Knock-down of circular RNA H19 induces human adipose-derived stem cells adipogenic differentiation via a mechanism involving the polypyrimidine tract-binding protein 1
The metabolic syndrome (MetS) is characterized of a cluster of medical disorders. Altered function of adipose tissue has a significant impact on whole-body metabolism and represents a key driver for MetS. In this study, we aim to explore the function of human circular RNA H19 (hsa_circH19) in human...
Saved in:
Published in | Experimental cell research Vol. 387; no. 2; p. 111753 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The metabolic syndrome (MetS) is characterized of a cluster of medical disorders. Altered function of adipose tissue has a significant impact on whole-body metabolism and represents a key driver for MetS. In this study, we aim to explore the function of human circular RNA H19 (hsa_circH19) in human adipose-derived stem cells (hADSCs).
The blood samples from MetS patients and normal subjects were used to determine the expression level of the hsa_circH19. After knock-down of hsa_circH19 in hADSCs, we measured the expression of adipogenic genes. Oil red O, Nile red staining assay and triglyceride assessment were performed to examine the role of hsa_circH19 in hADSCs differentiation. Then, RNA Pull-down and RIP assays were conducted to explore the related RNA binding protein of hsa_circH19. IF was performed to determine the potential molecular regulatory mechanism.
After accounting for confounding factors, high levels of hsa_circH19 remained an independent risk factor for MetS. Furthermore, the knockdown of hsa_circH19 significantly increased the expression of adipogenic genes and the formation of lipid droplets. Bioinformatics analyses revealed that has_circH19 shared multiple binding sites with polypyrimidine tract-binding protein 1 (PTBP1) and their interaction was validated by circRNA pull-down and RIP assays. Mechanistically, depletion of hsa_circH19 triggered translocation of sterol-regulatory element binding proteins (SREBP1) from cytoplasm to nucleus in the presence of PTBP1.
Our experiments suggest that knockdown of hsa_circH19 promotes hADCSs adipogenic differentiation via targeting of PTBP1. In consequence, the expression of hsa_circH19 might correlated to lipid metabolism in adipose tissue from MetS. |
---|---|
AbstractList | The metabolic syndrome (MetS) is characterized of a cluster of medical disorders. Altered function of adipose tissue has a significant impact on whole-body metabolism and represents a key driver for MetS. In this study, we aim to explore the function of human circular RNA H19 (hsa_circH19) in human adipose-derived stem cells (hADSCs).
The blood samples from MetS patients and normal subjects were used to determine the expression level of the hsa_circH19. After knock-down of hsa_circH19 in hADSCs, we measured the expression of adipogenic genes. Oil red O, Nile red staining assay and triglyceride assessment were performed to examine the role of hsa_circH19 in hADSCs differentiation. Then, RNA Pull-down and RIP assays were conducted to explore the related RNA binding protein of hsa_circH19. IF was performed to determine the potential molecular regulatory mechanism.
After accounting for confounding factors, high levels of hsa_circH19 remained an independent risk factor for MetS. Furthermore, the knockdown of hsa_circH19 significantly increased the expression of adipogenic genes and the formation of lipid droplets. Bioinformatics analyses revealed that has_circH19 shared multiple binding sites with polypyrimidine tract-binding protein 1 (PTBP1) and their interaction was validated by circRNA pull-down and RIP assays. Mechanistically, depletion of hsa_circH19 triggered translocation of sterol-regulatory element binding proteins (SREBP1) from cytoplasm to nucleus in the presence of PTBP1.
Our experiments suggest that knockdown of hsa_circH19 promotes hADCSs adipogenic differentiation via targeting of PTBP1. In consequence, the expression of hsa_circH19 might correlated to lipid metabolism in adipose tissue from MetS. The metabolic syndrome (MetS) is characterized of a cluster of medical disorders. Altered function of adipose tissue has a significant impact on whole-body metabolism and represents a key driver for MetS. In this study, we aim to explore the function of human circular RNA H19 (hsa_circH19) in human adipose-derived stem cells (hADSCs).PURPOSEThe metabolic syndrome (MetS) is characterized of a cluster of medical disorders. Altered function of adipose tissue has a significant impact on whole-body metabolism and represents a key driver for MetS. In this study, we aim to explore the function of human circular RNA H19 (hsa_circH19) in human adipose-derived stem cells (hADSCs).The blood samples from MetS patients and normal subjects were used to determine the expression level of the hsa_circH19. After knock-down of hsa_circH19 in hADSCs, we measured the expression of adipogenic genes. Oil red O, Nile red staining assay and triglyceride assessment were performed to examine the role of hsa_circH19 in hADSCs differentiation. Then, RNA Pull-down and RIP assays were conducted to explore the related RNA binding protein of hsa_circH19. IF was performed to determine the potential molecular regulatory mechanism.METHODSThe blood samples from MetS patients and normal subjects were used to determine the expression level of the hsa_circH19. After knock-down of hsa_circH19 in hADSCs, we measured the expression of adipogenic genes. Oil red O, Nile red staining assay and triglyceride assessment were performed to examine the role of hsa_circH19 in hADSCs differentiation. Then, RNA Pull-down and RIP assays were conducted to explore the related RNA binding protein of hsa_circH19. IF was performed to determine the potential molecular regulatory mechanism.After accounting for confounding factors, high levels of hsa_circH19 remained an independent risk factor for MetS. Furthermore, the knockdown of hsa_circH19 significantly increased the expression of adipogenic genes and the formation of lipid droplets. Bioinformatics analyses revealed that has_circH19 shared multiple binding sites with polypyrimidine tract-binding protein 1 (PTBP1) and their interaction was validated by circRNA pull-down and RIP assays. Mechanistically, depletion of hsa_circH19 triggered translocation of sterol-regulatory element binding proteins (SREBP1) from cytoplasm to nucleus in the presence of PTBP1.RESULTSAfter accounting for confounding factors, high levels of hsa_circH19 remained an independent risk factor for MetS. Furthermore, the knockdown of hsa_circH19 significantly increased the expression of adipogenic genes and the formation of lipid droplets. Bioinformatics analyses revealed that has_circH19 shared multiple binding sites with polypyrimidine tract-binding protein 1 (PTBP1) and their interaction was validated by circRNA pull-down and RIP assays. Mechanistically, depletion of hsa_circH19 triggered translocation of sterol-regulatory element binding proteins (SREBP1) from cytoplasm to nucleus in the presence of PTBP1.Our experiments suggest that knockdown of hsa_circH19 promotes hADCSs adipogenic differentiation via targeting of PTBP1. In consequence, the expression of hsa_circH19 might correlated to lipid metabolism in adipose tissue from MetS.CONCLUSIONOur experiments suggest that knockdown of hsa_circH19 promotes hADCSs adipogenic differentiation via targeting of PTBP1. In consequence, the expression of hsa_circH19 might correlated to lipid metabolism in adipose tissue from MetS. |
ArticleNumber | 111753 |
Author | Lin, Xihua Li, Hong Gui, Weiwei Zhu, Yiyi |
Author_xml | – sequence: 1 givenname: Yiyi surname: Zhu fullname: Zhu, Yiyi – sequence: 2 givenname: Weiwei surname: Gui fullname: Gui, Weiwei – sequence: 3 givenname: Xihua surname: Lin fullname: Lin, Xihua email: linxihua@zju.edu.cn – sequence: 4 givenname: Hong surname: Li fullname: Li, Hong email: srrshnfm@zju.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31837293$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAURi1URKeFJ0BCXrLJ4J_MJF6wqKrSIiqQUPeWY9907pDYg-0MzBPxmvU0hQULWHnhc-7V_b4zcuKDB0Jec7bkjK_fbZcH-GnjUjCulpzzZiWfkQVnilWiFuKELBjjdVW3ojklZyltGWNty9cvyKnkrWyEkgvy65MP9lvlwg9PQ08tRjsNJtKvny_oDVcUvZssJLqZRuOpcbgLCSoHEffgaMowUgvDkOave_BoqcO-hwg-o8kYPN2joYaOYDfGYxrLzH0Y9ujvad4A3YXhsDtEHNGhB5qjsbnqyt4jsIshA3rKX5LnvRkSvHp6z8ndh6u7y5vq9sv1x8uL28rWrM6VkjXrXNOqddPDumShDG9A2lq6ThimVoVyFgxnQjrTqJXlplPdirMeLOfynLydx5bF3ydIWY-YjgcaD2FKWkjRyIbVoi3omyd06kZweldOMPGgf2dbADkDNoaUIvR_EM70sUG91Y8N6mODem6wWOovy2J-zLEkg8N_3PezCyWhPULUySJ4Cw4j2KxdwH_6Dyj8ur4 |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2024_129636 crossref_primary_10_3390_ani11113169 crossref_primary_10_3390_ijms24021297 crossref_primary_10_1016_j_lfs_2023_121512 crossref_primary_10_1038_s41598_024_70867_9 crossref_primary_10_1155_2020_3763069 crossref_primary_10_3389_fcell_2023_1173904 crossref_primary_10_1186_s12864_021_07645_8 crossref_primary_10_1186_s13287_022_02792_5 crossref_primary_10_1016_j_cytogfr_2023_06_001 crossref_primary_10_1111_febs_15525 crossref_primary_10_1007_s10565_024_09851_y crossref_primary_10_1038_s41598_023_42581_5 crossref_primary_10_1111_obr_13220 crossref_primary_10_1186_s12887_023_04261_1 crossref_primary_10_3389_fvets_2022_803758 crossref_primary_10_1242_dev_182725 crossref_primary_10_1186_s40104_023_00891_8 crossref_primary_10_1016_j_gendis_2022_05_015 crossref_primary_10_3390_ijms24129978 crossref_primary_10_1016_j_biopha_2023_115744 crossref_primary_10_1152_ajpcell_00364_2021 crossref_primary_10_3390_ijms232012295 crossref_primary_10_1016_j_celrep_2022_111707 crossref_primary_10_1002_mco2_699 crossref_primary_10_1186_s13287_022_02851_x crossref_primary_10_3390_ijms25116094 crossref_primary_10_1016_j_ijbiomac_2024_136916 crossref_primary_10_1007_s11154_023_09866_6 crossref_primary_10_3390_metabo14110603 crossref_primary_10_1016_j_ygeno_2025_110988 crossref_primary_10_1038_s41420_022_01062_w crossref_primary_10_1002_jcp_30200 crossref_primary_10_3389_fcell_2022_804247 crossref_primary_10_3389_fgene_2021_761926 crossref_primary_10_3390_cells11071236 crossref_primary_10_2174_0113816128305232240607084420 crossref_primary_10_1016_j_bbagrm_2020_194643 crossref_primary_10_2217_epi_2022_0239 crossref_primary_10_3390_biom13071101 crossref_primary_10_1152_ajpendo_00155_2023 crossref_primary_10_1371_journal_pone_0249288 crossref_primary_10_1042_BSR20212510 crossref_primary_10_1016_j_vph_2021_106898 crossref_primary_10_3390_ijms23031032 crossref_primary_10_1016_j_ejbt_2024_10_004 crossref_primary_10_1016_j_gendis_2022_05_022 crossref_primary_10_1016_j_ijbiomac_2023_128613 crossref_primary_10_1016_j_ejphar_2020_173809 crossref_primary_10_1016_j_isci_2024_109710 crossref_primary_10_1097_MD_0000000000030344 crossref_primary_10_1080_15476286_2021_1913551 crossref_primary_10_3389_fgene_2025_1533637 crossref_primary_10_1186_s12864_022_09045_y crossref_primary_10_3390_cells9061473 crossref_primary_10_1016_j_csbj_2022_10_030 crossref_primary_10_1016_j_isci_2023_107756 crossref_primary_10_1002_jcp_30716 crossref_primary_10_2147_OTT_S250396 crossref_primary_10_1186_s12943_020_01286_3 crossref_primary_10_3389_fendo_2022_975334 crossref_primary_10_1016_j_smallrumres_2022_106884 crossref_primary_10_1080_15476286_2023_2290769 crossref_primary_10_3390_ijms232012596 crossref_primary_10_1021_acs_langmuir_3c00070 crossref_primary_10_1002_advs_202304895 crossref_primary_10_2147_DMSO_S381603 crossref_primary_10_1080_09513590_2021_1991911 |
Cites_doi | 10.1016/j.pharmthera.2018.01.010 10.1038/s41467-018-05933-8 10.1101/gad.10.9.1096 10.1016/S0140-6736(05)66375-1 10.1007/s00592-016-0943-0 10.1080/15476286.2015.1128065 10.1016/j.scr.2016.04.011 10.1111/j.1365-2265.2011.04141.x 10.1186/1741-7015-9-48 10.1242/dev.128074 10.1155/2017/3960197 10.1371/journal.pone.0199293 10.1038/nbt.2890 10.3389/fendo.2017.00202 10.1080/15476286.2016.1220473 10.1261/rna.043687.113 10.1038/nature05488 10.1073/pnas.1534923100 10.1006/jmbi.2000.4218 10.3748/wjg.v24.i3.323 10.1080/15476286.2017.1279788 10.1093/nar/gku406 10.1128/MCB.19.8.5495 10.1002/hep.29654 10.1042/bj20030480 10.1111/febs.12500 10.1080/15216540400022474 10.1038/nrm2066 10.1016/j.ahj.2004.07.013 10.1091/mbc.12.12.3808 10.1186/s12944-018-0927-x |
ContentType | Journal Article |
Copyright | 2019 The Authors Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 The Authors – notice: Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.yexcr.2019.111753 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1090-2422 |
ExternalDocumentID | 31837293 10_1016_j_yexcr_2019_111753 S0014482719306366 |
Genre | Journal Article |
GroupedDBID | --- --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABOCM ABPPZ ABUDA ABYKQ ACDAQ ACGFO ACGFS ACNCT ACPRK ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B LG5 LX2 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPCBC SSU SSZ T5K TEORI TWZ VQA WH7 Y6R YZZ ZA5 ZCA ZMT ZU3 ~G- ~KM .55 .GJ 29G 3O- 53G 9M8 AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN ADXHL AEIPS AETEA AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRDE AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FA8 FEDTE FGOYB G-2 HLW HVGLF HZ~ LPU MVM NEJ OHT R2- RIG SBG SEW SSH VH1 WUQ X7L X7M XOL XPP YYP ZGI ZKB NPM 7X8 |
ID | FETCH-LOGICAL-c404t-9340bd78967fe61099a17e3c43db2a095404dcea1023da795c1ab9b510fec113 |
IEDL.DBID | .~1 |
ISSN | 0014-4827 1090-2422 |
IngestDate | Fri Jul 11 07:47:11 EDT 2025 Wed Feb 19 02:31:58 EST 2025 Thu Apr 24 22:56:42 EDT 2025 Tue Jul 01 00:59:39 EDT 2025 Fri Feb 23 02:50:27 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Adipogenic differentiation Polypyrimidine tract-binding protein 1 Sterol-regulatory element binding proteins Human adipose-derived stem cells Circular RNA Metabolic syndrome |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-9340bd78967fe61099a17e3c43db2a095404dcea1023da795c1ab9b510fec113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0014482719306366 |
PMID | 31837293 |
PQID | 2327370428 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2327370428 pubmed_primary_31837293 crossref_primary_10_1016_j_yexcr_2019_111753 crossref_citationtrail_10_1016_j_yexcr_2019_111753 elsevier_sciencedirect_doi_10_1016_j_yexcr_2019_111753 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-15 |
PublicationDateYYYYMMDD | 2020-02-15 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Experimental cell research |
PublicationTitleAlternate | Exp Cell Res |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Guo, Sun, Chen, Wang, Pan, Fan (bib7) 2018; 24 Qu, Zhong, Shang, Zhang, Song, Kjems, Li (bib21) 2016; 14 Dudekula, Panda, Grammatikakis, De, Abdelmohsen, Gorospe (bib12) 2016; 13 Kim, Abdelmohsen, Mustapic, Kapogiannis, Gorospe (bib19) 2017; 8 Liu, Yang, Wu, Zhang, Lee, Shin, Tran, Wang (bib10) 2018; 67 Muppirala, Honavar, Dobbs (bib16) 2011; 12 Abdelmohsen, Panda, Munk, Grammatikakis, Dudekula, De, Kim, Noh, Kim, Martindale, Gorospe (bib34) 2017; 14 Kamath (bib36) 2001; 12 Ambele, Dessels, Durandt, Pepper (bib31) 2016; 16 Zhao, Wang, Liu, Li, Zhang, Sun, Fan, Tian (bib30) 2013; 280 Paz, Kosti, Ares, Cline, Mandel-Gutfreund (bib14) 2014; 42 (bib37) 2007; 35 Jeck, Sharpless (bib13) 2014; 32 Han, Chao, Yao (bib18) 2018; 187 Kristina Schoonjans (bib27) 2000; 304 Horton, Shah, Warrington, Anderson, Park, Brown, Goldstein (bib32) 2003; 100 Li, Zhao, Yu, Wang, Ding (bib2) 2018; 13 Kim (bib24) 1996; 10 Guo, Chen, Sun, Wang, Pan, Fan (bib8) 2017; 2017 Glazar, Papavasileiou, Rajewsky (bib11) 2014; 20 Zhao, Li, Jian, Hao, Rao, Li (bib20) 2017; 54 Oliva-Olivera (bib22) 2016; 102 Park, Lee, Cheon, Lee, Yang, Kim, Hur, Kim, Lee, Kim (bib23) 2012; 76 Gu, Zhu, Wang, He, Xu, Zhang, Li, Wang, Hu, Ji, Zhang, Liu (bib6) 2018; 17 Barrett, Salzman (bib17) 2016; 143 Gu, Reynolds, Wu, Chen, Duan, Reynolds, Whelton, He (bib3) 2005; 365 Fajas (bib28) 1999; 19 Zang, Lu, Xu (bib33) 2018; 0 Griffin, Sul (bib25) 2004; 56 Schmidt, Dhaouadi, Gaziano, Oliverio, Klemm, Awazawa, Mitterer, Fernandez-Rebollo, Pradas-Juni, Wagner, Hammerschmidt, Loureiro, Kiefer, Hansmeier, Khani, Bergami, Heine, Ntini, Frommolt, Zentis, Orom, Heeren, Bluher, Bilban, Kornfeld (bib9) 2018; 9 Rosen, MacDougald (bib29) 2006; 7 Gao, Salomon, Freeman (bib35) 2017; 8 Kassi, Pervanidou, Kaltsas, Chrousos (bib1) 2011; 9 Giudice, Sanchez-Cabo, Torroja, Lara-Pezzi (bib15) 2016 BARBER (bib26) 2003; 375 Miranda, DeFronzo, Califf, Guyton (bib4) 2005; 149 Despres, Lemieux (bib5) 2006; 444 Qu (10.1016/j.yexcr.2019.111753_bib21) 2016; 14 Guo (10.1016/j.yexcr.2019.111753_bib7) 2018; 24 Giudice (10.1016/j.yexcr.2019.111753_bib15) 2016 Guo (10.1016/j.yexcr.2019.111753_bib8) 2017; 2017 Kristina Schoonjans (10.1016/j.yexcr.2019.111753_bib27) 2000; 304 Griffin (10.1016/j.yexcr.2019.111753_bib25) 2004; 56 Kim (10.1016/j.yexcr.2019.111753_bib24) 1996; 10 Park (10.1016/j.yexcr.2019.111753_bib23) 2012; 76 Han (10.1016/j.yexcr.2019.111753_bib18) 2018; 187 Fajas (10.1016/j.yexcr.2019.111753_bib28) 1999; 19 Kamath (10.1016/j.yexcr.2019.111753_bib36) 2001; 12 Gu (10.1016/j.yexcr.2019.111753_bib6) 2018; 17 Schmidt (10.1016/j.yexcr.2019.111753_bib9) 2018; 9 Zang (10.1016/j.yexcr.2019.111753_bib33) 2018; 0 Paz (10.1016/j.yexcr.2019.111753_bib14) 2014; 42 Barrett (10.1016/j.yexcr.2019.111753_bib17) 2016; 143 Zhao (10.1016/j.yexcr.2019.111753_bib30) 2013; 280 Horton (10.1016/j.yexcr.2019.111753_bib32) 2003; 100 Jeck (10.1016/j.yexcr.2019.111753_bib13) 2014; 32 Abdelmohsen (10.1016/j.yexcr.2019.111753_bib34) 2017; 14 Li (10.1016/j.yexcr.2019.111753_bib2) 2018; 13 Kim (10.1016/j.yexcr.2019.111753_bib19) 2017; 8 Gu (10.1016/j.yexcr.2019.111753_bib3) 2005; 365 Gao (10.1016/j.yexcr.2019.111753_bib35) 2017; 8 Glazar (10.1016/j.yexcr.2019.111753_bib11) 2014; 20 Despres (10.1016/j.yexcr.2019.111753_bib5) 2006; 444 Miranda (10.1016/j.yexcr.2019.111753_bib4) 2005; 149 BARBER (10.1016/j.yexcr.2019.111753_bib26) 2003; 375 Zhao (10.1016/j.yexcr.2019.111753_bib20) 2017; 54 Oliva-Olivera (10.1016/j.yexcr.2019.111753_bib22) 2016; 102 Ambele (10.1016/j.yexcr.2019.111753_bib31) 2016; 16 Rosen (10.1016/j.yexcr.2019.111753_bib29) 2006; 7 Muppirala (10.1016/j.yexcr.2019.111753_bib16) 2011; 12 (10.1016/j.yexcr.2019.111753_bib37) 2007; 35 Liu (10.1016/j.yexcr.2019.111753_bib10) 2018; 67 Dudekula (10.1016/j.yexcr.2019.111753_bib12) 2016; 13 Kassi (10.1016/j.yexcr.2019.111753_bib1) 2011; 9 |
References_xml | – volume: 9 start-page: 48 year: 2011 ident: bib1 article-title: Metabolic syndrome: definitions and controversies publication-title: BMC Med. – volume: 143 start-page: 1838 year: 2016 end-page: 1847 ident: bib17 article-title: Circular rnas: analysis, expression and potential functions publication-title: Development – volume: 375 start-page: 489 year: 2003 end-page: 501 ident: bib26 article-title: Induction of transcripts derived from promoter iii of the acetyl-coa carboxylase-α gene in mammary gland is associated with recruitment of srebp-1 to a region of the proximal promoter defined by a dnase i hypersensitive site publication-title: Biochem. J. – volume: 42 start-page: W361 year: 2014 end-page: W367 ident: bib14 article-title: Rbpmap: a web server for mapping binding sites of rna-binding proteins publication-title: Nucleic Acids Res. – volume: 149 start-page: 33 year: 2005 end-page: 45 ident: bib4 article-title: Metabolic syndrome: definition, pathophysiology, and mechanisms publication-title: Am. Heart J. – volume: 9 start-page: 3622 year: 2018 ident: bib9 article-title: Lincrna h19 protects from dietary obesity by constraining expression of monoallelic genes in brown fat publication-title: Nat. Commun. – volume: 54 start-page: 237 year: 2017 end-page: 245 ident: bib20 article-title: Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus publication-title: Acta Diabetol. – volume: 14 start-page: 361 year: 2017 end-page: 369 ident: bib34 article-title: Identification of hur target circular rnas uncovers suppression of pabpn1 translation by circpabpn1 publication-title: RNA Biol. – volume: 280 start-page: 5801 year: 2013 end-page: 5814 ident: bib30 article-title: Ppargamma forms a bridge between DNA methylation and histone acetylation at the c/ebpalpha gene promoter to regulate the balance between osteogenesis and adipogenesis of bone marrow stromal cells publication-title: FEBS J. – volume: 102 start-page: 478 year: 2016 end-page: 487 ident: bib22 article-title: Adipogenic impairment of adipose tissue-derived mesenchymal stem cells in subjects with metabolic syndrome: Possible protective role of fgf 2 publication-title: J. Clin. Endocrinol. Metab. – volume: 19 start-page: 5495 year: 1999 end-page: 5503 ident: bib28 article-title: Regulation of peroxisome proliferator-activated receptor publication-title: Mol. Cell. Biol. – volume: 100 start-page: 12027 year: 2003 end-page: 12032 ident: bib32 article-title: Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct srebp target genes publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 76 start-page: 59 year: 2012 end-page: 66 ident: bib23 article-title: The relationship between fat depot-specific preadipocyte differentiation and metabolic syndrome in obese women publication-title: Clin. Endocrinol. – volume: 67 start-page: 1768 year: 2018 end-page: 1783 ident: bib10 article-title: Long noncoding rna h19 interacts with polypyrimidine tract-binding protein 1 to reprogram hepatic lipid homeostasis publication-title: Hepatology – volume: 56 start-page: 595 year: 2004 end-page: 600 ident: bib25 article-title: Insulin regulation of fatty acid synthase gene transcription: roles of usf and srebp-1c publication-title: IUBMB Life – volume: 10 start-page: 1096 year: 1996 end-page: 1107 ident: bib24 article-title: Add 1/srebp1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism publication-title: Genes Dev. – volume: 187 start-page: 31 year: 2018 end-page: 44 ident: bib18 article-title: Circular rna and its mechanisms in disease: from the bench to the clinic publication-title: Pharmacol. Ther. – volume: 32 start-page: 453 year: 2014 end-page: 461 ident: bib13 article-title: Detecting and characterizing circular rnas publication-title: Nat. Biotechnol. – volume: 16 start-page: 725 year: 2016 end-page: 734 ident: bib31 article-title: Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation publication-title: Stem Cell Res. – volume: 365 start-page: 1398 year: 2005 end-page: 1405 ident: bib3 article-title: Prevalence of the metabolic syndrome and overweight among adults in China publication-title: The Lancet – volume: 24 start-page: 323 year: 2018 end-page: 337 ident: bib7 article-title: Circrna_0046366 inhibits hepatocellular steatosis by normalization of ppar signaling publication-title: World J. Gastroenterol. – volume: 12 start-page: 11 year: 2011 ident: bib16 article-title: Predicting rna-protein interactions using only sequence information publication-title: BMC Bioinf. – volume: 7 start-page: 885 year: 2006 end-page: 896 ident: bib29 article-title: Adipocyte differentiation from the inside out publication-title: Nat. Rev. Mol. Cell Biol. – volume: 13 year: 2018 ident: bib2 article-title: Metabolic syndrome prevalence and its risk factors among adults in China: a nationally representative cross-sectional study publication-title: PLoS One – volume: 35 start-page: 29 year: 2007 ident: bib37 article-title: Chinese guidelines on prevention and treatment of dyslipidemia in adults publication-title: Zhonghua Xinxueguanbing Zazhi – start-page: 2016 year: 2016 ident: bib15 article-title: Attract-a Database of Rna-Binding Proteins and Associated Motifs – volume: 444 start-page: 881 year: 2006 end-page: 887 ident: bib5 article-title: Abdominal obesity and metabolic syndrome publication-title: Nature – volume: 8 start-page: 202 year: 2017 ident: bib35 article-title: Extracellular vesicles from adipose tissue-a potential role in obesity and type 2 diabetes? publication-title: Front. Endocrinol. – volume: 8 year: 2017 ident: bib19 article-title: Rna in extracellular vesicles publication-title: Wiley Interdiscip Rev RNA – volume: 17 year: 2018 ident: bib6 article-title: Obesity and lipid-related parameters for predicting metabolic syndrome in Chinese elderly population publication-title: Lipids Health Dis. – volume: 2017 start-page: 3960197 year: 2017 ident: bib8 article-title: Circrna_0046367 prevents hepatoxicity of lipid peroxidation: an inhibitory role against hepatic steatosis publication-title: Oxid Med Cell Longev – volume: 304 start-page: 323 year: 2000 end-page: 334 ident: bib27 article-title: Induction of lpl gene expression by sterols is mediated by a sterol regulatory element and is independent of the presence of multiple e boxes publication-title: J. Mol. Biol. – volume: 14 start-page: 992 year: 2016 end-page: 999 ident: bib21 article-title: The emerging landscape of circular rna in life processes publication-title: RNA Biol. – volume: 12 start-page: 13 year: 2001 ident: bib36 article-title: Nucleocytoplasmic shuttling of polypyrimidine tract-binding protein is uncoupled from rna export publication-title: Mol. Biol. Cell – volume: 20 start-page: 1666 year: 2014 end-page: 1670 ident: bib11 article-title: Circbase: a database for circular rnas publication-title: RNA – volume: 13 start-page: 34 year: 2016 end-page: 42 ident: bib12 article-title: Circinteractome: a web tool for exploring circular rnas and their interacting proteins and micrornas publication-title: RNA Biol. – volume: 0 start-page: 1 year: 2018 end-page: 11 ident: bib33 article-title: The interaction of circrnas and rna binding proteins: an important part of circrna maintenance and function publication-title: J. Neurosci. Res. – start-page: 2016 year: 2016 ident: 10.1016/j.yexcr.2019.111753_bib15 – volume: 8 issue: e1413 year: 2017 ident: 10.1016/j.yexcr.2019.111753_bib19 article-title: Rna in extracellular vesicles publication-title: Wiley Interdiscip Rev RNA – volume: 187 start-page: 31 year: 2018 ident: 10.1016/j.yexcr.2019.111753_bib18 article-title: Circular rna and its mechanisms in disease: from the bench to the clinic publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2018.01.010 – volume: 9 start-page: 3622 issue: 1 year: 2018 ident: 10.1016/j.yexcr.2019.111753_bib9 article-title: Lincrna h19 protects from dietary obesity by constraining expression of monoallelic genes in brown fat publication-title: Nat. Commun. doi: 10.1038/s41467-018-05933-8 – volume: 10 start-page: 1096 issue: 9 year: 1996 ident: 10.1016/j.yexcr.2019.111753_bib24 article-title: Add 1/srebp1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism publication-title: Genes Dev. doi: 10.1101/gad.10.9.1096 – volume: 365 start-page: 1398 issue: 9468 year: 2005 ident: 10.1016/j.yexcr.2019.111753_bib3 article-title: Prevalence of the metabolic syndrome and overweight among adults in China publication-title: The Lancet doi: 10.1016/S0140-6736(05)66375-1 – volume: 54 start-page: 237 issue: 3 year: 2017 ident: 10.1016/j.yexcr.2019.111753_bib20 article-title: Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus publication-title: Acta Diabetol. doi: 10.1007/s00592-016-0943-0 – volume: 13 start-page: 34 issue: 1 year: 2016 ident: 10.1016/j.yexcr.2019.111753_bib12 article-title: Circinteractome: a web tool for exploring circular rnas and their interacting proteins and micrornas publication-title: RNA Biol. doi: 10.1080/15476286.2015.1128065 – volume: 16 start-page: 725 issue: 3 year: 2016 ident: 10.1016/j.yexcr.2019.111753_bib31 article-title: Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation publication-title: Stem Cell Res. doi: 10.1016/j.scr.2016.04.011 – volume: 76 start-page: 59 issue: 1 year: 2012 ident: 10.1016/j.yexcr.2019.111753_bib23 article-title: The relationship between fat depot-specific preadipocyte differentiation and metabolic syndrome in obese women publication-title: Clin. Endocrinol. doi: 10.1111/j.1365-2265.2011.04141.x – volume: 9 start-page: 48 year: 2011 ident: 10.1016/j.yexcr.2019.111753_bib1 article-title: Metabolic syndrome: definitions and controversies publication-title: BMC Med. doi: 10.1186/1741-7015-9-48 – volume: 143 start-page: 1838 issue: 11 year: 2016 ident: 10.1016/j.yexcr.2019.111753_bib17 article-title: Circular rnas: analysis, expression and potential functions publication-title: Development doi: 10.1242/dev.128074 – volume: 2017 start-page: 3960197 year: 2017 ident: 10.1016/j.yexcr.2019.111753_bib8 article-title: Circrna_0046367 prevents hepatoxicity of lipid peroxidation: an inhibitory role against hepatic steatosis publication-title: Oxid Med Cell Longev doi: 10.1155/2017/3960197 – volume: 102 start-page: 478 issue: 2 year: 2016 ident: 10.1016/j.yexcr.2019.111753_bib22 article-title: Adipogenic impairment of adipose tissue-derived mesenchymal stem cells in subjects with metabolic syndrome: Possible protective role of fgf 2 publication-title: J. Clin. Endocrinol. Metab. – volume: 13 issue: 6 year: 2018 ident: 10.1016/j.yexcr.2019.111753_bib2 article-title: Metabolic syndrome prevalence and its risk factors among adults in China: a nationally representative cross-sectional study publication-title: PLoS One doi: 10.1371/journal.pone.0199293 – volume: 35 start-page: 29 issue: 5 year: 2007 ident: 10.1016/j.yexcr.2019.111753_bib37 article-title: Chinese guidelines on prevention and treatment of dyslipidemia in adults publication-title: Zhonghua Xinxueguanbing Zazhi – volume: 32 start-page: 453 issue: 5 year: 2014 ident: 10.1016/j.yexcr.2019.111753_bib13 article-title: Detecting and characterizing circular rnas publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2890 – volume: 8 start-page: 202 year: 2017 ident: 10.1016/j.yexcr.2019.111753_bib35 article-title: Extracellular vesicles from adipose tissue-a potential role in obesity and type 2 diabetes? publication-title: Front. Endocrinol. doi: 10.3389/fendo.2017.00202 – volume: 14 start-page: 992 issue: 8 year: 2016 ident: 10.1016/j.yexcr.2019.111753_bib21 article-title: The emerging landscape of circular rna in life processes publication-title: RNA Biol. doi: 10.1080/15476286.2016.1220473 – volume: 12 start-page: 11 issue: 489 year: 2011 ident: 10.1016/j.yexcr.2019.111753_bib16 article-title: Predicting rna-protein interactions using only sequence information publication-title: BMC Bioinf. – volume: 20 start-page: 1666 issue: 11 year: 2014 ident: 10.1016/j.yexcr.2019.111753_bib11 article-title: Circbase: a database for circular rnas publication-title: RNA doi: 10.1261/rna.043687.113 – volume: 444 start-page: 881 issue: 7121 year: 2006 ident: 10.1016/j.yexcr.2019.111753_bib5 article-title: Abdominal obesity and metabolic syndrome publication-title: Nature doi: 10.1038/nature05488 – volume: 100 start-page: 12027 issue: 21 year: 2003 ident: 10.1016/j.yexcr.2019.111753_bib32 article-title: Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct srebp target genes publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1534923100 – volume: 304 start-page: 323 issue: 3 year: 2000 ident: 10.1016/j.yexcr.2019.111753_bib27 article-title: Induction of lpl gene expression by sterols is mediated by a sterol regulatory element and is independent of the presence of multiple e boxes publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2000.4218 – volume: 24 start-page: 323 issue: 3 year: 2018 ident: 10.1016/j.yexcr.2019.111753_bib7 article-title: Circrna_0046366 inhibits hepatocellular steatosis by normalization of ppar signaling publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v24.i3.323 – volume: 14 start-page: 361 issue: 3 year: 2017 ident: 10.1016/j.yexcr.2019.111753_bib34 article-title: Identification of hur target circular rnas uncovers suppression of pabpn1 translation by circpabpn1 publication-title: RNA Biol. doi: 10.1080/15476286.2017.1279788 – volume: 42 start-page: W361 issue: Web Server issue year: 2014 ident: 10.1016/j.yexcr.2019.111753_bib14 article-title: Rbpmap: a web server for mapping binding sites of rna-binding proteins publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku406 – volume: 19 start-page: 5495 issue: 8 year: 1999 ident: 10.1016/j.yexcr.2019.111753_bib28 article-title: Regulation of peroxisome proliferator-activated receptor publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.19.8.5495 – volume: 67 start-page: 1768 issue: 5 year: 2018 ident: 10.1016/j.yexcr.2019.111753_bib10 article-title: Long noncoding rna h19 interacts with polypyrimidine tract-binding protein 1 to reprogram hepatic lipid homeostasis publication-title: Hepatology doi: 10.1002/hep.29654 – volume: 375 start-page: 489 issue: Pt 2 year: 2003 ident: 10.1016/j.yexcr.2019.111753_bib26 article-title: Induction of transcripts derived from promoter iii of the acetyl-coa carboxylase-α gene in mammary gland is associated with recruitment of srebp-1 to a region of the proximal promoter defined by a dnase i hypersensitive site publication-title: Biochem. J. doi: 10.1042/bj20030480 – volume: 280 start-page: 5801 issue: 22 year: 2013 ident: 10.1016/j.yexcr.2019.111753_bib30 article-title: Ppargamma forms a bridge between DNA methylation and histone acetylation at the c/ebpalpha gene promoter to regulate the balance between osteogenesis and adipogenesis of bone marrow stromal cells publication-title: FEBS J. doi: 10.1111/febs.12500 – volume: 56 start-page: 595 issue: 10 year: 2004 ident: 10.1016/j.yexcr.2019.111753_bib25 article-title: Insulin regulation of fatty acid synthase gene transcription: roles of usf and srebp-1c publication-title: IUBMB Life doi: 10.1080/15216540400022474 – volume: 7 start-page: 885 issue: 12 year: 2006 ident: 10.1016/j.yexcr.2019.111753_bib29 article-title: Adipocyte differentiation from the inside out publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2066 – volume: 0 start-page: 1 year: 2018 ident: 10.1016/j.yexcr.2019.111753_bib33 article-title: The interaction of circrnas and rna binding proteins: an important part of circrna maintenance and function publication-title: J. Neurosci. Res. – volume: 149 start-page: 33 issue: 1 year: 2005 ident: 10.1016/j.yexcr.2019.111753_bib4 article-title: Metabolic syndrome: definition, pathophysiology, and mechanisms publication-title: Am. Heart J. doi: 10.1016/j.ahj.2004.07.013 – volume: 12 start-page: 13 year: 2001 ident: 10.1016/j.yexcr.2019.111753_bib36 article-title: Nucleocytoplasmic shuttling of polypyrimidine tract-binding protein is uncoupled from rna export publication-title: Mol. Biol. Cell doi: 10.1091/mbc.12.12.3808 – volume: 17 issue: 1 year: 2018 ident: 10.1016/j.yexcr.2019.111753_bib6 article-title: Obesity and lipid-related parameters for predicting metabolic syndrome in Chinese elderly population publication-title: Lipids Health Dis. doi: 10.1186/s12944-018-0927-x |
SSID | ssj0008816 |
Score | 2.5573 |
Snippet | The metabolic syndrome (MetS) is characterized of a cluster of medical disorders. Altered function of adipose tissue has a significant impact on whole-body... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 111753 |
SubjectTerms | Adipogenic differentiation Circular RNA Human adipose-derived stem cells Metabolic syndrome Polypyrimidine tract-binding protein 1 Sterol-regulatory element binding proteins |
Title | Knock-down of circular RNA H19 induces human adipose-derived stem cells adipogenic differentiation via a mechanism involving the polypyrimidine tract-binding protein 1 |
URI | https://dx.doi.org/10.1016/j.yexcr.2019.111753 https://www.ncbi.nlm.nih.gov/pubmed/31837293 https://www.proquest.com/docview/2327370428 |
Volume | 387 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqIiQuCMrXAq0GiSOh68SJ4-OqarWlYg-oSL1Z_ooU1CZRk1bshb_D32TGSYo4tAeuiZNYmfHMm2T8HmMfBf3Oo1Yci_klETbYxJoyTwSWF3xZGcuj3NvXTbH-Lr5c5Bc77GjeC0NtlVPsH2N6jNbTkcPpbR52dU17fLEYKFOJEATzbEG020JI8vLPv_62eZRllD-lwQmNnpmHYo_XNvx0RArKFYUOmWf3Zaf70GfMQifP2NMJPsJqnOFzthOaPfZ4FJTcvmC_zxqMb4nH0hraClx9HdtM4dtmBWuuAAtwNGUPUZkPjK-7tg-JRy-8DR6I0xnoS34_nkLfqh3MEirDaES4rQ0YuAq0Zbjur_CeGOHoswQgloSuvdx2W9IKw6QYYKBNWFR9U4qESApRN8BfsvOT4_OjdTJJMSROLMWQqEwsrZelKmQViKFdGS5D5kTmbWoQpuEo74IhIghvpModN1ZZXPBVcJxnr9hu0zbhDYNKWcSIyktVKJFXwfqq8qVBoCc8go90wdLZAtpNNOWklnGp5360HzqaTZPZ9Gi2Bft0d1E3snQ8PLyYTav_cTaNeeThCz_MjqBxGZJFTBPam14jMJWZpAJ0wV6PHnI3EwqbWMNkb__3se_Yk5TKfNKhyd-z3eH6JuwjFhrsQXT2A_ZodXq23vwBx4QKKw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb5wwELXSjar2UvW72ybtVOqxKGswGB9XUSKSTfZQbaXcLBsbiSoBFEjU_UX9m53hY6UekkOvYANihpk3ZvweY98E_c6jVhyL-SUQ1tvAmjQOBJYXfFEYy3u5t8t1kv0U51fx1R47nvbCUFvlGPuHmN5H6_HI0fg2j5qypD2-WAykoUQIgnk2SZ6wfWKnimdsf3m2yta7gJymvQIqjQ9owkQ-1Ld5bf3vnHhBuaLoIePooQT1EADtE9HpS_ZiRJCwHB7yFdvz1Wv2dNCU3L5hf1YVhrjAYXUNdQF5edt3msKP9RIyrgBrcLRmC704HxhXNnXrA4eOeO8dEK0z0GJ-O5xC9ypzmFRUusGOcF8aMHDjaddw2d7gNTHI0coEIJyEpr7eNluSC8O86KGjfVhUgFOWhJ4XoqyAv2Wb05PNcRaMagxBLhaiC1QkFtbJVCWy8ETSrgyXPspF5GxoEKnhKJd7Q1wQzkgV59xYZfGbL3zOefSOzaq68h8YFMoiTFROqkSJuPDWFYVLDWI94RB_hHMWThbQ-chUToIZ13pqSfule7NpMpsezDZn33eTmoGo4_HhyWRa_Y-_aUwlj0_8OjmCxi-RLGIqX9-1GrGpjCTVoHP2fvCQ3ZNQ5MQyJvr4v7f9wp5lm8sLfXG2Xn1iz0Oq-kmWJj5gs-72zh8iNOrs59H1_wLXVgzc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knock-down+of+circular+RNA+H19+induces+human+adipose-derived+stem+cells+adipogenic+differentiation+via+a+mechanism+involving+the+polypyrimidine+tract-binding+protein+1&rft.jtitle=Experimental+cell+research&rft.au=Zhu%2C+Yiyi&rft.au=Gui%2C+Weiwei&rft.au=Lin%2C+Xihua&rft.au=Li%2C+Hong&rft.date=2020-02-15&rft.pub=Elsevier+Inc&rft.issn=0014-4827&rft.eissn=1090-2422&rft.volume=387&rft.issue=2&rft_id=info:doi/10.1016%2Fj.yexcr.2019.111753&rft.externalDocID=S0014482719306366 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4827&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4827&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4827&client=summon |