Multi-Resolution Graph Based Volumetric Cortical Basis Functions From Local Anatomic Features

Objective: Modern clinical MRI collects millimeter scale anatomic information, but scalp electroencephalography source localization is ill posed, and cannot resolve individual sources at that resolution. Dimensionality reduction in the space of cortical sources is needed to improve computational and...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 66; no. 12; pp. 3381 - 3392
Main Authors Hyde, Damon E., Peters, Jurriaan, Warfield, Simon K.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective: Modern clinical MRI collects millimeter scale anatomic information, but scalp electroencephalography source localization is ill posed, and cannot resolve individual sources at that resolution. Dimensionality reduction in the space of cortical sources is needed to improve computational and storage complexity, yet volumetric methods still employ simplistic grid coarsening that eliminates fine scale anatomic structure. We present an approach to extend near-arbitrary spatial scaling to volumetric localization. Methods: Starting from a voxelwise brain parcellation, sub-parcels are identified from local cortical connectivity with an iterated graph cut approach. Spatial basis functions in each parcel are constructed using either a decomposition of the local leadfield matrix or spectral basis functions of local cortical connectivity graphs. Results: We present quantitative evaluation with extensive simulations and use multiple sets of real data to highlight how parameter changes impact computed reconstructions. Our results show that volumetric basis functions can improve accuracy by as much as 30%, while reducing computational complexity by over two orders of magnitude. In real data from epilepsy surgical candidates, accurate localization of seizure onset regions is demonstrated. Conclusion: Spatial dimensionality reduction with volumetric basis functions improves reconstruction accuracy while reducing computational complexity. Significance: Near-arbitrary spatial dimensionality reduction will enable volumetric reconstruction with modern computationally intensive algorithms and anatomically driven multi-resolution methods.
AbstractList Modern clinical MRI collects millimeter scale anatomic information, but scalp electroencephalography source localization is ill posed, and cannot resolve individual sources at that resolution. Dimensionality reduction in the space of cortical sources is needed to improve computational and storage complexity, yet volumetric methods still employ simplistic grid coarsening that eliminates fine scale anatomic structure. We present an approach to extend near-arbitrary spatial scaling to volumetric localization.OBJECTIVEModern clinical MRI collects millimeter scale anatomic information, but scalp electroencephalography source localization is ill posed, and cannot resolve individual sources at that resolution. Dimensionality reduction in the space of cortical sources is needed to improve computational and storage complexity, yet volumetric methods still employ simplistic grid coarsening that eliminates fine scale anatomic structure. We present an approach to extend near-arbitrary spatial scaling to volumetric localization.Starting from a voxelwise brain parcellation, sub-parcels are identified from local cortical connectivity with an iterated graph cut approach. Spatial basis functions in each parcel are constructed using either a decomposition of the local leadfield matrix or spectral basis functions of local cortical connectivity graphs.METHODSStarting from a voxelwise brain parcellation, sub-parcels are identified from local cortical connectivity with an iterated graph cut approach. Spatial basis functions in each parcel are constructed using either a decomposition of the local leadfield matrix or spectral basis functions of local cortical connectivity graphs.We present quantitative evaluation with extensive simulations and use multiple sets of real data to highlight how parameter changes impact computed reconstructions. Our results show that volumetric basis functions can improve accuracy by as much as 30%, while reducing computational complexity by over two orders of magnitude. In real data from epilepsy surgical candidates, accurate localization of seizure onset regions is demonstrated.RESULTSWe present quantitative evaluation with extensive simulations and use multiple sets of real data to highlight how parameter changes impact computed reconstructions. Our results show that volumetric basis functions can improve accuracy by as much as 30%, while reducing computational complexity by over two orders of magnitude. In real data from epilepsy surgical candidates, accurate localization of seizure onset regions is demonstrated.Spatial dimensionality reduction with volumetric basis functions improves reconstruction accuracy while reducing computational complexity.CONCLUSIONSpatial dimensionality reduction with volumetric basis functions improves reconstruction accuracy while reducing computational complexity.Near-arbitrary spatial dimensionality reduction will enable volumetric reconstruction with modern computationally intensive algorithms and anatomically driven multi-resolution methods.SIGNIFICANCENear-arbitrary spatial dimensionality reduction will enable volumetric reconstruction with modern computationally intensive algorithms and anatomically driven multi-resolution methods.
Objective: Modern clinical MRI collects millimeter scale anatomic information, but scalp electroencephalography source localization is ill posed, and cannot resolve individual sources at that resolution. Dimensionality reduction in the space of cortical sources is needed to improve computational and storage complexity, yet volumetric methods still employ simplistic grid coarsening that eliminates fine scale anatomic structure. We present an approach to extend near-arbitrary spatial scaling to volumetric localization. Methods: Starting from a voxelwise brain parcellation, sub-parcels are identified from local cortical connectivity with an iterated graph cut approach. Spatial basis functions in each parcel are constructed using either a decomposition of the local leadfield matrix or spectral basis functions of local cortical connectivity graphs. Results: We present quantitative evaluation with extensive simulations and use multiple sets of real data to highlight how parameter changes impact computed reconstructions. Our results show that volumetric basis functions can improve accuracy by as much as 30%, while reducing computational complexity by over two orders of magnitude. In real data from epilepsy surgical candidates, accurate localization of seizure onset regions is demonstrated. Conclusion: Spatial dimensionality reduction with volumetric basis functions improves reconstruction accuracy while reducing computational complexity. Significance: Near-arbitrary spatial dimensionality reduction will enable volumetric reconstruction with modern computationally intensive algorithms and anatomically driven multi-resolution methods.
Modern clinical MRI collects millimeter scale anatomic information, but scalp electroencephalography source localization is ill posed, and cannot resolve individual sources at that resolution. Dimensionality reduction in the space of cortical sources is needed to improve computational and storage complexity, yet volumetric methods still employ simplistic grid coarsening that eliminates fine scale anatomic structure. We present an approach to extend near-arbitrary spatial scaling to volumetric localization. Starting from a voxelwise brain parcellation, sub-parcels are identified from local cortical connectivity with an iterated graph cut approach. Spatial basis functions in each parcel are constructed using either a decomposition of the local leadfield matrix or spectral basis functions of local cortical connectivity graphs. We present quantitative evaluation with extensive simulations and use multiple sets of real data to highlight how parameter changes impact computed reconstructions. Our results show that volumetric basis functions can improve accuracy by as much as 30%, while reducing computational complexity by over two orders of magnitude. In real data from epilepsy surgical candidates, accurate localization of seizure onset regions is demonstrated. Spatial dimensionality reduction with volumetric basis functions improves reconstruction accuracy while reducing computational complexity. Near-arbitrary spatial dimensionality reduction will enable volumetric reconstruction with modern computationally intensive algorithms and anatomically driven multi-resolution methods.
Author Warfield, Simon K.
Hyde, Damon E.
Peters, Jurriaan
AuthorAffiliation 1 Computational Radiology Laboratory, Boston Children’s Hospital and Harvard Medical School
2 Department of Neurology, Boston Children’s Hospital and Harvard Medical School
AuthorAffiliation_xml – name: 1 Computational Radiology Laboratory, Boston Children’s Hospital and Harvard Medical School
– name: 2 Department of Neurology, Boston Children’s Hospital and Harvard Medical School
Author_xml – sequence: 1
  givenname: Damon E.
  orcidid: 0000-0001-6686-5646
  surname: Hyde
  fullname: Hyde, Damon E.
  email: damon.hyde@philips.com
  organization: Computational Radiology Laboratory, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 2
  givenname: Jurriaan
  surname: Peters
  fullname: Peters, Jurriaan
  organization: Computational Radiology Laboratory and Department of Neurology, Boston Children's HospitalHarvard Medical School
– sequence: 3
  givenname: Simon K.
  orcidid: 0000-0002-7659-3880
  surname: Warfield
  fullname: Warfield, Simon K.
  organization: Computational Radiology Laboratory, Boston Children's HospitalHarvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30872218$$D View this record in MEDLINE/PubMed
BookMark eNpdkV1rFDEYhYNU7Lb6A0SQAW-8mfXN50xuhHbpVmGLINU7CZlMYlNmkjWZEfz3Zth1Ua_ycZ738B7OBToLMViEXmJYYwzy3f313c2aAJZrIoGxhj5BK8x5WxNO8RlaAeC2lkSyc3SR82N5spaJZ-icQtsQgtsV-nY3D5OvP9sch3nyMVS3Se8fqmudbV99LZ-jnZI31SamyRs9LIrP1XYOZsHLLcWx2sVFugp6imOBt1ZPc7L5OXrq9JDti-N5ib5sb-43H-rdp9uPm6tdbRiwqZbcMdo50RHWmQ76ruXOOiKdFiUd9NCAMa5teNODEQ4sgDZMGsw7g6kBeoneH3z3czfa3tgwJT2offKjTr9U1F79qwT_oL7Hn0pIyQVvi8Hbo0GKP2abJzX6bOww6GDjnBXBkmLBCcUFffMf-hjnFEo8RRZGNFjQQuEDZVLMOVl3WgaDWspTS3lqKU8dyyszr_9OcZr401YBXh0Ab609ya0QouFAfwPki6Dz
CODEN IEBEAX
CitedBy_id crossref_primary_10_1016_j_sna_2021_112928
crossref_primary_10_1109_TIP_2021_3136619
Cites_doi 10.1016/j.neuroimage.2016.05.067
10.1016/S0013-4694(96)95698-9
10.1097/00004691-200403000-00001
10.1093/acprof:oso/9780195050387.001.0001
10.1111/j.1528-1167.2010.02521.x
10.1016/j.neuroimage.2013.09.008
10.1177/155005940904000410
10.1109/TBME.2014.2312713
10.1109/TBME.2006.873743
10.1113/jphysiol.2006.105379
10.1007/978-3-540-85988-8_91
10.1073/pnas.171473898
10.1016/j.neuroimage.2012.05.055
10.1038/nrn3241
10.1109/10.40805
10.1002/hbm.20155
10.1162/jocn.1993.5.2.162
10.1038/nrneurol.2012.150
10.1016/j.schres.2015.09.028
10.1137/1034115
10.1111/epi.13749
10.1016/j.neuroimage.2016.05.064
10.1111/epi.12464
10.1186/1743-0003-5-25
10.1016/j.eplepsyres.2010.09.006
10.1002/hbm.21114
10.1016/j.neuroimage.2008.02.059
10.1016/j.clinph.2010.10.043
10.1088/0031-9155/57/7/1937
10.1109/34.868688
10.1016/j.neuroimage.2012.11.013
10.1002/hbm.20795
10.1109/10.623049
10.1016/j.neuroimage.2003.12.018
10.1016/S1388-2457(02)00337-1
10.1109/TMI.2013.2266258
10.1016/j.brainres.2014.10.004
10.1006/nimg.2002.1143
10.1109/NFSI-ICFBI.2007.4387676
10.1088/0031-9155/50/16/009
10.1016/j.neuroimage.2017.06.022
10.1016/0167-8760(84)90014-X
10.1111/j.1528-1167.2012.03587.x
10.1111/j.1528-1167.2007.01381.x
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/TBME.2019.2904473
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 3392
ExternalDocumentID 10_1109_TBME_2019_2904473
30872218
8666750
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: R01 NS079788; R01 EB019483; R01 DK100404; R44 MH086984; IDDRC U54 HD090255; K25 NS067068
  funderid: 10.13039/100000002
– fundername: NIDDK NIH HHS
  grantid: R01 DK100404
– fundername: NINDS NIH HHS
  grantid: K25 NS067068
– fundername: NIBIB NIH HHS
  grantid: R01 EB019483
– fundername: NIMH NIH HHS
  grantid: R44 MH086984
– fundername: NIMH NIH HHS
  grantid: R41 MH086984
– fundername: NICHD NIH HHS
  grantid: U54 HD090255
– fundername: NINDS NIH HHS
  grantid: R01 NS079788
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AASAJ
AAYJJ
ABQJQ
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIG
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c404t-95f43bf6b24bcb0db85fef29fa62010d070ccf8757d0c6f0e00ac49c15bc13c03
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Tue Sep 17 21:22:44 EDT 2024
Thu Jul 25 17:03:23 EDT 2024
Fri Sep 13 06:52:20 EDT 2024
Wed Jul 31 12:38:14 EDT 2024
Wed Oct 02 05:22:37 EDT 2024
Wed Aug 07 05:31:01 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-95f43bf6b24bcb0db85fef29fa62010d070ccf8757d0c6f0e00ac49c15bc13c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7659-3880
0000-0001-6686-5646
PMID 30872218
PQID 2316567163
PQPubID 85474
PageCount 12
ParticipantIDs proquest_miscellaneous_2193165231
proquest_journals_2316567163
pubmed_primary_30872218
crossref_primary_10_1109_TBME_2019_2904473
ieee_primary_8666750
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6995658
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref37
ref15
ref36
ref14
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref18
grech (ref3) 2008; 5
pascual-marqui (ref19) 2002; 24
elshoff (ref4) 2012; 53
mellerio (ref34) 2014; 55
ref24
ref45
ref26
ref20
ref42
ref41
ref22
ref44
ref21
ref43
knsche (ref31) 2013; 67
ref28
ref27
ref8
ref7
ref9
hedrich (ref25) 2017; 157
ref6
ref5
nemtsas (ref23) 2017; 58
ref40
murakami (ref29) 2006; 575
References_xml – ident: ref22
  doi: 10.1016/j.neuroimage.2016.05.067
– ident: ref16
  doi: 10.1016/S0013-4694(96)95698-9
– ident: ref13
  doi: 10.1097/00004691-200403000-00001
– ident: ref21
  doi: 10.1093/acprof:oso/9780195050387.001.0001
– ident: ref2
  doi: 10.1111/j.1528-1167.2010.02521.x
– ident: ref30
  doi: 10.1016/j.neuroimage.2013.09.008
– ident: ref14
  doi: 10.1177/155005940904000410
– ident: ref33
  doi: 10.1109/TBME.2014.2312713
– ident: ref26
  doi: 10.1109/TBME.2006.873743
– volume: 575
  start-page: 925
  year: 2006
  ident: ref29
  article-title: Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2006.105379
  contributor:
    fullname: murakami
– ident: ref44
  doi: 10.1007/978-3-540-85988-8_91
– ident: ref43
  doi: 10.1073/pnas.171473898
– ident: ref32
  doi: 10.1016/j.neuroimage.2012.05.055
– ident: ref7
  doi: 10.1038/nrn3241
– ident: ref45
  doi: 10.1109/10.40805
– ident: ref28
  doi: 10.1002/hbm.20155
– ident: ref27
  doi: 10.1162/jocn.1993.5.2.162
– ident: ref11
  doi: 10.1038/nrneurol.2012.150
– ident: ref5
  doi: 10.1016/j.schres.2015.09.028
– ident: ref39
  doi: 10.1137/1034115
– volume: 58
  start-page: 1027
  year: 2017
  ident: ref23
  article-title: Source localization of ictal epileptic activity based on high-density scalp EEG data
  publication-title: Epilepsia
  doi: 10.1111/epi.13749
  contributor:
    fullname: nemtsas
– ident: ref24
  doi: 10.1016/j.neuroimage.2016.05.064
– volume: 55
  start-page: 117
  year: 2014
  ident: ref34
  article-title: 3T MRI improves the detection of transmantle sign in type 2 focal cortical dysplasia
  publication-title: Epilepsia
  doi: 10.1111/epi.12464
  contributor:
    fullname: mellerio
– volume: 5
  start-page: 1
  year: 2008
  ident: ref3
  article-title: Review on solving the inverse problem in EEG source analysis
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-5-25
  contributor:
    fullname: grech
– ident: ref15
  doi: 10.1016/j.eplepsyres.2010.09.006
– ident: ref42
  doi: 10.1002/hbm.21114
– ident: ref20
  doi: 10.1016/j.neuroimage.2008.02.059
– ident: ref12
  doi: 10.1016/j.clinph.2010.10.043
– ident: ref18
  doi: 10.1088/0031-9155/57/7/1937
– volume: 24
  start-page: 91
  year: 2002
  ident: ref19
  article-title: Functional imaging with low-resolution brain electromagnetic tomography (LORETA): A review
  publication-title: Methods Findings Exp Clin Pharmacol
  contributor:
    fullname: pascual-marqui
– ident: ref35
  doi: 10.1109/34.868688
– volume: 67
  start-page: 7
  year: 2013
  ident: ref31
  article-title: Prior knowledge on cortex organization in the reconstruction of source current densities from EEG
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.11.013
  contributor:
    fullname: knsche
– ident: ref10
  doi: 10.1002/hbm.20795
– ident: ref40
  doi: 10.1109/10.623049
– ident: ref17
  doi: 10.1016/j.neuroimage.2003.12.018
– ident: ref9
  doi: 10.1016/S1388-2457(02)00337-1
– ident: ref36
  doi: 10.1109/TMI.2013.2266258
– ident: ref6
  doi: 10.1016/j.brainres.2014.10.004
– ident: ref37
  doi: 10.1006/nimg.2002.1143
– ident: ref41
  doi: 10.1109/NFSI-ICFBI.2007.4387676
– ident: ref8
  doi: 10.1088/0031-9155/50/16/009
– volume: 157
  start-page: 531
  year: 2017
  ident: ref25
  article-title: Comparison of the spatial resolution of source imaging techniques in high-density EEG and MEG
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.06.022
  contributor:
    fullname: hedrich
– ident: ref38
  doi: 10.1016/0167-8760(84)90014-X
– volume: 53
  start-page: 1597
  year: 2012
  ident: ref4
  article-title: The value of EEG-FMRI and EEG source analysis in the presurgical setup of children with refractory focal epilepsy
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2012.03587.x
  contributor:
    fullname: elshoff
– ident: ref1
  doi: 10.1111/j.1528-1167.2007.01381.x
SSID ssj0014846
Score 2.3495004
Snippet Objective: Modern clinical MRI collects millimeter scale anatomic information, but scalp electroencephalography source localization is ill posed, and cannot...
Modern clinical MRI collects millimeter scale anatomic information, but scalp electroencephalography source localization is ill posed, and cannot resolve...
SourceID pubmedcentral
proquest
crossref
pubmed
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3381
SubjectTerms Action Potentials - physiology
Algorithms
Basis functions
Biomedical imaging
Brain - diagnostic imaging
Brain - physiology
Brain modeling
Child
Coarsening
Complexity
Computational neuroscience
Computer Simulation
Cortex
Dimensionality reduction
EEG
Electroencephalography
Electroencephalography - methods
Epilepsy
Epilepsy - diagnostic imaging
Epilepsy - physiopathology
Graph theory
Humans
Identification methods
Image Processing, Computer-Assisted - methods
Inverse problems
Localization
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Neural networks
Reduction
Scalp
Scalp - physiology
Seizures
Signal Processing, Computer-Assisted
Title Multi-Resolution Graph Based Volumetric Cortical Basis Functions From Local Anatomic Features
URI https://ieeexplore.ieee.org/document/8666750
https://www.ncbi.nlm.nih.gov/pubmed/30872218
https://www.proquest.com/docview/2316567163/abstract/
https://www.proquest.com/docview/2193165231/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC6995658
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT90wDLcYh2k7bAw21sGmTOI0rY80L_3IERBvCPF2AsRlqvKpoYkWPV4v--tnp33VA3HYrVLcKo2d2I7tnwEOrNdahNKkWRl4Kq2UqRLGp9IVyivnVOaoGnn-szi7kuc3-c0GfB9rYbz3MfnMT-gxxvJdazu6Kjus0NYuyUF_UXHR12qNEQNZ9UU5PMMNLJQcIpgZV4eXx_NTSuJSE6G4lCX1ziEgPCGo1ceaOor9VZ4zNZ9mTK6poNlbmK8m32ee_Jl0SzOxf5_gOv7v323Bm8EWZUe98LyDDd9sw-s1hMJteDkfYu878CvW6qZ0399LK_tBYNfsGPWgY9fxlCO4f3bSLuIFOY3cPrAZas4o3Gy2aO_YBSlPdtSgs3-HxGSCdujyv4er2enlyVk6NGdIreRymao8yKkJhRHSWMOdqfLgg1BBFxRgd3iUWBsILt9xWwTuOddWKpvlxmZTy6cfYLNpG_8RmMxDcN7jWaIr6a1WmeZGhEq7MpfWuQS-rXhU3_cYHHX0Xbiqibc18bYeeJvADi3tSDisagL7K67Wwy59qNG2RXMWPUZ86-s4jPuLgia68W2HNGjhIhWSJrDbC8H47ZUQJVA-Eo-RgLC7H480t78jhndBFcV59en52e7BK_qnPm1mHzaXi85_RuNnab5Eqf8HfDcCUw
link.rule.ids 230,315,786,790,802,891,27957,27958,55109
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VReJx4NHyCBQwEidEto7XefjYVl0W2PS0Rb2gKH6JCjVB282FX8-Mk422VQ_cInkSOZ6xZ8Yz8w3AR-PqWvhcx0nueSyNlLES2sXSZsopa1ViqRq5PMvm5_LbRXqxA5_HWhjnXEg-cxN6DLF825qOrsoOC7S1c3LQ76Ge56qv1hpjBrLoy3J4gltYKDnEMJHwcHlcnlIal5oIxaXMqXsOQeEJQc0-thRS6LByl7F5O2dySwnNnkC5mX6fe_J70q31xPy9hez4v__3FB4P1ig76sXnGey4Zg8ebWEU7sH9coi-78PPUK0b041_L6_sC8Fds2PUhJb9COccAf6zk3YVrshp5PKazVB3BvFms1V7xRakPtlRg-7-FRKTEdqh0_8czmeny5N5PLRniI3kch2r1Mup9pkWUhvNrS5S77xQvs4oxG7xMDHGE2C-5Sbz3HFeG6lMkmqTTA2fvoDdpm3cK2Ay9d46h6dJXUhnapXUXAtf1DZPpbE2gk8bHlV_ehSOKngvXFXE24p4Ww28jWCflnYkHFY1goMNV6thn15XaN2iQYs-I771YRzGHUZhk7pxbYc0aOMiFZJG8LIXgvHbGyGKIL8hHiMBoXffHGkufwUU74xqitPi9d2zfQ8P5styUS2-nn1_Aw_p__okmgPYXa869xZNobV-F3bAPzvOBak
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Resolution+Graph+Based+Volumetric+Cortical+Basis+Functions+From+Local+Anatomic+Features&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Hyde%2C+Damon+E&rft.au=Peters%2C+Jurriaan&rft.au=Warfield%2C+Simon+K&rft.date=2019-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=66&rft.issue=12&rft.spage=3381&rft_id=info:doi/10.1109%2FTBME.2019.2904473&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon