_1
e_1_3_1_6_1
e_1_3_1_3_1
e_1_3_1_2_1
Kato H. (e_1_3_1_9_1) 2014; 27
e_1_3_1_19_1
References_xml – volume: 27
  start-page: 11
  year: 2014
  ident: e_1_3_1_9_1
  article-title: Chi-squre approximations for eigenvalue distributions and confidential interval construction on population eigenvalues
  publication-title: Bulletin of the Computational Statistics of Japan
– ident: e_1_3_1_10_1
  doi: 10.1090/S0025-5718-06-01824-2
– ident: e_1_3_1_14_1
  doi: 10.1111/j.1467-842X.1972.tb00332.x
– volume: 3
  start-page: 1
  year: 1972
  ident: e_1_3_1_15_1
  article-title: Percentile points of the largest latent root of a matrix and power calculations for testing hypothesis Σ=I
  publication-title: Journal of the Japan Statistical Society, Japanese Issue
– ident: e_1_3_1_5_1
  doi: 10.1214/aoms/1177732180
– volume-title: Multivaraite Data Analysis (in Japanese)
  year: 2014
  ident: e_1_3_1_17_1
– ident: e_1_3_1_19_1
  doi: 10.14490/jjss1995.28.227
– volume-title: Applied multivariate statistical analysis
  year: 2007
  ident: e_1_3_1_8_1
– ident: e_1_3_1_13_1
  doi: 10.1214/aoms/1177698783
– volume-title: Approximation of Probability Distributions (in Japanese)
  year: 1975
  ident: e_1_3_1_21_1
– ident: e_1_3_1_20_1
  doi: 10.1016/j.jmva.2004.05.003
– ident: e_1_3_1_2_1
  doi: 10.1214/aoms/1177699989
– ident: e_1_3_1_18_1
  doi: 10.1504/IJKESDP.2013.058126
– ident: e_1_3_1_4_1
  doi: 10.1093/biomet/67.1.45
– ident: e_1_3_1_7_1
  doi: 10.1016/j.jmva.2013.03.011
– ident: e_1_3_1_16_1
  doi: 10.1080/03610929908832328
– ident: e_1_3_1_3_1
  doi: 10.1214/aoms/1177704248
– ident: e_1_3_1_6_1
  doi: 10.5183/jjscs1988.19.45
– ident: e_1_3_1_22_1
  doi: 10.1080/03610929908832323
– ident: e_1_3_1_11_1
  doi: 10.1007/BF02480916
– ident: e_1_3_1_12_1
  doi: 10.1080/03610917308548243
SSID ssj0003848
Score 2.3135874
Snippet In multivariate analysis, the eigenvalues of the covariance matrix are crucial. Thus, there is a demand among users to find a good, easy-to-use chi-squared...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4313
SubjectTerms Approximation
Chi-square test
Chi-squared approximation
Covariance matrix
Eigenvalues
Mathematical analysis
Multivariate analysis
Principal component analysis
Wishart matrix
Title Distribution approximation of covariance matrix eigenvalues
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2021.1960998
https://www.proquest.com/docview/2871562698
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagXMqBxwJqoaAcuFVZxa9kLU6Ihyqk9rKp1Fvk-EEj2N2KzaLCr8fj2EmWrVQel2gVr70rz3g8Y8_3DUKvM4k1UdamihORshyWlDFwIsaswlITYeFo4PQsPzlnny74xW_okraeqp834kr-RarunZMroGT_QrL9oO6F--zk655Owu75RzJ-D6y3oWBVxw5-3Sx6H1CtvrtA2EMCFkDEf31sgHoT6L1D4mBkKBiDRHx-LMCMOgbn6fG8WYQSXxEDd7XZvr8v15svUnsvdH7ZLNNGXTbDZdPn5odc-MZSAlppHRrDUQOhPpdqCEzLnaofI2NFc-y-HmypicaUpAx3xFbR2nIy0ioxMp3Ok6GjbZjRDhC9Y-JDTiQFnngMyXkETzHw5onZsKf1mYah5S66R4rC3-PT7KzfqunMl1fr_3yEeAH5-k0_sOW8bFHb7mzl3j8pH6EHIbBI3nZa8hjdMcsJehiLdiTBhk_Q_dOeqHc9QfvzXtJP0JuxPiVb-pSsbDLoU9LpUzLSp6fo_OOH8t1JGoprpIplrE1FQTmjtSJAkJdb4wJppaXVUmrYeFzUmQuDsbTCaFoURlmlM02tqDmtrWL0GdpbrpbmACW8rimXHOc1rlmmmMBS5gWVblyuXXh7iFictUoF5nkogPK1wpGgNkx2BZNdhck-RNO-21VHvXJbBzEWSdV6fbWdqlb0lr5HUX5VWOHrCk4TXHyQi9nz_xj6BdofFtMR2mu_bcxL58m29Suvjb8AeQKZPA
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEIZHLAfgwFJA7OTANSWO7bQWJwRUZWlPIHGzvEoIaBFNEeLp8WSpCghx4AHGSuzxeMYafz_AUaKITY33seGpiFmGW8o5vBFj3hBlU-HxaqDXz7p37Oqe30-9hcG2SqyhfQmKKGI1bm68jK5b4o5D1EWeJXZmpaRJEJom2rMwz0Pujl5Ok_4kGtN2oaCFJjHa1K94fhvmy_n0hV76I1oXR1BnBUz98WXnyWNznOum-fjGdfzf363CcpWhRqelS63BjBs0YKVWf4iqYNCApd6E-DpqwCJmrSX0eR1OzhHHWylpRQW2_P2hfCMZDX1khm-hQkd3i55RIeA9csgERe64G23AXefi9qwbVyoNsWEJy2PRopxRbVIkrWXehYrMWOWtUhYjWChfMuEIUV44S1stZ7yxiaVeaE61N4xuwtxgOHBbEHGtKVecZJpolhgmiFJZi6owLrehTtoGVq-NNBXCHJU0niSpSafV3EmcO1nN3TY0J2YvJcPjLwMxvfAyLy5PfKl0Iukftnu1l8gqHIwklqUh0cxEe-cfQx_CQve2dyNvLvvXu7CIwvdFt1u6B3P569jth_Qo1weF_38CTBAAeA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LSwMxEMcHrSB68FEV3-7B69bNJrtt8CRq8Vk8KHgLeYKobbGrFD-9md1s8YF48ANM2E0mk5kw-f0B9hNJTKqdi3WW8pjluKWsxRsx5jSRJuUOrwaue_nZHbu4z-puwlFoq8Qa2lWgiDJW4-YeGld3xB34oIs4S2zMSkmLIDONd6ZhJvfpCXb10aQ3Cca0UwpooUmMNvUjnt-G-XI8fYGX_gjW5QnUXQRVf3vVePLYei1US79_wzr-6-eWYCHkp9FR5VDLMGX7TVistR-iEAqaMH894b2OmjCHOWuFfF6BwxOE8QYdraiElo8fqheS0cBFevDm63N0tugZ9QHGkUUiKFLH7WgV7rqnt8dncdBoiDVLWBHzNs0YVTpFzlrurK_HtJHOSGkwfvniJeeWEOm4NbTdttppkxjquMqocprRNWj0B327DlGmFM1kRnJFFEs040TKvE2lHzczvkraAFYvjdABYI46Gk-C1JzTMHcC506EuduA1sRsWBE8_jLgn9ddFOXViat0TgT9w3a7dhIRgsFIYFHq08ycdzb_MfQezN6cdMXVee9yC-ZQ9b5sdUu3oVG8vNodnxsVarf0_g8XXv8N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distribution+approximation+of+covariance+matrix+eigenvalues&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Tsukada%2C+Shin-ichi&rft.au=Sugiyama%2C+Takatoshi&rft.date=2023-09-02&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=52&rft.issue=9&rft.spage=4313&rft.epage=4325&rft_id=info:doi/10.1080%2F03610918.2021.1960998&rft.externalDocID=1960998
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon