Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery
The support vector machine (SVM) algorithm is one of the most widely used machine learning (ML) methods for predicting active compounds and molecular properties. In chemoinformatics and drug discovery, SVM has been a state-of-the-art ML approach for more than a decade. A unique attribute of SVM is t...
Saved in:
Published in | Journal of computer-aided molecular design Vol. 36; no. 5; pp. 355 - 362 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.05.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The support vector machine (SVM) algorithm is one of the most widely used machine learning (ML) methods for predicting active compounds and molecular properties. In chemoinformatics and drug discovery, SVM has been a state-of-the-art ML approach for more than a decade. A unique attribute of SVM is that it operates in feature spaces of increasing dimensionality. Hence, SVM conceptually departs from the paradigm of low dimensionality that applies to many other methods for chemical space navigation. The SVM approach is applicable to compound classification, and ranking, multi-class predictions, and –in algorithmically modified form– regression modeling. In the emerging era of deep learning (DL), SVM retains its relevance as one of the premier ML methods in chemoinformatics, for reasons discussed herein. We describe the SVM methodology including strengths and weaknesses and discuss selected applications that have contributed to the evolution of SVM as a premier approach for compound classification, property predictions, and virtual compound screening. |
---|---|
AbstractList | The support vector machine (SVM) algorithm is one of the most widely used machine learning (ML) methods for predicting active compounds and molecular properties. In chemoinformatics and drug discovery, SVM has been a state-of-the-art ML approach for more than a decade. A unique attribute of SVM is that it operates in feature spaces of increasing dimensionality. Hence, SVM conceptually departs from the paradigm of low dimensionality that applies to many other methods for chemical space navigation. The SVM approach is applicable to compound classification, and ranking, multi-class predictions, and -in algorithmically modified form- regression modeling. In the emerging era of deep learning (DL), SVM retains its relevance as one of the premier ML methods in chemoinformatics, for reasons discussed herein. We describe the SVM methodology including strengths and weaknesses and discuss selected applications that have contributed to the evolution of SVM as a premier approach for compound classification, property predictions, and virtual compound screening. |
Author | Bajorath, Jürgen Rodríguez-Pérez, Raquel |
Author_xml | – sequence: 1 givenname: Raquel surname: Rodríguez-Pérez fullname: Rodríguez-Pérez, Raquel – sequence: 2 givenname: Jürgen orcidid: 0000-0002-0557-5714 surname: Bajorath fullname: Bajorath, Jürgen email: bajorath@bit.uni-bonn.de |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35304657$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhi1URLeFP8ABReLCJa3jz_iChLYFKrWqxJe4WY4zybpK7MVOVuq_x-mWFjj0MJrDPPPOvHqP0IEPHhB6XeGTCmN5mipcE1LipTBjpFTP0KrikpZM8eoArbAiuBSc_TxERynd4LykBH6BDimnmAkuV6g534VhnlzwReiKr_N2G-JU_AA7hVhcGbtxHgrj2-IL9BFSWsCr0MLgfF84X6w3MAbnuxBHMzmb7tizOPfFmUs27CDevkTPOzMkeHXfj9H3j-ff1p_Ly-tPF-sPl6VlmE2lpMJmE5I0Ta0IEIIbxWvT1LjppDSNrLmVlawtFaqllAEx0ArFgQtsG1zRY_R-r7udmxFaC36KZtDb6EYTb3UwTv878W6j-7DTihJec5UF3t0LxPBrhjTpMXuAYTAewpw0EQwrJaUQGX37H3oT5uizvUwpVuc87iiyp2wMKUXoHp6psF4i1PsINV5qiVAvX7z528bDyp_MMkD3QMoj30N8vP2E7G9ayamM |
CitedBy_id | crossref_primary_10_1016_j_bspc_2023_105483 crossref_primary_10_1111_cns_13959 crossref_primary_10_3390_rs15061640 crossref_primary_10_4271_05_17_01_0008 crossref_primary_10_1016_j_compbiomed_2024_108702 crossref_primary_10_1016_j_compbiolchem_2024_108051 crossref_primary_10_1021_acs_molpharmaceut_3c01124 crossref_primary_10_1016_j_csbj_2024_07_003 crossref_primary_10_1177_00202940231173752 crossref_primary_10_3389_fphar_2023_1241677 crossref_primary_10_1080_07391102_2023_2291829 crossref_primary_10_7759_cureus_44359 crossref_primary_10_1007_s00726_023_03368_0 crossref_primary_10_1016_j_nhres_2023_10_001 crossref_primary_10_1016_j_jhazmat_2023_132565 crossref_primary_10_2147_CMAR_S451871 crossref_primary_10_3390_ph16091259 crossref_primary_10_1515_htmp_2022_0261 crossref_primary_10_3390_ph16030332 crossref_primary_10_1016_j_arr_2023_102172 crossref_primary_10_1093_ijlct_ctae024 crossref_primary_10_3390_inventions8020056 crossref_primary_10_1051_e3sconf_202336701004 crossref_primary_10_1016_j_talanta_2023_124895 crossref_primary_10_1177_01617346231220000 crossref_primary_10_1016_j_isci_2024_110041 crossref_primary_10_3390_s23104786 crossref_primary_10_1039_D2NJ04753E crossref_primary_10_1021_acsomega_3c09047 crossref_primary_10_1016_j_wneu_2024_04_117 crossref_primary_10_13005_bbra_3198 crossref_primary_10_1016_j_ijbiomac_2023_124761 crossref_primary_10_1016_j_scitotenv_2024_173748 crossref_primary_10_3390_ddc2020017 crossref_primary_10_1007_s42108_024_00287_y crossref_primary_10_3390_su151813592 crossref_primary_10_3897_pharmacia_71_e122507 crossref_primary_10_1021_acs_jpcc_3c05540 crossref_primary_10_1615_HeatTransRes_2023049494 crossref_primary_10_1016_j_pdpdt_2024_104010 crossref_primary_10_1002_agt2_365 crossref_primary_10_3390_lubricants11090356 crossref_primary_10_1021_acssensors_3c01741 crossref_primary_10_3389_fcvm_2024_1344170 crossref_primary_10_1016_j_jafr_2024_101085 crossref_primary_10_1007_s10439_023_03303_0 crossref_primary_10_3390_jcs7100420 crossref_primary_10_1007_s11096_024_01724_y crossref_primary_10_1016_j_buildenv_2024_111756 crossref_primary_10_1007_s44254_023_00047_x crossref_primary_10_1016_j_cherd_2024_04_033 |
Cites_doi | 10.1021/ci300306a 10.1021/ci5003944 10.2174/157340910790980124 10.1111/cbdd.12294 10.1016/j.neucom.2010.02.016 10.1021/ci7004753 10.1021/jm201706b 10.1002/minf.201100059 10.1007/978-1-4757-2440-0 10.1517/17460441.2014.866943 10.1021/ci025569t 10.1021/ci060117s 10.1517/17460441.2013.761204 10.1021/acs.jcim.5b00175 10.1016/j.drudis.2018.01.039 10.1021/ci800022e 10.1023/B:STCO.0000035301.49549.88 10.1016/S0097-8485(01)00094-8 10.1021/ci9002624 10.1371/journal.pone.0119301 10.1021/ci200409x 10.1021/mp100179t 10.1021/ci800366f 10.1021/ci900004a 10.1093/bioinformatics/btn409 10.1021/ci900450m 10.1016/j.neunet.2005.07.009 10.1021/ci034160g 10.1021/ci100091e 10.1021/ci049732r 10.1145/130385.130401 10.1080/17460441.2016.1201262 10.1016/j.chembiol.2013.01.011 10.1021/acs.jcim.6b00359 10.1016/j.jmgm.2011.09.002 10.1021/acs.jcim.7b00274 10.1021/acs.jcim.7b00088 10.1021/acsomega.7b01079 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C NPM AAYXX CITATION 3V. 7SC 7X7 7XB 88E 88I 8AL 8AO 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. KB. L7M L~C L~D M0N M0S M1P M2P P5Z P62 PCBAR PDBOC PQEST PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.1007/s10822-022-00442-9 |
DatabaseName | SpringerOpen PubMed CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Materials Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Journals (ProQuest Database) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database Materials science collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Materials Science Collection ProQuest Health & Medical Complete (Alumni) Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Medical Library (Alumni) ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1573-4951 |
EndPage | 362 |
ExternalDocumentID | 10_1007_s10822_022_00442_9 35304657 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Rheinische Friedrich-Wilhelms-Universität Bonn (1040) – fundername: ; |
GroupedDBID | --- -4Y -58 -5G -BR -EM -Y2 -~C .4S .86 .DC .GJ .VR 06C 06D 0R~ 0VY 186 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AABYN AAFGU AAGCJ AAHNG AAIAL AAIKT AAJKR AANZL AARHV AARTL AATNV AATVU AAUCO AAUYE AAWCG AAYFA AAYIU AAYOK AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJGSW AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BVXVI C6C CAG CCPQU COF CS3 CSCUP D-I D1I DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBD EBLON EBS EDO EIOEI EJD EMB EMK EMOBN EPAXT EPL ESBYG ESTFP ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KB. KDC KOV KOW LAK LK5 LLZTM M0N M1P M2P M4Y M7R MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9N PCBAR PDBOC PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 Y6R YLTOR Z45 Z7U Z7V Z7W Z7X Z83 Z87 Z8O Z91 ZMTXR ~8M ~A9 ~EX AACDK AAJBT AASML AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU ALIPV NPM AAEOY AAYXX ABQSL AGJZZ CITATION H13 7SC 7XB 8AL 8FD 8FK JQ2 K9. L7M L~C L~D PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c404t-736c44272bb892e220b958ab80bf77ab785c7178c369d334e2aed695e560cb013 |
IEDL.DBID | U2A |
ISSN | 0920-654X |
IngestDate | Tue Sep 17 20:47:04 EDT 2024 Sat Oct 26 01:18:17 EDT 2024 Tue Nov 19 07:08:31 EST 2024 Fri Dec 06 01:31:24 EST 2024 Wed Oct 16 00:43:03 EDT 2024 Sat Dec 16 12:07:21 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Support vector machines Regression Compound classification Machine learning Property prediction |
Language | English |
License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-736c44272bb892e220b958ab80bf77ab785c7178c369d334e2aed695e560cb013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0557-5714 |
OpenAccessLink | http://link.springer.com/10.1007/s10822-022-00442-9 |
PMID | 35304657 |
PQID | 2694800466 |
PQPubID | 54123 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9325859 proquest_miscellaneous_2640997766 proquest_journals_2694800466 crossref_primary_10_1007_s10822_022_00442_9 pubmed_primary_35304657 springer_journals_10_1007_s10822_022_00442_9 |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Netherlands – name: Dordrecht |
PublicationSubtitle | Incorporating Perspectives in Drug Discovery and Design |
PublicationTitle | Journal of computer-aided molecular design |
PublicationTitleAbbrev | J Comput Aided Mol Des |
PublicationTitleAlternate | J Comput Aided Mol Des |
PublicationYear | 2022 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | BurbridgeRTrotterMBuxtonBHoldenSDrug design by machine learning: support vector machines for pharmaceutical data analysisComput Chem20012651410.1016/S0097-8485(01)00094-8 SvetnikVLiawATongCCulbersonJCSheridanRPFeustonBPRandom forest: a classification and regression tool for compound classification and QSAR modelingJ Chem Inf Comput Sci200343194719581:CAS:528:DC%2BD3sXos1Wiu7s%3D1463244510.1021/ci034160g HeikampKBajorathJSupport vector machines for drug discoveryExpert Opin Drug Discov20149931041:CAS:528:DC%2BC3sXhvFels7zL2430404410.1517/17460441.2014.866943 MaXHWangRTanCYJiangYYLuTRaoHBLiXYGoMLLowBCChenYZVirtual screening of selective multitarget kinase inhibitors by combinatorial support vector machinesMol Pharm20107154515601:CAS:528:DC%2BC3cXhtVKrtrjE2071232710.1021/mp100179t Rodríguez-PérezRVogtMBajorathJInfluence of varying training set composition and size on support vector machine-based prediction of active compoundsJ Chem Inf Model20175771071628376613541759410.1021/acs.jcim.7b000881:CAS:528:DC%2BC2sXlsVygtbw%3D PeltasonLIyerPBajorathJRationalizing three-dimensional activity landscapes and the influence of molecular representations on landscape topology and formation of activity cliffsJ Chem Inf Model201050102110331:CAS:528:DC%2BC3cXls1Shurk%3D2044360310.1021/ci100091e HeikampKHuXYanABajorathJPrediction of activity cliffs using support vector machinesJ Chem Inf Model201252235423651:CAS:528:DC%2BC38Xht1SlsrvI2289465510.1021/ci300306a PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: Machine Learning in PythonJ Mach Learn Res20111228252830 Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Proceedings of the 5th annual workshop on computational learning theory: Pittsburgh, Pennsylvania, pp 144–152 HasegawaKFunatsuKNon-linear modeling and chemical interpretation with aid of support vector machine and regressionCurr Comput-Aided Drug Des2010624361:CAS:528:DC%2BC3cXkt1eru7k%3D2037069310.2174/157340910790980124 MaggioraGMOn outliers and activity cliffs: Why QSAR often disappointsJ Chem Inf Model200646153515351:CAS:528:DC%2BD28XntFeltbk%3D1685928510.1021/ci060117s ChenHEngkvistOWangYOlivecronaMBlaschkeTThe Rise of Deep Learning in Drug DiscoveryDrug Discov Today201823124112502936676210.1016/j.drudis.2018.01.039 PolishchukPInterpretation of quantitative structure-activity relationship models: Past, present, and futureJ Chem Inf Model201757261826391:CAS:528:DC%2BC2sXhsFGgt7rI2894952010.1021/acs.jcim.7b00274 BalferJBajorathJSystematic artifacts in support vector regression-based compound potency prediction revealed by statistical and activity landscape analysisPLoS ONE201510011930110.1371/journal.pone.01193011:CAS:528:DC%2BC2MXhslWqtbfJ KawaiKFujishimaSTakahashiYPredictive activity profiling of drugs by topological-fragment-spectra-based support vector machinesJ Chem Inf Model200848115211601:CAS:528:DC%2BD1cXmvVGrt7w%3D1853371210.1021/ci7004753 EkinsSReynoldsRCKimHKooMSEkonomidisMTalaueMPagetSDWoolhiserLKLenaertsAJBuninBAConnellNBayesian models leveraging bioactivity and cytotoxicity information for drug discoveryChem Biol2013203703781:CAS:528:DC%2BC3sXksFOgt7g%3D23521795360796210.1016/j.chembiol.2013.01.011 WassermannAMGeppertHBajorathJLigand prediction for orphan targets using support vector machines and various target-ligands kernels is dominated by nearest neighbor effectsJ Chem Inf Model200949215521671:CAS:528:DC%2BD1MXhtFOksLzN1978057610.1021/ci9002624 VapnikVEstimation of dependencies based on empirical data1982New YorkSpringer CortesCVapnikVSupport-vector networksMach Learn199520273297 WarmuthMKLiaoJRätschGMathiesonMPuttaSLemmenCActive learning with support vector machines in the drug discovery processJ Chem Inf Model2003436676731:CAS:528:DC%2BD3sXhtVOjtbk%3D BaskinIIWinklerDTetkoIVA Renaissance of Neural Networks in Drug DiscoveryExpert Opin Drug Discov2016117857951:CAS:528:DC%2BC28XhtFehsrvJ2729554810.1080/17460441.2016.1201262 HussainJReaCComputationally efficient algorithm to identify matched molecular pairs (MMPs) in large data setsJ Chem Inf Model2010503393481:CAS:528:DC%2BC3cXhtlWltr4%3D2012104510.1021/ci900450m VarnekABaskinIMachine learning methods for property prediction in chemoinformaticsQuo vadis? J Chem Inf Model201252141314371:CAS:528:DC%2BC38XmvV2ntL4%3D10.1021/ci200409x Rodríguez-PérezRVogtMBajorathJSupport vector machine classification and regression prioritize different structural features for binary compound activity and potency value predictionACS Omega201726371637930023518604536710.1021/acsomega.7b010791:CAS:528:DC%2BC2sXhsF2gsbrL SaehJLynePDTakasakiBKCosgroveDALead hopping using SVM and 3D pharmacophore fingerprintsJ Chem Inf Model200545112211331:CAS:528:DC%2BD2MXlvVegs7Y%3D1604530710.1021/ci049732r BalferJBajorathJVisualization and interpretation of support vector machine activity predictionsJ Chem Inf Model201555113611471:CAS:528:DC%2BC2MXosFGkurs%3D2598827410.1021/acs.jcim.5b00175 KarSRoyKHow far can virtual screening take us in drug discovery?Expert Opin Drug Discov201382452611:CAS:528:DC%2BC3sXjtF2htLk%3D2333066010.1517/17460441.2013.761204 HansenKBaehrensDSchroeterTRuppMMüllerKRVisual interpretation of kernel-based prediction modelsMol Inf2011308178261:CAS:528:DC%2BC3MXhtFGltLbP10.1002/minf.201100059 SmolaAJSchölkopfBA tutorial on support vector regressionStat Comput20041419922210.1023/B:STCO.0000035301.49549.88 VapnikVThe nature of statistical learning theory1995New YorkSpringer10.1007/978-1-4757-2440-0 BalferJHeikampKLauferSBajorathJModeling of compound profiling experiments using support vector machinesChem Biol Drug Des20148475851:CAS:528:DC%2BC2cXhtVShsb%2FF2447257010.1111/cbdd.12294 De la Vegade LeónABajorathJPrediction of Compound Potency Changes in Matched Molecular Pairs Using Support Vector RegressionJ Chem Inf Model2014542654266310.1021/ci50039441:CAS:528:DC%2BC2cXhsVykurjJ MaXHWangRYangSYXueYWeiYCLowBCChenYZEvaluation of virtual screening performance using support vector machines trained by sparsely distributed active compoundsJ Chem Inf Model200848122712371:CAS:528:DC%2BD1cXmvVGrt70%3D1853364410.1021/ci800022e BarakatNBradleyAPRule extraction from support vector machines: A reviewNeurocomputing20107417819010.1016/j.neucom.2010.02.016 IoossBSaltelliAHigdonROwhadiDIntroduction to sensitivity analysis. Handbook of Uncertainty Quantification. Ghanem2016ChamSpringer International Publishing120 ShiZMaXHQinCJiaJJiangYYTanCYChenYZCombinatorial support vector machines approach for virtual screening of selective multi-target serotonin reuptake inhibitors from large compounds librariesJ Mol Graph Model20123249661:CAS:528:DC%2BC3MXhsFertb7J2206436710.1016/j.jmgm.2011.09.002 VapnikVEstimation of dependencies based on empirical data [in Russian]1979MoscowNauka Lundberg SM, Lee S (2017) A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems 30 (NIPS) JacobLVertJPProtein-ligand interaction prediction: an improved chemogenomics approachBioinformatics200824214921561:CAS:528:DC%2BD1cXhtFOgs77K18676415255344110.1093/bioinformatics/btn409 RalaivolaLSwamidassSJSaigoHBaldiPGraph kernels for chemical informaticsNeural Netw200518109311101615747110.1016/j.neunet.2005.07.009 SchuffenhauerAFloersheimPAcklinPJacobyESimilarity metrics for ligands reflecting the similarity of the target proteinsJ Chem Inf Comput Sci2003433914051:CAS:528:DC%2BD38XpsVejs7s%3D1265350110.1021/ci025569t BishopCPattern recognition and machine learning2006New YorkSpringer GeppertHHumrichJStumpfeDGärtnerTBajorathJLigand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptorsJ Chem Inf Model2009497677791:CAS:528:DC%2BD1MXjsFKlurc%3D1930911410.1021/ci900004a Horvath D, Marcou G, Varnek A, de la Kayastha S, Bajorath J (2016) Prediction of activity cliffs using condensed graphs of reaction representations, descriptor recombination, support vector machine classification, and support vector regression. J Chem Inf Model 56:1631–1640 ZernovVVBalakinKVIvaschenkoAASavchukNPPletnevIVDrug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictionsJ Chem Inf Model200343204820561:CAS:528:DC%2BD3sXotFSht7w%3D TangHWangXSHuangXRothBLButlerKVKozikowskiAPJungMTropshaANovel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validationJ Chem Inf Model2009494614761:CAS:528:DC%2BD1MXht1agt7g%3D1918286010.1021/ci800366f StumpfeDBajorathJExploring activity cliffs in medicinal chemistryJ Med Chem201255293229421:CAS:528:DC%2BC38XmtFajsQ%3D%3D2223625010.1021/jm201706b S Kar (442_CR19) 2013; 8 K Heikamp (442_CR36) 2012; 52 J Hussain (442_CR35) 2010; 50 MK Warmuth (442_CR7) 2003; 43 AM Wassermann (442_CR32) 2009; 49 V Vapnik (442_CR2) 1982 V Vapnik (442_CR1) 1979 XH Ma (442_CR25) 2010; 7 Z Shi (442_CR26) 2012; 32 442_CR48 K Kawai (442_CR27) 2008; 48 A Varnek (442_CR11) 2012; 52 V Vapnik (442_CR4) 1995 K Hasegawa (442_CR18) 2010; 6 AJ Smola (442_CR5) 2004; 14 V Svetnik (442_CR9) 2003; 43 R Rodríguez-Pérez (442_CR40) 2017; 57 II Baskin (442_CR12) 2016; 11 D Stumpfe (442_CR34) 2012; 55 J Saeh (442_CR20) 2005; 45 C Bishop (442_CR39) 2006 C Cortes (442_CR3) 1995; 20 N Barakat (442_CR43) 2010; 74 J Balfer (442_CR28) 2014; 84 L Jacob (442_CR29) 2008; 24 GM Maggiora (442_CR33) 2006; 46 P Polishchuk (442_CR42) 2017; 57 K Hansen (442_CR44) 2011; 30 B Iooss (442_CR47) 2016 J Balfer (442_CR14) 2015; 10 H Tang (442_CR23) 2009; 49 442_CR38 442_CR15 R Rodríguez-Pérez (442_CR46) 2017; 2 K Heikamp (442_CR17) 2014; 9 A Schuffenhauer (442_CR30) 2003; 43 L Ralaivola (442_CR16) 2005; 18 VV Zernov (442_CR8) 2003; 43 XH Ma (442_CR21) 2008; 48 A de León (442_CR37) 2014; 54 S Ekins (442_CR10) 2013; 20 XH Ma (442_CR22) 2010; 7 F Pedregosa (442_CR24) 2011; 12 H Geppert (442_CR31) 2009; 49 L Peltason (442_CR41) 2010; 50 R Burbridge (442_CR6) 2001; 26 H Chen (442_CR13) 2018; 23 J Balfer (442_CR45) 2015; 55 |
References_xml | – volume: 43 start-page: 2048 year: 2003 ident: 442_CR8 publication-title: J Chem Inf Model contributor: fullname: VV Zernov – volume: 52 start-page: 2354 year: 2012 ident: 442_CR36 publication-title: J Chem Inf Model doi: 10.1021/ci300306a contributor: fullname: K Heikamp – volume: 54 start-page: 2654 year: 2014 ident: 442_CR37 publication-title: J Chem Inf Model doi: 10.1021/ci5003944 contributor: fullname: A de León – volume: 6 start-page: 24 year: 2010 ident: 442_CR18 publication-title: Curr Comput-Aided Drug Des doi: 10.2174/157340910790980124 contributor: fullname: K Hasegawa – volume: 84 start-page: 75 year: 2014 ident: 442_CR28 publication-title: Chem Biol Drug Des doi: 10.1111/cbdd.12294 contributor: fullname: J Balfer – volume: 74 start-page: 178 year: 2010 ident: 442_CR43 publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.02.016 contributor: fullname: N Barakat – volume: 48 start-page: 1152 year: 2008 ident: 442_CR27 publication-title: J Chem Inf Model doi: 10.1021/ci7004753 contributor: fullname: K Kawai – volume: 55 start-page: 2932 year: 2012 ident: 442_CR34 publication-title: J Med Chem doi: 10.1021/jm201706b contributor: fullname: D Stumpfe – volume: 30 start-page: 817 year: 2011 ident: 442_CR44 publication-title: Mol Inf doi: 10.1002/minf.201100059 contributor: fullname: K Hansen – volume-title: The nature of statistical learning theory year: 1995 ident: 442_CR4 doi: 10.1007/978-1-4757-2440-0 contributor: fullname: V Vapnik – volume: 9 start-page: 93 year: 2014 ident: 442_CR17 publication-title: Expert Opin Drug Discov doi: 10.1517/17460441.2014.866943 contributor: fullname: K Heikamp – volume: 43 start-page: 391 year: 2003 ident: 442_CR30 publication-title: J Chem Inf Comput Sci doi: 10.1021/ci025569t contributor: fullname: A Schuffenhauer – volume: 43 start-page: 667 year: 2003 ident: 442_CR7 publication-title: J Chem Inf Model contributor: fullname: MK Warmuth – volume: 12 start-page: 2825 year: 2011 ident: 442_CR24 publication-title: J Mach Learn Res contributor: fullname: F Pedregosa – volume: 46 start-page: 1535 year: 2006 ident: 442_CR33 publication-title: J Chem Inf Model doi: 10.1021/ci060117s contributor: fullname: GM Maggiora – start-page: 1 volume-title: Introduction to sensitivity analysis. Handbook of Uncertainty Quantification. Ghanem year: 2016 ident: 442_CR47 contributor: fullname: B Iooss – volume: 8 start-page: 245 year: 2013 ident: 442_CR19 publication-title: Expert Opin Drug Discov doi: 10.1517/17460441.2013.761204 contributor: fullname: S Kar – volume: 55 start-page: 1136 year: 2015 ident: 442_CR45 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.5b00175 contributor: fullname: J Balfer – volume: 23 start-page: 1241 year: 2018 ident: 442_CR13 publication-title: Drug Discov Today doi: 10.1016/j.drudis.2018.01.039 contributor: fullname: H Chen – volume-title: Estimation of dependencies based on empirical data [in Russian] year: 1979 ident: 442_CR1 contributor: fullname: V Vapnik – volume: 48 start-page: 1227 year: 2008 ident: 442_CR21 publication-title: J Chem Inf Model doi: 10.1021/ci800022e contributor: fullname: XH Ma – volume: 14 start-page: 199 year: 2004 ident: 442_CR5 publication-title: Stat Comput doi: 10.1023/B:STCO.0000035301.49549.88 contributor: fullname: AJ Smola – volume: 26 start-page: 5 year: 2001 ident: 442_CR6 publication-title: Comput Chem doi: 10.1016/S0097-8485(01)00094-8 contributor: fullname: R Burbridge – volume: 49 start-page: 2155 year: 2009 ident: 442_CR32 publication-title: J Chem Inf Model doi: 10.1021/ci9002624 contributor: fullname: AM Wassermann – volume: 10 start-page: 0119301 year: 2015 ident: 442_CR14 publication-title: PLoS ONE doi: 10.1371/journal.pone.0119301 contributor: fullname: J Balfer – volume: 52 start-page: 1413 year: 2012 ident: 442_CR11 publication-title: Quo vadis? J Chem Inf Model doi: 10.1021/ci200409x contributor: fullname: A Varnek – volume: 7 start-page: 1545 year: 2010 ident: 442_CR22 publication-title: Mol Pharm doi: 10.1021/mp100179t contributor: fullname: XH Ma – volume: 49 start-page: 461 year: 2009 ident: 442_CR23 publication-title: J Chem Inf Model doi: 10.1021/ci800366f contributor: fullname: H Tang – volume: 49 start-page: 767 year: 2009 ident: 442_CR31 publication-title: J Chem Inf Model doi: 10.1021/ci900004a contributor: fullname: H Geppert – volume-title: Pattern recognition and machine learning year: 2006 ident: 442_CR39 contributor: fullname: C Bishop – volume: 24 start-page: 2149 year: 2008 ident: 442_CR29 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn409 contributor: fullname: L Jacob – volume: 50 start-page: 339 year: 2010 ident: 442_CR35 publication-title: J Chem Inf Model doi: 10.1021/ci900450m contributor: fullname: J Hussain – volume: 18 start-page: 1093 year: 2005 ident: 442_CR16 publication-title: Neural Netw doi: 10.1016/j.neunet.2005.07.009 contributor: fullname: L Ralaivola – volume: 7 start-page: 1545 year: 2010 ident: 442_CR25 publication-title: Mol Pharm doi: 10.1021/mp100179t contributor: fullname: XH Ma – ident: 442_CR48 – volume: 43 start-page: 1947 year: 2003 ident: 442_CR9 publication-title: J Chem Inf Comput Sci doi: 10.1021/ci034160g contributor: fullname: V Svetnik – volume: 50 start-page: 1021 year: 2010 ident: 442_CR41 publication-title: J Chem Inf Model doi: 10.1021/ci100091e contributor: fullname: L Peltason – volume: 45 start-page: 1122 year: 2005 ident: 442_CR20 publication-title: J Chem Inf Model doi: 10.1021/ci049732r contributor: fullname: J Saeh – volume: 20 start-page: 273 year: 1995 ident: 442_CR3 publication-title: Mach Learn contributor: fullname: C Cortes – ident: 442_CR15 doi: 10.1145/130385.130401 – volume: 11 start-page: 785 year: 2016 ident: 442_CR12 publication-title: Expert Opin Drug Discov doi: 10.1080/17460441.2016.1201262 contributor: fullname: II Baskin – volume: 20 start-page: 370 year: 2013 ident: 442_CR10 publication-title: Chem Biol doi: 10.1016/j.chembiol.2013.01.011 contributor: fullname: S Ekins – ident: 442_CR38 doi: 10.1021/acs.jcim.6b00359 – volume: 32 start-page: 49 year: 2012 ident: 442_CR26 publication-title: J Mol Graph Model doi: 10.1016/j.jmgm.2011.09.002 contributor: fullname: Z Shi – volume-title: Estimation of dependencies based on empirical data year: 1982 ident: 442_CR2 contributor: fullname: V Vapnik – volume: 57 start-page: 2618 year: 2017 ident: 442_CR42 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.7b00274 contributor: fullname: P Polishchuk – volume: 57 start-page: 710 year: 2017 ident: 442_CR40 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.7b00088 contributor: fullname: R Rodríguez-Pérez – volume: 2 start-page: 6371 year: 2017 ident: 442_CR46 publication-title: ACS Omega doi: 10.1021/acsomega.7b01079 contributor: fullname: R Rodríguez-Pérez |
SSID | ssj0007960 |
Score | 2.599426 |
Snippet | The support vector machine (SVM) algorithm is one of the most widely used machine learning (ML) methods for predicting active compounds and molecular... |
SourceID | pubmedcentral proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 355 |
SubjectTerms | Algorithms Animal Anatomy Chemistry Chemistry and Materials Science Classification Computer Applications in Chemistry Deep learning Evolution Histology Machine learning Modelling Morphology Perspective Physical Chemistry Space navigation Support vector machines |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH_i4zB2mICNrawgI3HbLIJjx_ZpmoAKIcEBwdRbFH8EekkYbZH47_FznZaCtkNOthLb78Xv974BDlVtUEuuKS-8odzomhrJHHXcVkEaulzEEhuXV8X5Lb8YimEyuI1TWGV3J8aL2rUWbeRHmHGpUJsrfj38pdg1Cr2rqYXGKqwfsyCZAj_L4VzhyqSOWcKZRhVJ8GFKmkmpc0E0UoxlR58mo3pZML1Dm--DJt94TqNAGmzCp4Qkye8Z6bdgxTfb8OGka-C2DR9f1Rr8DObsKXEZaWuCzTwD8CZ_otGeXMaQSk-qxpFrfzeLjW0INkrDdHUyagi-uE1lVrG0c5x7-ji9I6ejscVA0OcvcDs4uzk5p6nBArU84xMq88KGvUtmjNLMM5YZLVRlVGZqKSsjlbBB3VM2L7TLc-5Z5V2hhQ8wyaIBdQfWmrbx34DUmXRSuAAOVc39caUwDdEGbFeoyudK9OBHd7rlw6yORrmomIy0KDN8kBal7kG_I0CZ_qlxueCAHhzMh8OZooujanw7xTkcU4Elzvk6o9f8c7lAL7CQPZBLlJxPwErbyyPN6D5W3A4gN6hVYVk_O5ovlvXvXez-fxffYYNF_sPoyT6sTR6nfi8gnInZj2z8AmiB95g priority: 102 providerName: ProQuest |
Title | Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery |
URI | https://link.springer.com/article/10.1007/s10822-022-00442-9 https://www.ncbi.nlm.nih.gov/pubmed/35304657 https://www.proquest.com/docview/2694800466 https://search.proquest.com/docview/2640997766 https://pubmed.ncbi.nlm.nih.gov/PMC9325859 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xOLB7QMA-KI_KK3HbtZR17Ng-ltKCQKAVoqh7iuLEYXtJEbQr7b_fGTdpKY8DhyRSPHJsj-P5xvMwwJEpHWnJJZeJd1w6W3KnRcELmWcoDYtYhRQbl1fJ2UCeD9VwEccdnN0bi2RYqJ_EuqEs4-R8TkZIwe0qrCN4iGkqD0RnvvxqG0KDI0t6kZLDOlLm9TqWpdELiPnSU_KZuTRIof4WbNbwkXVm_N6GFV_twEa3ObVtBz4-STD4CVzvbz212LhkdIInom12G3bq2WXwo_Qsqwp27e9mDrEVo9PRKEadjSpGFY_r3KqUzznQnjxM79jJ6DEn789_n2HQ7910z3h9qgLPZSQnXMdJjn3XwjljhRciclaZzJnIlVpnThuVo45n8jixRRxLLzJfJFZ5xEY57Zp-gbVqXPldYGWkC60KRISmlP5nZij2MEdAl5jMx0a14Hszuun9LHlGukiTTLxII7qIF6ltwUHDgLT-kR5TCrQ1pMQnLfg2L8YxJbtGVvnxlGgkxf9qovk649f8c7Ei06_SLdBLnJwTUHrt5ZJq9Cek2UZki7oUNutHw_NFs97uxd77yPfhgwjzkVwoD2Bt8jD1hwhzJq4Nq3qo8W76p21Y75z-vujh87h39esa33aTbjtM_P_7TPne |
link.rule.ids | 230,315,781,785,886,12061,12770,21393,27929,27930,31724,31725,33378,33379,33749,33750,41086,41125,41528,42155,42194,42597,43315,43605,43810,51581,52116,52239,73750,74040,74307 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH9i5cA4TMC-ujFmJG6btSyxY_s0DSjqgFYTgqm3KP4I6yUB2iLx38_Pddp1aBxy8lNi-73Y7_P3AA5kpdFKrijLnaZMq4pqkVpqmSn9bWgzHiA2BsO8f8VOR3wUHW6TmFbZnonhoLaNQR_5F6y4lGjN5d9ubil2jcLoamyh8QzWA1RVB9YPe8OfF4uzWKhQJ5woNJI4G8WymVg85y9HitnsGNVMqVq9mh7pm4_TJv-JnYYr6WQLXkRdknyfM38b1ly9AxtHbQu3Hdj8C23wJejefZQz0lQE23l61Zv8Cm57MghJlY6UtSUX7nqeHVsTbJWGBetkXBN8cROBVhHcOdAe382uyfF4YjAV9OEVXJ30Lo_6NLZYoIYlbEpFlhu_dpFqLVXq0jTRistSy0RXQpRaSG68wSdNliubZcylpbO54s4rSgZdqK-hUze1ewukSoQV3Hr1UFbMfS0lFiIar93lsnSZ5F341O5ucTNH0iiWmMnIiyLBB3lRqC7stgwo4l81KZYy0IX9xbDfUwxylLVrZkjDsBhYIM2bOb8Wn8s4xoG56IJY4eSCALG2V0fq8e-Aue3VXG9Y-Wl9bnm-nNb_V_Hu6VV8hI3-5eC8OP8xPHsPz9Mgi5hLuQud6d3MffD6zlTvRaH-A3Qi--4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLcYkxg8TIOxcezYMok3iOjapEmeponjxMZACMF0b1XzUXYvLdzHpP33xLn0bjcED32K1SaxG9vxzzbAvqw0eskVZbnTlGlVUS1SSy0zpdeGNuOhxMb5RX56w34M-CDin8YRVtmeieGgto3BO_IjzLiU6M3lR1WERVz2-l_v7il2kMJIa2yn8QJeiszrQS_bYjB3vhKhQsZwotBd4mwQE2hiGp1XkxRx7RjfTKlaVlKPLM_HAMr_oqhBOfXfwOtoVZJvMzHYhBVXb8Gr47aZ2xZs_FN38C3okz9R4khTEWzs6Y1w8itc4JPzAK90pKwtuXK3M5xsTbBpGqauk2FN8MVNLLmKZZ4DbW80vSW94dggKPTvNtz0T66PT2lstkANS9iEiiw3fu0i1Vqq1KVpohWXpZaJroQotZDceNdPmixXNsuYS0tnc8WdN5kMXqa-g9W6qd0OkCoRVnDrDUVZMfellJiSaLydl8vSZZJ34KDd3eJuVlOjWFRPRl4UCT7Ii0J1oNsyoIj_17hYSEMHPs-H_Z5iuKOsXTNFGoZpwQJp3s_4Nf9cxjEizEUHxBIn5wRYdXt5pB7-DtW3vcHrXSw_rcOW54tpPb2K3edX8QnWvDQXP79fnH2A9TSIIoIqu7A6GU3dnjd8JvpjkOgHIL3-vw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+Support+Vector+Machine+and+Regression+Modeling+in+Chemoinformatics+and+Drug+Discovery&rft.jtitle=Journal+of+computer-aided+molecular+design&rft.au=Rodr%C3%ADguez-P%C3%A9rez%2C+Raquel&rft.au=Bajorath%2C+J%C3%BCrgen&rft.date=2022-05-01&rft.pub=Springer+International+Publishing&rft.issn=0920-654X&rft.eissn=1573-4951&rft.volume=36&rft.issue=5&rft.spage=355&rft.epage=362&rft_id=info:doi/10.1007%2Fs10822-022-00442-9&rft_id=info%3Apmid%2F35304657&rft.externalDBID=PMC9325859 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-654X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-654X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-654X&client=summon |