Strongly Correlated Metal Built from Sachdev-Ye-Kitaev Models
Prominent systems like the high-T_{c} cuprates and heavy fermions display intriguing features going beyond the quasiparticle description. The Sachdev-Ye-Kitaev (SYK) model describes a (0+1)D quantum cluster with random all-to-all four-fermion interactions among N fermion modes which becomes exactly...
Saved in:
Published in | Physical review letters Vol. 119; no. 21; p. 216601 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
20.11.2017
|
Online Access | Get more information |
Cover
Loading…
Abstract | Prominent systems like the high-T_{c} cuprates and heavy fermions display intriguing features going beyond the quasiparticle description. The Sachdev-Ye-Kitaev (SYK) model describes a (0+1)D quantum cluster with random all-to-all four-fermion interactions among N fermion modes which becomes exactly solvable as N→∞, exhibiting a zero-dimensional non-Fermi-liquid with emergent conformal symmetry and complete absence of quasiparticles. Here we study a lattice of complex-fermion SYK dots with random intersite quadratic hopping. Combining the imaginary time path integral with real time path integral formulation, we obtain a heavy Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find linear in temperature resistivity in the incoherent regime, and a Lorentz ratio L≡(κρ/T) varies between two universal values as a function of temperature. Our work exemplifies an analytically controlled study of a strongly correlated metal. |
---|---|
AbstractList | Prominent systems like the high-T_{c} cuprates and heavy fermions display intriguing features going beyond the quasiparticle description. The Sachdev-Ye-Kitaev (SYK) model describes a (0+1)D quantum cluster with random all-to-all four-fermion interactions among N fermion modes which becomes exactly solvable as N→∞, exhibiting a zero-dimensional non-Fermi-liquid with emergent conformal symmetry and complete absence of quasiparticles. Here we study a lattice of complex-fermion SYK dots with random intersite quadratic hopping. Combining the imaginary time path integral with real time path integral formulation, we obtain a heavy Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find linear in temperature resistivity in the incoherent regime, and a Lorentz ratio L≡(κρ/T) varies between two universal values as a function of temperature. Our work exemplifies an analytically controlled study of a strongly correlated metal. |
Author | Balents, Leon Song, Xue-Yang Jian, Chao-Ming |
Author_xml | – sequence: 1 givenname: Xue-Yang surname: Song fullname: Song, Xue-Yang organization: Kavli Institute of Theoretical Physics, University of California, Santa Barbara, California 93106, USA – sequence: 2 givenname: Chao-Ming surname: Jian fullname: Jian, Chao-Ming organization: Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA – sequence: 3 givenname: Leon surname: Balents fullname: Balents, Leon organization: Kavli Institute of Theoretical Physics, University of California, Santa Barbara, California 93106, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29219415$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j9tKxDAURYMozkV_YegPdDwn06bJgw9avGEHxdEHn4Y0OXEqvQxpptC_d0B92rBYLNgzdtp2LTG2QFgiwurqdTf2bzQUFMIRqCVHIQBP2BQhU3GGmEzYrO-_AQC5kOdswhVHlWA6Zdeb4Lv2qx6jvPOeah3IRmsKuo5uD1UdIue7Jtpos7M0xJ8UP1dB0xCtO0t1f8HOnK57uvzbOfu4v3vPH-Pi5eEpvylik0AS4ozSVFlROpOBBFDOJs4alXI0BoQptVyVRNJIkWoCa2QmBXcqLUt02VHlc7b47e4PZUN2u_dVo_24_f_BfwBRt01z |
CitedBy_id | crossref_primary_10_1007_JHEP06_2020_143 crossref_primary_10_1007_JHEP09_2019_057 crossref_primary_10_1103_PhysRevX_10_031026 crossref_primary_10_1103_PhysRevB_98_081413 crossref_primary_10_21468_SciPostPhys_5_1_012 crossref_primary_10_1007_JHEP11_2019_038 crossref_primary_10_1103_PhysRevB_106_224305 crossref_primary_10_1103_PhysRevResearch_2_043049 crossref_primary_10_1103_PhysRevB_104_L020509 crossref_primary_10_1103_PhysRevB_97_201112 crossref_primary_10_1103_PhysRevB_99_024506 crossref_primary_10_1103_PhysRevB_101_125112 crossref_primary_10_1103_PhysRevB_104_085139 crossref_primary_10_1103_PhysRevLett_124_236804 crossref_primary_10_1103_PhysRevLett_123_066601 crossref_primary_10_1007_JHEP02_2025_142 crossref_primary_10_1038_s41534_019_0166_7 crossref_primary_10_1103_PRXQuantum_4_020349 crossref_primary_10_1088_1674_1056_abefcb crossref_primary_10_1103_PhysRevB_99_014303 crossref_primary_10_21468_SciPostPhys_17_4_120 crossref_primary_10_1103_PhysRevB_110_165158 crossref_primary_10_1007_JHEP12_2024_118 crossref_primary_10_1103_Physics_13_20 crossref_primary_10_1103_PhysRevB_103_155161 crossref_primary_10_1016_j_aop_2020_168202 crossref_primary_10_1073_pnas_2207903120 crossref_primary_10_1103_PhysRevB_108_235169 crossref_primary_10_1103_PhysRevResearch_3_033117 crossref_primary_10_1016_j_scib_2020_03_037 crossref_primary_10_1103_RevModPhys_94_041002 crossref_primary_10_1103_PhysRevB_105_045105 crossref_primary_10_1103_PhysRevLett_121_036403 crossref_primary_10_1103_PhysRevResearch_3_023020 crossref_primary_10_22331_q_2022_05_27_723 crossref_primary_10_1103_PhysRevResearch_4_033093 crossref_primary_10_1103_PhysRevLett_120_241603 crossref_primary_10_1103_PhysRevB_105_L241106 crossref_primary_10_1103_PRXQuantum_4_030328 crossref_primary_10_1103_PhysRevB_100_045124 crossref_primary_10_1103_PhysRevB_104_195113 crossref_primary_10_1103_PhysRevResearch_2_033084 crossref_primary_10_1007_JHEP10_2024_038 crossref_primary_10_1103_PhysRevB_100_220506 crossref_primary_10_1103_PhysRevLett_121_250602 crossref_primary_10_1103_PhysRevD_108_105023 crossref_primary_10_1103_PhysRevResearch_4_L022068 crossref_primary_10_1103_PhysRevB_105_085120 crossref_primary_10_1103_PhysRevResearch_2_033129 crossref_primary_10_1103_PhysRevB_107_L081103 crossref_primary_10_1103_PhysRevB_108_L140501 crossref_primary_10_1103_PhysRevResearch_6_013094 crossref_primary_10_1103_PhysRevB_98_165117 crossref_primary_10_1103_PhysRevB_108_075428 crossref_primary_10_1103_PhysRevB_100_115122 crossref_primary_10_1103_PhysRevB_109_235109 crossref_primary_10_1103_PhysRevB_111_045111 crossref_primary_10_1103_PhysRevB_97_165115 crossref_primary_10_1103_PhysRevB_99_115132 crossref_primary_10_21468_SciPostPhys_10_2_048 crossref_primary_10_1103_PhysRevLett_133_266503 crossref_primary_10_1103_PhysRevResearch_3_013250 crossref_primary_10_1007_JHEP12_2017_148 crossref_primary_10_22331_q_2021_11_16_579 crossref_primary_10_3952_physics_v60i3_4305 crossref_primary_10_1103_PhysRevLett_129_266601 crossref_primary_10_21468_SciPostPhys_15_3_108 crossref_primary_10_21468_SciPostPhys_6_2_016 crossref_primary_10_1103_PhysRevB_97_241106 crossref_primary_10_1103_PhysRevB_108_115120 crossref_primary_10_1103_PhysRevLett_128_106805 crossref_primary_10_1038_s42254_020_0225_1 crossref_primary_10_1073_pnas_2003179117 crossref_primary_10_1103_PhysRevResearch_5_013045 crossref_primary_10_3952_physics_2024_64_2_2 crossref_primary_10_1007_JHEP12_2018_065 crossref_primary_10_1103_PhysRevB_110_165137 crossref_primary_10_1103_PhysRevLett_124_106401 crossref_primary_10_1103_PhysRevLett_123_106601 crossref_primary_10_1103_PhysRevLett_127_140601 crossref_primary_10_1103_PhysRevB_99_054202 crossref_primary_10_1038_s41567_019_0712_4 crossref_primary_10_1103_PhysRevB_100_115132 crossref_primary_10_1007_JHEP06_2021_158 crossref_primary_10_1002_pssb_202100271 crossref_primary_10_1103_PhysRevB_104_115134 crossref_primary_10_1103_PhysRevA_104_013303 crossref_primary_10_21468_SciPostPhys_12_5_151 crossref_primary_10_1007_JHEP11_2024_132 crossref_primary_10_1007_JHEP01_2018_076 crossref_primary_10_1103_PhysRevD_101_086024 crossref_primary_10_1103_PhysRevA_110_062209 crossref_primary_10_1103_PhysRevB_105_125109 crossref_primary_10_1103_PhysRevB_97_235124 crossref_primary_10_1103_PhysRevB_98_125134 crossref_primary_10_1103_PhysRevResearch_3_033089 crossref_primary_10_1103_PhysRevB_109_115307 crossref_primary_10_1103_PhysRevD_104_L081901 crossref_primary_10_1103_PhysRevX_8_031024 crossref_primary_10_1103_PhysRevResearch_3_L022024 crossref_primary_10_1103_PhysRevB_106_094508 crossref_primary_10_1103_PhysRevResearch_2_033505 crossref_primary_10_1103_PhysRevB_107_125157 crossref_primary_10_1103_PhysRevLett_123_226801 crossref_primary_10_1103_PhysRevB_101_205148 crossref_primary_10_1007_s11433_022_2017_6 crossref_primary_10_1103_PhysRevD_99_066001 crossref_primary_10_1103_PhysRevB_110_134202 crossref_primary_10_1103_PhysRevResearch_5_043007 crossref_primary_10_1103_PhysRevD_100_125005 crossref_primary_10_1103_PhysRevResearch_2_013301 crossref_primary_10_1103_PhysRevB_100_155128 crossref_primary_10_1103_PhysRevB_103_L201107 crossref_primary_10_1103_PhysRevB_100_235121 crossref_primary_10_1103_PhysRevResearch_2_033431 crossref_primary_10_21468_SciPostPhys_13_6_120 crossref_primary_10_1007_JHEP06_2021_156 crossref_primary_10_1103_PhysRevB_103_L081113 crossref_primary_10_1103_PhysRevResearch_2_033434 crossref_primary_10_1103_PhysRevResearch_4_013145 crossref_primary_10_1103_PhysRevResearch_2_013307 crossref_primary_10_1088_1751_8121_ab2ce1 crossref_primary_10_1103_PhysRevLett_121_236601 crossref_primary_10_1103_PhysRevB_105_235131 crossref_primary_10_1103_PhysRevResearch_2_023366 crossref_primary_10_1103_PhysRevResearch_4_023001 crossref_primary_10_1088_1361_6633_ab28ef crossref_primary_10_21468_SciPostPhys_12_1_031 crossref_primary_10_1103_PhysRevLett_121_176603 crossref_primary_10_1103_PhysRevLett_121_187001 crossref_primary_10_1103_PhysRevB_108_075110 crossref_primary_10_22331_q_2023_05_24_1022 crossref_primary_10_1103_PhysRevB_107_075132 crossref_primary_10_1103_PhysRevLett_124_017002 crossref_primary_10_1038_s41578_018_0058_z crossref_primary_10_1103_PhysRevD_98_086020 crossref_primary_10_3390_condmat3040040 crossref_primary_10_1103_PhysRevB_102_184505 crossref_primary_10_3952_physics_v62i2_4741 crossref_primary_10_1103_PhysRevX_8_021049 crossref_primary_10_21468_SciPostPhys_8_6_094 crossref_primary_10_1103_PhysRevB_102_075146 crossref_primary_10_1103_PhysRevB_98_075150 crossref_primary_10_1007_s11467_022_1162_5 crossref_primary_10_1103_PhysRevX_9_021043 crossref_primary_10_1103_PhysRevD_97_106003 crossref_primary_10_1016_j_nuclphysb_2020_115163 crossref_primary_10_1103_PhysRevResearch_6_023210 crossref_primary_10_1103_PhysRevB_100_245104 crossref_primary_10_1103_PhysRevB_103_075142 crossref_primary_10_1103_PhysRevB_106_155108 crossref_primary_10_1103_PhysRevB_99_045419 crossref_primary_10_3390_condmat5020037 crossref_primary_10_1103_PhysRevB_100_075101 crossref_primary_10_1103_PhysRevLett_127_266601 crossref_primary_10_1038_s41567_018_0334_2 crossref_primary_10_1103_PhysRevB_100_235144 crossref_primary_10_1103_PhysRevB_97_155117 crossref_primary_10_1007_JHEP01_2020_186 crossref_primary_10_1007_JHEP04_2023_105 crossref_primary_10_1103_PhysRevLett_125_196602 crossref_primary_10_1103_PhysRevLett_122_186601 crossref_primary_10_1103_PhysRevLett_131_096501 crossref_primary_10_1103_PhysRevResearch_4_L022039 crossref_primary_10_1007_s10773_024_05845_y crossref_primary_10_1007_s10714_022_02933_4 crossref_primary_10_21468_SciPostPhys_13_1_004 crossref_primary_10_1103_PhysRevB_105_075117 crossref_primary_10_1007_JHEP12_2021_114 crossref_primary_10_1103_PhysRevB_106_075138 crossref_primary_10_1103_PhysRevB_104_125120 crossref_primary_10_1103_PhysRevX_10_021033 crossref_primary_10_1103_RevModPhys_94_035004 crossref_primary_10_21468_SciPostPhys_13_3_073 crossref_primary_10_1088_1751_8121_ab2a86 crossref_primary_10_1007_JHEP03_2023_126 crossref_primary_10_1103_PhysRevB_97_245126 crossref_primary_10_1103_PhysRevB_105_085147 crossref_primary_10_1088_2399_6528_aae06b crossref_primary_10_1103_PhysRevB_103_195111 crossref_primary_10_1103_PhysRevB_108_165106 crossref_primary_10_1103_PhysRevB_99_195123 crossref_primary_10_1103_PhysRevB_97_205141 crossref_primary_10_1103_PhysRevB_105_L201108 crossref_primary_10_1103_PhysRevB_100_045140 crossref_primary_10_1103_PhysRevB_101_014203 crossref_primary_10_1103_PhysRevResearch_2_033025 crossref_primary_10_1103_PhysRevB_105_L180404 crossref_primary_10_1103_PhysRevB_107_235114 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1103/PhysRevLett.119.216601 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1079-7114 |
ExternalDocumentID | 29219415 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 123 2-P 29O 3MX 5VS 85S ACBEA ACGFO ACNCT AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CS3 D0L DU5 EBS EJD ER. F5P MVM N9A NPBMV NPM P2P ROL S7W SJN TN5 UBE WH7 XSW YNT ZPR ~02 |
ID | FETCH-LOGICAL-c404t-7e559d6bfc708009fd4fdc9521cc06cba83bee8c865ae0dc87862f95bb1f74fd2 |
IngestDate | Thu Apr 03 07:00:32 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c404t-7e559d6bfc708009fd4fdc9521cc06cba83bee8c865ae0dc87862f95bb1f74fd2 |
PMID | 29219415 |
ParticipantIDs | pubmed_primary_29219415 |
PublicationCentury | 2000 |
PublicationDate | 2017-11-20 |
PublicationDateYYYYMMDD | 2017-11-20 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review letters |
PublicationTitleAlternate | Phys Rev Lett |
PublicationYear | 2017 |
SSID | ssj0001268 |
Score | 2.6599731 |
Snippet | Prominent systems like the high-T_{c} cuprates and heavy fermions display intriguing features going beyond the quasiparticle description. The Sachdev-Ye-Kitaev... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 216601 |
Title | Strongly Correlated Metal Built from Sachdev-Ye-Kitaev Models |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29219415 |
Volume | 119 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELY2EFJfEBs_B5vywKuL0yaO_cgQaAJ1mmgrtU-V7VwgUtZVatYH_vrdxU6K1oJgL1Flt1GS7-v57uLvjrH3uCiANDbl2jjBcYVKuRFZxoXKNdJBqWFMQuHRpbyYJl9n6WwrV2zUJbXtu197dSUPQRXHEFdSyf4Hst1JcQA_I754RITx-E8YjymP_YMKFFOPjcqQ9zgCkjee35ZV7bUjY-N-5rDhc-DfytrApul_Vq1_d0uvWrSCkqVqRD6duz0O-3Znt8DnJqx1tO2mNO07-xs-KrcT56byGzQw6IcAfEgt4HIVx3zg35KAN4ci0zyLvcyzs5fBxnlieH1zZ_6k9LmJXcssqEIE3c532JBUCYd0f_cH-IRX1w1eA43WNPFiz7_P3quY3U4dskOMHagZKmVwem3eTaqgFMdL-rD_gqhEdDjJvXCjcTsmz9jTEC9EHz34R-wAlsfsicdr_Zx1FIi2FIgaCkQNBSKiQLRDgchT4AWbfvk8-XTBQ0cM7hKR1DwDDABzaQuXkaevizwpcqfRBXNOSGeNGloA5ZRMDYjcqQwD1kKn1sZFhl8dvGSPljdLeM2ighrMGanRnsvEWqdjZ1OnNPrHQsIgfcNe-fterHzZk0X7RE7-OPOW9bY0esceF_g_g1N02mp71qBwB2isP5k |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strongly+Correlated+Metal+Built+from+Sachdev-Ye-Kitaev+Models&rft.jtitle=Physical+review+letters&rft.au=Song%2C+Xue-Yang&rft.au=Jian%2C+Chao-Ming&rft.au=Balents%2C+Leon&rft.date=2017-11-20&rft.eissn=1079-7114&rft.volume=119&rft.issue=21&rft.spage=216601&rft_id=info:doi/10.1103%2FPhysRevLett.119.216601&rft_id=info%3Apmid%2F29219415&rft_id=info%3Apmid%2F29219415&rft.externalDocID=29219415 |