Machine learning approaches for spatial modeling of agricultural droughts in the south-east region of Queensland Australia

A quantitative understanding of the hydro-environmental factors that influence the occurrence of agricultural drought events would enable more strategic climate change adaptation and drought management plans. Practical drought hazard mapping remains challenging due to possible exclusion of the most...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 699; p. 134230
Main Authors Rahmati, Omid, Falah, Fatemeh, Dayal, Kavina Shaanu, Deo, Ravinesh C., Mohammadi, Farnoush, Biggs, Trent, Moghaddam, Davoud Davoudi, Naghibi, Seyed Amir, Bui, Dieu Tien
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 10.01.2020
Subjects
Online AccessGet full text
ISSN0048-9697
1879-1026
1879-1026
DOI10.1016/j.scitotenv.2019.134230

Cover

Abstract A quantitative understanding of the hydro-environmental factors that influence the occurrence of agricultural drought events would enable more strategic climate change adaptation and drought management plans. Practical drought hazard mapping remains challenging due to possible exclusion of the most pertinent drought drivers, and to the use of inadequate predictive models that cannot describe drought adequately. This research aims to develop new approaches to map agricultural drought hazard with state-of-the-art machine learning models, including classification and regression trees (CART), boosted regression trees (BRT), random forests (RF), multivariate adaptive regression splines (MARS), flexible discriminant analysis (FDA) and support vector machines (SVM). Hydro-environmental datasets were used to calculate the relative departure of soil moisture (RDSM) for eight severe droughts for drought-prone southeast Queensland, Australia, over the period 1994–2013. RDSM was then used to generate an agricultural drought inventory map. Eight hydro-environmental factors were used as potential predictors of drought. The goodness-of-fit and predictive performance of all models were evaluated using different threshold-dependent and threshold-independent methods, including the true skill statistic (TSS), Efficiency (E), F-score, and the area under the receiver operating characteristic curve (AUC-ROC). The RF model (AUC-ROC = 97.7%, TSS = 0.873, E = 0.929, F-score = 0.898) yielded the highest accuracy, while the FDA model (with AUC-ROC = 73.9%, TSS = 0.424, E = 0.719, F-score = 0.512) showed the worst performance. The plant available water holding capacity (PAWC), mean annual precipitation, and clay content were the most important variables to be used for predicting the agricultural drought. About 21.2% of the area is in high or very high drought risk classes, and therefore, warrant drought and environmental protection policies. Importantly, the models do not require data on the precipitation anomaly for any given drought year; the spatial patterns in AGH were consistent for all drought events, despite very different spatial patterns in precipitation anomaly among events. Such machine-learning approaches are able to construct an overall risk map, thus assisting in the adoption of a robust drought contingency planning measure not only for this area, but also, in other regions where drought presents a pressing challenge, including its influence on key practical dimensions of social, environmental and economic sustainability. [Display omitted] •Spatial and temporal machine learning approaches proposed for drought risk mapping.•Performance of six machine learning models is compared.•MARS and RF are suitable machine learning models for spatial risk mapping•Approximately 26% of the study area is at high or very high drought risk.•New approach considers hydro-geo-environmental factors for drought risk policy.
AbstractList A quantitative understanding of the hydro-environmental factors that influence the occurrence of agricultural drought events would enable more strategic climate change adaptation and drought management plans. Practical drought hazard mapping remains challenging due to possible exclusion of the most pertinent drought drivers, and to the use of inadequate predictive models that cannot describe drought adequately. This research aims to develop new approaches to map agricultural drought hazard with state-of-the-art machine learning models, including classification and regression trees (CART), boosted regression trees (BRT), random forests (RF), multivariate adaptive regression splines (MARS), flexible discriminant analysis (FDA) and support vector machines (SVM). Hydro-environmental datasets were used to calculate the relative departure of soil moisture (RDSM) for eight severe droughts for drought-prone southeast Queensland, Australia, over the period 1994-2013. RDSM was then used to generate an agricultural drought inventory map. Eight hydro-environmental factors were used as potential predictors of drought. The goodness-of-fit and predictive performance of all models were evaluated using different threshold-dependent and threshold-independent methods, including the true skill statistic (TSS), Efficiency (E), F-score, and the area under the receiver operating characteristic curve (AUC-ROC). The RF model (AUC-ROC = 97.7%, TSS = 0.873, E = 0.929, F-score = 0.898) yielded the highest accuracy, while the FDA model (with AUC-ROC = 73.9%, TSS = 0.424, E = 0.719, F-score = 0.512) showed the worst performance. The plant available water holding capacity (PAWC), mean annual precipitation, and clay content were the most important variables to be used for predicting the agricultural drought. About 21.2% of the area is in high or very high drought risk classes, and therefore, warrant drought and environmental protection policies. Importantly, the models do not require data on the precipitation anomaly for any given drought year; the spatial patterns in AGH were consistent for all drought events, despite very different spatial patterns in precipitation anomaly among events. Such machine-learning approaches are able to construct an overall risk map, thus assisting in the adoption of a robust drought contingency planning measure not only for this area, but also, in other regions where drought presents a pressing challenge, including its influence on key practical dimensions of social, environmental and economic sustainability.
A quantitative understanding of the hydro-environmental factors that influence the occurrence of agricultural drought events would enable more strategic climate change adaptation and drought management plans. Practical drought hazard mapping remains challenging due to possible exclusion of the most pertinent drought drivers, and to the use of inadequate predictive models that cannot describe drought adequately. This research aims to develop new approaches to map agricultural drought hazard with state-of-the-art machine learning models, including classification and regression trees (CART), boosted regression trees (BRT), random forests (RF), multivariate adaptive regression splines (MARS), flexible discriminant analysis (FDA) and support vector machines (SVM). Hydro-environmental datasets were used to calculate the relative departure of soil moisture (RDSM) for eight severe droughts for drought-prone southeast Queensland, Australia, over the period 1994–2013. RDSM was then used to generate an agricultural drought inventory map. Eight hydro-environmental factors were used as potential predictors of drought. The goodness-of-fit and predictive performance of all models were evaluated using different threshold-dependent and threshold-independent methods, including the true skill statistic (TSS), Efficiency (E), F-score, and the area under the receiver operating characteristic curve (AUC-ROC). The RF model (AUC-ROC = 97.7%, TSS = 0.873, E = 0.929, F-score = 0.898) yielded the highest accuracy, while the FDA model (with AUC-ROC = 73.9%, TSS = 0.424, E = 0.719, F-score = 0.512) showed the worst performance. The plant available water holding capacity (PAWC), mean annual precipitation, and clay content were the most important variables to be used for predicting the agricultural drought. About 21.2% of the area is in high or very high drought risk classes, and therefore, warrant drought and environmental protection policies. Importantly, the models do not require data on the precipitation anomaly for any given drought year; the spatial patterns in AGH were consistent for all drought events, despite very different spatial patterns in precipitation anomaly among events. Such machine-learning approaches are able to construct an overall risk map, thus assisting in the adoption of a robust drought contingency planning measure not only for this area, but also, in other regions where drought presents a pressing challenge, including its influence on key practical dimensions of social, environmental and economic sustainability. [Display omitted] •Spatial and temporal machine learning approaches proposed for drought risk mapping.•Performance of six machine learning models is compared.•MARS and RF are suitable machine learning models for spatial risk mapping•Approximately 26% of the study area is at high or very high drought risk.•New approach considers hydro-geo-environmental factors for drought risk policy.
A quantitative understanding of the hydro-environmental factors that influence the occurrence of agricultural drought events would enable more strategic climate change adaptation and drought management plans. Practical drought hazard mapping remains challenging due to possible exclusion of the most pertinent drought drivers, and to the use of inadequate predictive models that cannot describe drought adequately. This research aims to develop new approaches to map agricultural drought hazard with state-of-the-art machine learning models, including classification and regression trees (CART), boosted regression trees (BRT), random forests (RF), multivariate adaptive regression splines (MARS), flexible discriminant analysis (FDA) and support vector machines (SVM). Hydro-environmental datasets were used to calculate the relative departure of soil moisture (RDSM) for eight severe droughts for drought-prone southeast Queensland, Australia, over the period 1994-2013. RDSM was then used to generate an agricultural drought inventory map. Eight hydro-environmental factors were used as potential predictors of drought. The goodness-of-fit and predictive performance of all models were evaluated using different threshold-dependent and threshold-independent methods, including the true skill statistic (TSS), Efficiency (E), F-score, and the area under the receiver operating characteristic curve (AUC-ROC). The RF model (AUC-ROC = 97.7%, TSS = 0.873, E = 0.929, F-score = 0.898) yielded the highest accuracy, while the FDA model (with AUC-ROC = 73.9%, TSS = 0.424, E = 0.719, F-score = 0.512) showed the worst performance. The plant available water holding capacity (PAWC), mean annual precipitation, and clay content were the most important variables to be used for predicting the agricultural drought. About 21.2% of the area is in high or very high drought risk classes, and therefore, warrant drought and environmental protection policies. Importantly, the models do not require data on the precipitation anomaly for any given drought year; the spatial patterns in AGH were consistent for all drought events, despite very different spatial patterns in precipitation anomaly among events. Such machine-learning approaches are able to construct an overall risk map, thus assisting in the adoption of a robust drought contingency planning measure not only for this area, but also, in other regions where drought presents a pressing challenge, including its influence on key practical dimensions of social, environmental and economic sustainability.A quantitative understanding of the hydro-environmental factors that influence the occurrence of agricultural drought events would enable more strategic climate change adaptation and drought management plans. Practical drought hazard mapping remains challenging due to possible exclusion of the most pertinent drought drivers, and to the use of inadequate predictive models that cannot describe drought adequately. This research aims to develop new approaches to map agricultural drought hazard with state-of-the-art machine learning models, including classification and regression trees (CART), boosted regression trees (BRT), random forests (RF), multivariate adaptive regression splines (MARS), flexible discriminant analysis (FDA) and support vector machines (SVM). Hydro-environmental datasets were used to calculate the relative departure of soil moisture (RDSM) for eight severe droughts for drought-prone southeast Queensland, Australia, over the period 1994-2013. RDSM was then used to generate an agricultural drought inventory map. Eight hydro-environmental factors were used as potential predictors of drought. The goodness-of-fit and predictive performance of all models were evaluated using different threshold-dependent and threshold-independent methods, including the true skill statistic (TSS), Efficiency (E), F-score, and the area under the receiver operating characteristic curve (AUC-ROC). The RF model (AUC-ROC = 97.7%, TSS = 0.873, E = 0.929, F-score = 0.898) yielded the highest accuracy, while the FDA model (with AUC-ROC = 73.9%, TSS = 0.424, E = 0.719, F-score = 0.512) showed the worst performance. The plant available water holding capacity (PAWC), mean annual precipitation, and clay content were the most important variables to be used for predicting the agricultural drought. About 21.2% of the area is in high or very high drought risk classes, and therefore, warrant drought and environmental protection policies. Importantly, the models do not require data on the precipitation anomaly for any given drought year; the spatial patterns in AGH were consistent for all drought events, despite very different spatial patterns in precipitation anomaly among events. Such machine-learning approaches are able to construct an overall risk map, thus assisting in the adoption of a robust drought contingency planning measure not only for this area, but also, in other regions where drought presents a pressing challenge, including its influence on key practical dimensions of social, environmental and economic sustainability.
ArticleNumber 134230
Author Deo, Ravinesh C.
Mohammadi, Farnoush
Biggs, Trent
Bui, Dieu Tien
Falah, Fatemeh
Rahmati, Omid
Dayal, Kavina Shaanu
Moghaddam, Davoud Davoudi
Naghibi, Seyed Amir
Author_xml – sequence: 1
  givenname: Omid
  surname: Rahmati
  fullname: Rahmati, Omid
  email: omid.rahmati@tdtu.edu.vn
  organization: Geographic Information Science Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
– sequence: 2
  givenname: Fatemeh
  surname: Falah
  fullname: Falah, Fatemeh
  organization: Department of Watershed management Engineering, Lorestan University, Lorestan, Iran
– sequence: 3
  givenname: Kavina Shaanu
  surname: Dayal
  fullname: Dayal, Kavina Shaanu
  organization: Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sandy Bay, 7005, Tasmania, Australia
– sequence: 4
  givenname: Ravinesh C.
  surname: Deo
  fullname: Deo, Ravinesh C.
  email: ravinesh.deo@usq.edu.au
  organization: School of Sciences, Centre for Sustainable Agricultural Systems, Centre for Applied Climate Sciences, University of Southern Queensland, Springfield, QLD 4300, Australia
– sequence: 5
  givenname: Farnoush
  surname: Mohammadi
  fullname: Mohammadi, Farnoush
  organization: Faculty of Natural Resources, University of Tehran, Karaj, Iran
– sequence: 6
  givenname: Trent
  surname: Biggs
  fullname: Biggs, Trent
  organization: Department of Geography, San Diego State University, San Diego, CA 92182, USA
– sequence: 7
  givenname: Davoud Davoudi
  surname: Moghaddam
  fullname: Moghaddam, Davoud Davoudi
  organization: Department of Watershed Management, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
– sequence: 8
  givenname: Seyed Amir
  surname: Naghibi
  fullname: Naghibi, Seyed Amir
  organization: Department of Watershed Management Engineering, Tarbiat Modares University (TMU), Tehran, Iran
– sequence: 9
  givenname: Dieu Tien
  surname: Bui
  fullname: Bui, Dieu Tien
  email: buitiendieu@duytan.edu.vn
  organization: Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31522053$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u3CAUhVGVqJmkfYWWZTee8m970cUo6p-UKIrUrhGG6xlGHpgCjpQ-fbEmzaKblA0S9_sQnHOJzkIMgNB7StaUUPVxv87Wl1ggPKwZof2acsE4eYVWtGv7hhKmztCKENE1verbC3SZ857U1Xb0NbrgVDJGJF-h37fG7nwAPIFJwYctNsdjivUQMh5jwvloijcTPkQH0zKPIzbb5O08lTnVgUtx3u5Kxj7gsgOc41x2DZhccIKtj2Ex7meAkCcTHN7MuVTPmzfofDRThrdP-xX6-eXzj-tvzc3d1-_Xm5vGCiJK0_ZjZ2THgRHihOwYpYITIseBWiGVggEAHHNO8dEZKloYaiJMsXHgfesEv0IfTvfWf_2aIRd98NnCVF8Dcc6aLWko2Qn5Msp60ndUKlLRd0_oPBzA6WPyB5Me9d9oK9CeAJtizgnGZ4QSvZSo9_q5RL2UqE8lVvPTP2bFagsx1OD89B_-5uRDTfXBQ1o4CBacT2CLdtG_eMcfuAG_cw
CitedBy_id crossref_primary_10_1016_j_jhydrol_2024_130968
crossref_primary_10_5194_hess_26_3241_2022
crossref_primary_10_5194_hess_28_3305_2024
crossref_primary_10_3390_rs15082024
crossref_primary_10_47820_recima21_v6i2_6211
crossref_primary_10_1007_s11356_021_13445_0
crossref_primary_10_1016_j_jhazmat_2023_132483
crossref_primary_10_1002_ldr_3971
crossref_primary_10_1016_j_jhydrol_2020_125017
crossref_primary_10_1007_s00024_024_03486_0
crossref_primary_10_14796_JWMM_C512
crossref_primary_10_1016_j_jhydrol_2024_131012
crossref_primary_10_3390_f13010049
crossref_primary_10_1016_j_agwat_2024_109176
crossref_primary_10_1007_s12665_020_09327_2
crossref_primary_10_1016_j_jhydrol_2021_126055
crossref_primary_10_1007_s12524_021_01413_7
crossref_primary_10_1016_j_neucom_2022_03_014
crossref_primary_10_1007_s10064_022_02761_5
crossref_primary_10_1016_j_pce_2022_103243
crossref_primary_10_3390_s21206896
crossref_primary_10_7717_peerj_13560
crossref_primary_10_3390_su132212560
crossref_primary_10_1016_j_scitotenv_2019_134656
crossref_primary_10_3390_buildings13092163
crossref_primary_10_1016_j_rse_2024_114324
crossref_primary_10_1016_j_catena_2021_105524
crossref_primary_10_1016_j_crm_2024_100630
crossref_primary_10_1007_s11269_023_03440_0
crossref_primary_10_1080_19475705_2023_2223384
crossref_primary_10_3390_land12061184
crossref_primary_10_1016_j_pce_2024_103757
crossref_primary_10_3390_forecast6040051
crossref_primary_10_1016_j_scitotenv_2021_146703
crossref_primary_10_3390_w12020483
crossref_primary_10_1016_j_scitotenv_2019_135957
crossref_primary_10_3390_rs12172695
crossref_primary_10_3390_rs15082116
crossref_primary_10_1016_j_compag_2022_106925
crossref_primary_10_1016_j_apr_2020_08_029
crossref_primary_10_1016_j_asoc_2022_109739
crossref_primary_10_3390_rs14071662
crossref_primary_10_3390_su12197877
crossref_primary_10_1016_j_pce_2024_103583
crossref_primary_10_1007_s12517_022_10465_z
crossref_primary_10_1007_s11069_022_05512_7
crossref_primary_10_1007_s11069_020_04180_9
crossref_primary_10_1016_j_envsoft_2022_105327
crossref_primary_10_5433_1679_0359_2022v43n3p1017
crossref_primary_10_1007_s11356_025_36049_4
crossref_primary_10_1016_j_eiar_2021_106601
crossref_primary_10_1016_j_aei_2023_102042
crossref_primary_10_1038_s41598_023_40106_8
crossref_primary_10_1016_j_jhydrol_2023_130096
crossref_primary_10_1016_j_jclepro_2023_139414
crossref_primary_10_1007_s11269_021_03025_9
crossref_primary_10_1016_j_scitotenv_2021_146602
crossref_primary_10_1007_s10666_024_09986_6
crossref_primary_10_3390_su16156485
crossref_primary_10_1007_s00704_024_05048_9
crossref_primary_10_1080_10106049_2024_2395319
crossref_primary_10_1007_s00704_024_05236_7
crossref_primary_10_1007_s10653_024_02087_z
crossref_primary_10_1080_19475705_2022_2131471
crossref_primary_10_1016_j_catena_2021_106007
crossref_primary_10_1080_01431161_2023_2234094
crossref_primary_10_1007_s11356_022_21072_6
crossref_primary_10_1007_s11442_025_2316_5
crossref_primary_10_1016_j_ejrh_2023_101481
crossref_primary_10_1016_j_jaridenv_2024_105225
crossref_primary_10_1007_s11356_022_23663_9
crossref_primary_10_1016_j_compag_2025_109981
crossref_primary_10_1016_j_catena_2019_104451
crossref_primary_10_1016_j_rse_2021_112313
crossref_primary_10_3390_rs15020512
crossref_primary_10_1109_ACCESS_2021_3079121
crossref_primary_10_1002_hyp_70031
crossref_primary_10_3390_land14040662
crossref_primary_10_3390_land11112040
crossref_primary_10_1080_19475705_2022_2128440
crossref_primary_10_1016_j_scitotenv_2020_138162
crossref_primary_10_1088_1748_9326_acfe1e
crossref_primary_10_1016_j_envint_2021_106456
crossref_primary_10_1016_j_techfore_2022_121662
crossref_primary_10_35860_iarej_848458
crossref_primary_10_3390_su11226323
crossref_primary_10_1016_j_envres_2025_121466
crossref_primary_10_1016_j_ecoinf_2023_102143
crossref_primary_10_3390_agriculture14071071
crossref_primary_10_3390_joitmc6040187
crossref_primary_10_3390_rs11242995
crossref_primary_10_1002_hyp_15331
crossref_primary_10_1177_23998083221085281
crossref_primary_10_1016_j_jhydrol_2020_124901
crossref_primary_10_1093_jpe_rtac007
crossref_primary_10_1016_j_scitotenv_2021_149861
crossref_primary_10_1002_jeq2_20206
crossref_primary_10_1016_j_pce_2021_103043
crossref_primary_10_1016_j_ijdrr_2022_103414
crossref_primary_10_3389_fenvs_2022_812648
crossref_primary_10_1016_j_compeleceng_2024_109409
crossref_primary_10_1016_j_scitotenv_2023_164917
crossref_primary_10_14712_23361980_2023_14
crossref_primary_10_1007_s13198_021_01181_0
crossref_primary_10_1016_j_scitotenv_2023_162066
crossref_primary_10_3389_frwa_2020_562304
crossref_primary_10_3390_w17050653
crossref_primary_10_1016_j_catena_2021_105585
crossref_primary_10_1016_j_agwat_2024_108692
crossref_primary_10_1016_j_ecolind_2023_110524
crossref_primary_10_3390_infrastructures8010006
Cites_doi 10.1111/j.1365-2664.2006.01214.x
10.1016/j.apgeog.2019.01.005
10.1016/j.enggeo.2009.12.004
10.2747/1548-1603.48.3.432
10.1111/j.1365-2427.2005.01448.x
10.1016/j.envsoft.2016.07.005
10.1016/j.scitotenv.2018.07.396
10.1016/j.agrformet.2017.11.024
10.1016/j.jhydrol.2018.02.021
10.1016/j.compgeo.2012.09.016
10.3390/w11040705
10.1016/S0304-3800(02)00349-6
10.1016/j.agrformet.2009.11.015
10.1016/j.geomorph.2017.09.006
10.1016/j.apgeog.2008.02.006
10.1016/j.geoderma.2018.05.035
10.1007/s11269-010-9653-5
10.1016/j.scitotenv.2017.08.078
10.1175/1520-0477-83.8.1167
10.1016/j.catena.2014.10.017
10.1016/j.cageo.2015.04.007
10.1016/j.rse.2013.02.016
10.1016/j.scitotenv.2019.01.278
10.1029/2010WR009866
10.1016/j.rse.2010.07.005
10.1007/s10661-015-5049-6
10.1080/01621459.1994.10476866
10.1016/j.ecolind.2015.10.013
10.1016/j.jhydrol.2018.08.027
10.1111/ejss.12249
10.1016/j.rse.2014.07.023
10.1016/j.advwatres.2009.10.008
10.1002/joc.1498
10.1016/j.rse.2016.10.045
10.1080/19475705.2014.897656
10.1007/s00477-010-0424-x
10.1007/s00704-015-1706-5
10.1016/j.isprsjprs.2011.11.002
10.1016/j.jhydrol.2010.07.012
10.1175/JHM-D-13-071.1
10.1016/j.atmosres.2017.04.017
10.1007/s11069-014-1285-2
10.1023/A:1010933404324
10.1061/(ASCE)HE.1943-5584.0001593
10.1029/2009GL037666
10.1111/j.1365-2656.2008.01390.x
10.1007/s11269-015-1114-8
10.1175/JHM-D-16-0132.1
10.1111/1752-1688.12555
10.1016/j.jag.2012.03.018
10.1111/j.1472-4642.2007.00340.x
10.1016/j.jhydrol.2018.12.060
10.5194/hess-20-1151-2016
10.1016/j.compag.2018.07.013
10.1002/ecs2.1321
10.1016/j.scitotenv.2019.02.017
10.1007/s11069-016-2526-3
10.1016/j.ecolmodel.2010.01.007
10.1016/j.jhydrol.2016.11.007
10.1007/s11069-016-2149-8
10.1016/j.ecolind.2017.10.011
10.1016/j.isprsjprs.2016.01.011
10.1016/j.atmosres.2014.10.016
10.1016/j.eswa.2005.04.014
10.1007/s00477-018-1585-2
10.1029/2004JD005182
10.1016/j.envsoft.2015.10.029
10.1109/TPAMI.2006.172
10.1007/s10661-016-5094-9
10.1016/j.jhydrol.2009.03.031
10.1016/j.foodchem.2018.05.044
10.1016/j.agrformet.2015.10.011
10.1016/S0378-1127(03)00277-9
10.1016/j.jhydrol.2015.05.031
10.1016/j.rse.2016.02.064
10.1016/j.jhydrol.2016.09.035
10.1016/j.still.2018.03.021
10.1016/j.atmosres.2017.06.014
10.1016/j.geomorph.2013.08.021
10.1016/j.jhydrol.2015.01.006
10.1175/1520-0477-83.8.1149
10.1007/s11004-017-9681-2
10.1007/s13364-018-0384-y
10.1002/jwmg.68
10.1002/joc.1649
10.1175/JHM-D-14-0076.1
10.1007/s10661-018-6507-8
10.1016/j.agwat.2015.06.029
10.1016/S0168-1923(03)00072-8
10.1016/j.csda.2005.11.018
10.1016/j.jhydrol.2012.12.004
10.1007/s11269-017-1589-6
10.1007/s11069-014-1502-z
10.1002/hyp.9541
10.1016/j.atmosres.2016.10.004
10.1007/s10346-012-0320-1
10.1029/2007GL031673
10.1111/j.1752-1688.2008.00270.x
10.1029/2008WR007333
10.1016/j.rse.2017.10.026
10.1016/j.jhydrol.2010.12.008
10.1002/wrcr.20123
10.1007/s00477-016-1265-z
10.1007/s12665-016-5822-z
10.1016/j.scitotenv.2018.11.467
10.1016/j.jhydrol.2016.04.074
10.1016/j.foreco.2005.05.063
10.1016/j.autcon.2007.03.004
10.1029/2004WR003657
10.1016/j.rse.2019.05.006
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2019.134230
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 31522053
10_1016_j_scitotenv_2019_134230
S0048969719342135
Genre Journal Article
GeographicLocations Queensland
GeographicLocations_xml – name: Queensland
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c404t-79f8a583e200d45821143005fb1c4566ebeeed2dd63fda147eb201262fb397d43
IEDL.DBID AIKHN
ISSN 0048-9697
1879-1026
IngestDate Thu Sep 04 18:53:07 EDT 2025
Thu Sep 04 23:00:00 EDT 2025
Wed Feb 19 02:31:56 EST 2025
Tue Jul 01 03:35:13 EDT 2025
Thu Apr 24 22:57:32 EDT 2025
Fri Feb 23 02:43:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords GIS
Spatial analysis, artificial intelligence
Drought
Australia
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-79f8a583e200d45821143005fb1c4566ebeeed2dd63fda147eb201262fb397d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31522053
PQID 2290981560
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2315265845
proquest_miscellaneous_2290981560
pubmed_primary_31522053
crossref_primary_10_1016_j_scitotenv_2019_134230
crossref_citationtrail_10_1016_j_scitotenv_2019_134230
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2019_134230
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-10
PublicationDateYYYYMMDD 2020-01-10
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-10
  day: 10
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bot, Benites (bb0055) 2005
Su, Ryu, Young, Western, Wagner (bb0530) 2013; 134
Dayal, Deo, Apan (bb0105) 2018
Deo, Kisi, Singh (bb0135) 2017; 184
Pham, Pradhan, Bui, Prakash, Dholakia (bb0415) 2016; 84
Chakraborty, Joshi (bb0070) 2016; 7
Deo, Şahin (bb0110) 2015; 153
Lu, Carbone, Gao (bb0330) 2019; 104
Li, Xiong, Dong, Zhang (bb0315) 2013; 27
Hardie, Cotching, Doyle, Holz, Lisson, Mattern (bb0210) 2011; 398
Chiew, Young, Cai, Teng (bb0075) 2011; 25
Tavakol, Rahmani, Quiring, Kumar (bb0545) 2019; 229
Ashrafzadeh, Naghipour, Haidarian, Khorozyan (bb0040) 2019; 64
Conoscenti, Angileri, Cappadonia, Rotigliano, Agnesi, Märker (bb0085) 2014; 204
Kirkby (bb0285) 1975
Breiman (bb2020) 2001; 45
Quiring, Papakryiakou (bb0440) 2003; 118
Felicísimo, Cuartero, Remondo, Quirós (bb0170) 2012; 10
Svoboda, Fuchs, Poulsen, Nothwehr (bb0535) 2015; 526
Kern, Addison, Oommen, Salazar, Coffman (bb0270) 2017; 49
Leblanc, Tregoning, Ramillien, Tweed, Fakes (bb0300) 2009; 45
Ritter, Muñoz-Carpena (bb0485) 2013; 480
Hastie, Tibshirani, Buja (bb0215) 1994; 89
Wang, Rogers, Munroe (bb0585) 2015; 16
Beyaztas, Arikan, Beyaztas, Kahya (bb0050) 2018; 559
Reynès, Sabatier, Molinari (bb0475) 2006; 51
Ahmadalipour, Moradkhani, Yan, Zarekarizi (bb0010) 2017
Swain, Wardlow, Narumalani, Tadesse, Callahan (bb0540) 2011; 48
Hastie, Tibshirani, Andreas (bb0220) 1999
Nijzink, Samaniego, Mai, Kumar, Thober, Zink, Schäfer, Savenije, Hrachowitz (bb0385) 2016; 20
Kordestani, Naghibi, Hashemi, Ahmadi, Kalantar, Pradhan (bb0290) 2018
Friedman (bb0175) 1991; 19
Hao, Hao, Singh (bb0205) 2016; 539
Prasad, Deo, Li, Maraseni (bb0420) 2017; 197
Park, Kim (bb0400) 2019; 11
Prasad, Deo, Li, Maraseni (bb0425) 2018; 181
Vapnik, Vapnik (bb0575) 1998
McGuire, McDonnell, Weiler, Kendall, McGlynn, Welker, Seibert (bb0345) 2005; 41
Britzke, Duchamp, Murray, Swihart, Robbins (bb0060) 2011; 75
Wu, Li, Huang (bb0595) 2008; 28
Anderson, Lew, Peterson (bb0035) 2003; 162
Roodposhti, Safarrad, Shahabi (bb0500) 2017; 193
van Dijk, Beck, Crosbie, de Jeu, Liu, Podger, Timbal, Viney (bb0570) 2013; 49
Lin, Wang, Yu (bb0320) 2008; 17
Volcani, Karnieli, Svoray (bb0580) 2005; 215
Park, Im, Jang, Rhee (bb0405) 2016; 216
Rahmati, Kornejady, Samadi, Deo, Conoscenti, Lombardo, Dayal, Taghizadeh-Mehrjardi, Pourghasemi, Kumar, Bui (bb0465) 2019; 664
Dayal, Deo, Apan (bb0095) 2017; 23
Yin, Feng, Wen, Deo, Yang, Si, He (bb0610) 2018; 32
Rodriguez-Galiano, Ghimire, Rogan, Chica-Olmo, Rigol-Sanchez (bb0495) 2012; 67
Stone, Potgieter (bb0525) 2008; 80
Kim, Parinussa, Konings, Wagner, Cosh, Lakshmi, Zohaib, Choi (bb0280) 2018; 204
Rodríguez-Bermúdez, Herrero-Latorre, López-Alonso, Losada, Iglesias, Miranda (bb0490) 2018; 264
Bushra, Rohli, Lam, Zou, Mostafiz, Mihunov (bb0065) 2019
Roth, Steinhage (bb0505) 2000
Zhang, Goh (bb0625) 2013; 48
Aertsen, Kint, Van Orshoven, Özkan, Muys (bb2010) 2010; 221
Mo, Lettenmaier (bb0355) 2013; 15
Heim (bb0235) 2002; 83
Petty, Dhingra (bb0410) 2018; 54
Dayal, Deo, Apan (bb0090) 2016
Zadeh (bb0620) 1996
Sheffield, Goteti, Wen, Wood (bb0515) 2004; 109
Dickson, Perry (bb0140) 2016; 76
Wu, Xu, Li, Wen, Li, Lu, Li (bb0600) 2018; 612
Jancewicz, Migoń, Kasprzak (bb0255) 2019; 656
Hao, Singh (bb0200) 2015; 527
Rahmati, Naghibi, Shahabi, Bui, Pradhan, Azareh, Rafiei-Sardooi, Samani, Melesse (bb0460) 2018; 565
Palchaudhuri, Biswas (bb0390) 2016; 84
Naghibi, Pourghasemi (bb0370) 2015; 29
Yaseen, Jaafar, Deo, Kisi, Adamowski, Quilty, El-Shafie (bb0605) 2016; 542
Deo, Byun, Adamowski, Begum (bb0125) 2017; 128
Steffen, W., Vertessy, R., Dean, A., Hughes, L., Hilary Bambrick, Gergis, J., Rice, M. 2018. Deluge and Drought: Australia's Water Security in a Changing Climate.Australia.
Frattini, Crosta, Carrara (bb2025) 2010; 111
Hastie, Tibshirani, Friedman (bb0230) 2001
Luo, Wood (bb0335) 2007; 34
Rahmati, Pourghasemi (bb0450) 2017; 31
Hosseinalizadeh, Kariminejad, Rahmati, Keesstra, Alinejad, Behbahani (bb0245) 2019; 646
Tian, Yuan, Quiring (bb2005) 2018; 249
Dow, Murphy, Carbone (bb0150) 2009; 45
Sakai, Jones, Tuller (bb0510) 2011; 47
Deo, Tiwari, Adamowski, Quilty (bb0130) 2017; 31
Lei, Chen, Bian, Liu (bb0310) 2016; 61
Wen, Feng, Deo, Wu, Yin, Yang, Singh (bb0590) 2019; 570
Allouche, Tsoar, Kadmon (bb0025) 2006; 43
Clinton (bb0080) 2003; 186
Deo, Syktus, McAlpine, Lawrence, McGowan, Phinn (bb0120) 2009; 36
Belgiu, Drăguţ (bb0045) 2016; 114
Leeper, Bell, Vines, Palecki (bb0305) 2016; 18
Grabs, Seibert, Bishop, Laudon (bb0190) 2009; 373
Nam, Hayes, Svoboda, Tadesse, Wilhite (bb0380) 2015; 160
Raupach, Briggs, Haverd, King, Paget, Trudinger (bb0470) 2012
Keyantash, Dracup (bb0275) 2002; 83
Rahmati, Tahmasebipour, Haghizadeh, Pourghasemi, Feizizadeh (bb0455) 2017; 298
Deo, Şahin (bb0115) 2016; 188
Zhang, Chen, Li, Chen, Niyogi (bb0630) 2017; 188
Leathwick, Rowe, Richardson, Elith, Hastie (bb0295) 2005; 50
Zadeh (bb0615) 1976
Elith, Leathwick, Hastie (bb0165) 2008; 77
Mishra, Singh (bb0350) 2010; 391
Martínez-Fernández, González-Zamora, Sánchez, Gumuzzio, Herrero-Jiménez (bb0340) 2016; 177
American Meteorological Society (AMS) (bb0030) 2004; 85
Golkarian, Naghibi, Kalantar, Pradhan (bb0185) 2018; 190
Thomas, Jaiswal, Galkate, Nayak, Ghosh (bb0555) 2016; 81
Prasad, Deo, Li, Maraseni (bb0430) 2018; 330
Lombardo, Cama, Maerker (bb0325) 2014; 74
Morid, Smakhtin, Bagherzadeh (bb0360) 2007; 27
Dayal, Deo, Apan (bb0100) 2017
Jorda, Bechtold, Jarvis, Koestel (bb0260) 2015; 66
Zhu, Martinez (bb0635) 2006; 28
Tehrany, Pradhan, Mansor, Ahmad (bb0550) 2015; 125
Ekrami, Marj, Barkhordari, Dashtakian (bb0155) 2016; 75
Ahmadalipour, Moradkhani, Castelletti, Magliocca (bb0015) 2019; 662
Elith, Leathwick (bb0160) 2007; 13
Hollister, Milstead, Kreakie (bb0240) 2016; 7
Ture, Kurt, Kurum, Ozdamar (bb0565) 2005; 29
Grzesiak, Zaborski, Sablik, Zukiewicz, Dybus, Szatkowsk (bb0195) 2011; 74
Ali, Deo, Downs, Maraseni (bb0020) 2018; 152
Hastie, Tibshirani, Friedman (bb0225) 2001
Karandish, Šimůnek (bb0265) 2016; 543
Jain, Pandey, Jain (bb0250) 2015; 76
Mpelasoka, Hennessy, Jones, Bates (bb0365) 2008; 28
Breiman, Friedman, Olshen, Stone (bb2015) 1984
Dorigo, Gruber, De Jeu, Wagner, Stacke, Loew, Albergel, Brocca, Chung, Parinussa, Kidd (bb0145) 2015; 162
Ahmad, Kalra, Stephen (bb0005) 2010; 33
Goetz, Brenning, Petschko, Leopold (bb0180) 2015; 81
Raduła, Szymura, Szymura (bb0445) 2018; 85
Naghibi, Pourghasemi, Dixon (bb0375) 2016; 188
Quiring, Ganesh (bb0435) 2010; 150
Pandey, Pandey, Galkate, Byun, Mal (bb0395) 2010; 24
Tonini, Lasinio, Hochmair (bb0560) 2012; 18
Rhee, Im, Carbone (bb0480) 2010; 114
Nam (10.1016/j.scitotenv.2019.134230_bb0380) 2015; 160
Hastie (10.1016/j.scitotenv.2019.134230_bb0220) 1999
Rahmati (10.1016/j.scitotenv.2019.134230_bb0450) 2017; 31
Rahmati (10.1016/j.scitotenv.2019.134230_bb0460) 2018; 565
Mpelasoka (10.1016/j.scitotenv.2019.134230_bb0365) 2008; 28
Roth (10.1016/j.scitotenv.2019.134230_bb0505) 2000
Tehrany (10.1016/j.scitotenv.2019.134230_bb0550) 2015; 125
Breiman (10.1016/j.scitotenv.2019.134230_bb2020) 2001; 45
McGuire (10.1016/j.scitotenv.2019.134230_bb0345) 2005; 41
Zhang (10.1016/j.scitotenv.2019.134230_bb0630) 2017; 188
Allouche (10.1016/j.scitotenv.2019.134230_bb0025) 2006; 43
Dayal (10.1016/j.scitotenv.2019.134230_bb0090) 2016
Dorigo (10.1016/j.scitotenv.2019.134230_bb0145) 2015; 162
Pandey (10.1016/j.scitotenv.2019.134230_bb0395) 2010; 24
Deo (10.1016/j.scitotenv.2019.134230_bb0135) 2017; 184
Zadeh (10.1016/j.scitotenv.2019.134230_bb0620) 1996
Kirkby (10.1016/j.scitotenv.2019.134230_bb0285) 1975
Yaseen (10.1016/j.scitotenv.2019.134230_bb0605) 2016; 542
Aertsen (10.1016/j.scitotenv.2019.134230_bb2010) 2010; 221
Karandish (10.1016/j.scitotenv.2019.134230_bb0265) 2016; 543
Naghibi (10.1016/j.scitotenv.2019.134230_bb0370) 2015; 29
Roodposhti (10.1016/j.scitotenv.2019.134230_bb0500) 2017; 193
Swain (10.1016/j.scitotenv.2019.134230_bb0540) 2011; 48
Dayal (10.1016/j.scitotenv.2019.134230_bb0095) 2017; 23
Jancewicz (10.1016/j.scitotenv.2019.134230_bb0255) 2019; 656
Beyaztas (10.1016/j.scitotenv.2019.134230_bb0050) 2018; 559
Luo (10.1016/j.scitotenv.2019.134230_bb0335) 2007; 34
Li (10.1016/j.scitotenv.2019.134230_bb0315) 2013; 27
Goetz (10.1016/j.scitotenv.2019.134230_bb0180) 2015; 81
Ashrafzadeh (10.1016/j.scitotenv.2019.134230_bb0040) 2019; 64
Sakai (10.1016/j.scitotenv.2019.134230_bb0510) 2011; 47
Elith (10.1016/j.scitotenv.2019.134230_bb0160) 2007; 13
Hao (10.1016/j.scitotenv.2019.134230_bb0200) 2015; 527
Dayal (10.1016/j.scitotenv.2019.134230_bb0100) 2017
Wu (10.1016/j.scitotenv.2019.134230_bb0595) 2008; 28
Kern (10.1016/j.scitotenv.2019.134230_bb0270) 2017; 49
Friedman (10.1016/j.scitotenv.2019.134230_bb0175) 1991; 19
Bushra (10.1016/j.scitotenv.2019.134230_bb0065) 2019
Quiring (10.1016/j.scitotenv.2019.134230_bb0435) 2010; 150
Jain (10.1016/j.scitotenv.2019.134230_bb0250) 2015; 76
Prasad (10.1016/j.scitotenv.2019.134230_bb0420) 2017; 197
Leeper (10.1016/j.scitotenv.2019.134230_bb0305) 2016; 18
Hosseinalizadeh (10.1016/j.scitotenv.2019.134230_bb0245) 2019; 646
Grabs (10.1016/j.scitotenv.2019.134230_bb0190) 2009; 373
Reynès (10.1016/j.scitotenv.2019.134230_bb0475) 2006; 51
Jorda (10.1016/j.scitotenv.2019.134230_bb0260) 2015; 66
Kordestani (10.1016/j.scitotenv.2019.134230_bb0290) 2018
Palchaudhuri (10.1016/j.scitotenv.2019.134230_bb0390) 2016; 84
Kim (10.1016/j.scitotenv.2019.134230_bb0280) 2018; 204
Prasad (10.1016/j.scitotenv.2019.134230_bb0430) 2018; 330
Belgiu (10.1016/j.scitotenv.2019.134230_bb0045) 2016; 114
Rodríguez-Bermúdez (10.1016/j.scitotenv.2019.134230_bb0490) 2018; 264
Britzke (10.1016/j.scitotenv.2019.134230_bb0060) 2011; 75
Leblanc (10.1016/j.scitotenv.2019.134230_bb0300) 2009; 45
Rhee (10.1016/j.scitotenv.2019.134230_bb0480) 2010; 114
Zhu (10.1016/j.scitotenv.2019.134230_bb0635) 2006; 28
Morid (10.1016/j.scitotenv.2019.134230_bb0360) 2007; 27
Park (10.1016/j.scitotenv.2019.134230_bb0400) 2019; 11
Svoboda (10.1016/j.scitotenv.2019.134230_bb0535) 2015; 526
Dayal (10.1016/j.scitotenv.2019.134230_bb0105) 2018
Ture (10.1016/j.scitotenv.2019.134230_bb0565) 2005; 29
Deo (10.1016/j.scitotenv.2019.134230_bb0130) 2017; 31
Keyantash (10.1016/j.scitotenv.2019.134230_bb0275) 2002; 83
Tian (10.1016/j.scitotenv.2019.134230_bb2005) 2018; 249
Rahmati (10.1016/j.scitotenv.2019.134230_bb0465) 2019; 664
Ahmadalipour (10.1016/j.scitotenv.2019.134230_bb0010) 2017
Raupach (10.1016/j.scitotenv.2019.134230_bb0470) 2012
Quiring (10.1016/j.scitotenv.2019.134230_bb0440) 2003; 118
Mo (10.1016/j.scitotenv.2019.134230_bb0355) 2013; 15
Zadeh (10.1016/j.scitotenv.2019.134230_bb0615) 1976
Rodriguez-Galiano (10.1016/j.scitotenv.2019.134230_bb0495) 2012; 67
Dow (10.1016/j.scitotenv.2019.134230_bb0150) 2009; 45
Wen (10.1016/j.scitotenv.2019.134230_bb0590) 2019; 570
Deo (10.1016/j.scitotenv.2019.134230_bb0110) 2015; 153
Chiew (10.1016/j.scitotenv.2019.134230_bb0075) 2011; 25
Golkarian (10.1016/j.scitotenv.2019.134230_bb0185) 2018; 190
Thomas (10.1016/j.scitotenv.2019.134230_bb0555) 2016; 81
Hastie (10.1016/j.scitotenv.2019.134230_bb0230) 2001
Dickson (10.1016/j.scitotenv.2019.134230_bb0140) 2016; 76
van Dijk (10.1016/j.scitotenv.2019.134230_bb0570) 2013; 49
Martínez-Fernández (10.1016/j.scitotenv.2019.134230_bb0340) 2016; 177
Heim (10.1016/j.scitotenv.2019.134230_bb0235) 2002; 83
Petty (10.1016/j.scitotenv.2019.134230_bb0410) 2018; 54
10.1016/j.scitotenv.2019.134230_bb0520
Wu (10.1016/j.scitotenv.2019.134230_bb0600) 2018; 612
Hollister (10.1016/j.scitotenv.2019.134230_bb0240) 2016; 7
Clinton (10.1016/j.scitotenv.2019.134230_bb0080) 2003; 186
Su (10.1016/j.scitotenv.2019.134230_bb0530) 2013; 134
Breiman (10.1016/j.scitotenv.2019.134230_bb2015) 1984
Ali (10.1016/j.scitotenv.2019.134230_bb0020) 2018; 152
Lu (10.1016/j.scitotenv.2019.134230_bb0330) 2019; 104
Ahmad (10.1016/j.scitotenv.2019.134230_bb0005) 2010; 33
Ritter (10.1016/j.scitotenv.2019.134230_bb0485) 2013; 480
Mishra (10.1016/j.scitotenv.2019.134230_bb0350) 2010; 391
Deo (10.1016/j.scitotenv.2019.134230_bb0125) 2017; 128
Ekrami (10.1016/j.scitotenv.2019.134230_bb0155) 2016; 75
Prasad (10.1016/j.scitotenv.2019.134230_bb0425) 2018; 181
Deo (10.1016/j.scitotenv.2019.134230_bb0120) 2009; 36
Rahmati (10.1016/j.scitotenv.2019.134230_bb0455) 2017; 298
Zhang (10.1016/j.scitotenv.2019.134230_bb0625) 2013; 48
Sheffield (10.1016/j.scitotenv.2019.134230_bb0515) 2004; 109
Lei (10.1016/j.scitotenv.2019.134230_bb0310) 2016; 61
Hastie (10.1016/j.scitotenv.2019.134230_bb0215) 1994; 89
Volcani (10.1016/j.scitotenv.2019.134230_bb0580) 2005; 215
Hao (10.1016/j.scitotenv.2019.134230_bb0205) 2016; 539
Raduła (10.1016/j.scitotenv.2019.134230_bb0445) 2018; 85
Tonini (10.1016/j.scitotenv.2019.134230_bb0560) 2012; 18
Vapnik (10.1016/j.scitotenv.2019.134230_bb0575) 1998
Hastie (10.1016/j.scitotenv.2019.134230_bb0225) 2001
Felicísimo (10.1016/j.scitotenv.2019.134230_bb0170) 2012; 10
Hardie (10.1016/j.scitotenv.2019.134230_bb0210) 2011; 398
Leathwick (10.1016/j.scitotenv.2019.134230_bb0295) 2005; 50
Lombardo (10.1016/j.scitotenv.2019.134230_bb0325) 2014; 74
Pham (10.1016/j.scitotenv.2019.134230_bb0415) 2016; 84
Conoscenti (10.1016/j.scitotenv.2019.134230_bb0085) 2014; 204
Grzesiak (10.1016/j.scitotenv.2019.134230_bb0195) 2011; 74
Lin (10.1016/j.scitotenv.2019.134230_bb0320) 2008; 17
Nijzink (10.1016/j.scitotenv.2019.134230_bb0385) 2016; 20
Elith (10.1016/j.scitotenv.2019.134230_bb0165) 2008; 77
Bot (10.1016/j.scitotenv.2019.134230_bb0055) 2005
Frattini (10.1016/j.scitotenv.2019.134230_bb2025) 2010; 111
Naghibi (10.1016/j.scitotenv.2019.134230_bb0375) 2016; 188
Park (10.1016/j.scitotenv.2019.134230_bb0405) 2016; 216
Ahmadalipour (10.1016/j.scitotenv.2019.134230_bb0015) 2019; 662
Chakraborty (10.1016/j.scitotenv.2019.134230_bb0070) 2016; 7
Deo (10.1016/j.scitotenv.2019.134230_bb0115) 2016; 188
Wang (10.1016/j.scitotenv.2019.134230_bb0585) 2015; 16
Stone (10.1016/j.scitotenv.2019.134230_bb0525) 2008; 80
Anderson (10.1016/j.scitotenv.2019.134230_bb0035) 2003; 162
American Meteorological Society (AMS) (10.1016/j.scitotenv.2019.134230_bb0030) 2004; 85
Yin (10.1016/j.scitotenv.2019.134230_bb0610) 2018; 32
Tavakol (10.1016/j.scitotenv.2019.134230_bb0545) 2019; 229
References_xml – volume: 373
  start-page: 15
  year: 2009
  end-page: 23
  ident: bb0190
  article-title: Modeling spatial patterns of saturated areas: a comparison of the topographic wetness index and a dynamic distributed model
  publication-title: J. Hydrol.
– volume: 41
  year: 2005
  ident: bb0345
  article-title: The role of topography on catchment-scale water residence time
  publication-title: Water Resour. Res.
– volume: 49
  start-page: 717
  year: 2017
  end-page: 735
  ident: bb0270
  article-title: Machine learning based predictive modeling of debris flow probability following wildfire in the intermountain Western United States
  publication-title: Math. Geosci.
– volume: 114
  start-page: 24
  year: 2016
  end-page: 31
  ident: bb0045
  article-title: Random forest in remote sensing: a review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 36
  year: 2009
  ident: bb0120
  article-title: Impact of historical land cover change on daily indices of climate extremes including droughts in eastern Australia
  publication-title: Geophys. Res. Lett.
– volume: 114
  start-page: 2875
  year: 2010
  end-page: 2887
  ident: bb0480
  article-title: Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data
  publication-title: Remote Sens. Environ.
– volume: 152
  start-page: 149
  year: 2018
  end-page: 165
  ident: bb0020
  article-title: Multi-stage committee based extreme learning machine model incorporating the influence of climate parameters and seasonality on drought forecasting
  publication-title: Comput. Electron. Agric.
– volume: 66
  start-page: 744
  year: 2015
  end-page: 756
  ident: bb0260
  article-title: Using boosted regression trees to explore key factors controlling saturated and near-saturated hydraulic conductivity
  publication-title: Eur. J. Soil Sci.
– volume: 153
  start-page: 512
  year: 2015
  end-page: 525
  ident: bb0110
  article-title: Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia
  publication-title: Atmos. Res.
– year: 2001
  ident: bb0230
  article-title: The Elements of Statistical Learning
– volume: 134
  start-page: 1
  year: 2013
  end-page: 11
  ident: bb0530
  article-title: Inter-comparison of microwave satellite soil moisture retrievals over the Murrumbidgee Basin, southeast Australia
  publication-title: Remote Sens. Environ.
– volume: 221
  start-page: 1119
  year: 2010
  end-page: 1130
  ident: bb2010
  article-title: Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests
  publication-title: Ecol. Model.
– start-page: 121
  year: 2017
  end-page: 149
  ident: bb0010
  article-title: Remote sensing of drought: vegetation, soil moisture, and data assimilation
  publication-title: Remote Sensing of Hydrological Extremes
– volume: 24
  start-page: 4199
  year: 2010
  end-page: 4217
  ident: bb0395
  article-title: Integrating hydro-meteorological and physiographic factors for assessment of vulnerability to drought
  publication-title: Water Resour. Manag.
– volume: 34
  year: 2007
  ident: bb0335
  article-title: Monitoring and predicting the 2007 US drought
  publication-title: Geophys. Res. Lett.
– volume: 29
  start-page: 583
  year: 2005
  end-page: 588
  ident: bb0565
  article-title: Comparing classification techniques for predicting essential hypertension
  publication-title: Expert Syst. Appl.
– volume: 298
  start-page: 118
  year: 2017
  end-page: 137
  ident: bb0455
  article-title: Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion
  publication-title: Geomorphology
– volume: 48
  start-page: 82
  year: 2013
  end-page: 95
  ident: bb0625
  article-title: Multivariate adaptive regression splines for analysis of geotechnical engineering systems
  publication-title: Comput. Geotech.
– volume: 542
  start-page: 603
  year: 2016
  end-page: 614
  ident: bb0605
  article-title: Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq
  publication-title: J. Hydrol.
– year: 1998
  ident: bb0575
  article-title: Statistical Learning Theory
– volume: 31
  start-page: 1211
  year: 2017
  end-page: 1240
  ident: bb0130
  article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model
  publication-title: Stoch. Env. Res. Risk A.
– volume: 32
  start-page: 2457
  year: 2018
  end-page: 2476
  ident: bb0610
  article-title: Design and evaluation of SVR, MARS and M5Tree models for 1, 2 and 3-day lead time forecasting of river flow data in a semiarid mountainous catchment
  publication-title: Stoch. Env. Res. Risk A.
– volume: 81
  start-page: 1627
  year: 2016
  end-page: 1652
  ident: bb0555
  article-title: Drought indicators-based integrated assessment of drought vulnerability: a case study of Bundelkhand droughts in central India
  publication-title: Nat. Hazards
– volume: 398
  start-page: 191
  year: 2011
  end-page: 201
  ident: bb0210
  article-title: Effect of antecedent soil moisture on preferential flow in a texture-contrast soil
  publication-title: J. Hydrol.
– volume: 559
  start-page: 461
  year: 2018
  end-page: 470
  ident: bb0050
  article-title: Construction of prediction intervals for Palmer Drought Severity Index using bootstrap
  publication-title: J. Hydrol.
– volume: 128
  start-page: 359
  year: 2017
  end-page: 379
  ident: bb0125
  article-title: Application of effective drought index for quantification of meteorological drought events: a case study in Australia
  publication-title: Theor. Appl. Climatol.
– volume: 54
  start-page: 55
  year: 2018
  end-page: 68
  ident: bb0410
  article-title: Streamflow hydrology estimate using machine learning (shem)
  publication-title: J. Am. Water Resour. Assoc.
– volume: 111
  start-page: 62
  year: 2010
  end-page: 72
  ident: bb2025
  article-title: Techniques for evaluating the performance of landslide susceptibility models
  publication-title: Eng. Geol.
– volume: 27
  start-page: 3981
  year: 2013
  end-page: 3993
  ident: bb0315
  article-title: Effects of the Three Gorges Reservoir on the hydrological droughts at the downstream Yichang station during 2003–2011
  publication-title: Hydrol. Process.
– volume: 18
  start-page: 564
  year: 2012
  end-page: 572
  ident: bb0560
  article-title: Mapping return levels of absolute NDVI variations for the assessment of drought risk in Ethiopia
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 33
  start-page: 69
  year: 2010
  end-page: 80
  ident: bb0005
  article-title: Estimating soil moisture using remote sensing data: a machine learning approach
  publication-title: Adv. Water Resour.
– volume: 188
  start-page: 141
  year: 2017
  end-page: 163
  ident: bb0630
  article-title: Multi-sensor integrated framework and index for agricultural drought monitoring
  publication-title: Remote Sens. Environ.
– volume: 28
  start-page: 210
  year: 2008
  end-page: 223
  ident: bb0595
  article-title: A study on DEM-derived primary topographic attributes for hydrologic applications: sensitivity to elevation data resolution
  publication-title: Appl. Geogr.
– volume: 76
  start-page: 443
  year: 2015
  end-page: 469
  ident: bb0250
  article-title: Spatio-temporal assessment of vulnerability to drought
  publication-title: Nat. Hazards
– volume: 50
  start-page: 2034
  year: 2005
  end-page: 2052
  ident: bb0295
  article-title: Using multivariate adaptive regression splines to predict the distributions of New Zealand's freshwater diadromous fish
  publication-title: Freshw. Biol.
– volume: 662
  start-page: 672
  year: 2019
  end-page: 686
  ident: bb0015
  article-title: Future drought risk in Africa: integrating vulnerability, climate change, and population growth
  publication-title: Sci. Total Environ.
– volume: 25
  start-page: 601
  year: 2011
  end-page: 612
  ident: bb0075
  article-title: Current drought and future hydroclimate projections in southeast Australia and implications for water resources management
  publication-title: Stoch. Env. Res. Risk A.
– volume: 480
  start-page: 33
  year: 2013
  end-page: 45
  ident: bb0485
  article-title: Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments
  publication-title: J. Hydrol.
– volume: 61
  start-page: 624
  year: 2016
  end-page: 633
  ident: bb0310
  article-title: Evaluation of integrating topographic wetness index with backscattering coefficient of TerraSAR-X image for soil moisture estimation in a mountainous region
  publication-title: Ecol. Indic.
– volume: 28
  start-page: 1283
  year: 2008
  end-page: 1292
  ident: bb0365
  article-title: Comparison of suitable drought indices for climate change impacts assessment over Australia towards resource management
  publication-title: Int. J. Climatol.
– volume: 330
  start-page: 136
  year: 2018
  end-page: 161
  ident: bb0430
  article-title: Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition
  publication-title: Geoderma
– volume: 85
  start-page: 172
  year: 2018
  end-page: 179
  ident: bb0445
  article-title: Topographic wetness index explains soil moisture better than bioindication with Ellenberg's indicator values
  publication-title: Ecol. Indic.
– volume: 160
  start-page: 106
  year: 2015
  end-page: 117
  ident: bb0380
  article-title: Drought hazard assessment in the context of climate change for South Korea
  publication-title: Agric. Water Manag.
– volume: 76
  start-page: 117
  year: 2016
  end-page: 127
  ident: bb0140
  article-title: Identifying the controls on coastal cliff landslides using machine-learning approaches
  publication-title: Environ. Model. Softw.
– volume: 10
  start-page: 175
  year: 2012
  end-page: 189
  ident: bb0170
  article-title: Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study
  publication-title: Landslides
– start-page: 69
  year: 1975
  end-page: 90
  ident: bb0285
  article-title: Hydrograph modeling strategies
  publication-title: Processes in Physical and Human Geography
– volume: 67
  start-page: 93
  year: 2012
  end-page: 104
  ident: bb0495
  article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 45
  year: 2009
  ident: bb0300
  article-title: Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia
  publication-title: Water Resour. Res.
– volume: 47
  year: 2011
  ident: bb0510
  article-title: Numerical evaluation of subsurface soil water evaporation derived from sensible heat balance
  publication-title: Water Resour. Res.
– year: 1984
  ident: bb2015
  article-title: Classification and regression trees (cart) wadsworth international group
– volume: 150
  start-page: 330
  year: 2010
  end-page: 339
  ident: bb0435
  article-title: Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas
  publication-title: Agric. For. Meteorol.
– volume: 264
  start-page: 210
  year: 2018
  end-page: 217
  ident: bb0490
  article-title: Organic cattle products: authenticating production origin by analysis of serum mineral content
  publication-title: Food Chem.
– volume: 13
  start-page: 265
  year: 2007
  end-page: 275
  ident: bb0160
  article-title: Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines
  publication-title: Divers. Distrib.
– volume: 85
  start-page: 771
  year: 2004
  end-page: 773
  ident: bb0030
  article-title: Statement on meteorological drought
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 229
  start-page: 234
  year: 2019
  end-page: 246
  ident: bb0545
  article-title: Evaluation analysis of NASA SMAP L3 and L4 and SPoRT-LIS soil moisture data in the United States
  publication-title: Remote Sens. Environ.
– volume: 109
  start-page: 1
  year: 2004
  end-page: 19
  ident: bb0515
  article-title: A simulated soil moisture based drought analysis for the United States
  publication-title: J. Geophys. Res.-Atmos.
– volume: 526
  start-page: 274
  year: 2015
  end-page: 286
  ident: bb0535
  article-title: The drought risk atlas: enhancing decision support for drought risk management in the United States
  publication-title: J. Hydrol.
– start-page: 1
  year: 2018
  end-page: 14
  ident: bb0290
  article-title: Groundwater potential mapping using a novel data-mining ensemble model
  publication-title: Hydrogeol. J.
– start-page: 1
  year: 2019
  end-page: 18
  ident: bb0065
  article-title: The relationship between the Normalized Difference Vegetation Index and drought indices in the South Central United States
  publication-title: Nat. Hazards
– volume: 20
  start-page: 1151
  year: 2016
  end-page: 1176
  ident: bb0385
  article-title: The importance of topography-controlled sub-grid process heterogeneity and semi-quantitative prior constraints in distributed hydrological models
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 74
  start-page: 265
  year: 2011
  end-page: 273
  ident: bb0195
  article-title: Detection of cows with insemination problems using selected classification models
  publication-title: Comput. Electron. Agric.
– volume: 19
  start-page: 1
  year: 1991
  end-page: 141
  ident: bb0175
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Stat.
– volume: 80
  start-page: 29
  year: 2008
  end-page: 40
  ident: bb0525
  article-title: Drought risk and vulnerability in rainfed agriculture: example of a case study from Australia, drought management: scientific and technological innovations
  publication-title: Options Méditérr.
– volume: 190
  year: 2018
  ident: bb0185
  article-title: Groundwater potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS
  publication-title: Environ. Monit. Assess.
– start-page: 2962
  year: 2016
  end-page: 2966
  ident: bb0090
  article-title: Application of hybrid artificial neural network algorithm for the prediction of Standardized Precipitation Index
  publication-title: Proc., Region 10 Conference (TENCON), IEEE, IEEE
– volume: 83
  start-page: 1149
  year: 2002
  end-page: 1165
  ident: bb0235
  article-title: A review of twentieth-century drought indices used in the United States
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 45
  start-page: 187
  year: 2009
  end-page: 197
  ident: bb0150
  article-title: Consideration of user needs and spatial accuracy in drought mapping 1
  publication-title: J. Am. Water Resour. Assoc.
– year: 2005
  ident: bb0055
  article-title: The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production
– volume: 204
  start-page: 399
  year: 2014
  end-page: 411
  ident: bb0085
  article-title: Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy)
  publication-title: Geomorphology
– volume: 48
  start-page: 432
  year: 2011
  end-page: 455
  ident: bb0540
  article-title: Assessment of vegetation response to drought in Nebraska using Terra-MODIS land surface temperature and normalized difference vegetation index
  publication-title: GI Sci. Remote. Sens.
– volume: 64
  start-page: 39
  year: 2019
  end-page: 51
  ident: bb0040
  article-title: Modeling the response of an endangered flagship predator to climate change in Iran
  publication-title: Mamm. Res.
– start-page: 1
  year: 2018
  end-page: 25
  ident: bb0105
  article-title: Spatio-temporal drought risk mapping approach and its application in the drought-prone region of south-east Queensland, Australia
  publication-title: Nat. Hazards
– reference: Steffen, W., Vertessy, R., Dean, A., Hughes, L., Hilary Bambrick, Gergis, J., Rice, M. 2018. Deluge and Drought: Australia's Water Security in a Changing Climate.Australia.
– volume: 646
  start-page: 1554
  year: 2019
  end-page: 1566
  ident: bb0245
  article-title: How can statistical and artificial intelligence approaches predict piping erosion susceptibility?
  publication-title: Sci. Total Environ.
– volume: 89
  start-page: 1255
  year: 1994
  end-page: 1270
  ident: bb0215
  article-title: Flexible discriminant analysis by optimal scoring
  publication-title: J. Am. Stat. Assoc.
– volume: 216
  start-page: 157
  year: 2016
  end-page: 169
  ident: bb0405
  article-title: Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions
  publication-title: Agric. For. Meteorol.
– volume: 125
  start-page: 91
  year: 2015
  end-page: 101
  ident: bb0550
  article-title: Flood susceptibility assessment using GIS-based support vector machine model with different kernel types
  publication-title: Catena
– volume: 23
  year: 2017
  ident: bb0095
  article-title: Investigating drought duration-severity-intensity characteristics using the Standardized Precipitation-Evapotranspiration Index: case studies in drought-prone Southeast Queensland
  publication-title: J. Hydrol. Eng.
– year: 2001
  ident: bb0225
  article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
– volume: 15
  start-page: 990
  year: 2013
  end-page: 1010
  ident: bb0355
  article-title: Objective drought classification using multiple land surface models
  publication-title: J. Hydrometeorol.
– volume: 77
  start-page: 802
  year: 2008
  end-page: 813
  ident: bb0165
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
– volume: 49
  start-page: 1040
  year: 2013
  end-page: 1057
  ident: bb0570
  article-title: The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society
  publication-title: Water Resour. Res.
– volume: 565
  start-page: 248
  year: 2018
  end-page: 261
  ident: bb0460
  article-title: Groundwater spring potential modeling: comprising the capability and robustness of three different modeling approaches
  publication-title: J. Hydrol.
– volume: 74
  start-page: 1951
  year: 2014
  end-page: 1989
  ident: bb0325
  article-title: A test of transferability for landslides susceptibility models under extreme climatic events: application to the Messina 2009 disaster
  publication-title: Nat. Hazards
– volume: 162
  start-page: 380
  year: 2015
  end-page: 395
  ident: bb0145
  article-title: Evaluation of the ESA CCI soil moisture product using ground-based observations
  publication-title: Remote Sens. Environ.
– volume: 83
  start-page: 1167
  year: 2002
  end-page: 1180
  ident: bb0275
  article-title: The quantification of drought: an evaluation of drought indices
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 612
  start-page: 513
  year: 2018
  end-page: 521
  ident: bb0600
  article-title: Climate and drought risk regionalisation in China based on probabilistic aridity and drought index
  publication-title: Sci. Total Environ.
– volume: 391
  start-page: 202
  year: 2010
  end-page: 216
  ident: bb0350
  article-title: A review of drought concepts
  publication-title: J. Hydrol.
– volume: 51
  start-page: 1765
  year: 2006
  end-page: 1778
  ident: bb0475
  article-title: Choice of B-splines with free parameters in the flexible discriminant analysis context
  publication-title: Comput. Stat. Data Anal.
– volume: 249
  start-page: 107
  year: 2018
  end-page: 119
  ident: bb2005
  article-title: Evaluation of six indices for monitoring agricultural drought in the south-central United States
  publication-title: Agric. For. Meteorol.
– start-page: 568
  year: 2000
  end-page: 574
  ident: bb0505
  article-title: Nonlinear discriminant analysis using kernel functions
  publication-title: Advances in Neural Information Processing Systems
– volume: 84
  start-page: 1905
  year: 2016
  end-page: 1920
  ident: bb0390
  article-title: Application of AHP with GIS in drought risk assessment for Puruliya district, India
  publication-title: Nat. Hazards
– volume: 7
  year: 2016
  ident: bb0240
  article-title: Modeling lake trophic state: a random forest approach
  publication-title: Ecosphere
– start-page: 1
  year: 1999
  end-page: 23
  ident: bb0220
  article-title: Flexible Discriminant and Mixture Models. Statistics and Neural Networks: Advances at the Interface
– volume: 31
  start-page: 1473
  year: 2017
  end-page: 1487
  ident: bb0450
  article-title: Identification of critical flood prone areas in data-scarce and ungauged regions: a comparison of three data mining models
  publication-title: Water Resour. Manag.
– volume: 656
  start-page: 1046
  year: 2019
  end-page: 1062
  ident: bb0255
  article-title: Connectivity patterns in contrasting types of tableland sandstone relief revealed by Topographic Wetness Index
  publication-title: Sci. Total Environ.
– year: 2012
  ident: bb0470
  article-title: Australian Water Availability Project
– volume: 84
  start-page: 240
  year: 2016
  end-page: 250
  ident: bb0415
  article-title: A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India)
  publication-title: Environ. Model. Softw.
– volume: 104
  start-page: 10
  year: 2019
  end-page: 20
  ident: bb0330
  article-title: Mapping the agricultural drought based on the long-term AVHRR NDVI and North American Regional Reanalysis (NARR) in the United States, 1981–2013
  publication-title: Appl. Geogr.
– volume: 75
  start-page: 1039
  year: 2016
  ident: bb0155
  article-title: Drought vulnerability mapping using AHP method in arid and semiarid areas: a case study for Taft Township, Yazd Province, Iran
  publication-title: Environ. Earth Sci.
– volume: 193
  start-page: 73
  year: 2017
  end-page: 82
  ident: bb0500
  article-title: Drought sensitivity mapping using two one-class support vector machine algorithms
  publication-title: Atmos. Res.
– volume: 570
  start-page: 167
  year: 2019
  end-page: 184
  ident: bb0590
  article-title: Two-phase extreme learning machines integrated with the complete ensemble empirical mode decomposition with adaptive noise algorithm for multi-scale runoff prediction problems
  publication-title: J. Hydrol.
– volume: 43
  start-page: 1223
  year: 2006
  end-page: 1232
  ident: bb0025
  article-title: Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS)
  publication-title: J. Appl. Ecol.
– volume: 204
  start-page: 260
  year: 2018
  end-page: 275
  ident: bb0280
  article-title: Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products
  publication-title: Remote Sens. Environ.
– volume: 18
  start-page: 515
  year: 2016
  end-page: 527
  ident: bb0305
  article-title: An evaluation of the North American Regional Reanalysis simulated soil moisture conditions during the 2011 to 2013 drought period
  publication-title: J. Hydrometeorol.
– volume: 177
  start-page: 277
  year: 2016
  end-page: 286
  ident: bb0340
  article-title: Satellite soil moisture for agricultural drought monitoring: assessment of the SMOS derived Soil Water Deficit Index
  publication-title: Remote Sens. Environ.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb2020
  article-title: Random forests
  publication-title: Mach. Learn.
– start-page: 127
  year: 1996
  end-page: 147
  ident: bb0620
  article-title: On Fuzzy Algorithms. Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A Zadeh
– volume: 197
  start-page: 42
  year: 2017
  end-page: 63
  ident: bb0420
  article-title: Input selection and performance optimization of ANN-based streamflow forecasts in the drought-prone Murray Darling Basin region using IIS and MODWT algorithm
  publication-title: Atmos. Res.
– volume: 527
  start-page: 668
  year: 2015
  end-page: 678
  ident: bb0200
  article-title: Drought characterization from a multivariate perspective: a review
  publication-title: J. Hydrol.
– volume: 539
  start-page: 1
  year: 2016
  end-page: 10
  ident: bb0205
  article-title: A general framework for multivariate multi-index drought prediction based on Multivariate Ensemble Streamflow Prediction (MESP)
  publication-title: J. Hydrol.
– volume: 17
  start-page: 180
  year: 2008
  end-page: 187
  ident: bb0320
  article-title: Improving AHP for construction with an adaptive AHP approach (A3)
  publication-title: Autom. Constr.
– volume: 188
  start-page: 44
  year: 2016
  ident: bb0375
  article-title: GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran
  publication-title: Environ. Monit. Assess.
– volume: 28
  start-page: 1274
  year: 2006
  end-page: 1286
  ident: bb0635
  article-title: Subclass discriminant analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 81
  start-page: 1
  year: 2015
  end-page: 11
  ident: bb0180
  article-title: Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling
  publication-title: Comput. Geosci.
– volume: 184
  start-page: 149
  year: 2017
  end-page: 175
  ident: bb0135
  article-title: Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model
  publication-title: Atmos. Res.
– volume: 543
  start-page: 892
  year: 2016
  end-page: 909
  ident: bb0265
  article-title: A comparison of numerical and machine-learning modeling of soil water content with limited input data
  publication-title: J. Hydrol.
– volume: 188
  start-page: 90
  year: 2016
  ident: bb0115
  article-title: An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland
  publication-title: Environ. Monit. Assess.
– start-page: 202
  year: 1976
  end-page: 282
  ident: bb0615
  article-title: A Fuzzy-Algorithmic Approach to the Definition of Complex or Imprecise Concepts. Systems Theory in the Social Sciences
– start-page: 177
  year: 2017
  end-page: 198
  ident: bb0100
  article-title: Drought modelling based on artificial intelligence and neural network algorithms: a case study in Queensland, Australia
  publication-title: Climate Change Adaptation in Pacific Countries
– volume: 27
  start-page: 2103
  year: 2007
  end-page: 2111
  ident: bb0360
  article-title: Drought forecasting using artificial neural networks and time series of drought indices
  publication-title: Int. J. Climatol.
– volume: 215
  start-page: 239
  year: 2005
  end-page: 250
  ident: bb0580
  article-title: The use of remote sensing and GIS for spatio-temporal analysis of the physiological state of a semi-arid forest with respect to drought years
  publication-title: For. Ecol. Manag.
– volume: 186
  start-page: 243
  year: 2003
  end-page: 255
  ident: bb0080
  article-title: Light, temperature, and soil moisture responses to elevation, evergreen understory, and small canopy gaps in the southern Appalachians
  publication-title: For. Ecol. Manag.
– volume: 16
  start-page: 1397
  year: 2015
  end-page: 1408
  ident: bb0585
  article-title: Commonly used drought indices as indicators of soil moisture in China
  publication-title: J. Hydrometeorol.
– volume: 664
  start-page: 296
  year: 2019
  end-page: 311
  ident: bb0465
  article-title: PMT: new analytical framework for automated evaluation of geo-environmental modelling approaches
  publication-title: Sci. Total Environ.
– volume: 118
  start-page: 49
  year: 2003
  end-page: 62
  ident: bb0440
  article-title: An evaluation of agricultural drought indices for the Canadian prairies
  publication-title: Agric. For. Meteorol.
– volume: 29
  year: 2015
  ident: bb0370
  article-title: A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping
  publication-title: Water Resour. Manag.
– volume: 162
  start-page: 211
  year: 2003
  end-page: 232
  ident: bb0035
  article-title: Evaluating predictive models of species' distributions: criteria for selecting optimal models
  publication-title: Ecol. Model.
– volume: 75
  start-page: 660
  year: 2011
  end-page: 667
  ident: bb0060
  article-title: Acoustic identification of bats in the eastern United States: a comparison of parametric and nonparametric methods
  publication-title: J. Wildl. Manag.
– volume: 7
  start-page: 308
  year: 2016
  end-page: 325
  ident: bb0070
  article-title: Mapping disaster vulnerability in India using analytical hierarchy process
  publication-title: Geomat. Nat. Haz. Risk
– volume: 181
  start-page: 63
  year: 2018
  end-page: 81
  ident: bb0425
  article-title: Ensemble committee-based data intelligent approach for generating soil moisture forecasts with multivariate hydro-meteorological predictors
  publication-title: Soil Tillage Res.
– volume: 11
  start-page: 705
  year: 2019
  ident: bb0400
  article-title: Prediction of severe drought area based on random forest: using satellite image and topography data
  publication-title: Water
– volume: 43
  start-page: 1223
  issue: 6
  year: 2006
  ident: 10.1016/j.scitotenv.2019.134230_bb0025
  article-title: Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS)
  publication-title: J. Appl. Ecol.
  doi: 10.1111/j.1365-2664.2006.01214.x
– start-page: 121
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134230_bb0010
  article-title: Remote sensing of drought: vegetation, soil moisture, and data assimilation
– volume: 104
  start-page: 10
  year: 2019
  ident: 10.1016/j.scitotenv.2019.134230_bb0330
  article-title: Mapping the agricultural drought based on the long-term AVHRR NDVI and North American Regional Reanalysis (NARR) in the United States, 1981–2013
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2019.01.005
– volume: 111
  start-page: 62
  issue: 1-4
  year: 2010
  ident: 10.1016/j.scitotenv.2019.134230_bb2025
  article-title: Techniques for evaluating the performance of landslide susceptibility models
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2009.12.004
– volume: 48
  start-page: 432
  issue: 3
  year: 2011
  ident: 10.1016/j.scitotenv.2019.134230_bb0540
  article-title: Assessment of vegetation response to drought in Nebraska using Terra-MODIS land surface temperature and normalized difference vegetation index
  publication-title: GI Sci. Remote. Sens.
  doi: 10.2747/1548-1603.48.3.432
– volume: 50
  start-page: 2034
  issue: 12
  year: 2005
  ident: 10.1016/j.scitotenv.2019.134230_bb0295
  article-title: Using multivariate adaptive regression splines to predict the distributions of New Zealand's freshwater diadromous fish
  publication-title: Freshw. Biol.
  doi: 10.1111/j.1365-2427.2005.01448.x
– volume: 84
  start-page: 240
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134230_bb0415
  article-title: A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India)
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2016.07.005
– volume: 646
  start-page: 1554
  year: 2019
  ident: 10.1016/j.scitotenv.2019.134230_bb0245
  article-title: How can statistical and artificial intelligence approaches predict piping erosion susceptibility?
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.07.396
– volume: 249
  start-page: 107
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134230_bb2005
  article-title: Evaluation of six indices for monitoring agricultural drought in the south-central United States
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.11.024
– volume: 559
  start-page: 461
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134230_bb0050
  article-title: Construction of prediction intervals for Palmer Drought Severity Index using bootstrap
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.02.021
– volume: 48
  start-page: 82
  year: 2013
  ident: 10.1016/j.scitotenv.2019.134230_bb0625
  article-title: Multivariate adaptive regression splines for analysis of geotechnical engineering systems
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2012.09.016
– volume: 11
  start-page: 705
  issue: 4
  year: 2019
  ident: 10.1016/j.scitotenv.2019.134230_bb0400
  article-title: Prediction of severe drought area based on random forest: using satellite image and topography data
  publication-title: Water
  doi: 10.3390/w11040705
– volume: 162
  start-page: 211
  issue: 3
  year: 2003
  ident: 10.1016/j.scitotenv.2019.134230_bb0035
  article-title: Evaluating predictive models of species' distributions: criteria for selecting optimal models
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(02)00349-6
– year: 2001
  ident: 10.1016/j.scitotenv.2019.134230_bb0225
– volume: 150
  start-page: 330
  issue: 3
  year: 2010
  ident: 10.1016/j.scitotenv.2019.134230_bb0435
  article-title: Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2009.11.015
– volume: 298
  start-page: 118
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134230_bb0455
  article-title: Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.09.006
– volume: 28
  start-page: 210
  issue: 3
  year: 2008
  ident: 10.1016/j.scitotenv.2019.134230_bb0595
  article-title: A study on DEM-derived primary topographic attributes for hydrologic applications: sensitivity to elevation data resolution
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2008.02.006
– volume: 330
  start-page: 136
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134230_bb0430
  article-title: Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.05.035
– volume: 24
  start-page: 4199
  issue: 15
  year: 2010
  ident: 10.1016/j.scitotenv.2019.134230_bb0395
  article-title: Integrating hydro-meteorological and physiographic factors for assessment of vulnerability to drought
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-010-9653-5
– volume: 612
  start-page: 513
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134230_bb0600
  article-title: Climate and drought risk regionalisation in China based on probabilistic aridity and drought index
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.08.078
– volume: 83
  start-page: 1167
  issue: 8
  year: 2002
  ident: 10.1016/j.scitotenv.2019.134230_bb0275
  article-title: The quantification of drought: an evaluation of drought indices
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477-83.8.1167
– volume: 125
  start-page: 91
  year: 2015
  ident: 10.1016/j.scitotenv.2019.134230_bb0550
  article-title: Flood susceptibility assessment using GIS-based support vector machine model with different kernel types
  publication-title: Catena
  doi: 10.1016/j.catena.2014.10.017
– volume: 81
  start-page: 1
  year: 2015
  ident: 10.1016/j.scitotenv.2019.134230_bb0180
  article-title: Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2015.04.007
– volume: 134
  start-page: 1
  year: 2013
  ident: 10.1016/j.scitotenv.2019.134230_bb0530
  article-title: Inter-comparison of microwave satellite soil moisture retrievals over the Murrumbidgee Basin, southeast Australia
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.02.016
– volume: 662
  start-page: 672
  year: 2019
  ident: 10.1016/j.scitotenv.2019.134230_bb0015
  article-title: Future drought risk in Africa: integrating vulnerability, climate change, and population growth
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.278
– volume: 47
  issue: 2
  year: 2011
  ident: 10.1016/j.scitotenv.2019.134230_bb0510
  article-title: Numerical evaluation of subsurface soil water evaporation derived from sensible heat balance
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR009866
– volume: 114
  start-page: 2875
  issue: 12
  year: 2010
  ident: 10.1016/j.scitotenv.2019.134230_bb0480
  article-title: Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.07.005
– volume: 188
  start-page: 44
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134230_bb0375
  article-title: GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-015-5049-6
– volume: 89
  start-page: 1255
  issue: 428
  year: 1994
  ident: 10.1016/j.scitotenv.2019.134230_bb0215
  article-title: Flexible discriminant analysis by optimal scoring
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1994.10476866
– volume: 61
  start-page: 624
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134230_bb0310
  article-title: Evaluation of integrating topographic wetness index with backscattering coefficient of TerraSAR-X image for soil moisture estimation in a mountainous region
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2015.10.013
– volume: 565
  start-page: 248
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134230_bb0460
  article-title: Groundwater spring potential modeling: comprising the capability and robustness of three different modeling approaches
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.08.027
– volume: 66
  start-page: 744
  issue: 4
  year: 2015
  ident: 10.1016/j.scitotenv.2019.134230_bb0260
  article-title: Using boosted regression trees to explore key factors controlling saturated and near-saturated hydraulic conductivity
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12249
– volume: 162
  start-page: 380
  year: 2015
  ident: 10.1016/j.scitotenv.2019.134230_bb0145
  article-title: Evaluation of the ESA CCI soil moisture product using ground-based observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.07.023
– volume: 33
  start-page: 69
  issue: 1
  year: 2010
  ident: 10.1016/j.scitotenv.2019.134230_bb0005
  article-title: Estimating soil moisture using remote sensing data: a machine learning approach
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2009.10.008
– volume: 27
  start-page: 2103
  issue: 15
  year: 2007
  ident: 10.1016/j.scitotenv.2019.134230_bb0360
  article-title: Drought forecasting using artificial neural networks and time series of drought indices
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.1498
– start-page: 1
  year: 2019
  ident: 10.1016/j.scitotenv.2019.134230_bb0065
  article-title: The relationship between the Normalized Difference Vegetation Index and drought indices in the South Central United States
  publication-title: Nat. Hazards
– volume: 188
  start-page: 141
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134230_bb0630
  article-title: Multi-sensor integrated framework and index for agricultural drought monitoring
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.10.045
– volume: 74
  start-page: 265
  issue: 2010
  year: 2011
  ident: 10.1016/j.scitotenv.2019.134230_bb0195
  article-title: Detection of cows with insemination problems using selected classification models
  publication-title: Comput. Electron. Agric.
– volume: 7
  start-page: 308
  issue: 1
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134230_bb0070
  article-title: Mapping disaster vulnerability in India using analytical hierarchy process
  publication-title: Geomat. Nat. Haz. Risk
  doi: 10.1080/19475705.2014.897656
– volume: 25
  start-page: 601
  issue: 4
  year: 2011
  ident: 10.1016/j.scitotenv.2019.134230_bb0075
  article-title: Current drought and future hydroclimate projections in southeast Australia and implications for water resources management
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-010-0424-x
– volume: 128
  start-page: 359
  issue: 1–2
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134230_bb0125
  article-title: Application of effective drought index for quantification of meteorological drought events: a case study in Australia
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-015-1706-5
– volume: 67
  start-page: 93
  year: 2012
  ident: 10.1016/j.scitotenv.2019.134230_bb0495
  article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2011.11.002
– start-page: 568
  year: 2000
  ident: 10.1016/j.scitotenv.2019.134230_bb0505
  article-title: Nonlinear discriminant analysis using kernel functions
– year: 2005
  ident: 10.1016/j.scitotenv.2019.134230_bb0055
– start-page: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134230_bb0290
  article-title: Groundwater potential mapping using a novel data-mining ensemble model
  publication-title: Hydrogeol. J.
– volume: 391
  start-page: 202
  issue: 1–2
  year: 2010
  ident: 10.1016/j.scitotenv.2019.134230_bb0350
  article-title: A review of drought concepts
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.07.012
– volume: 15
  start-page: 990
  year: 2013
  ident: 10.1016/j.scitotenv.2019.134230_bb0355
  article-title: Objective drought classification using multiple land surface models
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-13-071.1
– volume: 193
  start-page: 73
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134230_bb0500
  article-title: Drought sensitivity mapping using two one-class support vector machine algorithms
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2017.04.017
– volume: 74
  start-page: 1951
  year: 2014
  ident: 10.1016/j.scitotenv.2019.134230_bb0325
  article-title: A test of transferability for landslides susceptibility models under extreme climatic events: application to the Messina 2009 disaster
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-014-1285-2
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.scitotenv.2019.134230_bb2020
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 23
  issue: 1
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134230_bb0095
  article-title: Investigating drought duration-severity-intensity characteristics using the Standardized Precipitation-Evapotranspiration Index: case studies in drought-prone Southeast Queensland
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0001593
– volume: 36
  issue: 8
  year: 2009
  ident: 10.1016/j.scitotenv.2019.134230_bb0120
  article-title: Impact of historical land cover change on daily indices of climate extremes including droughts in eastern Australia
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2009GL037666
– volume: 77
  start-page: 802
  year: 2008
  ident: 10.1016/j.scitotenv.2019.134230_bb0165
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
  doi: 10.1111/j.1365-2656.2008.01390.x
– volume: 29
  year: 2015
  ident: 10.1016/j.scitotenv.2019.134230_bb0370
  article-title: A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-015-1114-8
– volume: 18
  start-page: 515
  issue: 2
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134230_bb0305
  article-title: An evaluation of the North American Regional Reanalysis simulated soil moisture conditions during the 2011 to 2013 drought period
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-16-0132.1
– ident: 10.1016/j.scitotenv.2019.134230_bb0520
– volume: 54
  start-page: 55
  issue: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134230_bb0410
  article-title: Streamflow hydrology estimate using machine learning (shem)
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/1752-1688.12555
– volume: 18
  start-page: 564
  year: 2012
  ident: 10.1016/j.scitotenv.2019.134230_bb0560
  article-title: Mapping return levels of absolute NDVI variations for the assessment of drought risk in Ethiopia
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2012.03.018
– volume: 13
  start-page: 265
  issue: 3
  year: 2007
  ident: 10.1016/j.scitotenv.2019.134230_bb0160
  article-title: Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines
  publication-title: Divers. Distrib.
  doi: 10.1111/j.1472-4642.2007.00340.x
– volume: 570
  start-page: 167
  year: 2019
  ident: 10.1016/j.scitotenv.2019.134230_bb0590
  article-title: Two-phase extreme learning machines integrated with the complete ensemble empirical mode decomposition with adaptive noise algorithm for multi-scale runoff prediction problems
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.12.060
– volume: 20
  start-page: 1151
  issue: 3
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134230_bb0385
  article-title: The importance of topography-controlled sub-grid process heterogeneity and semi-quantitative prior constraints in distributed hydrological models
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-20-1151-2016
– volume: 152
  start-page: 149
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134230_bb0020
  article-title: Multi-stage committee based extreme learning machine model incorporating the influence of climate parameters and seasonality on drought forecasting
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.07.013
– volume: 7
  issue: 3
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134230_bb0240
  article-title: Modeling lake trophic state: a random forest approach
  publication-title: Ecosphere
  doi: 10.1002/ecs2.1321
– volume: 664
  start-page: 296
  year: 2019
  ident: 10.1016/j.scitotenv.2019.134230_bb0465
  article-title: PMT: new analytical framework for automated evaluation of geo-environmental modelling approaches
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.017
– volume: 84
  start-page: 1905
  issue: 3
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134230_bb0390
  article-title: Application of AHP with GIS in drought risk assessment for Puruliya district, India
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-016-2526-3
– volume: 221
  start-page: 1119
  issue: 8
  year: 2010
  ident: 10.1016/j.scitotenv.2019.134230_bb2010
  article-title: Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2010.01.007
– volume: 543
  start-page: 892
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134230_bb0265
  article-title: A comparison of numerical and machine-learning modeling of soil water content with limited input data
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.11.007
– year: 2012
  ident: 10.1016/j.scitotenv.2019.134230_bb0470
– volume: 81
  start-page: 1627
  issue: 3
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134230_bb0555
  article-title: Drought indicators-based integrated assessment of drought vulnerability: a case study of Bundelkhand droughts in central India
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-016-2149-8
– start-page: 202
  year: 1976
  ident: 10.1016/j.scitotenv.2019.134230_bb0615
– volume: 85
  start-page: 172
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134230_bb0445
  article-title: Topographic wetness index explains soil moisture better than bioindication with Ellenberg's indicator values
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2017.10.011
– volume: 114
  start-page: 24
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134230_bb0045
  article-title: Random forest in remote sensing: a review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 153
  start-page: 512
  year: 2015
  ident: 10.1016/j.scitotenv.2019.134230_bb0110
  article-title: Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2014.10.016
– volume: 80
  start-page: 29
  year: 2008
  ident: 10.1016/j.scitotenv.2019.134230_bb0525
  article-title: Drought risk and vulnerability in rainfed agriculture: example of a case study from Australia, drought management: scientific and technological innovations
  publication-title: Options Méditérr.
– volume: 29
  start-page: 583
  issue: 3
  year: 2005
  ident: 10.1016/j.scitotenv.2019.134230_bb0565
  article-title: Comparing classification techniques for predicting essential hypertension
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.04.014
– volume: 32
  start-page: 2457
  issue: 9
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134230_bb0610
  article-title: Design and evaluation of SVR, MARS and M5Tree models for 1, 2 and 3-day lead time forecasting of river flow data in a semiarid mountainous catchment
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-018-1585-2
– volume: 109
  start-page: 1
  issue: D24
  year: 2004
  ident: 10.1016/j.scitotenv.2019.134230_bb0515
  article-title: A simulated soil moisture based drought analysis for the United States
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1029/2004JD005182
– volume: 76
  start-page: 117
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134230_bb0140
  article-title: Identifying the controls on coastal cliff landslides using machine-learning approaches
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2015.10.029
– year: 1998
  ident: 10.1016/j.scitotenv.2019.134230_bb0575
– volume: 28
  start-page: 1274
  issue: 8
  year: 2006
  ident: 10.1016/j.scitotenv.2019.134230_bb0635
  article-title: Subclass discriminant analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.172
– volume: 188
  start-page: 90
  issue: 2
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134230_bb0115
  article-title: An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-016-5094-9
– volume: 19
  start-page: 1
  year: 1991
  ident: 10.1016/j.scitotenv.2019.134230_bb0175
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Stat.
– volume: 373
  start-page: 15
  issue: 1–2
  year: 2009
  ident: 10.1016/j.scitotenv.2019.134230_bb0190
  article-title: Modeling spatial patterns of saturated areas: a comparison of the topographic wetness index and a dynamic distributed model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.03.031
– start-page: 127
  year: 1996
  ident: 10.1016/j.scitotenv.2019.134230_bb0620
– volume: 85
  start-page: 771
  year: 2004
  ident: 10.1016/j.scitotenv.2019.134230_bb0030
  article-title: Statement on meteorological drought
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 264
  start-page: 210
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134230_bb0490
  article-title: Organic cattle products: authenticating production origin by analysis of serum mineral content
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2018.05.044
– volume: 216
  start-page: 157
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134230_bb0405
  article-title: Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.10.011
– volume: 186
  start-page: 243
  issue: 1–3
  year: 2003
  ident: 10.1016/j.scitotenv.2019.134230_bb0080
  article-title: Light, temperature, and soil moisture responses to elevation, evergreen understory, and small canopy gaps in the southern Appalachians
  publication-title: For. Ecol. Manag.
  doi: 10.1016/S0378-1127(03)00277-9
– volume: 527
  start-page: 668
  year: 2015
  ident: 10.1016/j.scitotenv.2019.134230_bb0200
  article-title: Drought characterization from a multivariate perspective: a review
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.05.031
– start-page: 69
  year: 1975
  ident: 10.1016/j.scitotenv.2019.134230_bb0285
  article-title: Hydrograph modeling strategies
– start-page: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134230_bb0105
  article-title: Spatio-temporal drought risk mapping approach and its application in the drought-prone region of south-east Queensland, Australia
  publication-title: Nat. Hazards
– volume: 177
  start-page: 277
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134230_bb0340
  article-title: Satellite soil moisture for agricultural drought monitoring: assessment of the SMOS derived Soil Water Deficit Index
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.064
– volume: 542
  start-page: 603
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134230_bb0605
  article-title: Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.09.035
– volume: 181
  start-page: 63
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134230_bb0425
  article-title: Ensemble committee-based data intelligent approach for generating soil moisture forecasts with multivariate hydro-meteorological predictors
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2018.03.021
– volume: 197
  start-page: 42
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134230_bb0420
  article-title: Input selection and performance optimization of ANN-based streamflow forecasts in the drought-prone Murray Darling Basin region using IIS and MODWT algorithm
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2017.06.014
– volume: 204
  start-page: 399
  year: 2014
  ident: 10.1016/j.scitotenv.2019.134230_bb0085
  article-title: Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2013.08.021
– volume: 526
  start-page: 274
  year: 2015
  ident: 10.1016/j.scitotenv.2019.134230_bb0535
  article-title: The drought risk atlas: enhancing decision support for drought risk management in the United States
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.01.006
– start-page: 2962
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134230_bb0090
  article-title: Application of hybrid artificial neural network algorithm for the prediction of Standardized Precipitation Index
– volume: 83
  start-page: 1149
  year: 2002
  ident: 10.1016/j.scitotenv.2019.134230_bb0235
  article-title: A review of twentieth-century drought indices used in the United States
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477-83.8.1149
– start-page: 1
  year: 1999
  ident: 10.1016/j.scitotenv.2019.134230_bb0220
– volume: 49
  start-page: 717
  issue: 6
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134230_bb0270
  article-title: Machine learning based predictive modeling of debris flow probability following wildfire in the intermountain Western United States
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-017-9681-2
– volume: 64
  start-page: 39
  issue: 1
  year: 2019
  ident: 10.1016/j.scitotenv.2019.134230_bb0040
  article-title: Modeling the response of an endangered flagship predator to climate change in Iran
  publication-title: Mamm. Res.
  doi: 10.1007/s13364-018-0384-y
– volume: 75
  start-page: 660
  issue: 3
  year: 2011
  ident: 10.1016/j.scitotenv.2019.134230_bb0060
  article-title: Acoustic identification of bats in the eastern United States: a comparison of parametric and nonparametric methods
  publication-title: J. Wildl. Manag.
  doi: 10.1002/jwmg.68
– volume: 28
  start-page: 1283
  issue: 10
  year: 2008
  ident: 10.1016/j.scitotenv.2019.134230_bb0365
  article-title: Comparison of suitable drought indices for climate change impacts assessment over Australia towards resource management
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.1649
– volume: 16
  start-page: 1397
  issue: 3
  year: 2015
  ident: 10.1016/j.scitotenv.2019.134230_bb0585
  article-title: Commonly used drought indices as indicators of soil moisture in China
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-14-0076.1
– volume: 190
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134230_bb0185
  article-title: Groundwater potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-018-6507-8
– volume: 160
  start-page: 106
  year: 2015
  ident: 10.1016/j.scitotenv.2019.134230_bb0380
  article-title: Drought hazard assessment in the context of climate change for South Korea
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2015.06.029
– volume: 118
  start-page: 49
  issue: 1–2
  year: 2003
  ident: 10.1016/j.scitotenv.2019.134230_bb0440
  article-title: An evaluation of agricultural drought indices for the Canadian prairies
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(03)00072-8
– volume: 51
  start-page: 1765
  issue: 3
  year: 2006
  ident: 10.1016/j.scitotenv.2019.134230_bb0475
  article-title: Choice of B-splines with free parameters in the flexible discriminant analysis context
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2005.11.018
– volume: 480
  start-page: 33
  year: 2013
  ident: 10.1016/j.scitotenv.2019.134230_bb0485
  article-title: Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.12.004
– volume: 31
  start-page: 1473
  issue: 5
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134230_bb0450
  article-title: Identification of critical flood prone areas in data-scarce and ungauged regions: a comparison of three data mining models
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-017-1589-6
– volume: 76
  start-page: 443
  issue: 1
  year: 2015
  ident: 10.1016/j.scitotenv.2019.134230_bb0250
  article-title: Spatio-temporal assessment of vulnerability to drought
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-014-1502-z
– volume: 27
  start-page: 3981
  issue: 26
  year: 2013
  ident: 10.1016/j.scitotenv.2019.134230_bb0315
  article-title: Effects of the Three Gorges Reservoir on the hydrological droughts at the downstream Yichang station during 2003–2011
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.9541
– volume: 184
  start-page: 149
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134230_bb0135
  article-title: Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2016.10.004
– volume: 10
  start-page: 175
  year: 2012
  ident: 10.1016/j.scitotenv.2019.134230_bb0170
  article-title: Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study
  publication-title: Landslides
  doi: 10.1007/s10346-012-0320-1
– volume: 34
  issue: 22
  year: 2007
  ident: 10.1016/j.scitotenv.2019.134230_bb0335
  article-title: Monitoring and predicting the 2007 US drought
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2007GL031673
– year: 2001
  ident: 10.1016/j.scitotenv.2019.134230_bb0230
– volume: 45
  start-page: 187
  issue: 1
  year: 2009
  ident: 10.1016/j.scitotenv.2019.134230_bb0150
  article-title: Consideration of user needs and spatial accuracy in drought mapping 1
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/j.1752-1688.2008.00270.x
– volume: 45
  issue: 4
  year: 2009
  ident: 10.1016/j.scitotenv.2019.134230_bb0300
  article-title: Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia
  publication-title: Water Resour. Res.
  doi: 10.1029/2008WR007333
– volume: 204
  start-page: 260
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134230_bb0280
  article-title: Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.10.026
– start-page: 177
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134230_bb0100
  article-title: Drought modelling based on artificial intelligence and neural network algorithms: a case study in Queensland, Australia
– volume: 398
  start-page: 191
  issue: 3–4
  year: 2011
  ident: 10.1016/j.scitotenv.2019.134230_bb0210
  article-title: Effect of antecedent soil moisture on preferential flow in a texture-contrast soil
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.12.008
– volume: 49
  start-page: 1040
  issue: 2
  year: 2013
  ident: 10.1016/j.scitotenv.2019.134230_bb0570
  article-title: The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20123
– volume: 31
  start-page: 1211
  issue: 5
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134230_bb0130
  article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-016-1265-z
– volume: 75
  start-page: 1039
  issue: 12
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134230_bb0155
  article-title: Drought vulnerability mapping using AHP method in arid and semiarid areas: a case study for Taft Township, Yazd Province, Iran
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-016-5822-z
– volume: 656
  start-page: 1046
  year: 2019
  ident: 10.1016/j.scitotenv.2019.134230_bb0255
  article-title: Connectivity patterns in contrasting types of tableland sandstone relief revealed by Topographic Wetness Index
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.467
– volume: 539
  start-page: 1
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134230_bb0205
  article-title: A general framework for multivariate multi-index drought prediction based on Multivariate Ensemble Streamflow Prediction (MESP)
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.04.074
– volume: 215
  start-page: 239
  issue: 1–3
  year: 2005
  ident: 10.1016/j.scitotenv.2019.134230_bb0580
  article-title: The use of remote sensing and GIS for spatio-temporal analysis of the physiological state of a semi-arid forest with respect to drought years
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2005.05.063
– volume: 17
  start-page: 180
  issue: 2
  year: 2008
  ident: 10.1016/j.scitotenv.2019.134230_bb0320
  article-title: Improving AHP for construction with an adaptive AHP approach (A3)
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2007.03.004
– year: 1984
  ident: 10.1016/j.scitotenv.2019.134230_bb2015
– volume: 41
  issue: 5
  year: 2005
  ident: 10.1016/j.scitotenv.2019.134230_bb0345
  article-title: The role of topography on catchment-scale water residence time
  publication-title: Water Resour. Res.
  doi: 10.1029/2004WR003657
– volume: 229
  start-page: 234
  year: 2019
  ident: 10.1016/j.scitotenv.2019.134230_bb0545
  article-title: Evaluation analysis of NASA SMAP L3 and L4 and SPoRT-LIS soil moisture data in the United States
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.05.006
SSID ssj0000781
Score 2.6324668
Snippet A quantitative understanding of the hydro-environmental factors that influence the occurrence of agricultural drought events would enable more strategic...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 134230
SubjectTerms atmospheric precipitation
Australia
clay fraction
climate change
data collection
discriminant analysis
Drought
economic sustainability
environmental protection
GIS
graphs
inventories
issues and policy
planning
plant available water
prediction
Queensland
risk
Spatial analysis, artificial intelligence
support vector machines
water holding capacity
Title Machine learning approaches for spatial modeling of agricultural droughts in the south-east region of Queensland Australia
URI https://dx.doi.org/10.1016/j.scitotenv.2019.134230
https://www.ncbi.nlm.nih.gov/pubmed/31522053
https://www.proquest.com/docview/2290981560
https://www.proquest.com/docview/2315265845
Volume 699
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BS-UwEB70ycKCyPp21aerZGGv1bZJ09SbiPL0obDLynoLbdPKW5ZWbBX04G93pkkrHtSDp0KTCaHJzHxJZ-YD-KkMYmrhc09FknuiEJmXKpV6gqdJhiYz4l169Nm5nF6I08vocgEO-1wYCqt0tt_a9M5auzd77mvuXc_nlOMrVCKTGCGICAMeLcJSyBMZjWDp4GQ2PX82yLGyxHkCdRsFXoR54dBtjfD0jsK8kt2AKuL5rzmp10Bo54yOv8CKQ5HswE50FRaKagyfLK_k_RjWjp7T17Cb099mDMv2lo7Z5KOv8HDWxVIWzJFHXLG-xnjRMISzrKGAaxyiI8yh9rpk6dXNULCDmY7mp23YvGKIJVlDlHweEQIx4nyoK5L41Z2WKYaSDXcr3-Di-OjP4dRzbAxeLnzRenFSqjRSvEC9MvS3DU9SVOu-zIIcUZjE3YD-NjRG8tKkgYjxzI7eT4ZlhpjHCL4Go6quig1g2DMKiTUrR4QQG54YQ-E5fpyGWc6VnIDsP7_OXalyYsz4r_uYtH96WDdN66btuk3AHwSvbbWO90X2-_XVLzaeRp_yvvCPfkdoVEv615JWRX3baCqjn1Alnrf68IDICZSIJrBut9Mwa2oK0UBufmR6W_A5pOsBn6IWv8OovbktthFDtdkOLO4-BjtOU-g5-_139gSZVB5H
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IAoiur7WZwSv1bZJ29SbiLI-VhAUvIW2aZcVacVWQQ_-dmeatuJBPXhtkxKazMyX5Jv5APalRkwtbG5Jz-eWSEVsRVJGluBRGKPL9HidHj289gd34uLeu5-AkzYXhmiVje83Pr321s2Tw-ZvHj6Nx5TjK2TohwFCEOE63JuEaeHxgHh9Bx9fPA-qZmOumdGysfk3khd-uCoQnL4SySs8cKgenv1TiPoJgtah6GwRFhoMyY7NMJdgIs17MGNUJd96sHr6lbyGzRrrLXswb87omEk9Wob3Yc2kTFkjHTFibYXxtGQIZllJdGv8RC2XQ--LjEWj565cB9O1yE9VsnHOEEmykgT5LJIDYqT4UOTU46beKxODknUnKytwd3Z6ezKwGi0GKxG2qKwgzGTkSZ6iVWm6a8N9FFW6z2InQQzm41rAaOtq7fNMR44IcMeOsc93sxgRjxZ8FabyIk_XgWFLzyXNrATxQaB5qDWRc-wgcuOES78Pfvv7VdIUKie9jEfVMtIeVDdviuZNmXnrg911fDK1Ov7uctTOr_q27BRGlL8777UrQqFR0k1LlKfFS6moiH5IdXh-a8MdkiaQwuvDmllO3ajplYvuceM_w9uF2cHt8EpdnV9fbsKcSwcFNvEXt2Cqen5JtxFNVfFObS2fILcdbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+approaches+for+spatial+modeling+of+agricultural+droughts+in+the+south-east+region+of+Queensland+Australia&rft.jtitle=The+Science+of+the+total+environment&rft.au=Rahmati%2C+Omid&rft.au=Falah%2C+Fatemeh&rft.au=Dayal%2C+Kavina+Shaanu&rft.au=Deo%2C+Ravinesh+C&rft.date=2020-01-10&rft.eissn=1879-1026&rft.volume=699&rft.spage=134230&rft_id=info:doi/10.1016%2Fj.scitotenv.2019.134230&rft_id=info%3Apmid%2F31522053&rft.externalDocID=31522053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon