Machine learning approaches for spatial modeling of agricultural droughts in the south-east region of Queensland Australia
A quantitative understanding of the hydro-environmental factors that influence the occurrence of agricultural drought events would enable more strategic climate change adaptation and drought management plans. Practical drought hazard mapping remains challenging due to possible exclusion of the most...
Saved in:
Published in | The Science of the total environment Vol. 699; p. 134230 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
10.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0048-9697 1879-1026 1879-1026 |
DOI | 10.1016/j.scitotenv.2019.134230 |
Cover
Abstract | A quantitative understanding of the hydro-environmental factors that influence the occurrence of agricultural drought events would enable more strategic climate change adaptation and drought management plans. Practical drought hazard mapping remains challenging due to possible exclusion of the most pertinent drought drivers, and to the use of inadequate predictive models that cannot describe drought adequately. This research aims to develop new approaches to map agricultural drought hazard with state-of-the-art machine learning models, including classification and regression trees (CART), boosted regression trees (BRT), random forests (RF), multivariate adaptive regression splines (MARS), flexible discriminant analysis (FDA) and support vector machines (SVM). Hydro-environmental datasets were used to calculate the relative departure of soil moisture (RDSM) for eight severe droughts for drought-prone southeast Queensland, Australia, over the period 1994–2013. RDSM was then used to generate an agricultural drought inventory map. Eight hydro-environmental factors were used as potential predictors of drought. The goodness-of-fit and predictive performance of all models were evaluated using different threshold-dependent and threshold-independent methods, including the true skill statistic (TSS), Efficiency (E), F-score, and the area under the receiver operating characteristic curve (AUC-ROC). The RF model (AUC-ROC = 97.7%, TSS = 0.873, E = 0.929, F-score = 0.898) yielded the highest accuracy, while the FDA model (with AUC-ROC = 73.9%, TSS = 0.424, E = 0.719, F-score = 0.512) showed the worst performance. The plant available water holding capacity (PAWC), mean annual precipitation, and clay content were the most important variables to be used for predicting the agricultural drought. About 21.2% of the area is in high or very high drought risk classes, and therefore, warrant drought and environmental protection policies. Importantly, the models do not require data on the precipitation anomaly for any given drought year; the spatial patterns in AGH were consistent for all drought events, despite very different spatial patterns in precipitation anomaly among events. Such machine-learning approaches are able to construct an overall risk map, thus assisting in the adoption of a robust drought contingency planning measure not only for this area, but also, in other regions where drought presents a pressing challenge, including its influence on key practical dimensions of social, environmental and economic sustainability.
[Display omitted]
•Spatial and temporal machine learning approaches proposed for drought risk mapping.•Performance of six machine learning models is compared.•MARS and RF are suitable machine learning models for spatial risk mapping•Approximately 26% of the study area is at high or very high drought risk.•New approach considers hydro-geo-environmental factors for drought risk policy. |
---|---|
AbstractList | A quantitative understanding of the hydro-environmental factors that influence the occurrence of agricultural drought events would enable more strategic climate change adaptation and drought management plans. Practical drought hazard mapping remains challenging due to possible exclusion of the most pertinent drought drivers, and to the use of inadequate predictive models that cannot describe drought adequately. This research aims to develop new approaches to map agricultural drought hazard with state-of-the-art machine learning models, including classification and regression trees (CART), boosted regression trees (BRT), random forests (RF), multivariate adaptive regression splines (MARS), flexible discriminant analysis (FDA) and support vector machines (SVM). Hydro-environmental datasets were used to calculate the relative departure of soil moisture (RDSM) for eight severe droughts for drought-prone southeast Queensland, Australia, over the period 1994-2013. RDSM was then used to generate an agricultural drought inventory map. Eight hydro-environmental factors were used as potential predictors of drought. The goodness-of-fit and predictive performance of all models were evaluated using different threshold-dependent and threshold-independent methods, including the true skill statistic (TSS), Efficiency (E), F-score, and the area under the receiver operating characteristic curve (AUC-ROC). The RF model (AUC-ROC = 97.7%, TSS = 0.873, E = 0.929, F-score = 0.898) yielded the highest accuracy, while the FDA model (with AUC-ROC = 73.9%, TSS = 0.424, E = 0.719, F-score = 0.512) showed the worst performance. The plant available water holding capacity (PAWC), mean annual precipitation, and clay content were the most important variables to be used for predicting the agricultural drought. About 21.2% of the area is in high or very high drought risk classes, and therefore, warrant drought and environmental protection policies. Importantly, the models do not require data on the precipitation anomaly for any given drought year; the spatial patterns in AGH were consistent for all drought events, despite very different spatial patterns in precipitation anomaly among events. Such machine-learning approaches are able to construct an overall risk map, thus assisting in the adoption of a robust drought contingency planning measure not only for this area, but also, in other regions where drought presents a pressing challenge, including its influence on key practical dimensions of social, environmental and economic sustainability. A quantitative understanding of the hydro-environmental factors that influence the occurrence of agricultural drought events would enable more strategic climate change adaptation and drought management plans. Practical drought hazard mapping remains challenging due to possible exclusion of the most pertinent drought drivers, and to the use of inadequate predictive models that cannot describe drought adequately. This research aims to develop new approaches to map agricultural drought hazard with state-of-the-art machine learning models, including classification and regression trees (CART), boosted regression trees (BRT), random forests (RF), multivariate adaptive regression splines (MARS), flexible discriminant analysis (FDA) and support vector machines (SVM). Hydro-environmental datasets were used to calculate the relative departure of soil moisture (RDSM) for eight severe droughts for drought-prone southeast Queensland, Australia, over the period 1994–2013. RDSM was then used to generate an agricultural drought inventory map. Eight hydro-environmental factors were used as potential predictors of drought. The goodness-of-fit and predictive performance of all models were evaluated using different threshold-dependent and threshold-independent methods, including the true skill statistic (TSS), Efficiency (E), F-score, and the area under the receiver operating characteristic curve (AUC-ROC). The RF model (AUC-ROC = 97.7%, TSS = 0.873, E = 0.929, F-score = 0.898) yielded the highest accuracy, while the FDA model (with AUC-ROC = 73.9%, TSS = 0.424, E = 0.719, F-score = 0.512) showed the worst performance. The plant available water holding capacity (PAWC), mean annual precipitation, and clay content were the most important variables to be used for predicting the agricultural drought. About 21.2% of the area is in high or very high drought risk classes, and therefore, warrant drought and environmental protection policies. Importantly, the models do not require data on the precipitation anomaly for any given drought year; the spatial patterns in AGH were consistent for all drought events, despite very different spatial patterns in precipitation anomaly among events. Such machine-learning approaches are able to construct an overall risk map, thus assisting in the adoption of a robust drought contingency planning measure not only for this area, but also, in other regions where drought presents a pressing challenge, including its influence on key practical dimensions of social, environmental and economic sustainability. [Display omitted] •Spatial and temporal machine learning approaches proposed for drought risk mapping.•Performance of six machine learning models is compared.•MARS and RF are suitable machine learning models for spatial risk mapping•Approximately 26% of the study area is at high or very high drought risk.•New approach considers hydro-geo-environmental factors for drought risk policy. A quantitative understanding of the hydro-environmental factors that influence the occurrence of agricultural drought events would enable more strategic climate change adaptation and drought management plans. Practical drought hazard mapping remains challenging due to possible exclusion of the most pertinent drought drivers, and to the use of inadequate predictive models that cannot describe drought adequately. This research aims to develop new approaches to map agricultural drought hazard with state-of-the-art machine learning models, including classification and regression trees (CART), boosted regression trees (BRT), random forests (RF), multivariate adaptive regression splines (MARS), flexible discriminant analysis (FDA) and support vector machines (SVM). Hydro-environmental datasets were used to calculate the relative departure of soil moisture (RDSM) for eight severe droughts for drought-prone southeast Queensland, Australia, over the period 1994-2013. RDSM was then used to generate an agricultural drought inventory map. Eight hydro-environmental factors were used as potential predictors of drought. The goodness-of-fit and predictive performance of all models were evaluated using different threshold-dependent and threshold-independent methods, including the true skill statistic (TSS), Efficiency (E), F-score, and the area under the receiver operating characteristic curve (AUC-ROC). The RF model (AUC-ROC = 97.7%, TSS = 0.873, E = 0.929, F-score = 0.898) yielded the highest accuracy, while the FDA model (with AUC-ROC = 73.9%, TSS = 0.424, E = 0.719, F-score = 0.512) showed the worst performance. The plant available water holding capacity (PAWC), mean annual precipitation, and clay content were the most important variables to be used for predicting the agricultural drought. About 21.2% of the area is in high or very high drought risk classes, and therefore, warrant drought and environmental protection policies. Importantly, the models do not require data on the precipitation anomaly for any given drought year; the spatial patterns in AGH were consistent for all drought events, despite very different spatial patterns in precipitation anomaly among events. Such machine-learning approaches are able to construct an overall risk map, thus assisting in the adoption of a robust drought contingency planning measure not only for this area, but also, in other regions where drought presents a pressing challenge, including its influence on key practical dimensions of social, environmental and economic sustainability.A quantitative understanding of the hydro-environmental factors that influence the occurrence of agricultural drought events would enable more strategic climate change adaptation and drought management plans. Practical drought hazard mapping remains challenging due to possible exclusion of the most pertinent drought drivers, and to the use of inadequate predictive models that cannot describe drought adequately. This research aims to develop new approaches to map agricultural drought hazard with state-of-the-art machine learning models, including classification and regression trees (CART), boosted regression trees (BRT), random forests (RF), multivariate adaptive regression splines (MARS), flexible discriminant analysis (FDA) and support vector machines (SVM). Hydro-environmental datasets were used to calculate the relative departure of soil moisture (RDSM) for eight severe droughts for drought-prone southeast Queensland, Australia, over the period 1994-2013. RDSM was then used to generate an agricultural drought inventory map. Eight hydro-environmental factors were used as potential predictors of drought. The goodness-of-fit and predictive performance of all models were evaluated using different threshold-dependent and threshold-independent methods, including the true skill statistic (TSS), Efficiency (E), F-score, and the area under the receiver operating characteristic curve (AUC-ROC). The RF model (AUC-ROC = 97.7%, TSS = 0.873, E = 0.929, F-score = 0.898) yielded the highest accuracy, while the FDA model (with AUC-ROC = 73.9%, TSS = 0.424, E = 0.719, F-score = 0.512) showed the worst performance. The plant available water holding capacity (PAWC), mean annual precipitation, and clay content were the most important variables to be used for predicting the agricultural drought. About 21.2% of the area is in high or very high drought risk classes, and therefore, warrant drought and environmental protection policies. Importantly, the models do not require data on the precipitation anomaly for any given drought year; the spatial patterns in AGH were consistent for all drought events, despite very different spatial patterns in precipitation anomaly among events. Such machine-learning approaches are able to construct an overall risk map, thus assisting in the adoption of a robust drought contingency planning measure not only for this area, but also, in other regions where drought presents a pressing challenge, including its influence on key practical dimensions of social, environmental and economic sustainability. |
ArticleNumber | 134230 |
Author | Deo, Ravinesh C. Mohammadi, Farnoush Biggs, Trent Bui, Dieu Tien Falah, Fatemeh Rahmati, Omid Dayal, Kavina Shaanu Moghaddam, Davoud Davoudi Naghibi, Seyed Amir |
Author_xml | – sequence: 1 givenname: Omid surname: Rahmati fullname: Rahmati, Omid email: omid.rahmati@tdtu.edu.vn organization: Geographic Information Science Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam – sequence: 2 givenname: Fatemeh surname: Falah fullname: Falah, Fatemeh organization: Department of Watershed management Engineering, Lorestan University, Lorestan, Iran – sequence: 3 givenname: Kavina Shaanu surname: Dayal fullname: Dayal, Kavina Shaanu organization: Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sandy Bay, 7005, Tasmania, Australia – sequence: 4 givenname: Ravinesh C. surname: Deo fullname: Deo, Ravinesh C. email: ravinesh.deo@usq.edu.au organization: School of Sciences, Centre for Sustainable Agricultural Systems, Centre for Applied Climate Sciences, University of Southern Queensland, Springfield, QLD 4300, Australia – sequence: 5 givenname: Farnoush surname: Mohammadi fullname: Mohammadi, Farnoush organization: Faculty of Natural Resources, University of Tehran, Karaj, Iran – sequence: 6 givenname: Trent surname: Biggs fullname: Biggs, Trent organization: Department of Geography, San Diego State University, San Diego, CA 92182, USA – sequence: 7 givenname: Davoud Davoudi surname: Moghaddam fullname: Moghaddam, Davoud Davoudi organization: Department of Watershed Management, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran – sequence: 8 givenname: Seyed Amir surname: Naghibi fullname: Naghibi, Seyed Amir organization: Department of Watershed Management Engineering, Tarbiat Modares University (TMU), Tehran, Iran – sequence: 9 givenname: Dieu Tien surname: Bui fullname: Bui, Dieu Tien email: buitiendieu@duytan.edu.vn organization: Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31522053$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u3CAUhVGVqJmkfYWWZTee8m970cUo6p-UKIrUrhGG6xlGHpgCjpQ-fbEmzaKblA0S9_sQnHOJzkIMgNB7StaUUPVxv87Wl1ggPKwZof2acsE4eYVWtGv7hhKmztCKENE1verbC3SZ857U1Xb0NbrgVDJGJF-h37fG7nwAPIFJwYctNsdjivUQMh5jwvloijcTPkQH0zKPIzbb5O08lTnVgUtx3u5Kxj7gsgOc41x2DZhccIKtj2Ex7meAkCcTHN7MuVTPmzfofDRThrdP-xX6-eXzj-tvzc3d1-_Xm5vGCiJK0_ZjZ2THgRHihOwYpYITIseBWiGVggEAHHNO8dEZKloYaiJMsXHgfesEv0IfTvfWf_2aIRd98NnCVF8Dcc6aLWko2Qn5Msp60ndUKlLRd0_oPBzA6WPyB5Me9d9oK9CeAJtizgnGZ4QSvZSo9_q5RL2UqE8lVvPTP2bFagsx1OD89B_-5uRDTfXBQ1o4CBacT2CLdtG_eMcfuAG_cw |
CitedBy_id | crossref_primary_10_1016_j_jhydrol_2024_130968 crossref_primary_10_5194_hess_26_3241_2022 crossref_primary_10_5194_hess_28_3305_2024 crossref_primary_10_3390_rs15082024 crossref_primary_10_47820_recima21_v6i2_6211 crossref_primary_10_1007_s11356_021_13445_0 crossref_primary_10_1016_j_jhazmat_2023_132483 crossref_primary_10_1002_ldr_3971 crossref_primary_10_1016_j_jhydrol_2020_125017 crossref_primary_10_1007_s00024_024_03486_0 crossref_primary_10_14796_JWMM_C512 crossref_primary_10_1016_j_jhydrol_2024_131012 crossref_primary_10_3390_f13010049 crossref_primary_10_1016_j_agwat_2024_109176 crossref_primary_10_1007_s12665_020_09327_2 crossref_primary_10_1016_j_jhydrol_2021_126055 crossref_primary_10_1007_s12524_021_01413_7 crossref_primary_10_1016_j_neucom_2022_03_014 crossref_primary_10_1007_s10064_022_02761_5 crossref_primary_10_1016_j_pce_2022_103243 crossref_primary_10_3390_s21206896 crossref_primary_10_7717_peerj_13560 crossref_primary_10_3390_su132212560 crossref_primary_10_1016_j_scitotenv_2019_134656 crossref_primary_10_3390_buildings13092163 crossref_primary_10_1016_j_rse_2024_114324 crossref_primary_10_1016_j_catena_2021_105524 crossref_primary_10_1016_j_crm_2024_100630 crossref_primary_10_1007_s11269_023_03440_0 crossref_primary_10_1080_19475705_2023_2223384 crossref_primary_10_3390_land12061184 crossref_primary_10_1016_j_pce_2024_103757 crossref_primary_10_3390_forecast6040051 crossref_primary_10_1016_j_scitotenv_2021_146703 crossref_primary_10_3390_w12020483 crossref_primary_10_1016_j_scitotenv_2019_135957 crossref_primary_10_3390_rs12172695 crossref_primary_10_3390_rs15082116 crossref_primary_10_1016_j_compag_2022_106925 crossref_primary_10_1016_j_apr_2020_08_029 crossref_primary_10_1016_j_asoc_2022_109739 crossref_primary_10_3390_rs14071662 crossref_primary_10_3390_su12197877 crossref_primary_10_1016_j_pce_2024_103583 crossref_primary_10_1007_s12517_022_10465_z crossref_primary_10_1007_s11069_022_05512_7 crossref_primary_10_1007_s11069_020_04180_9 crossref_primary_10_1016_j_envsoft_2022_105327 crossref_primary_10_5433_1679_0359_2022v43n3p1017 crossref_primary_10_1007_s11356_025_36049_4 crossref_primary_10_1016_j_eiar_2021_106601 crossref_primary_10_1016_j_aei_2023_102042 crossref_primary_10_1038_s41598_023_40106_8 crossref_primary_10_1016_j_jhydrol_2023_130096 crossref_primary_10_1016_j_jclepro_2023_139414 crossref_primary_10_1007_s11269_021_03025_9 crossref_primary_10_1016_j_scitotenv_2021_146602 crossref_primary_10_1007_s10666_024_09986_6 crossref_primary_10_3390_su16156485 crossref_primary_10_1007_s00704_024_05048_9 crossref_primary_10_1080_10106049_2024_2395319 crossref_primary_10_1007_s00704_024_05236_7 crossref_primary_10_1007_s10653_024_02087_z crossref_primary_10_1080_19475705_2022_2131471 crossref_primary_10_1016_j_catena_2021_106007 crossref_primary_10_1080_01431161_2023_2234094 crossref_primary_10_1007_s11356_022_21072_6 crossref_primary_10_1007_s11442_025_2316_5 crossref_primary_10_1016_j_ejrh_2023_101481 crossref_primary_10_1016_j_jaridenv_2024_105225 crossref_primary_10_1007_s11356_022_23663_9 crossref_primary_10_1016_j_compag_2025_109981 crossref_primary_10_1016_j_catena_2019_104451 crossref_primary_10_1016_j_rse_2021_112313 crossref_primary_10_3390_rs15020512 crossref_primary_10_1109_ACCESS_2021_3079121 crossref_primary_10_1002_hyp_70031 crossref_primary_10_3390_land14040662 crossref_primary_10_3390_land11112040 crossref_primary_10_1080_19475705_2022_2128440 crossref_primary_10_1016_j_scitotenv_2020_138162 crossref_primary_10_1088_1748_9326_acfe1e crossref_primary_10_1016_j_envint_2021_106456 crossref_primary_10_1016_j_techfore_2022_121662 crossref_primary_10_35860_iarej_848458 crossref_primary_10_3390_su11226323 crossref_primary_10_1016_j_envres_2025_121466 crossref_primary_10_1016_j_ecoinf_2023_102143 crossref_primary_10_3390_agriculture14071071 crossref_primary_10_3390_joitmc6040187 crossref_primary_10_3390_rs11242995 crossref_primary_10_1002_hyp_15331 crossref_primary_10_1177_23998083221085281 crossref_primary_10_1016_j_jhydrol_2020_124901 crossref_primary_10_1093_jpe_rtac007 crossref_primary_10_1016_j_scitotenv_2021_149861 crossref_primary_10_1002_jeq2_20206 crossref_primary_10_1016_j_pce_2021_103043 crossref_primary_10_1016_j_ijdrr_2022_103414 crossref_primary_10_3389_fenvs_2022_812648 crossref_primary_10_1016_j_compeleceng_2024_109409 crossref_primary_10_1016_j_scitotenv_2023_164917 crossref_primary_10_14712_23361980_2023_14 crossref_primary_10_1007_s13198_021_01181_0 crossref_primary_10_1016_j_scitotenv_2023_162066 crossref_primary_10_3389_frwa_2020_562304 crossref_primary_10_3390_w17050653 crossref_primary_10_1016_j_catena_2021_105585 crossref_primary_10_1016_j_agwat_2024_108692 crossref_primary_10_1016_j_ecolind_2023_110524 crossref_primary_10_3390_infrastructures8010006 |
Cites_doi | 10.1111/j.1365-2664.2006.01214.x 10.1016/j.apgeog.2019.01.005 10.1016/j.enggeo.2009.12.004 10.2747/1548-1603.48.3.432 10.1111/j.1365-2427.2005.01448.x 10.1016/j.envsoft.2016.07.005 10.1016/j.scitotenv.2018.07.396 10.1016/j.agrformet.2017.11.024 10.1016/j.jhydrol.2018.02.021 10.1016/j.compgeo.2012.09.016 10.3390/w11040705 10.1016/S0304-3800(02)00349-6 10.1016/j.agrformet.2009.11.015 10.1016/j.geomorph.2017.09.006 10.1016/j.apgeog.2008.02.006 10.1016/j.geoderma.2018.05.035 10.1007/s11269-010-9653-5 10.1016/j.scitotenv.2017.08.078 10.1175/1520-0477-83.8.1167 10.1016/j.catena.2014.10.017 10.1016/j.cageo.2015.04.007 10.1016/j.rse.2013.02.016 10.1016/j.scitotenv.2019.01.278 10.1029/2010WR009866 10.1016/j.rse.2010.07.005 10.1007/s10661-015-5049-6 10.1080/01621459.1994.10476866 10.1016/j.ecolind.2015.10.013 10.1016/j.jhydrol.2018.08.027 10.1111/ejss.12249 10.1016/j.rse.2014.07.023 10.1016/j.advwatres.2009.10.008 10.1002/joc.1498 10.1016/j.rse.2016.10.045 10.1080/19475705.2014.897656 10.1007/s00477-010-0424-x 10.1007/s00704-015-1706-5 10.1016/j.isprsjprs.2011.11.002 10.1016/j.jhydrol.2010.07.012 10.1175/JHM-D-13-071.1 10.1016/j.atmosres.2017.04.017 10.1007/s11069-014-1285-2 10.1023/A:1010933404324 10.1061/(ASCE)HE.1943-5584.0001593 10.1029/2009GL037666 10.1111/j.1365-2656.2008.01390.x 10.1007/s11269-015-1114-8 10.1175/JHM-D-16-0132.1 10.1111/1752-1688.12555 10.1016/j.jag.2012.03.018 10.1111/j.1472-4642.2007.00340.x 10.1016/j.jhydrol.2018.12.060 10.5194/hess-20-1151-2016 10.1016/j.compag.2018.07.013 10.1002/ecs2.1321 10.1016/j.scitotenv.2019.02.017 10.1007/s11069-016-2526-3 10.1016/j.ecolmodel.2010.01.007 10.1016/j.jhydrol.2016.11.007 10.1007/s11069-016-2149-8 10.1016/j.ecolind.2017.10.011 10.1016/j.isprsjprs.2016.01.011 10.1016/j.atmosres.2014.10.016 10.1016/j.eswa.2005.04.014 10.1007/s00477-018-1585-2 10.1029/2004JD005182 10.1016/j.envsoft.2015.10.029 10.1109/TPAMI.2006.172 10.1007/s10661-016-5094-9 10.1016/j.jhydrol.2009.03.031 10.1016/j.foodchem.2018.05.044 10.1016/j.agrformet.2015.10.011 10.1016/S0378-1127(03)00277-9 10.1016/j.jhydrol.2015.05.031 10.1016/j.rse.2016.02.064 10.1016/j.jhydrol.2016.09.035 10.1016/j.still.2018.03.021 10.1016/j.atmosres.2017.06.014 10.1016/j.geomorph.2013.08.021 10.1016/j.jhydrol.2015.01.006 10.1175/1520-0477-83.8.1149 10.1007/s11004-017-9681-2 10.1007/s13364-018-0384-y 10.1002/jwmg.68 10.1002/joc.1649 10.1175/JHM-D-14-0076.1 10.1007/s10661-018-6507-8 10.1016/j.agwat.2015.06.029 10.1016/S0168-1923(03)00072-8 10.1016/j.csda.2005.11.018 10.1016/j.jhydrol.2012.12.004 10.1007/s11269-017-1589-6 10.1007/s11069-014-1502-z 10.1002/hyp.9541 10.1016/j.atmosres.2016.10.004 10.1007/s10346-012-0320-1 10.1029/2007GL031673 10.1111/j.1752-1688.2008.00270.x 10.1029/2008WR007333 10.1016/j.rse.2017.10.026 10.1016/j.jhydrol.2010.12.008 10.1002/wrcr.20123 10.1007/s00477-016-1265-z 10.1007/s12665-016-5822-z 10.1016/j.scitotenv.2018.11.467 10.1016/j.jhydrol.2016.04.074 10.1016/j.foreco.2005.05.063 10.1016/j.autcon.2007.03.004 10.1029/2004WR003657 10.1016/j.rse.2019.05.006 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2019.134230 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 31522053 10_1016_j_scitotenv_2019_134230 S0048969719342135 |
Genre | Journal Article |
GeographicLocations | Queensland |
GeographicLocations_xml | – name: Queensland |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ XPP ZXP ZY4 NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c404t-79f8a583e200d45821143005fb1c4566ebeeed2dd63fda147eb201262fb397d43 |
IEDL.DBID | AIKHN |
ISSN | 0048-9697 1879-1026 |
IngestDate | Thu Sep 04 18:53:07 EDT 2025 Thu Sep 04 23:00:00 EDT 2025 Wed Feb 19 02:31:56 EST 2025 Tue Jul 01 03:35:13 EDT 2025 Thu Apr 24 22:57:32 EDT 2025 Fri Feb 23 02:43:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | GIS Spatial analysis, artificial intelligence Drought Australia |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-79f8a583e200d45821143005fb1c4566ebeeed2dd63fda147eb201262fb397d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31522053 |
PQID | 2290981560 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2315265845 proquest_miscellaneous_2290981560 pubmed_primary_31522053 crossref_primary_10_1016_j_scitotenv_2019_134230 crossref_citationtrail_10_1016_j_scitotenv_2019_134230 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2019_134230 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-10 |
PublicationDateYYYYMMDD | 2020-01-10 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bot, Benites (bb0055) 2005 Su, Ryu, Young, Western, Wagner (bb0530) 2013; 134 Dayal, Deo, Apan (bb0105) 2018 Deo, Kisi, Singh (bb0135) 2017; 184 Pham, Pradhan, Bui, Prakash, Dholakia (bb0415) 2016; 84 Chakraborty, Joshi (bb0070) 2016; 7 Deo, Şahin (bb0110) 2015; 153 Lu, Carbone, Gao (bb0330) 2019; 104 Li, Xiong, Dong, Zhang (bb0315) 2013; 27 Hardie, Cotching, Doyle, Holz, Lisson, Mattern (bb0210) 2011; 398 Chiew, Young, Cai, Teng (bb0075) 2011; 25 Tavakol, Rahmani, Quiring, Kumar (bb0545) 2019; 229 Ashrafzadeh, Naghipour, Haidarian, Khorozyan (bb0040) 2019; 64 Conoscenti, Angileri, Cappadonia, Rotigliano, Agnesi, Märker (bb0085) 2014; 204 Kirkby (bb0285) 1975 Breiman (bb2020) 2001; 45 Quiring, Papakryiakou (bb0440) 2003; 118 Felicísimo, Cuartero, Remondo, Quirós (bb0170) 2012; 10 Svoboda, Fuchs, Poulsen, Nothwehr (bb0535) 2015; 526 Kern, Addison, Oommen, Salazar, Coffman (bb0270) 2017; 49 Leblanc, Tregoning, Ramillien, Tweed, Fakes (bb0300) 2009; 45 Ritter, Muñoz-Carpena (bb0485) 2013; 480 Hastie, Tibshirani, Buja (bb0215) 1994; 89 Wang, Rogers, Munroe (bb0585) 2015; 16 Beyaztas, Arikan, Beyaztas, Kahya (bb0050) 2018; 559 Reynès, Sabatier, Molinari (bb0475) 2006; 51 Ahmadalipour, Moradkhani, Yan, Zarekarizi (bb0010) 2017 Swain, Wardlow, Narumalani, Tadesse, Callahan (bb0540) 2011; 48 Hastie, Tibshirani, Andreas (bb0220) 1999 Nijzink, Samaniego, Mai, Kumar, Thober, Zink, Schäfer, Savenije, Hrachowitz (bb0385) 2016; 20 Kordestani, Naghibi, Hashemi, Ahmadi, Kalantar, Pradhan (bb0290) 2018 Friedman (bb0175) 1991; 19 Hao, Hao, Singh (bb0205) 2016; 539 Prasad, Deo, Li, Maraseni (bb0420) 2017; 197 Park, Kim (bb0400) 2019; 11 Prasad, Deo, Li, Maraseni (bb0425) 2018; 181 Vapnik, Vapnik (bb0575) 1998 McGuire, McDonnell, Weiler, Kendall, McGlynn, Welker, Seibert (bb0345) 2005; 41 Britzke, Duchamp, Murray, Swihart, Robbins (bb0060) 2011; 75 Wu, Li, Huang (bb0595) 2008; 28 Anderson, Lew, Peterson (bb0035) 2003; 162 Roodposhti, Safarrad, Shahabi (bb0500) 2017; 193 van Dijk, Beck, Crosbie, de Jeu, Liu, Podger, Timbal, Viney (bb0570) 2013; 49 Lin, Wang, Yu (bb0320) 2008; 17 Volcani, Karnieli, Svoray (bb0580) 2005; 215 Park, Im, Jang, Rhee (bb0405) 2016; 216 Rahmati, Kornejady, Samadi, Deo, Conoscenti, Lombardo, Dayal, Taghizadeh-Mehrjardi, Pourghasemi, Kumar, Bui (bb0465) 2019; 664 Dayal, Deo, Apan (bb0095) 2017; 23 Yin, Feng, Wen, Deo, Yang, Si, He (bb0610) 2018; 32 Rodriguez-Galiano, Ghimire, Rogan, Chica-Olmo, Rigol-Sanchez (bb0495) 2012; 67 Stone, Potgieter (bb0525) 2008; 80 Kim, Parinussa, Konings, Wagner, Cosh, Lakshmi, Zohaib, Choi (bb0280) 2018; 204 Rodríguez-Bermúdez, Herrero-Latorre, López-Alonso, Losada, Iglesias, Miranda (bb0490) 2018; 264 Bushra, Rohli, Lam, Zou, Mostafiz, Mihunov (bb0065) 2019 Roth, Steinhage (bb0505) 2000 Zhang, Goh (bb0625) 2013; 48 Aertsen, Kint, Van Orshoven, Özkan, Muys (bb2010) 2010; 221 Mo, Lettenmaier (bb0355) 2013; 15 Heim (bb0235) 2002; 83 Petty, Dhingra (bb0410) 2018; 54 Dayal, Deo, Apan (bb0090) 2016 Zadeh (bb0620) 1996 Sheffield, Goteti, Wen, Wood (bb0515) 2004; 109 Dickson, Perry (bb0140) 2016; 76 Wu, Xu, Li, Wen, Li, Lu, Li (bb0600) 2018; 612 Jancewicz, Migoń, Kasprzak (bb0255) 2019; 656 Hao, Singh (bb0200) 2015; 527 Rahmati, Naghibi, Shahabi, Bui, Pradhan, Azareh, Rafiei-Sardooi, Samani, Melesse (bb0460) 2018; 565 Palchaudhuri, Biswas (bb0390) 2016; 84 Naghibi, Pourghasemi (bb0370) 2015; 29 Yaseen, Jaafar, Deo, Kisi, Adamowski, Quilty, El-Shafie (bb0605) 2016; 542 Deo, Byun, Adamowski, Begum (bb0125) 2017; 128 Steffen, W., Vertessy, R., Dean, A., Hughes, L., Hilary Bambrick, Gergis, J., Rice, M. 2018. Deluge and Drought: Australia's Water Security in a Changing Climate.Australia. Frattini, Crosta, Carrara (bb2025) 2010; 111 Hastie, Tibshirani, Friedman (bb0230) 2001 Luo, Wood (bb0335) 2007; 34 Rahmati, Pourghasemi (bb0450) 2017; 31 Hosseinalizadeh, Kariminejad, Rahmati, Keesstra, Alinejad, Behbahani (bb0245) 2019; 646 Tian, Yuan, Quiring (bb2005) 2018; 249 Dow, Murphy, Carbone (bb0150) 2009; 45 Sakai, Jones, Tuller (bb0510) 2011; 47 Deo, Tiwari, Adamowski, Quilty (bb0130) 2017; 31 Lei, Chen, Bian, Liu (bb0310) 2016; 61 Wen, Feng, Deo, Wu, Yin, Yang, Singh (bb0590) 2019; 570 Allouche, Tsoar, Kadmon (bb0025) 2006; 43 Clinton (bb0080) 2003; 186 Deo, Syktus, McAlpine, Lawrence, McGowan, Phinn (bb0120) 2009; 36 Belgiu, Drăguţ (bb0045) 2016; 114 Leeper, Bell, Vines, Palecki (bb0305) 2016; 18 Grabs, Seibert, Bishop, Laudon (bb0190) 2009; 373 Nam, Hayes, Svoboda, Tadesse, Wilhite (bb0380) 2015; 160 Raupach, Briggs, Haverd, King, Paget, Trudinger (bb0470) 2012 Keyantash, Dracup (bb0275) 2002; 83 Rahmati, Tahmasebipour, Haghizadeh, Pourghasemi, Feizizadeh (bb0455) 2017; 298 Deo, Şahin (bb0115) 2016; 188 Zhang, Chen, Li, Chen, Niyogi (bb0630) 2017; 188 Leathwick, Rowe, Richardson, Elith, Hastie (bb0295) 2005; 50 Zadeh (bb0615) 1976 Elith, Leathwick, Hastie (bb0165) 2008; 77 Mishra, Singh (bb0350) 2010; 391 Martínez-Fernández, González-Zamora, Sánchez, Gumuzzio, Herrero-Jiménez (bb0340) 2016; 177 American Meteorological Society (AMS) (bb0030) 2004; 85 Golkarian, Naghibi, Kalantar, Pradhan (bb0185) 2018; 190 Thomas, Jaiswal, Galkate, Nayak, Ghosh (bb0555) 2016; 81 Prasad, Deo, Li, Maraseni (bb0430) 2018; 330 Lombardo, Cama, Maerker (bb0325) 2014; 74 Morid, Smakhtin, Bagherzadeh (bb0360) 2007; 27 Dayal, Deo, Apan (bb0100) 2017 Jorda, Bechtold, Jarvis, Koestel (bb0260) 2015; 66 Zhu, Martinez (bb0635) 2006; 28 Tehrany, Pradhan, Mansor, Ahmad (bb0550) 2015; 125 Ekrami, Marj, Barkhordari, Dashtakian (bb0155) 2016; 75 Ahmadalipour, Moradkhani, Castelletti, Magliocca (bb0015) 2019; 662 Elith, Leathwick (bb0160) 2007; 13 Hollister, Milstead, Kreakie (bb0240) 2016; 7 Ture, Kurt, Kurum, Ozdamar (bb0565) 2005; 29 Grzesiak, Zaborski, Sablik, Zukiewicz, Dybus, Szatkowsk (bb0195) 2011; 74 Ali, Deo, Downs, Maraseni (bb0020) 2018; 152 Hastie, Tibshirani, Friedman (bb0225) 2001 Karandish, Šimůnek (bb0265) 2016; 543 Jain, Pandey, Jain (bb0250) 2015; 76 Mpelasoka, Hennessy, Jones, Bates (bb0365) 2008; 28 Breiman, Friedman, Olshen, Stone (bb2015) 1984 Dorigo, Gruber, De Jeu, Wagner, Stacke, Loew, Albergel, Brocca, Chung, Parinussa, Kidd (bb0145) 2015; 162 Ahmad, Kalra, Stephen (bb0005) 2010; 33 Goetz, Brenning, Petschko, Leopold (bb0180) 2015; 81 Raduła, Szymura, Szymura (bb0445) 2018; 85 Naghibi, Pourghasemi, Dixon (bb0375) 2016; 188 Quiring, Ganesh (bb0435) 2010; 150 Pandey, Pandey, Galkate, Byun, Mal (bb0395) 2010; 24 Tonini, Lasinio, Hochmair (bb0560) 2012; 18 Rhee, Im, Carbone (bb0480) 2010; 114 Nam (10.1016/j.scitotenv.2019.134230_bb0380) 2015; 160 Hastie (10.1016/j.scitotenv.2019.134230_bb0220) 1999 Rahmati (10.1016/j.scitotenv.2019.134230_bb0450) 2017; 31 Rahmati (10.1016/j.scitotenv.2019.134230_bb0460) 2018; 565 Mpelasoka (10.1016/j.scitotenv.2019.134230_bb0365) 2008; 28 Roth (10.1016/j.scitotenv.2019.134230_bb0505) 2000 Tehrany (10.1016/j.scitotenv.2019.134230_bb0550) 2015; 125 Breiman (10.1016/j.scitotenv.2019.134230_bb2020) 2001; 45 McGuire (10.1016/j.scitotenv.2019.134230_bb0345) 2005; 41 Zhang (10.1016/j.scitotenv.2019.134230_bb0630) 2017; 188 Allouche (10.1016/j.scitotenv.2019.134230_bb0025) 2006; 43 Dayal (10.1016/j.scitotenv.2019.134230_bb0090) 2016 Dorigo (10.1016/j.scitotenv.2019.134230_bb0145) 2015; 162 Pandey (10.1016/j.scitotenv.2019.134230_bb0395) 2010; 24 Deo (10.1016/j.scitotenv.2019.134230_bb0135) 2017; 184 Zadeh (10.1016/j.scitotenv.2019.134230_bb0620) 1996 Kirkby (10.1016/j.scitotenv.2019.134230_bb0285) 1975 Yaseen (10.1016/j.scitotenv.2019.134230_bb0605) 2016; 542 Aertsen (10.1016/j.scitotenv.2019.134230_bb2010) 2010; 221 Karandish (10.1016/j.scitotenv.2019.134230_bb0265) 2016; 543 Naghibi (10.1016/j.scitotenv.2019.134230_bb0370) 2015; 29 Roodposhti (10.1016/j.scitotenv.2019.134230_bb0500) 2017; 193 Swain (10.1016/j.scitotenv.2019.134230_bb0540) 2011; 48 Dayal (10.1016/j.scitotenv.2019.134230_bb0095) 2017; 23 Jancewicz (10.1016/j.scitotenv.2019.134230_bb0255) 2019; 656 Beyaztas (10.1016/j.scitotenv.2019.134230_bb0050) 2018; 559 Luo (10.1016/j.scitotenv.2019.134230_bb0335) 2007; 34 Li (10.1016/j.scitotenv.2019.134230_bb0315) 2013; 27 Goetz (10.1016/j.scitotenv.2019.134230_bb0180) 2015; 81 Ashrafzadeh (10.1016/j.scitotenv.2019.134230_bb0040) 2019; 64 Sakai (10.1016/j.scitotenv.2019.134230_bb0510) 2011; 47 Elith (10.1016/j.scitotenv.2019.134230_bb0160) 2007; 13 Hao (10.1016/j.scitotenv.2019.134230_bb0200) 2015; 527 Dayal (10.1016/j.scitotenv.2019.134230_bb0100) 2017 Wu (10.1016/j.scitotenv.2019.134230_bb0595) 2008; 28 Kern (10.1016/j.scitotenv.2019.134230_bb0270) 2017; 49 Friedman (10.1016/j.scitotenv.2019.134230_bb0175) 1991; 19 Bushra (10.1016/j.scitotenv.2019.134230_bb0065) 2019 Quiring (10.1016/j.scitotenv.2019.134230_bb0435) 2010; 150 Jain (10.1016/j.scitotenv.2019.134230_bb0250) 2015; 76 Prasad (10.1016/j.scitotenv.2019.134230_bb0420) 2017; 197 Leeper (10.1016/j.scitotenv.2019.134230_bb0305) 2016; 18 Hosseinalizadeh (10.1016/j.scitotenv.2019.134230_bb0245) 2019; 646 Grabs (10.1016/j.scitotenv.2019.134230_bb0190) 2009; 373 Reynès (10.1016/j.scitotenv.2019.134230_bb0475) 2006; 51 Jorda (10.1016/j.scitotenv.2019.134230_bb0260) 2015; 66 Kordestani (10.1016/j.scitotenv.2019.134230_bb0290) 2018 Palchaudhuri (10.1016/j.scitotenv.2019.134230_bb0390) 2016; 84 Kim (10.1016/j.scitotenv.2019.134230_bb0280) 2018; 204 Prasad (10.1016/j.scitotenv.2019.134230_bb0430) 2018; 330 Belgiu (10.1016/j.scitotenv.2019.134230_bb0045) 2016; 114 Rodríguez-Bermúdez (10.1016/j.scitotenv.2019.134230_bb0490) 2018; 264 Britzke (10.1016/j.scitotenv.2019.134230_bb0060) 2011; 75 Leblanc (10.1016/j.scitotenv.2019.134230_bb0300) 2009; 45 Rhee (10.1016/j.scitotenv.2019.134230_bb0480) 2010; 114 Zhu (10.1016/j.scitotenv.2019.134230_bb0635) 2006; 28 Morid (10.1016/j.scitotenv.2019.134230_bb0360) 2007; 27 Park (10.1016/j.scitotenv.2019.134230_bb0400) 2019; 11 Svoboda (10.1016/j.scitotenv.2019.134230_bb0535) 2015; 526 Dayal (10.1016/j.scitotenv.2019.134230_bb0105) 2018 Ture (10.1016/j.scitotenv.2019.134230_bb0565) 2005; 29 Deo (10.1016/j.scitotenv.2019.134230_bb0130) 2017; 31 Keyantash (10.1016/j.scitotenv.2019.134230_bb0275) 2002; 83 Tian (10.1016/j.scitotenv.2019.134230_bb2005) 2018; 249 Rahmati (10.1016/j.scitotenv.2019.134230_bb0465) 2019; 664 Ahmadalipour (10.1016/j.scitotenv.2019.134230_bb0010) 2017 Raupach (10.1016/j.scitotenv.2019.134230_bb0470) 2012 Quiring (10.1016/j.scitotenv.2019.134230_bb0440) 2003; 118 Mo (10.1016/j.scitotenv.2019.134230_bb0355) 2013; 15 Zadeh (10.1016/j.scitotenv.2019.134230_bb0615) 1976 Rodriguez-Galiano (10.1016/j.scitotenv.2019.134230_bb0495) 2012; 67 Dow (10.1016/j.scitotenv.2019.134230_bb0150) 2009; 45 Wen (10.1016/j.scitotenv.2019.134230_bb0590) 2019; 570 Deo (10.1016/j.scitotenv.2019.134230_bb0110) 2015; 153 Chiew (10.1016/j.scitotenv.2019.134230_bb0075) 2011; 25 Golkarian (10.1016/j.scitotenv.2019.134230_bb0185) 2018; 190 Thomas (10.1016/j.scitotenv.2019.134230_bb0555) 2016; 81 Hastie (10.1016/j.scitotenv.2019.134230_bb0230) 2001 Dickson (10.1016/j.scitotenv.2019.134230_bb0140) 2016; 76 van Dijk (10.1016/j.scitotenv.2019.134230_bb0570) 2013; 49 Martínez-Fernández (10.1016/j.scitotenv.2019.134230_bb0340) 2016; 177 Heim (10.1016/j.scitotenv.2019.134230_bb0235) 2002; 83 Petty (10.1016/j.scitotenv.2019.134230_bb0410) 2018; 54 10.1016/j.scitotenv.2019.134230_bb0520 Wu (10.1016/j.scitotenv.2019.134230_bb0600) 2018; 612 Hollister (10.1016/j.scitotenv.2019.134230_bb0240) 2016; 7 Clinton (10.1016/j.scitotenv.2019.134230_bb0080) 2003; 186 Su (10.1016/j.scitotenv.2019.134230_bb0530) 2013; 134 Breiman (10.1016/j.scitotenv.2019.134230_bb2015) 1984 Ali (10.1016/j.scitotenv.2019.134230_bb0020) 2018; 152 Lu (10.1016/j.scitotenv.2019.134230_bb0330) 2019; 104 Ahmad (10.1016/j.scitotenv.2019.134230_bb0005) 2010; 33 Ritter (10.1016/j.scitotenv.2019.134230_bb0485) 2013; 480 Mishra (10.1016/j.scitotenv.2019.134230_bb0350) 2010; 391 Deo (10.1016/j.scitotenv.2019.134230_bb0125) 2017; 128 Ekrami (10.1016/j.scitotenv.2019.134230_bb0155) 2016; 75 Prasad (10.1016/j.scitotenv.2019.134230_bb0425) 2018; 181 Deo (10.1016/j.scitotenv.2019.134230_bb0120) 2009; 36 Rahmati (10.1016/j.scitotenv.2019.134230_bb0455) 2017; 298 Zhang (10.1016/j.scitotenv.2019.134230_bb0625) 2013; 48 Sheffield (10.1016/j.scitotenv.2019.134230_bb0515) 2004; 109 Lei (10.1016/j.scitotenv.2019.134230_bb0310) 2016; 61 Hastie (10.1016/j.scitotenv.2019.134230_bb0215) 1994; 89 Volcani (10.1016/j.scitotenv.2019.134230_bb0580) 2005; 215 Hao (10.1016/j.scitotenv.2019.134230_bb0205) 2016; 539 Raduła (10.1016/j.scitotenv.2019.134230_bb0445) 2018; 85 Tonini (10.1016/j.scitotenv.2019.134230_bb0560) 2012; 18 Vapnik (10.1016/j.scitotenv.2019.134230_bb0575) 1998 Hastie (10.1016/j.scitotenv.2019.134230_bb0225) 2001 Felicísimo (10.1016/j.scitotenv.2019.134230_bb0170) 2012; 10 Hardie (10.1016/j.scitotenv.2019.134230_bb0210) 2011; 398 Leathwick (10.1016/j.scitotenv.2019.134230_bb0295) 2005; 50 Lombardo (10.1016/j.scitotenv.2019.134230_bb0325) 2014; 74 Pham (10.1016/j.scitotenv.2019.134230_bb0415) 2016; 84 Conoscenti (10.1016/j.scitotenv.2019.134230_bb0085) 2014; 204 Grzesiak (10.1016/j.scitotenv.2019.134230_bb0195) 2011; 74 Lin (10.1016/j.scitotenv.2019.134230_bb0320) 2008; 17 Nijzink (10.1016/j.scitotenv.2019.134230_bb0385) 2016; 20 Elith (10.1016/j.scitotenv.2019.134230_bb0165) 2008; 77 Bot (10.1016/j.scitotenv.2019.134230_bb0055) 2005 Frattini (10.1016/j.scitotenv.2019.134230_bb2025) 2010; 111 Naghibi (10.1016/j.scitotenv.2019.134230_bb0375) 2016; 188 Park (10.1016/j.scitotenv.2019.134230_bb0405) 2016; 216 Ahmadalipour (10.1016/j.scitotenv.2019.134230_bb0015) 2019; 662 Chakraborty (10.1016/j.scitotenv.2019.134230_bb0070) 2016; 7 Deo (10.1016/j.scitotenv.2019.134230_bb0115) 2016; 188 Wang (10.1016/j.scitotenv.2019.134230_bb0585) 2015; 16 Stone (10.1016/j.scitotenv.2019.134230_bb0525) 2008; 80 Anderson (10.1016/j.scitotenv.2019.134230_bb0035) 2003; 162 American Meteorological Society (AMS) (10.1016/j.scitotenv.2019.134230_bb0030) 2004; 85 Yin (10.1016/j.scitotenv.2019.134230_bb0610) 2018; 32 Tavakol (10.1016/j.scitotenv.2019.134230_bb0545) 2019; 229 |
References_xml | – volume: 373 start-page: 15 year: 2009 end-page: 23 ident: bb0190 article-title: Modeling spatial patterns of saturated areas: a comparison of the topographic wetness index and a dynamic distributed model publication-title: J. Hydrol. – volume: 41 year: 2005 ident: bb0345 article-title: The role of topography on catchment-scale water residence time publication-title: Water Resour. Res. – volume: 49 start-page: 717 year: 2017 end-page: 735 ident: bb0270 article-title: Machine learning based predictive modeling of debris flow probability following wildfire in the intermountain Western United States publication-title: Math. Geosci. – volume: 114 start-page: 24 year: 2016 end-page: 31 ident: bb0045 article-title: Random forest in remote sensing: a review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 36 year: 2009 ident: bb0120 article-title: Impact of historical land cover change on daily indices of climate extremes including droughts in eastern Australia publication-title: Geophys. Res. Lett. – volume: 114 start-page: 2875 year: 2010 end-page: 2887 ident: bb0480 article-title: Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data publication-title: Remote Sens. Environ. – volume: 152 start-page: 149 year: 2018 end-page: 165 ident: bb0020 article-title: Multi-stage committee based extreme learning machine model incorporating the influence of climate parameters and seasonality on drought forecasting publication-title: Comput. Electron. Agric. – volume: 66 start-page: 744 year: 2015 end-page: 756 ident: bb0260 article-title: Using boosted regression trees to explore key factors controlling saturated and near-saturated hydraulic conductivity publication-title: Eur. J. Soil Sci. – volume: 153 start-page: 512 year: 2015 end-page: 525 ident: bb0110 article-title: Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia publication-title: Atmos. Res. – year: 2001 ident: bb0230 article-title: The Elements of Statistical Learning – volume: 134 start-page: 1 year: 2013 end-page: 11 ident: bb0530 article-title: Inter-comparison of microwave satellite soil moisture retrievals over the Murrumbidgee Basin, southeast Australia publication-title: Remote Sens. Environ. – volume: 221 start-page: 1119 year: 2010 end-page: 1130 ident: bb2010 article-title: Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests publication-title: Ecol. Model. – start-page: 121 year: 2017 end-page: 149 ident: bb0010 article-title: Remote sensing of drought: vegetation, soil moisture, and data assimilation publication-title: Remote Sensing of Hydrological Extremes – volume: 24 start-page: 4199 year: 2010 end-page: 4217 ident: bb0395 article-title: Integrating hydro-meteorological and physiographic factors for assessment of vulnerability to drought publication-title: Water Resour. Manag. – volume: 34 year: 2007 ident: bb0335 article-title: Monitoring and predicting the 2007 US drought publication-title: Geophys. Res. Lett. – volume: 29 start-page: 583 year: 2005 end-page: 588 ident: bb0565 article-title: Comparing classification techniques for predicting essential hypertension publication-title: Expert Syst. Appl. – volume: 298 start-page: 118 year: 2017 end-page: 137 ident: bb0455 article-title: Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion publication-title: Geomorphology – volume: 48 start-page: 82 year: 2013 end-page: 95 ident: bb0625 article-title: Multivariate adaptive regression splines for analysis of geotechnical engineering systems publication-title: Comput. Geotech. – volume: 542 start-page: 603 year: 2016 end-page: 614 ident: bb0605 article-title: Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq publication-title: J. Hydrol. – year: 1998 ident: bb0575 article-title: Statistical Learning Theory – volume: 31 start-page: 1211 year: 2017 end-page: 1240 ident: bb0130 article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model publication-title: Stoch. Env. Res. Risk A. – volume: 32 start-page: 2457 year: 2018 end-page: 2476 ident: bb0610 article-title: Design and evaluation of SVR, MARS and M5Tree models for 1, 2 and 3-day lead time forecasting of river flow data in a semiarid mountainous catchment publication-title: Stoch. Env. Res. Risk A. – volume: 81 start-page: 1627 year: 2016 end-page: 1652 ident: bb0555 article-title: Drought indicators-based integrated assessment of drought vulnerability: a case study of Bundelkhand droughts in central India publication-title: Nat. Hazards – volume: 398 start-page: 191 year: 2011 end-page: 201 ident: bb0210 article-title: Effect of antecedent soil moisture on preferential flow in a texture-contrast soil publication-title: J. Hydrol. – volume: 559 start-page: 461 year: 2018 end-page: 470 ident: bb0050 article-title: Construction of prediction intervals for Palmer Drought Severity Index using bootstrap publication-title: J. Hydrol. – volume: 128 start-page: 359 year: 2017 end-page: 379 ident: bb0125 article-title: Application of effective drought index for quantification of meteorological drought events: a case study in Australia publication-title: Theor. Appl. Climatol. – volume: 54 start-page: 55 year: 2018 end-page: 68 ident: bb0410 article-title: Streamflow hydrology estimate using machine learning (shem) publication-title: J. Am. Water Resour. Assoc. – volume: 111 start-page: 62 year: 2010 end-page: 72 ident: bb2025 article-title: Techniques for evaluating the performance of landslide susceptibility models publication-title: Eng. Geol. – volume: 27 start-page: 3981 year: 2013 end-page: 3993 ident: bb0315 article-title: Effects of the Three Gorges Reservoir on the hydrological droughts at the downstream Yichang station during 2003–2011 publication-title: Hydrol. Process. – volume: 18 start-page: 564 year: 2012 end-page: 572 ident: bb0560 article-title: Mapping return levels of absolute NDVI variations for the assessment of drought risk in Ethiopia publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 33 start-page: 69 year: 2010 end-page: 80 ident: bb0005 article-title: Estimating soil moisture using remote sensing data: a machine learning approach publication-title: Adv. Water Resour. – volume: 188 start-page: 141 year: 2017 end-page: 163 ident: bb0630 article-title: Multi-sensor integrated framework and index for agricultural drought monitoring publication-title: Remote Sens. Environ. – volume: 28 start-page: 210 year: 2008 end-page: 223 ident: bb0595 article-title: A study on DEM-derived primary topographic attributes for hydrologic applications: sensitivity to elevation data resolution publication-title: Appl. Geogr. – volume: 76 start-page: 443 year: 2015 end-page: 469 ident: bb0250 article-title: Spatio-temporal assessment of vulnerability to drought publication-title: Nat. Hazards – volume: 50 start-page: 2034 year: 2005 end-page: 2052 ident: bb0295 article-title: Using multivariate adaptive regression splines to predict the distributions of New Zealand's freshwater diadromous fish publication-title: Freshw. Biol. – volume: 662 start-page: 672 year: 2019 end-page: 686 ident: bb0015 article-title: Future drought risk in Africa: integrating vulnerability, climate change, and population growth publication-title: Sci. Total Environ. – volume: 25 start-page: 601 year: 2011 end-page: 612 ident: bb0075 article-title: Current drought and future hydroclimate projections in southeast Australia and implications for water resources management publication-title: Stoch. Env. Res. Risk A. – volume: 480 start-page: 33 year: 2013 end-page: 45 ident: bb0485 article-title: Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments publication-title: J. Hydrol. – volume: 61 start-page: 624 year: 2016 end-page: 633 ident: bb0310 article-title: Evaluation of integrating topographic wetness index with backscattering coefficient of TerraSAR-X image for soil moisture estimation in a mountainous region publication-title: Ecol. Indic. – volume: 28 start-page: 1283 year: 2008 end-page: 1292 ident: bb0365 article-title: Comparison of suitable drought indices for climate change impacts assessment over Australia towards resource management publication-title: Int. J. Climatol. – volume: 330 start-page: 136 year: 2018 end-page: 161 ident: bb0430 article-title: Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition publication-title: Geoderma – volume: 85 start-page: 172 year: 2018 end-page: 179 ident: bb0445 article-title: Topographic wetness index explains soil moisture better than bioindication with Ellenberg's indicator values publication-title: Ecol. Indic. – volume: 160 start-page: 106 year: 2015 end-page: 117 ident: bb0380 article-title: Drought hazard assessment in the context of climate change for South Korea publication-title: Agric. Water Manag. – volume: 76 start-page: 117 year: 2016 end-page: 127 ident: bb0140 article-title: Identifying the controls on coastal cliff landslides using machine-learning approaches publication-title: Environ. Model. Softw. – volume: 10 start-page: 175 year: 2012 end-page: 189 ident: bb0170 article-title: Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study publication-title: Landslides – start-page: 69 year: 1975 end-page: 90 ident: bb0285 article-title: Hydrograph modeling strategies publication-title: Processes in Physical and Human Geography – volume: 67 start-page: 93 year: 2012 end-page: 104 ident: bb0495 article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 45 year: 2009 ident: bb0300 article-title: Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia publication-title: Water Resour. Res. – volume: 47 year: 2011 ident: bb0510 article-title: Numerical evaluation of subsurface soil water evaporation derived from sensible heat balance publication-title: Water Resour. Res. – year: 1984 ident: bb2015 article-title: Classification and regression trees (cart) wadsworth international group – volume: 150 start-page: 330 year: 2010 end-page: 339 ident: bb0435 article-title: Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas publication-title: Agric. For. Meteorol. – volume: 264 start-page: 210 year: 2018 end-page: 217 ident: bb0490 article-title: Organic cattle products: authenticating production origin by analysis of serum mineral content publication-title: Food Chem. – volume: 13 start-page: 265 year: 2007 end-page: 275 ident: bb0160 article-title: Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines publication-title: Divers. Distrib. – volume: 85 start-page: 771 year: 2004 end-page: 773 ident: bb0030 article-title: Statement on meteorological drought publication-title: Bull. Am. Meteorol. Soc. – volume: 229 start-page: 234 year: 2019 end-page: 246 ident: bb0545 article-title: Evaluation analysis of NASA SMAP L3 and L4 and SPoRT-LIS soil moisture data in the United States publication-title: Remote Sens. Environ. – volume: 109 start-page: 1 year: 2004 end-page: 19 ident: bb0515 article-title: A simulated soil moisture based drought analysis for the United States publication-title: J. Geophys. Res.-Atmos. – volume: 526 start-page: 274 year: 2015 end-page: 286 ident: bb0535 article-title: The drought risk atlas: enhancing decision support for drought risk management in the United States publication-title: J. Hydrol. – start-page: 1 year: 2018 end-page: 14 ident: bb0290 article-title: Groundwater potential mapping using a novel data-mining ensemble model publication-title: Hydrogeol. J. – start-page: 1 year: 2019 end-page: 18 ident: bb0065 article-title: The relationship between the Normalized Difference Vegetation Index and drought indices in the South Central United States publication-title: Nat. Hazards – volume: 20 start-page: 1151 year: 2016 end-page: 1176 ident: bb0385 article-title: The importance of topography-controlled sub-grid process heterogeneity and semi-quantitative prior constraints in distributed hydrological models publication-title: Hydrol. Earth Syst. Sci. – volume: 74 start-page: 265 year: 2011 end-page: 273 ident: bb0195 article-title: Detection of cows with insemination problems using selected classification models publication-title: Comput. Electron. Agric. – volume: 19 start-page: 1 year: 1991 end-page: 141 ident: bb0175 article-title: Multivariate adaptive regression splines publication-title: Ann. Stat. – volume: 80 start-page: 29 year: 2008 end-page: 40 ident: bb0525 article-title: Drought risk and vulnerability in rainfed agriculture: example of a case study from Australia, drought management: scientific and technological innovations publication-title: Options Méditérr. – volume: 190 year: 2018 ident: bb0185 article-title: Groundwater potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS publication-title: Environ. Monit. Assess. – start-page: 2962 year: 2016 end-page: 2966 ident: bb0090 article-title: Application of hybrid artificial neural network algorithm for the prediction of Standardized Precipitation Index publication-title: Proc., Region 10 Conference (TENCON), IEEE, IEEE – volume: 83 start-page: 1149 year: 2002 end-page: 1165 ident: bb0235 article-title: A review of twentieth-century drought indices used in the United States publication-title: Bull. Am. Meteorol. Soc. – volume: 45 start-page: 187 year: 2009 end-page: 197 ident: bb0150 article-title: Consideration of user needs and spatial accuracy in drought mapping 1 publication-title: J. Am. Water Resour. Assoc. – year: 2005 ident: bb0055 article-title: The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production – volume: 204 start-page: 399 year: 2014 end-page: 411 ident: bb0085 article-title: Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy) publication-title: Geomorphology – volume: 48 start-page: 432 year: 2011 end-page: 455 ident: bb0540 article-title: Assessment of vegetation response to drought in Nebraska using Terra-MODIS land surface temperature and normalized difference vegetation index publication-title: GI Sci. Remote. Sens. – volume: 64 start-page: 39 year: 2019 end-page: 51 ident: bb0040 article-title: Modeling the response of an endangered flagship predator to climate change in Iran publication-title: Mamm. Res. – start-page: 1 year: 2018 end-page: 25 ident: bb0105 article-title: Spatio-temporal drought risk mapping approach and its application in the drought-prone region of south-east Queensland, Australia publication-title: Nat. Hazards – reference: Steffen, W., Vertessy, R., Dean, A., Hughes, L., Hilary Bambrick, Gergis, J., Rice, M. 2018. Deluge and Drought: Australia's Water Security in a Changing Climate.Australia. – volume: 646 start-page: 1554 year: 2019 end-page: 1566 ident: bb0245 article-title: How can statistical and artificial intelligence approaches predict piping erosion susceptibility? publication-title: Sci. Total Environ. – volume: 89 start-page: 1255 year: 1994 end-page: 1270 ident: bb0215 article-title: Flexible discriminant analysis by optimal scoring publication-title: J. Am. Stat. Assoc. – volume: 216 start-page: 157 year: 2016 end-page: 169 ident: bb0405 article-title: Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions publication-title: Agric. For. Meteorol. – volume: 125 start-page: 91 year: 2015 end-page: 101 ident: bb0550 article-title: Flood susceptibility assessment using GIS-based support vector machine model with different kernel types publication-title: Catena – volume: 23 year: 2017 ident: bb0095 article-title: Investigating drought duration-severity-intensity characteristics using the Standardized Precipitation-Evapotranspiration Index: case studies in drought-prone Southeast Queensland publication-title: J. Hydrol. Eng. – year: 2001 ident: bb0225 article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction – volume: 15 start-page: 990 year: 2013 end-page: 1010 ident: bb0355 article-title: Objective drought classification using multiple land surface models publication-title: J. Hydrometeorol. – volume: 77 start-page: 802 year: 2008 end-page: 813 ident: bb0165 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. – volume: 49 start-page: 1040 year: 2013 end-page: 1057 ident: bb0570 article-title: The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society publication-title: Water Resour. Res. – volume: 565 start-page: 248 year: 2018 end-page: 261 ident: bb0460 article-title: Groundwater spring potential modeling: comprising the capability and robustness of three different modeling approaches publication-title: J. Hydrol. – volume: 74 start-page: 1951 year: 2014 end-page: 1989 ident: bb0325 article-title: A test of transferability for landslides susceptibility models under extreme climatic events: application to the Messina 2009 disaster publication-title: Nat. Hazards – volume: 162 start-page: 380 year: 2015 end-page: 395 ident: bb0145 article-title: Evaluation of the ESA CCI soil moisture product using ground-based observations publication-title: Remote Sens. Environ. – volume: 83 start-page: 1167 year: 2002 end-page: 1180 ident: bb0275 article-title: The quantification of drought: an evaluation of drought indices publication-title: Bull. Am. Meteorol. Soc. – volume: 612 start-page: 513 year: 2018 end-page: 521 ident: bb0600 article-title: Climate and drought risk regionalisation in China based on probabilistic aridity and drought index publication-title: Sci. Total Environ. – volume: 391 start-page: 202 year: 2010 end-page: 216 ident: bb0350 article-title: A review of drought concepts publication-title: J. Hydrol. – volume: 51 start-page: 1765 year: 2006 end-page: 1778 ident: bb0475 article-title: Choice of B-splines with free parameters in the flexible discriminant analysis context publication-title: Comput. Stat. Data Anal. – volume: 249 start-page: 107 year: 2018 end-page: 119 ident: bb2005 article-title: Evaluation of six indices for monitoring agricultural drought in the south-central United States publication-title: Agric. For. Meteorol. – start-page: 568 year: 2000 end-page: 574 ident: bb0505 article-title: Nonlinear discriminant analysis using kernel functions publication-title: Advances in Neural Information Processing Systems – volume: 84 start-page: 1905 year: 2016 end-page: 1920 ident: bb0390 article-title: Application of AHP with GIS in drought risk assessment for Puruliya district, India publication-title: Nat. Hazards – volume: 7 year: 2016 ident: bb0240 article-title: Modeling lake trophic state: a random forest approach publication-title: Ecosphere – start-page: 1 year: 1999 end-page: 23 ident: bb0220 article-title: Flexible Discriminant and Mixture Models. Statistics and Neural Networks: Advances at the Interface – volume: 31 start-page: 1473 year: 2017 end-page: 1487 ident: bb0450 article-title: Identification of critical flood prone areas in data-scarce and ungauged regions: a comparison of three data mining models publication-title: Water Resour. Manag. – volume: 656 start-page: 1046 year: 2019 end-page: 1062 ident: bb0255 article-title: Connectivity patterns in contrasting types of tableland sandstone relief revealed by Topographic Wetness Index publication-title: Sci. Total Environ. – year: 2012 ident: bb0470 article-title: Australian Water Availability Project – volume: 84 start-page: 240 year: 2016 end-page: 250 ident: bb0415 article-title: A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India) publication-title: Environ. Model. Softw. – volume: 104 start-page: 10 year: 2019 end-page: 20 ident: bb0330 article-title: Mapping the agricultural drought based on the long-term AVHRR NDVI and North American Regional Reanalysis (NARR) in the United States, 1981–2013 publication-title: Appl. Geogr. – volume: 75 start-page: 1039 year: 2016 ident: bb0155 article-title: Drought vulnerability mapping using AHP method in arid and semiarid areas: a case study for Taft Township, Yazd Province, Iran publication-title: Environ. Earth Sci. – volume: 193 start-page: 73 year: 2017 end-page: 82 ident: bb0500 article-title: Drought sensitivity mapping using two one-class support vector machine algorithms publication-title: Atmos. Res. – volume: 570 start-page: 167 year: 2019 end-page: 184 ident: bb0590 article-title: Two-phase extreme learning machines integrated with the complete ensemble empirical mode decomposition with adaptive noise algorithm for multi-scale runoff prediction problems publication-title: J. Hydrol. – volume: 43 start-page: 1223 year: 2006 end-page: 1232 ident: bb0025 article-title: Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) publication-title: J. Appl. Ecol. – volume: 204 start-page: 260 year: 2018 end-page: 275 ident: bb0280 article-title: Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products publication-title: Remote Sens. Environ. – volume: 18 start-page: 515 year: 2016 end-page: 527 ident: bb0305 article-title: An evaluation of the North American Regional Reanalysis simulated soil moisture conditions during the 2011 to 2013 drought period publication-title: J. Hydrometeorol. – volume: 177 start-page: 277 year: 2016 end-page: 286 ident: bb0340 article-title: Satellite soil moisture for agricultural drought monitoring: assessment of the SMOS derived Soil Water Deficit Index publication-title: Remote Sens. Environ. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb2020 article-title: Random forests publication-title: Mach. Learn. – start-page: 127 year: 1996 end-page: 147 ident: bb0620 article-title: On Fuzzy Algorithms. Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A Zadeh – volume: 197 start-page: 42 year: 2017 end-page: 63 ident: bb0420 article-title: Input selection and performance optimization of ANN-based streamflow forecasts in the drought-prone Murray Darling Basin region using IIS and MODWT algorithm publication-title: Atmos. Res. – volume: 527 start-page: 668 year: 2015 end-page: 678 ident: bb0200 article-title: Drought characterization from a multivariate perspective: a review publication-title: J. Hydrol. – volume: 539 start-page: 1 year: 2016 end-page: 10 ident: bb0205 article-title: A general framework for multivariate multi-index drought prediction based on Multivariate Ensemble Streamflow Prediction (MESP) publication-title: J. Hydrol. – volume: 17 start-page: 180 year: 2008 end-page: 187 ident: bb0320 article-title: Improving AHP for construction with an adaptive AHP approach (A3) publication-title: Autom. Constr. – volume: 188 start-page: 44 year: 2016 ident: bb0375 article-title: GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran publication-title: Environ. Monit. Assess. – volume: 28 start-page: 1274 year: 2006 end-page: 1286 ident: bb0635 article-title: Subclass discriminant analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 81 start-page: 1 year: 2015 end-page: 11 ident: bb0180 article-title: Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling publication-title: Comput. Geosci. – volume: 184 start-page: 149 year: 2017 end-page: 175 ident: bb0135 article-title: Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model publication-title: Atmos. Res. – volume: 543 start-page: 892 year: 2016 end-page: 909 ident: bb0265 article-title: A comparison of numerical and machine-learning modeling of soil water content with limited input data publication-title: J. Hydrol. – volume: 188 start-page: 90 year: 2016 ident: bb0115 article-title: An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland publication-title: Environ. Monit. Assess. – start-page: 202 year: 1976 end-page: 282 ident: bb0615 article-title: A Fuzzy-Algorithmic Approach to the Definition of Complex or Imprecise Concepts. Systems Theory in the Social Sciences – start-page: 177 year: 2017 end-page: 198 ident: bb0100 article-title: Drought modelling based on artificial intelligence and neural network algorithms: a case study in Queensland, Australia publication-title: Climate Change Adaptation in Pacific Countries – volume: 27 start-page: 2103 year: 2007 end-page: 2111 ident: bb0360 article-title: Drought forecasting using artificial neural networks and time series of drought indices publication-title: Int. J. Climatol. – volume: 215 start-page: 239 year: 2005 end-page: 250 ident: bb0580 article-title: The use of remote sensing and GIS for spatio-temporal analysis of the physiological state of a semi-arid forest with respect to drought years publication-title: For. Ecol. Manag. – volume: 186 start-page: 243 year: 2003 end-page: 255 ident: bb0080 article-title: Light, temperature, and soil moisture responses to elevation, evergreen understory, and small canopy gaps in the southern Appalachians publication-title: For. Ecol. Manag. – volume: 16 start-page: 1397 year: 2015 end-page: 1408 ident: bb0585 article-title: Commonly used drought indices as indicators of soil moisture in China publication-title: J. Hydrometeorol. – volume: 664 start-page: 296 year: 2019 end-page: 311 ident: bb0465 article-title: PMT: new analytical framework for automated evaluation of geo-environmental modelling approaches publication-title: Sci. Total Environ. – volume: 118 start-page: 49 year: 2003 end-page: 62 ident: bb0440 article-title: An evaluation of agricultural drought indices for the Canadian prairies publication-title: Agric. For. Meteorol. – volume: 29 year: 2015 ident: bb0370 article-title: A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping publication-title: Water Resour. Manag. – volume: 162 start-page: 211 year: 2003 end-page: 232 ident: bb0035 article-title: Evaluating predictive models of species' distributions: criteria for selecting optimal models publication-title: Ecol. Model. – volume: 75 start-page: 660 year: 2011 end-page: 667 ident: bb0060 article-title: Acoustic identification of bats in the eastern United States: a comparison of parametric and nonparametric methods publication-title: J. Wildl. Manag. – volume: 7 start-page: 308 year: 2016 end-page: 325 ident: bb0070 article-title: Mapping disaster vulnerability in India using analytical hierarchy process publication-title: Geomat. Nat. Haz. Risk – volume: 181 start-page: 63 year: 2018 end-page: 81 ident: bb0425 article-title: Ensemble committee-based data intelligent approach for generating soil moisture forecasts with multivariate hydro-meteorological predictors publication-title: Soil Tillage Res. – volume: 11 start-page: 705 year: 2019 ident: bb0400 article-title: Prediction of severe drought area based on random forest: using satellite image and topography data publication-title: Water – volume: 43 start-page: 1223 issue: 6 year: 2006 ident: 10.1016/j.scitotenv.2019.134230_bb0025 article-title: Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) publication-title: J. Appl. Ecol. doi: 10.1111/j.1365-2664.2006.01214.x – start-page: 121 year: 2017 ident: 10.1016/j.scitotenv.2019.134230_bb0010 article-title: Remote sensing of drought: vegetation, soil moisture, and data assimilation – volume: 104 start-page: 10 year: 2019 ident: 10.1016/j.scitotenv.2019.134230_bb0330 article-title: Mapping the agricultural drought based on the long-term AVHRR NDVI and North American Regional Reanalysis (NARR) in the United States, 1981–2013 publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2019.01.005 – volume: 111 start-page: 62 issue: 1-4 year: 2010 ident: 10.1016/j.scitotenv.2019.134230_bb2025 article-title: Techniques for evaluating the performance of landslide susceptibility models publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2009.12.004 – volume: 48 start-page: 432 issue: 3 year: 2011 ident: 10.1016/j.scitotenv.2019.134230_bb0540 article-title: Assessment of vegetation response to drought in Nebraska using Terra-MODIS land surface temperature and normalized difference vegetation index publication-title: GI Sci. Remote. Sens. doi: 10.2747/1548-1603.48.3.432 – volume: 50 start-page: 2034 issue: 12 year: 2005 ident: 10.1016/j.scitotenv.2019.134230_bb0295 article-title: Using multivariate adaptive regression splines to predict the distributions of New Zealand's freshwater diadromous fish publication-title: Freshw. Biol. doi: 10.1111/j.1365-2427.2005.01448.x – volume: 84 start-page: 240 year: 2016 ident: 10.1016/j.scitotenv.2019.134230_bb0415 article-title: A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India) publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2016.07.005 – volume: 646 start-page: 1554 year: 2019 ident: 10.1016/j.scitotenv.2019.134230_bb0245 article-title: How can statistical and artificial intelligence approaches predict piping erosion susceptibility? publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.396 – volume: 249 start-page: 107 year: 2018 ident: 10.1016/j.scitotenv.2019.134230_bb2005 article-title: Evaluation of six indices for monitoring agricultural drought in the south-central United States publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.11.024 – volume: 559 start-page: 461 year: 2018 ident: 10.1016/j.scitotenv.2019.134230_bb0050 article-title: Construction of prediction intervals for Palmer Drought Severity Index using bootstrap publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.02.021 – volume: 48 start-page: 82 year: 2013 ident: 10.1016/j.scitotenv.2019.134230_bb0625 article-title: Multivariate adaptive regression splines for analysis of geotechnical engineering systems publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2012.09.016 – volume: 11 start-page: 705 issue: 4 year: 2019 ident: 10.1016/j.scitotenv.2019.134230_bb0400 article-title: Prediction of severe drought area based on random forest: using satellite image and topography data publication-title: Water doi: 10.3390/w11040705 – volume: 162 start-page: 211 issue: 3 year: 2003 ident: 10.1016/j.scitotenv.2019.134230_bb0035 article-title: Evaluating predictive models of species' distributions: criteria for selecting optimal models publication-title: Ecol. Model. doi: 10.1016/S0304-3800(02)00349-6 – year: 2001 ident: 10.1016/j.scitotenv.2019.134230_bb0225 – volume: 150 start-page: 330 issue: 3 year: 2010 ident: 10.1016/j.scitotenv.2019.134230_bb0435 article-title: Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2009.11.015 – volume: 298 start-page: 118 year: 2017 ident: 10.1016/j.scitotenv.2019.134230_bb0455 article-title: Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.09.006 – volume: 28 start-page: 210 issue: 3 year: 2008 ident: 10.1016/j.scitotenv.2019.134230_bb0595 article-title: A study on DEM-derived primary topographic attributes for hydrologic applications: sensitivity to elevation data resolution publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2008.02.006 – volume: 330 start-page: 136 year: 2018 ident: 10.1016/j.scitotenv.2019.134230_bb0430 article-title: Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition publication-title: Geoderma doi: 10.1016/j.geoderma.2018.05.035 – volume: 24 start-page: 4199 issue: 15 year: 2010 ident: 10.1016/j.scitotenv.2019.134230_bb0395 article-title: Integrating hydro-meteorological and physiographic factors for assessment of vulnerability to drought publication-title: Water Resour. Manag. doi: 10.1007/s11269-010-9653-5 – volume: 612 start-page: 513 year: 2018 ident: 10.1016/j.scitotenv.2019.134230_bb0600 article-title: Climate and drought risk regionalisation in China based on probabilistic aridity and drought index publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.08.078 – volume: 83 start-page: 1167 issue: 8 year: 2002 ident: 10.1016/j.scitotenv.2019.134230_bb0275 article-title: The quantification of drought: an evaluation of drought indices publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477-83.8.1167 – volume: 125 start-page: 91 year: 2015 ident: 10.1016/j.scitotenv.2019.134230_bb0550 article-title: Flood susceptibility assessment using GIS-based support vector machine model with different kernel types publication-title: Catena doi: 10.1016/j.catena.2014.10.017 – volume: 81 start-page: 1 year: 2015 ident: 10.1016/j.scitotenv.2019.134230_bb0180 article-title: Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2015.04.007 – volume: 134 start-page: 1 year: 2013 ident: 10.1016/j.scitotenv.2019.134230_bb0530 article-title: Inter-comparison of microwave satellite soil moisture retrievals over the Murrumbidgee Basin, southeast Australia publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.02.016 – volume: 662 start-page: 672 year: 2019 ident: 10.1016/j.scitotenv.2019.134230_bb0015 article-title: Future drought risk in Africa: integrating vulnerability, climate change, and population growth publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.278 – volume: 47 issue: 2 year: 2011 ident: 10.1016/j.scitotenv.2019.134230_bb0510 article-title: Numerical evaluation of subsurface soil water evaporation derived from sensible heat balance publication-title: Water Resour. Res. doi: 10.1029/2010WR009866 – volume: 114 start-page: 2875 issue: 12 year: 2010 ident: 10.1016/j.scitotenv.2019.134230_bb0480 article-title: Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.07.005 – volume: 188 start-page: 44 year: 2016 ident: 10.1016/j.scitotenv.2019.134230_bb0375 article-title: GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-015-5049-6 – volume: 89 start-page: 1255 issue: 428 year: 1994 ident: 10.1016/j.scitotenv.2019.134230_bb0215 article-title: Flexible discriminant analysis by optimal scoring publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1994.10476866 – volume: 61 start-page: 624 year: 2016 ident: 10.1016/j.scitotenv.2019.134230_bb0310 article-title: Evaluation of integrating topographic wetness index with backscattering coefficient of TerraSAR-X image for soil moisture estimation in a mountainous region publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2015.10.013 – volume: 565 start-page: 248 year: 2018 ident: 10.1016/j.scitotenv.2019.134230_bb0460 article-title: Groundwater spring potential modeling: comprising the capability and robustness of three different modeling approaches publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.08.027 – volume: 66 start-page: 744 issue: 4 year: 2015 ident: 10.1016/j.scitotenv.2019.134230_bb0260 article-title: Using boosted regression trees to explore key factors controlling saturated and near-saturated hydraulic conductivity publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12249 – volume: 162 start-page: 380 year: 2015 ident: 10.1016/j.scitotenv.2019.134230_bb0145 article-title: Evaluation of the ESA CCI soil moisture product using ground-based observations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.07.023 – volume: 33 start-page: 69 issue: 1 year: 2010 ident: 10.1016/j.scitotenv.2019.134230_bb0005 article-title: Estimating soil moisture using remote sensing data: a machine learning approach publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2009.10.008 – volume: 27 start-page: 2103 issue: 15 year: 2007 ident: 10.1016/j.scitotenv.2019.134230_bb0360 article-title: Drought forecasting using artificial neural networks and time series of drought indices publication-title: Int. J. Climatol. doi: 10.1002/joc.1498 – start-page: 1 year: 2019 ident: 10.1016/j.scitotenv.2019.134230_bb0065 article-title: The relationship between the Normalized Difference Vegetation Index and drought indices in the South Central United States publication-title: Nat. Hazards – volume: 188 start-page: 141 year: 2017 ident: 10.1016/j.scitotenv.2019.134230_bb0630 article-title: Multi-sensor integrated framework and index for agricultural drought monitoring publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.10.045 – volume: 74 start-page: 265 issue: 2010 year: 2011 ident: 10.1016/j.scitotenv.2019.134230_bb0195 article-title: Detection of cows with insemination problems using selected classification models publication-title: Comput. Electron. Agric. – volume: 7 start-page: 308 issue: 1 year: 2016 ident: 10.1016/j.scitotenv.2019.134230_bb0070 article-title: Mapping disaster vulnerability in India using analytical hierarchy process publication-title: Geomat. Nat. Haz. Risk doi: 10.1080/19475705.2014.897656 – volume: 25 start-page: 601 issue: 4 year: 2011 ident: 10.1016/j.scitotenv.2019.134230_bb0075 article-title: Current drought and future hydroclimate projections in southeast Australia and implications for water resources management publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-010-0424-x – volume: 128 start-page: 359 issue: 1–2 year: 2017 ident: 10.1016/j.scitotenv.2019.134230_bb0125 article-title: Application of effective drought index for quantification of meteorological drought events: a case study in Australia publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-015-1706-5 – volume: 67 start-page: 93 year: 2012 ident: 10.1016/j.scitotenv.2019.134230_bb0495 article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2011.11.002 – start-page: 568 year: 2000 ident: 10.1016/j.scitotenv.2019.134230_bb0505 article-title: Nonlinear discriminant analysis using kernel functions – year: 2005 ident: 10.1016/j.scitotenv.2019.134230_bb0055 – start-page: 1 year: 2018 ident: 10.1016/j.scitotenv.2019.134230_bb0290 article-title: Groundwater potential mapping using a novel data-mining ensemble model publication-title: Hydrogeol. J. – volume: 391 start-page: 202 issue: 1–2 year: 2010 ident: 10.1016/j.scitotenv.2019.134230_bb0350 article-title: A review of drought concepts publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.07.012 – volume: 15 start-page: 990 year: 2013 ident: 10.1016/j.scitotenv.2019.134230_bb0355 article-title: Objective drought classification using multiple land surface models publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-13-071.1 – volume: 193 start-page: 73 year: 2017 ident: 10.1016/j.scitotenv.2019.134230_bb0500 article-title: Drought sensitivity mapping using two one-class support vector machine algorithms publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2017.04.017 – volume: 74 start-page: 1951 year: 2014 ident: 10.1016/j.scitotenv.2019.134230_bb0325 article-title: A test of transferability for landslides susceptibility models under extreme climatic events: application to the Messina 2009 disaster publication-title: Nat. Hazards doi: 10.1007/s11069-014-1285-2 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.scitotenv.2019.134230_bb2020 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 23 issue: 1 year: 2017 ident: 10.1016/j.scitotenv.2019.134230_bb0095 article-title: Investigating drought duration-severity-intensity characteristics using the Standardized Precipitation-Evapotranspiration Index: case studies in drought-prone Southeast Queensland publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0001593 – volume: 36 issue: 8 year: 2009 ident: 10.1016/j.scitotenv.2019.134230_bb0120 article-title: Impact of historical land cover change on daily indices of climate extremes including droughts in eastern Australia publication-title: Geophys. Res. Lett. doi: 10.1029/2009GL037666 – volume: 77 start-page: 802 year: 2008 ident: 10.1016/j.scitotenv.2019.134230_bb0165 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. doi: 10.1111/j.1365-2656.2008.01390.x – volume: 29 year: 2015 ident: 10.1016/j.scitotenv.2019.134230_bb0370 article-title: A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping publication-title: Water Resour. Manag. doi: 10.1007/s11269-015-1114-8 – volume: 18 start-page: 515 issue: 2 year: 2016 ident: 10.1016/j.scitotenv.2019.134230_bb0305 article-title: An evaluation of the North American Regional Reanalysis simulated soil moisture conditions during the 2011 to 2013 drought period publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-16-0132.1 – ident: 10.1016/j.scitotenv.2019.134230_bb0520 – volume: 54 start-page: 55 issue: 1 year: 2018 ident: 10.1016/j.scitotenv.2019.134230_bb0410 article-title: Streamflow hydrology estimate using machine learning (shem) publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/1752-1688.12555 – volume: 18 start-page: 564 year: 2012 ident: 10.1016/j.scitotenv.2019.134230_bb0560 article-title: Mapping return levels of absolute NDVI variations for the assessment of drought risk in Ethiopia publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2012.03.018 – volume: 13 start-page: 265 issue: 3 year: 2007 ident: 10.1016/j.scitotenv.2019.134230_bb0160 article-title: Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines publication-title: Divers. Distrib. doi: 10.1111/j.1472-4642.2007.00340.x – volume: 570 start-page: 167 year: 2019 ident: 10.1016/j.scitotenv.2019.134230_bb0590 article-title: Two-phase extreme learning machines integrated with the complete ensemble empirical mode decomposition with adaptive noise algorithm for multi-scale runoff prediction problems publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.12.060 – volume: 20 start-page: 1151 issue: 3 year: 2016 ident: 10.1016/j.scitotenv.2019.134230_bb0385 article-title: The importance of topography-controlled sub-grid process heterogeneity and semi-quantitative prior constraints in distributed hydrological models publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-20-1151-2016 – volume: 152 start-page: 149 year: 2018 ident: 10.1016/j.scitotenv.2019.134230_bb0020 article-title: Multi-stage committee based extreme learning machine model incorporating the influence of climate parameters and seasonality on drought forecasting publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.07.013 – volume: 7 issue: 3 year: 2016 ident: 10.1016/j.scitotenv.2019.134230_bb0240 article-title: Modeling lake trophic state: a random forest approach publication-title: Ecosphere doi: 10.1002/ecs2.1321 – volume: 664 start-page: 296 year: 2019 ident: 10.1016/j.scitotenv.2019.134230_bb0465 article-title: PMT: new analytical framework for automated evaluation of geo-environmental modelling approaches publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.017 – volume: 84 start-page: 1905 issue: 3 year: 2016 ident: 10.1016/j.scitotenv.2019.134230_bb0390 article-title: Application of AHP with GIS in drought risk assessment for Puruliya district, India publication-title: Nat. Hazards doi: 10.1007/s11069-016-2526-3 – volume: 221 start-page: 1119 issue: 8 year: 2010 ident: 10.1016/j.scitotenv.2019.134230_bb2010 article-title: Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2010.01.007 – volume: 543 start-page: 892 year: 2016 ident: 10.1016/j.scitotenv.2019.134230_bb0265 article-title: A comparison of numerical and machine-learning modeling of soil water content with limited input data publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.11.007 – year: 2012 ident: 10.1016/j.scitotenv.2019.134230_bb0470 – volume: 81 start-page: 1627 issue: 3 year: 2016 ident: 10.1016/j.scitotenv.2019.134230_bb0555 article-title: Drought indicators-based integrated assessment of drought vulnerability: a case study of Bundelkhand droughts in central India publication-title: Nat. Hazards doi: 10.1007/s11069-016-2149-8 – start-page: 202 year: 1976 ident: 10.1016/j.scitotenv.2019.134230_bb0615 – volume: 85 start-page: 172 year: 2018 ident: 10.1016/j.scitotenv.2019.134230_bb0445 article-title: Topographic wetness index explains soil moisture better than bioindication with Ellenberg's indicator values publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2017.10.011 – volume: 114 start-page: 24 year: 2016 ident: 10.1016/j.scitotenv.2019.134230_bb0045 article-title: Random forest in remote sensing: a review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 – volume: 153 start-page: 512 year: 2015 ident: 10.1016/j.scitotenv.2019.134230_bb0110 article-title: Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2014.10.016 – volume: 80 start-page: 29 year: 2008 ident: 10.1016/j.scitotenv.2019.134230_bb0525 article-title: Drought risk and vulnerability in rainfed agriculture: example of a case study from Australia, drought management: scientific and technological innovations publication-title: Options Méditérr. – volume: 29 start-page: 583 issue: 3 year: 2005 ident: 10.1016/j.scitotenv.2019.134230_bb0565 article-title: Comparing classification techniques for predicting essential hypertension publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.04.014 – volume: 32 start-page: 2457 issue: 9 year: 2018 ident: 10.1016/j.scitotenv.2019.134230_bb0610 article-title: Design and evaluation of SVR, MARS and M5Tree models for 1, 2 and 3-day lead time forecasting of river flow data in a semiarid mountainous catchment publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-018-1585-2 – volume: 109 start-page: 1 issue: D24 year: 2004 ident: 10.1016/j.scitotenv.2019.134230_bb0515 article-title: A simulated soil moisture based drought analysis for the United States publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/2004JD005182 – volume: 76 start-page: 117 year: 2016 ident: 10.1016/j.scitotenv.2019.134230_bb0140 article-title: Identifying the controls on coastal cliff landslides using machine-learning approaches publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2015.10.029 – year: 1998 ident: 10.1016/j.scitotenv.2019.134230_bb0575 – volume: 28 start-page: 1274 issue: 8 year: 2006 ident: 10.1016/j.scitotenv.2019.134230_bb0635 article-title: Subclass discriminant analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.172 – volume: 188 start-page: 90 issue: 2 year: 2016 ident: 10.1016/j.scitotenv.2019.134230_bb0115 article-title: An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-016-5094-9 – volume: 19 start-page: 1 year: 1991 ident: 10.1016/j.scitotenv.2019.134230_bb0175 article-title: Multivariate adaptive regression splines publication-title: Ann. Stat. – volume: 373 start-page: 15 issue: 1–2 year: 2009 ident: 10.1016/j.scitotenv.2019.134230_bb0190 article-title: Modeling spatial patterns of saturated areas: a comparison of the topographic wetness index and a dynamic distributed model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.03.031 – start-page: 127 year: 1996 ident: 10.1016/j.scitotenv.2019.134230_bb0620 – volume: 85 start-page: 771 year: 2004 ident: 10.1016/j.scitotenv.2019.134230_bb0030 article-title: Statement on meteorological drought publication-title: Bull. Am. Meteorol. Soc. – volume: 264 start-page: 210 year: 2018 ident: 10.1016/j.scitotenv.2019.134230_bb0490 article-title: Organic cattle products: authenticating production origin by analysis of serum mineral content publication-title: Food Chem. doi: 10.1016/j.foodchem.2018.05.044 – volume: 216 start-page: 157 year: 2016 ident: 10.1016/j.scitotenv.2019.134230_bb0405 article-title: Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.10.011 – volume: 186 start-page: 243 issue: 1–3 year: 2003 ident: 10.1016/j.scitotenv.2019.134230_bb0080 article-title: Light, temperature, and soil moisture responses to elevation, evergreen understory, and small canopy gaps in the southern Appalachians publication-title: For. Ecol. Manag. doi: 10.1016/S0378-1127(03)00277-9 – volume: 527 start-page: 668 year: 2015 ident: 10.1016/j.scitotenv.2019.134230_bb0200 article-title: Drought characterization from a multivariate perspective: a review publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.05.031 – start-page: 69 year: 1975 ident: 10.1016/j.scitotenv.2019.134230_bb0285 article-title: Hydrograph modeling strategies – start-page: 1 year: 2018 ident: 10.1016/j.scitotenv.2019.134230_bb0105 article-title: Spatio-temporal drought risk mapping approach and its application in the drought-prone region of south-east Queensland, Australia publication-title: Nat. Hazards – volume: 177 start-page: 277 year: 2016 ident: 10.1016/j.scitotenv.2019.134230_bb0340 article-title: Satellite soil moisture for agricultural drought monitoring: assessment of the SMOS derived Soil Water Deficit Index publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.064 – volume: 542 start-page: 603 year: 2016 ident: 10.1016/j.scitotenv.2019.134230_bb0605 article-title: Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.09.035 – volume: 181 start-page: 63 year: 2018 ident: 10.1016/j.scitotenv.2019.134230_bb0425 article-title: Ensemble committee-based data intelligent approach for generating soil moisture forecasts with multivariate hydro-meteorological predictors publication-title: Soil Tillage Res. doi: 10.1016/j.still.2018.03.021 – volume: 197 start-page: 42 year: 2017 ident: 10.1016/j.scitotenv.2019.134230_bb0420 article-title: Input selection and performance optimization of ANN-based streamflow forecasts in the drought-prone Murray Darling Basin region using IIS and MODWT algorithm publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2017.06.014 – volume: 204 start-page: 399 year: 2014 ident: 10.1016/j.scitotenv.2019.134230_bb0085 article-title: Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy) publication-title: Geomorphology doi: 10.1016/j.geomorph.2013.08.021 – volume: 526 start-page: 274 year: 2015 ident: 10.1016/j.scitotenv.2019.134230_bb0535 article-title: The drought risk atlas: enhancing decision support for drought risk management in the United States publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.01.006 – start-page: 2962 year: 2016 ident: 10.1016/j.scitotenv.2019.134230_bb0090 article-title: Application of hybrid artificial neural network algorithm for the prediction of Standardized Precipitation Index – volume: 83 start-page: 1149 year: 2002 ident: 10.1016/j.scitotenv.2019.134230_bb0235 article-title: A review of twentieth-century drought indices used in the United States publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477-83.8.1149 – start-page: 1 year: 1999 ident: 10.1016/j.scitotenv.2019.134230_bb0220 – volume: 49 start-page: 717 issue: 6 year: 2017 ident: 10.1016/j.scitotenv.2019.134230_bb0270 article-title: Machine learning based predictive modeling of debris flow probability following wildfire in the intermountain Western United States publication-title: Math. Geosci. doi: 10.1007/s11004-017-9681-2 – volume: 64 start-page: 39 issue: 1 year: 2019 ident: 10.1016/j.scitotenv.2019.134230_bb0040 article-title: Modeling the response of an endangered flagship predator to climate change in Iran publication-title: Mamm. Res. doi: 10.1007/s13364-018-0384-y – volume: 75 start-page: 660 issue: 3 year: 2011 ident: 10.1016/j.scitotenv.2019.134230_bb0060 article-title: Acoustic identification of bats in the eastern United States: a comparison of parametric and nonparametric methods publication-title: J. Wildl. Manag. doi: 10.1002/jwmg.68 – volume: 28 start-page: 1283 issue: 10 year: 2008 ident: 10.1016/j.scitotenv.2019.134230_bb0365 article-title: Comparison of suitable drought indices for climate change impacts assessment over Australia towards resource management publication-title: Int. J. Climatol. doi: 10.1002/joc.1649 – volume: 16 start-page: 1397 issue: 3 year: 2015 ident: 10.1016/j.scitotenv.2019.134230_bb0585 article-title: Commonly used drought indices as indicators of soil moisture in China publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-14-0076.1 – volume: 190 year: 2018 ident: 10.1016/j.scitotenv.2019.134230_bb0185 article-title: Groundwater potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-018-6507-8 – volume: 160 start-page: 106 year: 2015 ident: 10.1016/j.scitotenv.2019.134230_bb0380 article-title: Drought hazard assessment in the context of climate change for South Korea publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2015.06.029 – volume: 118 start-page: 49 issue: 1–2 year: 2003 ident: 10.1016/j.scitotenv.2019.134230_bb0440 article-title: An evaluation of agricultural drought indices for the Canadian prairies publication-title: Agric. For. Meteorol. doi: 10.1016/S0168-1923(03)00072-8 – volume: 51 start-page: 1765 issue: 3 year: 2006 ident: 10.1016/j.scitotenv.2019.134230_bb0475 article-title: Choice of B-splines with free parameters in the flexible discriminant analysis context publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2005.11.018 – volume: 480 start-page: 33 year: 2013 ident: 10.1016/j.scitotenv.2019.134230_bb0485 article-title: Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.12.004 – volume: 31 start-page: 1473 issue: 5 year: 2017 ident: 10.1016/j.scitotenv.2019.134230_bb0450 article-title: Identification of critical flood prone areas in data-scarce and ungauged regions: a comparison of three data mining models publication-title: Water Resour. Manag. doi: 10.1007/s11269-017-1589-6 – volume: 76 start-page: 443 issue: 1 year: 2015 ident: 10.1016/j.scitotenv.2019.134230_bb0250 article-title: Spatio-temporal assessment of vulnerability to drought publication-title: Nat. Hazards doi: 10.1007/s11069-014-1502-z – volume: 27 start-page: 3981 issue: 26 year: 2013 ident: 10.1016/j.scitotenv.2019.134230_bb0315 article-title: Effects of the Three Gorges Reservoir on the hydrological droughts at the downstream Yichang station during 2003–2011 publication-title: Hydrol. Process. doi: 10.1002/hyp.9541 – volume: 184 start-page: 149 year: 2017 ident: 10.1016/j.scitotenv.2019.134230_bb0135 article-title: Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2016.10.004 – volume: 10 start-page: 175 year: 2012 ident: 10.1016/j.scitotenv.2019.134230_bb0170 article-title: Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study publication-title: Landslides doi: 10.1007/s10346-012-0320-1 – volume: 34 issue: 22 year: 2007 ident: 10.1016/j.scitotenv.2019.134230_bb0335 article-title: Monitoring and predicting the 2007 US drought publication-title: Geophys. Res. Lett. doi: 10.1029/2007GL031673 – year: 2001 ident: 10.1016/j.scitotenv.2019.134230_bb0230 – volume: 45 start-page: 187 issue: 1 year: 2009 ident: 10.1016/j.scitotenv.2019.134230_bb0150 article-title: Consideration of user needs and spatial accuracy in drought mapping 1 publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/j.1752-1688.2008.00270.x – volume: 45 issue: 4 year: 2009 ident: 10.1016/j.scitotenv.2019.134230_bb0300 article-title: Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia publication-title: Water Resour. Res. doi: 10.1029/2008WR007333 – volume: 204 start-page: 260 year: 2018 ident: 10.1016/j.scitotenv.2019.134230_bb0280 article-title: Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.10.026 – start-page: 177 year: 2017 ident: 10.1016/j.scitotenv.2019.134230_bb0100 article-title: Drought modelling based on artificial intelligence and neural network algorithms: a case study in Queensland, Australia – volume: 398 start-page: 191 issue: 3–4 year: 2011 ident: 10.1016/j.scitotenv.2019.134230_bb0210 article-title: Effect of antecedent soil moisture on preferential flow in a texture-contrast soil publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.12.008 – volume: 49 start-page: 1040 issue: 2 year: 2013 ident: 10.1016/j.scitotenv.2019.134230_bb0570 article-title: The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society publication-title: Water Resour. Res. doi: 10.1002/wrcr.20123 – volume: 31 start-page: 1211 issue: 5 year: 2017 ident: 10.1016/j.scitotenv.2019.134230_bb0130 article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-016-1265-z – volume: 75 start-page: 1039 issue: 12 year: 2016 ident: 10.1016/j.scitotenv.2019.134230_bb0155 article-title: Drought vulnerability mapping using AHP method in arid and semiarid areas: a case study for Taft Township, Yazd Province, Iran publication-title: Environ. Earth Sci. doi: 10.1007/s12665-016-5822-z – volume: 656 start-page: 1046 year: 2019 ident: 10.1016/j.scitotenv.2019.134230_bb0255 article-title: Connectivity patterns in contrasting types of tableland sandstone relief revealed by Topographic Wetness Index publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.467 – volume: 539 start-page: 1 year: 2016 ident: 10.1016/j.scitotenv.2019.134230_bb0205 article-title: A general framework for multivariate multi-index drought prediction based on Multivariate Ensemble Streamflow Prediction (MESP) publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.04.074 – volume: 215 start-page: 239 issue: 1–3 year: 2005 ident: 10.1016/j.scitotenv.2019.134230_bb0580 article-title: The use of remote sensing and GIS for spatio-temporal analysis of the physiological state of a semi-arid forest with respect to drought years publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2005.05.063 – volume: 17 start-page: 180 issue: 2 year: 2008 ident: 10.1016/j.scitotenv.2019.134230_bb0320 article-title: Improving AHP for construction with an adaptive AHP approach (A3) publication-title: Autom. Constr. doi: 10.1016/j.autcon.2007.03.004 – year: 1984 ident: 10.1016/j.scitotenv.2019.134230_bb2015 – volume: 41 issue: 5 year: 2005 ident: 10.1016/j.scitotenv.2019.134230_bb0345 article-title: The role of topography on catchment-scale water residence time publication-title: Water Resour. Res. doi: 10.1029/2004WR003657 – volume: 229 start-page: 234 year: 2019 ident: 10.1016/j.scitotenv.2019.134230_bb0545 article-title: Evaluation analysis of NASA SMAP L3 and L4 and SPoRT-LIS soil moisture data in the United States publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.05.006 |
SSID | ssj0000781 |
Score | 2.6324668 |
Snippet | A quantitative understanding of the hydro-environmental factors that influence the occurrence of agricultural drought events would enable more strategic... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 134230 |
SubjectTerms | atmospheric precipitation Australia clay fraction climate change data collection discriminant analysis Drought economic sustainability environmental protection GIS graphs inventories issues and policy planning plant available water prediction Queensland risk Spatial analysis, artificial intelligence support vector machines water holding capacity |
Title | Machine learning approaches for spatial modeling of agricultural droughts in the south-east region of Queensland Australia |
URI | https://dx.doi.org/10.1016/j.scitotenv.2019.134230 https://www.ncbi.nlm.nih.gov/pubmed/31522053 https://www.proquest.com/docview/2290981560 https://www.proquest.com/docview/2315265845 |
Volume | 699 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BS-UwEB70ycKCyPp21aerZGGv1bZJ09SbiPL0obDLynoLbdPKW5ZWbBX04G93pkkrHtSDp0KTCaHJzHxJZ-YD-KkMYmrhc09FknuiEJmXKpV6gqdJhiYz4l169Nm5nF6I08vocgEO-1wYCqt0tt_a9M5auzd77mvuXc_nlOMrVCKTGCGICAMeLcJSyBMZjWDp4GQ2PX82yLGyxHkCdRsFXoR54dBtjfD0jsK8kt2AKuL5rzmp10Bo54yOv8CKQ5HswE50FRaKagyfLK_k_RjWjp7T17Cb099mDMv2lo7Z5KOv8HDWxVIWzJFHXLG-xnjRMISzrKGAaxyiI8yh9rpk6dXNULCDmY7mp23YvGKIJVlDlHweEQIx4nyoK5L41Z2WKYaSDXcr3-Di-OjP4dRzbAxeLnzRenFSqjRSvEC9MvS3DU9SVOu-zIIcUZjE3YD-NjRG8tKkgYjxzI7eT4ZlhpjHCL4Go6quig1g2DMKiTUrR4QQG54YQ-E5fpyGWc6VnIDsP7_OXalyYsz4r_uYtH96WDdN66btuk3AHwSvbbWO90X2-_XVLzaeRp_yvvCPfkdoVEv615JWRX3baCqjn1Alnrf68IDICZSIJrBut9Mwa2oK0UBufmR6W_A5pOsBn6IWv8OovbktthFDtdkOLO4-BjtOU-g5-_139gSZVB5H |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IAoiur7WZwSv1bZJ29SbiLI-VhAUvIW2aZcVacVWQQ_-dmeatuJBPXhtkxKazMyX5Jv5APalRkwtbG5Jz-eWSEVsRVJGluBRGKPL9HidHj289gd34uLeu5-AkzYXhmiVje83Pr321s2Tw-ZvHj6Nx5TjK2TohwFCEOE63JuEaeHxgHh9Bx9fPA-qZmOumdGysfk3khd-uCoQnL4SySs8cKgenv1TiPoJgtah6GwRFhoMyY7NMJdgIs17MGNUJd96sHr6lbyGzRrrLXswb87omEk9Wob3Yc2kTFkjHTFibYXxtGQIZllJdGv8RC2XQ--LjEWj565cB9O1yE9VsnHOEEmykgT5LJIDYqT4UOTU46beKxODknUnKytwd3Z6ezKwGi0GKxG2qKwgzGTkSZ6iVWm6a8N9FFW6z2InQQzm41rAaOtq7fNMR44IcMeOsc93sxgRjxZ8FabyIk_XgWFLzyXNrATxQaB5qDWRc-wgcuOES78Pfvv7VdIUKie9jEfVMtIeVDdviuZNmXnrg911fDK1Ov7uctTOr_q27BRGlL8777UrQqFR0k1LlKfFS6moiH5IdXh-a8MdkiaQwuvDmllO3ajplYvuceM_w9uF2cHt8EpdnV9fbsKcSwcFNvEXt2Cqen5JtxFNVfFObS2fILcdbw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+approaches+for+spatial+modeling+of+agricultural+droughts+in+the+south-east+region+of+Queensland+Australia&rft.jtitle=The+Science+of+the+total+environment&rft.au=Rahmati%2C+Omid&rft.au=Falah%2C+Fatemeh&rft.au=Dayal%2C+Kavina+Shaanu&rft.au=Deo%2C+Ravinesh+C&rft.date=2020-01-10&rft.eissn=1879-1026&rft.volume=699&rft.spage=134230&rft_id=info:doi/10.1016%2Fj.scitotenv.2019.134230&rft_id=info%3Apmid%2F31522053&rft.externalDocID=31522053 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |