Strongly Correlated Metal Built from Sachdev-Ye-Kitaev Models

Prominent systems like the high-T_{c} cuprates and heavy fermions display intriguing features going beyond the quasiparticle description. The Sachdev-Ye-Kitaev (SYK) model describes a (0+1)D quantum cluster with random all-to-all four-fermion interactions among N fermion modes which becomes exactly...

Full description

Saved in:
Bibliographic Details
Published inPhysical review letters Vol. 119; no. 21; p. 216601
Main Authors Song, Xue-Yang, Jian, Chao-Ming, Balents, Leon
Format Journal Article
LanguageEnglish
Published United States 20.11.2017
Online AccessGet more information

Cover

Loading…
Abstract Prominent systems like the high-T_{c} cuprates and heavy fermions display intriguing features going beyond the quasiparticle description. The Sachdev-Ye-Kitaev (SYK) model describes a (0+1)D quantum cluster with random all-to-all four-fermion interactions among N fermion modes which becomes exactly solvable as N→∞, exhibiting a zero-dimensional non-Fermi-liquid with emergent conformal symmetry and complete absence of quasiparticles. Here we study a lattice of complex-fermion SYK dots with random intersite quadratic hopping. Combining the imaginary time path integral with real time path integral formulation, we obtain a heavy Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find linear in temperature resistivity in the incoherent regime, and a Lorentz ratio L≡(κρ/T) varies between two universal values as a function of temperature. Our work exemplifies an analytically controlled study of a strongly correlated metal.
AbstractList Prominent systems like the high-T_{c} cuprates and heavy fermions display intriguing features going beyond the quasiparticle description. The Sachdev-Ye-Kitaev (SYK) model describes a (0+1)D quantum cluster with random all-to-all four-fermion interactions among N fermion modes which becomes exactly solvable as N→∞, exhibiting a zero-dimensional non-Fermi-liquid with emergent conformal symmetry and complete absence of quasiparticles. Here we study a lattice of complex-fermion SYK dots with random intersite quadratic hopping. Combining the imaginary time path integral with real time path integral formulation, we obtain a heavy Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find linear in temperature resistivity in the incoherent regime, and a Lorentz ratio L≡(κρ/T) varies between two universal values as a function of temperature. Our work exemplifies an analytically controlled study of a strongly correlated metal.
Author Balents, Leon
Song, Xue-Yang
Jian, Chao-Ming
Author_xml – sequence: 1
  givenname: Xue-Yang
  surname: Song
  fullname: Song, Xue-Yang
  organization: Kavli Institute of Theoretical Physics, University of California, Santa Barbara, California 93106, USA
– sequence: 2
  givenname: Chao-Ming
  surname: Jian
  fullname: Jian, Chao-Ming
  organization: Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA
– sequence: 3
  givenname: Leon
  surname: Balents
  fullname: Balents, Leon
  organization: Kavli Institute of Theoretical Physics, University of California, Santa Barbara, California 93106, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29219415$$D View this record in MEDLINE/PubMed
BookMark eNo1j9tKxDAURYMozkV_YegPdDwn06bJgw9avGEHxdEHn4Y0OXEqvQxpptC_d0B92rBYLNgzdtp2LTG2QFgiwurqdTf2bzQUFMIRqCVHIQBP2BQhU3GGmEzYrO-_AQC5kOdswhVHlWA6Zdeb4Lv2qx6jvPOeah3IRmsKuo5uD1UdIue7Jtpos7M0xJ8UP1dB0xCtO0t1f8HOnK57uvzbOfu4v3vPH-Pi5eEpvylik0AS4ozSVFlROpOBBFDOJs4alXI0BoQptVyVRNJIkWoCa2QmBXcqLUt02VHlc7b47e4PZUN2u_dVo_24_f_BfwBRt01z
CitedBy_id crossref_primary_10_1007_JHEP06_2020_143
crossref_primary_10_1007_JHEP09_2019_057
crossref_primary_10_1103_PhysRevX_10_031026
crossref_primary_10_1103_PhysRevB_98_081413
crossref_primary_10_21468_SciPostPhys_5_1_012
crossref_primary_10_1007_JHEP11_2019_038
crossref_primary_10_1103_PhysRevB_106_224305
crossref_primary_10_1103_PhysRevResearch_2_043049
crossref_primary_10_1103_PhysRevB_104_L020509
crossref_primary_10_1103_PhysRevB_97_201112
crossref_primary_10_1103_PhysRevB_99_024506
crossref_primary_10_1103_PhysRevB_101_125112
crossref_primary_10_1103_PhysRevB_104_085139
crossref_primary_10_1103_PhysRevLett_124_236804
crossref_primary_10_1103_PhysRevLett_123_066601
crossref_primary_10_1007_JHEP02_2025_142
crossref_primary_10_1038_s41534_019_0166_7
crossref_primary_10_1103_PRXQuantum_4_020349
crossref_primary_10_1088_1674_1056_abefcb
crossref_primary_10_1103_PhysRevB_99_014303
crossref_primary_10_21468_SciPostPhys_17_4_120
crossref_primary_10_1103_PhysRevB_110_165158
crossref_primary_10_1007_JHEP12_2024_118
crossref_primary_10_1103_Physics_13_20
crossref_primary_10_1103_PhysRevB_103_155161
crossref_primary_10_1016_j_aop_2020_168202
crossref_primary_10_1073_pnas_2207903120
crossref_primary_10_1103_PhysRevB_108_235169
crossref_primary_10_1103_PhysRevResearch_3_033117
crossref_primary_10_1016_j_scib_2020_03_037
crossref_primary_10_1103_RevModPhys_94_041002
crossref_primary_10_1103_PhysRevB_105_045105
crossref_primary_10_1103_PhysRevLett_121_036403
crossref_primary_10_1103_PhysRevResearch_3_023020
crossref_primary_10_22331_q_2022_05_27_723
crossref_primary_10_1103_PhysRevResearch_4_033093
crossref_primary_10_1103_PhysRevLett_120_241603
crossref_primary_10_1103_PhysRevB_105_L241106
crossref_primary_10_1103_PRXQuantum_4_030328
crossref_primary_10_1103_PhysRevB_100_045124
crossref_primary_10_1103_PhysRevB_104_195113
crossref_primary_10_1103_PhysRevResearch_2_033084
crossref_primary_10_1007_JHEP10_2024_038
crossref_primary_10_1103_PhysRevB_100_220506
crossref_primary_10_1103_PhysRevLett_121_250602
crossref_primary_10_1103_PhysRevD_108_105023
crossref_primary_10_1103_PhysRevResearch_4_L022068
crossref_primary_10_1103_PhysRevB_105_085120
crossref_primary_10_1103_PhysRevResearch_2_033129
crossref_primary_10_1103_PhysRevB_107_L081103
crossref_primary_10_1103_PhysRevB_108_L140501
crossref_primary_10_1103_PhysRevResearch_6_013094
crossref_primary_10_1103_PhysRevB_98_165117
crossref_primary_10_1103_PhysRevB_108_075428
crossref_primary_10_1103_PhysRevB_100_115122
crossref_primary_10_1103_PhysRevB_109_235109
crossref_primary_10_1103_PhysRevB_111_045111
crossref_primary_10_1103_PhysRevB_97_165115
crossref_primary_10_1103_PhysRevB_99_115132
crossref_primary_10_21468_SciPostPhys_10_2_048
crossref_primary_10_1103_PhysRevLett_133_266503
crossref_primary_10_1103_PhysRevResearch_3_013250
crossref_primary_10_1007_JHEP12_2017_148
crossref_primary_10_22331_q_2021_11_16_579
crossref_primary_10_3952_physics_v60i3_4305
crossref_primary_10_1103_PhysRevLett_129_266601
crossref_primary_10_21468_SciPostPhys_15_3_108
crossref_primary_10_21468_SciPostPhys_6_2_016
crossref_primary_10_1103_PhysRevB_97_241106
crossref_primary_10_1103_PhysRevB_108_115120
crossref_primary_10_1103_PhysRevLett_128_106805
crossref_primary_10_1038_s42254_020_0225_1
crossref_primary_10_1073_pnas_2003179117
crossref_primary_10_1103_PhysRevResearch_5_013045
crossref_primary_10_3952_physics_2024_64_2_2
crossref_primary_10_1007_JHEP12_2018_065
crossref_primary_10_1103_PhysRevB_110_165137
crossref_primary_10_1103_PhysRevLett_124_106401
crossref_primary_10_1103_PhysRevLett_123_106601
crossref_primary_10_1103_PhysRevLett_127_140601
crossref_primary_10_1103_PhysRevB_99_054202
crossref_primary_10_1038_s41567_019_0712_4
crossref_primary_10_1103_PhysRevB_100_115132
crossref_primary_10_1007_JHEP06_2021_158
crossref_primary_10_1002_pssb_202100271
crossref_primary_10_1103_PhysRevB_104_115134
crossref_primary_10_1103_PhysRevA_104_013303
crossref_primary_10_21468_SciPostPhys_12_5_151
crossref_primary_10_1007_JHEP11_2024_132
crossref_primary_10_1007_JHEP01_2018_076
crossref_primary_10_1103_PhysRevD_101_086024
crossref_primary_10_1103_PhysRevA_110_062209
crossref_primary_10_1103_PhysRevB_105_125109
crossref_primary_10_1103_PhysRevB_97_235124
crossref_primary_10_1103_PhysRevB_98_125134
crossref_primary_10_1103_PhysRevResearch_3_033089
crossref_primary_10_1103_PhysRevB_109_115307
crossref_primary_10_1103_PhysRevD_104_L081901
crossref_primary_10_1103_PhysRevX_8_031024
crossref_primary_10_1103_PhysRevResearch_3_L022024
crossref_primary_10_1103_PhysRevB_106_094508
crossref_primary_10_1103_PhysRevResearch_2_033505
crossref_primary_10_1103_PhysRevB_107_125157
crossref_primary_10_1103_PhysRevLett_123_226801
crossref_primary_10_1103_PhysRevB_101_205148
crossref_primary_10_1007_s11433_022_2017_6
crossref_primary_10_1103_PhysRevD_99_066001
crossref_primary_10_1103_PhysRevB_110_134202
crossref_primary_10_1103_PhysRevResearch_5_043007
crossref_primary_10_1103_PhysRevD_100_125005
crossref_primary_10_1103_PhysRevResearch_2_013301
crossref_primary_10_1103_PhysRevB_100_155128
crossref_primary_10_1103_PhysRevB_103_L201107
crossref_primary_10_1103_PhysRevB_100_235121
crossref_primary_10_1103_PhysRevResearch_2_033431
crossref_primary_10_21468_SciPostPhys_13_6_120
crossref_primary_10_1007_JHEP06_2021_156
crossref_primary_10_1103_PhysRevB_103_L081113
crossref_primary_10_1103_PhysRevResearch_2_033434
crossref_primary_10_1103_PhysRevResearch_4_013145
crossref_primary_10_1103_PhysRevResearch_2_013307
crossref_primary_10_1088_1751_8121_ab2ce1
crossref_primary_10_1103_PhysRevLett_121_236601
crossref_primary_10_1103_PhysRevB_105_235131
crossref_primary_10_1103_PhysRevResearch_2_023366
crossref_primary_10_1103_PhysRevResearch_4_023001
crossref_primary_10_1088_1361_6633_ab28ef
crossref_primary_10_21468_SciPostPhys_12_1_031
crossref_primary_10_1103_PhysRevLett_121_176603
crossref_primary_10_1103_PhysRevLett_121_187001
crossref_primary_10_1103_PhysRevB_108_075110
crossref_primary_10_22331_q_2023_05_24_1022
crossref_primary_10_1103_PhysRevB_107_075132
crossref_primary_10_1103_PhysRevLett_124_017002
crossref_primary_10_1038_s41578_018_0058_z
crossref_primary_10_1103_PhysRevD_98_086020
crossref_primary_10_3390_condmat3040040
crossref_primary_10_1103_PhysRevB_102_184505
crossref_primary_10_3952_physics_v62i2_4741
crossref_primary_10_1103_PhysRevX_8_021049
crossref_primary_10_21468_SciPostPhys_8_6_094
crossref_primary_10_1103_PhysRevB_102_075146
crossref_primary_10_1103_PhysRevB_98_075150
crossref_primary_10_1007_s11467_022_1162_5
crossref_primary_10_1103_PhysRevX_9_021043
crossref_primary_10_1103_PhysRevD_97_106003
crossref_primary_10_1016_j_nuclphysb_2020_115163
crossref_primary_10_1103_PhysRevResearch_6_023210
crossref_primary_10_1103_PhysRevB_100_245104
crossref_primary_10_1103_PhysRevB_103_075142
crossref_primary_10_1103_PhysRevB_106_155108
crossref_primary_10_1103_PhysRevB_99_045419
crossref_primary_10_3390_condmat5020037
crossref_primary_10_1103_PhysRevB_100_075101
crossref_primary_10_1103_PhysRevLett_127_266601
crossref_primary_10_1038_s41567_018_0334_2
crossref_primary_10_1103_PhysRevB_100_235144
crossref_primary_10_1103_PhysRevB_97_155117
crossref_primary_10_1007_JHEP01_2020_186
crossref_primary_10_1007_JHEP04_2023_105
crossref_primary_10_1103_PhysRevLett_125_196602
crossref_primary_10_1103_PhysRevLett_122_186601
crossref_primary_10_1103_PhysRevLett_131_096501
crossref_primary_10_1103_PhysRevResearch_4_L022039
crossref_primary_10_1007_s10773_024_05845_y
crossref_primary_10_1007_s10714_022_02933_4
crossref_primary_10_21468_SciPostPhys_13_1_004
crossref_primary_10_1103_PhysRevB_105_075117
crossref_primary_10_1007_JHEP12_2021_114
crossref_primary_10_1103_PhysRevB_106_075138
crossref_primary_10_1103_PhysRevB_104_125120
crossref_primary_10_1103_PhysRevX_10_021033
crossref_primary_10_1103_RevModPhys_94_035004
crossref_primary_10_21468_SciPostPhys_13_3_073
crossref_primary_10_1088_1751_8121_ab2a86
crossref_primary_10_1007_JHEP03_2023_126
crossref_primary_10_1103_PhysRevB_97_245126
crossref_primary_10_1103_PhysRevB_105_085147
crossref_primary_10_1088_2399_6528_aae06b
crossref_primary_10_1103_PhysRevB_103_195111
crossref_primary_10_1103_PhysRevB_108_165106
crossref_primary_10_1103_PhysRevB_99_195123
crossref_primary_10_1103_PhysRevB_97_205141
crossref_primary_10_1103_PhysRevB_105_L201108
crossref_primary_10_1103_PhysRevB_100_045140
crossref_primary_10_1103_PhysRevB_101_014203
crossref_primary_10_1103_PhysRevResearch_2_033025
crossref_primary_10_1103_PhysRevB_105_L180404
crossref_primary_10_1103_PhysRevB_107_235114
ContentType Journal Article
DBID NPM
DOI 10.1103/PhysRevLett.119.216601
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 29219415
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
ER.
F5P
MVM
N9A
NPBMV
NPM
P2P
ROL
S7W
SJN
TN5
UBE
WH7
XSW
YNT
ZPR
~02
ID FETCH-LOGICAL-c404t-7e559d6bfc708009fd4fdc9521cc06cba83bee8c865ae0dc87862f95bb1f74fd2
IngestDate Thu Apr 03 07:00:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c404t-7e559d6bfc708009fd4fdc9521cc06cba83bee8c865ae0dc87862f95bb1f74fd2
PMID 29219415
ParticipantIDs pubmed_primary_29219415
PublicationCentury 2000
PublicationDate 2017-11-20
PublicationDateYYYYMMDD 2017-11-20
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2017
SSID ssj0001268
Score 2.6599731
Snippet Prominent systems like the high-T_{c} cuprates and heavy fermions display intriguing features going beyond the quasiparticle description. The Sachdev-Ye-Kitaev...
SourceID pubmed
SourceType Index Database
StartPage 216601
Title Strongly Correlated Metal Built from Sachdev-Ye-Kitaev Models
URI https://www.ncbi.nlm.nih.gov/pubmed/29219415
Volume 119
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELY2EFJfEBs_B5vywKuL0yaO_cgQaAJ1mmgrtU-V7VwgUtZVatYH_vrdxU6K1oJgL1Flt1GS7-v57uLvjrH3uCiANDbl2jjBcYVKuRFZxoXKNdJBqWFMQuHRpbyYJl9n6WwrV2zUJbXtu197dSUPQRXHEFdSyf4Hst1JcQA_I754RITx-E8YjymP_YMKFFOPjcqQ9zgCkjee35ZV7bUjY-N-5rDhc-DfytrApul_Vq1_d0uvWrSCkqVqRD6duz0O-3Znt8DnJqx1tO2mNO07-xs-KrcT56byGzQw6IcAfEgt4HIVx3zg35KAN4ci0zyLvcyzs5fBxnlieH1zZ_6k9LmJXcssqEIE3c532JBUCYd0f_cH-IRX1w1eA43WNPFiz7_P3quY3U4dskOMHagZKmVwem3eTaqgFMdL-rD_gqhEdDjJvXCjcTsmz9jTEC9EHz34R-wAlsfsicdr_Zx1FIi2FIgaCkQNBSKiQLRDgchT4AWbfvk8-XTBQ0cM7hKR1DwDDABzaQuXkaevizwpcqfRBXNOSGeNGloA5ZRMDYjcqQwD1kKn1sZFhl8dvGSPljdLeM2ighrMGanRnsvEWqdjZ1OnNPrHQsIgfcNe-fterHzZk0X7RE7-OPOW9bY0esceF_g_g1N02mp71qBwB2isP5k
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strongly+Correlated+Metal+Built+from+Sachdev-Ye-Kitaev+Models&rft.jtitle=Physical+review+letters&rft.au=Song%2C+Xue-Yang&rft.au=Jian%2C+Chao-Ming&rft.au=Balents%2C+Leon&rft.date=2017-11-20&rft.eissn=1079-7114&rft.volume=119&rft.issue=21&rft.spage=216601&rft_id=info:doi/10.1103%2FPhysRevLett.119.216601&rft_id=info%3Apmid%2F29219415&rft_id=info%3Apmid%2F29219415&rft.externalDocID=29219415