Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery

The support vector machine (SVM) algorithm is one of the most widely used machine learning (ML) methods for predicting active compounds and molecular properties. In chemoinformatics and drug discovery, SVM has been a state-of-the-art ML approach for more than a decade. A unique attribute of SVM is t...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer-aided molecular design Vol. 36; no. 5; pp. 355 - 362
Main Authors Rodríguez-Pérez, Raquel, Bajorath, Jürgen
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.05.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The support vector machine (SVM) algorithm is one of the most widely used machine learning (ML) methods for predicting active compounds and molecular properties. In chemoinformatics and drug discovery, SVM has been a state-of-the-art ML approach for more than a decade. A unique attribute of SVM is that it operates in feature spaces of increasing dimensionality. Hence, SVM conceptually departs from the paradigm of low dimensionality that applies to many other methods for chemical space navigation. The SVM approach is applicable to compound classification, and ranking, multi-class predictions, and –in algorithmically modified form– regression modeling. In the emerging era of deep learning (DL), SVM retains its relevance as one of the premier ML methods in chemoinformatics, for reasons discussed herein. We describe the SVM methodology including strengths and weaknesses and discuss selected applications that have contributed to the evolution of SVM as a premier approach for compound classification, property predictions, and virtual compound screening.
AbstractList The support vector machine (SVM) algorithm is one of the most widely used machine learning (ML) methods for predicting active compounds and molecular properties. In chemoinformatics and drug discovery, SVM has been a state-of-the-art ML approach for more than a decade. A unique attribute of SVM is that it operates in feature spaces of increasing dimensionality. Hence, SVM conceptually departs from the paradigm of low dimensionality that applies to many other methods for chemical space navigation. The SVM approach is applicable to compound classification, and ranking, multi-class predictions, and -in algorithmically modified form- regression modeling. In the emerging era of deep learning (DL), SVM retains its relevance as one of the premier ML methods in chemoinformatics, for reasons discussed herein. We describe the SVM methodology including strengths and weaknesses and discuss selected applications that have contributed to the evolution of SVM as a premier approach for compound classification, property predictions, and virtual compound screening.
Author Bajorath, Jürgen
Rodríguez-Pérez, Raquel
Author_xml – sequence: 1
  givenname: Raquel
  surname: Rodríguez-Pérez
  fullname: Rodríguez-Pérez, Raquel
– sequence: 2
  givenname: Jürgen
  orcidid: 0000-0002-0557-5714
  surname: Bajorath
  fullname: Bajorath, Jürgen
  email: bajorath@bit.uni-bonn.de
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35304657$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URLeFP8ABReLCJa3jz_iChLYFKrWqxJe4WY4zybpK7MVOVuq_x-mWFjj0MJrDPPPOvHqP0IEPHhB6XeGTCmN5mipcE1LipTBjpFTP0KrikpZM8eoArbAiuBSc_TxERynd4LykBH6BDimnmAkuV6g534VhnlzwReiKr_N2G-JU_AA7hVhcGbtxHgrj2-IL9BFSWsCr0MLgfF84X6w3MAbnuxBHMzmb7tizOPfFmUs27CDevkTPOzMkeHXfj9H3j-ff1p_Ly-tPF-sPl6VlmE2lpMJmE5I0Ta0IEIIbxWvT1LjppDSNrLmVlawtFaqllAEx0ArFgQtsG1zRY_R-r7udmxFaC36KZtDb6EYTb3UwTv878W6j-7DTihJec5UF3t0LxPBrhjTpMXuAYTAewpw0EQwrJaUQGX37H3oT5uizvUwpVuc87iiyp2wMKUXoHp6psF4i1PsINV5qiVAvX7z528bDyp_MMkD3QMoj30N8vP2E7G9ayamM
CitedBy_id crossref_primary_10_1016_j_bspc_2023_105483
crossref_primary_10_1111_cns_13959
crossref_primary_10_3390_rs15061640
crossref_primary_10_4271_05_17_01_0008
crossref_primary_10_1016_j_compbiomed_2024_108702
crossref_primary_10_1016_j_compbiolchem_2024_108051
crossref_primary_10_1021_acs_molpharmaceut_3c01124
crossref_primary_10_1016_j_csbj_2024_07_003
crossref_primary_10_1177_00202940231173752
crossref_primary_10_3389_fphar_2023_1241677
crossref_primary_10_1080_07391102_2023_2291829
crossref_primary_10_7759_cureus_44359
crossref_primary_10_1007_s00726_023_03368_0
crossref_primary_10_1016_j_nhres_2023_10_001
crossref_primary_10_1016_j_jhazmat_2023_132565
crossref_primary_10_2147_CMAR_S451871
crossref_primary_10_3390_ph16091259
crossref_primary_10_1515_htmp_2022_0261
crossref_primary_10_3390_ph16030332
crossref_primary_10_1016_j_arr_2023_102172
crossref_primary_10_1093_ijlct_ctae024
crossref_primary_10_3390_inventions8020056
crossref_primary_10_1051_e3sconf_202336701004
crossref_primary_10_1016_j_talanta_2023_124895
crossref_primary_10_1177_01617346231220000
crossref_primary_10_1016_j_isci_2024_110041
crossref_primary_10_3390_s23104786
crossref_primary_10_1039_D2NJ04753E
crossref_primary_10_1021_acsomega_3c09047
crossref_primary_10_1016_j_wneu_2024_04_117
crossref_primary_10_13005_bbra_3198
crossref_primary_10_1016_j_ijbiomac_2023_124761
crossref_primary_10_1016_j_scitotenv_2024_173748
crossref_primary_10_3390_ddc2020017
crossref_primary_10_1007_s42108_024_00287_y
crossref_primary_10_3390_su151813592
crossref_primary_10_3897_pharmacia_71_e122507
crossref_primary_10_1021_acs_jpcc_3c05540
crossref_primary_10_1615_HeatTransRes_2023049494
crossref_primary_10_1016_j_pdpdt_2024_104010
crossref_primary_10_1002_agt2_365
crossref_primary_10_3390_lubricants11090356
crossref_primary_10_1021_acssensors_3c01741
crossref_primary_10_3389_fcvm_2024_1344170
crossref_primary_10_1016_j_jafr_2024_101085
crossref_primary_10_1007_s10439_023_03303_0
crossref_primary_10_3390_jcs7100420
crossref_primary_10_1007_s11096_024_01724_y
crossref_primary_10_1016_j_buildenv_2024_111756
crossref_primary_10_1007_s44254_023_00047_x
crossref_primary_10_1016_j_cherd_2024_04_033
Cites_doi 10.1021/ci300306a
10.1021/ci5003944
10.2174/157340910790980124
10.1111/cbdd.12294
10.1016/j.neucom.2010.02.016
10.1021/ci7004753
10.1021/jm201706b
10.1002/minf.201100059
10.1007/978-1-4757-2440-0
10.1517/17460441.2014.866943
10.1021/ci025569t
10.1021/ci060117s
10.1517/17460441.2013.761204
10.1021/acs.jcim.5b00175
10.1016/j.drudis.2018.01.039
10.1021/ci800022e
10.1023/B:STCO.0000035301.49549.88
10.1016/S0097-8485(01)00094-8
10.1021/ci9002624
10.1371/journal.pone.0119301
10.1021/ci200409x
10.1021/mp100179t
10.1021/ci800366f
10.1021/ci900004a
10.1093/bioinformatics/btn409
10.1021/ci900450m
10.1016/j.neunet.2005.07.009
10.1021/ci034160g
10.1021/ci100091e
10.1021/ci049732r
10.1145/130385.130401
10.1080/17460441.2016.1201262
10.1016/j.chembiol.2013.01.011
10.1021/acs.jcim.6b00359
10.1016/j.jmgm.2011.09.002
10.1021/acs.jcim.7b00274
10.1021/acs.jcim.7b00088
10.1021/acsomega.7b01079
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
NPM
AAYXX
CITATION
3V.
7SC
7X7
7XB
88E
88I
8AL
8AO
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
KB.
L7M
L~C
L~D
M0N
M0S
M1P
M2P
P5Z
P62
PCBAR
PDBOC
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1007/s10822-022-00442-9
DatabaseName SpringerOpen
PubMed
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Journals (ProQuest Database)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
Materials science collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Medical Library (Alumni)
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

Computer Science Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1573-4951
EndPage 362
ExternalDocumentID 10_1007_s10822_022_00442_9
35304657
Genre Journal Article
GrantInformation_xml – fundername: Rheinische Friedrich-Wilhelms-Universität Bonn (1040)
– fundername: ;
GroupedDBID ---
-4Y
-58
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.GJ
.VR
06C
06D
0R~
0VY
186
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AABYN
AAFGU
AAGCJ
AAHNG
AAIAL
AAIKT
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUCO
AAUYE
AAWCG
AAYFA
AAYIU
AAYOK
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJGSW
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
D-I
D1I
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMB
EMK
EMOBN
EPAXT
EPL
ESBYG
ESTFP
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KB.
KDC
KOV
KOW
LAK
LK5
LLZTM
M0N
M1P
M2P
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9N
PCBAR
PDBOC
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
Y6R
YLTOR
Z45
Z7U
Z7V
Z7W
Z7X
Z83
Z87
Z8O
Z91
ZMTXR
~8M
~A9
~EX
AACDK
AAJBT
AASML
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
ALIPV
NPM
AAEOY
AAYXX
ABQSL
AGJZZ
CITATION
H13
7SC
7XB
8AL
8FD
8FK
JQ2
K9.
L7M
L~C
L~D
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c404t-736c44272bb892e220b958ab80bf77ab785c7178c369d334e2aed695e560cb013
IEDL.DBID U2A
ISSN 0920-654X
IngestDate Tue Sep 17 20:47:04 EDT 2024
Sat Oct 26 01:18:17 EDT 2024
Tue Nov 19 07:08:31 EST 2024
Fri Dec 06 01:31:24 EST 2024
Wed Oct 16 00:43:03 EDT 2024
Sat Dec 16 12:07:21 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Support vector machines
Regression
Compound classification
Machine learning
Property prediction
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-736c44272bb892e220b958ab80bf77ab785c7178c369d334e2aed695e560cb013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0557-5714
OpenAccessLink http://link.springer.com/10.1007/s10822-022-00442-9
PMID 35304657
PQID 2694800466
PQPubID 54123
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9325859
proquest_miscellaneous_2640997766
proquest_journals_2694800466
crossref_primary_10_1007_s10822_022_00442_9
pubmed_primary_35304657
springer_journals_10_1007_s10822_022_00442_9
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Netherlands
– name: Dordrecht
PublicationSubtitle Incorporating Perspectives in Drug Discovery and Design
PublicationTitle Journal of computer-aided molecular design
PublicationTitleAbbrev J Comput Aided Mol Des
PublicationTitleAlternate J Comput Aided Mol Des
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References BurbridgeRTrotterMBuxtonBHoldenSDrug design by machine learning: support vector machines for pharmaceutical data analysisComput Chem20012651410.1016/S0097-8485(01)00094-8
SvetnikVLiawATongCCulbersonJCSheridanRPFeustonBPRandom forest: a classification and regression tool for compound classification and QSAR modelingJ Chem Inf Comput Sci200343194719581:CAS:528:DC%2BD3sXos1Wiu7s%3D1463244510.1021/ci034160g
HeikampKBajorathJSupport vector machines for drug discoveryExpert Opin Drug Discov20149931041:CAS:528:DC%2BC3sXhvFels7zL2430404410.1517/17460441.2014.866943
MaXHWangRTanCYJiangYYLuTRaoHBLiXYGoMLLowBCChenYZVirtual screening of selective multitarget kinase inhibitors by combinatorial support vector machinesMol Pharm20107154515601:CAS:528:DC%2BC3cXhtVKrtrjE2071232710.1021/mp100179t
Rodríguez-PérezRVogtMBajorathJInfluence of varying training set composition and size on support vector machine-based prediction of active compoundsJ Chem Inf Model20175771071628376613541759410.1021/acs.jcim.7b000881:CAS:528:DC%2BC2sXlsVygtbw%3D
PeltasonLIyerPBajorathJRationalizing three-dimensional activity landscapes and the influence of molecular representations on landscape topology and formation of activity cliffsJ Chem Inf Model201050102110331:CAS:528:DC%2BC3cXls1Shurk%3D2044360310.1021/ci100091e
HeikampKHuXYanABajorathJPrediction of activity cliffs using support vector machinesJ Chem Inf Model201252235423651:CAS:528:DC%2BC38Xht1SlsrvI2289465510.1021/ci300306a
PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: Machine Learning in PythonJ Mach Learn Res20111228252830
Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Proceedings of the 5th annual workshop on computational learning theory: Pittsburgh, Pennsylvania, pp 144–152
HasegawaKFunatsuKNon-linear modeling and chemical interpretation with aid of support vector machine and regressionCurr Comput-Aided Drug Des2010624361:CAS:528:DC%2BC3cXkt1eru7k%3D2037069310.2174/157340910790980124
MaggioraGMOn outliers and activity cliffs: Why QSAR often disappointsJ Chem Inf Model200646153515351:CAS:528:DC%2BD28XntFeltbk%3D1685928510.1021/ci060117s
ChenHEngkvistOWangYOlivecronaMBlaschkeTThe Rise of Deep Learning in Drug DiscoveryDrug Discov Today201823124112502936676210.1016/j.drudis.2018.01.039
PolishchukPInterpretation of quantitative structure-activity relationship models: Past, present, and futureJ Chem Inf Model201757261826391:CAS:528:DC%2BC2sXhsFGgt7rI2894952010.1021/acs.jcim.7b00274
BalferJBajorathJSystematic artifacts in support vector regression-based compound potency prediction revealed by statistical and activity landscape analysisPLoS ONE201510011930110.1371/journal.pone.01193011:CAS:528:DC%2BC2MXhslWqtbfJ
KawaiKFujishimaSTakahashiYPredictive activity profiling of drugs by topological-fragment-spectra-based support vector machinesJ Chem Inf Model200848115211601:CAS:528:DC%2BD1cXmvVGrt7w%3D1853371210.1021/ci7004753
EkinsSReynoldsRCKimHKooMSEkonomidisMTalaueMPagetSDWoolhiserLKLenaertsAJBuninBAConnellNBayesian models leveraging bioactivity and cytotoxicity information for drug discoveryChem Biol2013203703781:CAS:528:DC%2BC3sXksFOgt7g%3D23521795360796210.1016/j.chembiol.2013.01.011
WassermannAMGeppertHBajorathJLigand prediction for orphan targets using support vector machines and various target-ligands kernels is dominated by nearest neighbor effectsJ Chem Inf Model200949215521671:CAS:528:DC%2BD1MXhtFOksLzN1978057610.1021/ci9002624
VapnikVEstimation of dependencies based on empirical data1982New YorkSpringer
CortesCVapnikVSupport-vector networksMach Learn199520273297
WarmuthMKLiaoJRätschGMathiesonMPuttaSLemmenCActive learning with support vector machines in the drug discovery processJ Chem Inf Model2003436676731:CAS:528:DC%2BD3sXhtVOjtbk%3D
BaskinIIWinklerDTetkoIVA Renaissance of Neural Networks in Drug DiscoveryExpert Opin Drug Discov2016117857951:CAS:528:DC%2BC28XhtFehsrvJ2729554810.1080/17460441.2016.1201262
HussainJReaCComputationally efficient algorithm to identify matched molecular pairs (MMPs) in large data setsJ Chem Inf Model2010503393481:CAS:528:DC%2BC3cXhtlWltr4%3D2012104510.1021/ci900450m
VarnekABaskinIMachine learning methods for property prediction in chemoinformaticsQuo vadis? J Chem Inf Model201252141314371:CAS:528:DC%2BC38XmvV2ntL4%3D10.1021/ci200409x
Rodríguez-PérezRVogtMBajorathJSupport vector machine classification and regression prioritize different structural features for binary compound activity and potency value predictionACS Omega201726371637930023518604536710.1021/acsomega.7b010791:CAS:528:DC%2BC2sXhsF2gsbrL
SaehJLynePDTakasakiBKCosgroveDALead hopping using SVM and 3D pharmacophore fingerprintsJ Chem Inf Model200545112211331:CAS:528:DC%2BD2MXlvVegs7Y%3D1604530710.1021/ci049732r
BalferJBajorathJVisualization and interpretation of support vector machine activity predictionsJ Chem Inf Model201555113611471:CAS:528:DC%2BC2MXosFGkurs%3D2598827410.1021/acs.jcim.5b00175
KarSRoyKHow far can virtual screening take us in drug discovery?Expert Opin Drug Discov201382452611:CAS:528:DC%2BC3sXjtF2htLk%3D2333066010.1517/17460441.2013.761204
HansenKBaehrensDSchroeterTRuppMMüllerKRVisual interpretation of kernel-based prediction modelsMol Inf2011308178261:CAS:528:DC%2BC3MXhtFGltLbP10.1002/minf.201100059
SmolaAJSchölkopfBA tutorial on support vector regressionStat Comput20041419922210.1023/B:STCO.0000035301.49549.88
VapnikVThe nature of statistical learning theory1995New YorkSpringer10.1007/978-1-4757-2440-0
BalferJHeikampKLauferSBajorathJModeling of compound profiling experiments using support vector machinesChem Biol Drug Des20148475851:CAS:528:DC%2BC2cXhtVShsb%2FF2447257010.1111/cbdd.12294
De la Vegade LeónABajorathJPrediction of Compound Potency Changes in Matched Molecular Pairs Using Support Vector RegressionJ Chem Inf Model2014542654266310.1021/ci50039441:CAS:528:DC%2BC2cXhsVykurjJ
MaXHWangRYangSYXueYWeiYCLowBCChenYZEvaluation of virtual screening performance using support vector machines trained by sparsely distributed active compoundsJ Chem Inf Model200848122712371:CAS:528:DC%2BD1cXmvVGrt70%3D1853364410.1021/ci800022e
BarakatNBradleyAPRule extraction from support vector machines: A reviewNeurocomputing20107417819010.1016/j.neucom.2010.02.016
IoossBSaltelliAHigdonROwhadiDIntroduction to sensitivity analysis. Handbook of Uncertainty Quantification. Ghanem2016ChamSpringer International Publishing120
ShiZMaXHQinCJiaJJiangYYTanCYChenYZCombinatorial support vector machines approach for virtual screening of selective multi-target serotonin reuptake inhibitors from large compounds librariesJ Mol Graph Model20123249661:CAS:528:DC%2BC3MXhsFertb7J2206436710.1016/j.jmgm.2011.09.002
VapnikVEstimation of dependencies based on empirical data [in Russian]1979MoscowNauka
Lundberg SM, Lee S (2017) A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems 30 (NIPS)
JacobLVertJPProtein-ligand interaction prediction: an improved chemogenomics approachBioinformatics200824214921561:CAS:528:DC%2BD1cXhtFOgs77K18676415255344110.1093/bioinformatics/btn409
RalaivolaLSwamidassSJSaigoHBaldiPGraph kernels for chemical informaticsNeural Netw200518109311101615747110.1016/j.neunet.2005.07.009
SchuffenhauerAFloersheimPAcklinPJacobyESimilarity metrics for ligands reflecting the similarity of the target proteinsJ Chem Inf Comput Sci2003433914051:CAS:528:DC%2BD38XpsVejs7s%3D1265350110.1021/ci025569t
BishopCPattern recognition and machine learning2006New YorkSpringer
GeppertHHumrichJStumpfeDGärtnerTBajorathJLigand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptorsJ Chem Inf Model2009497677791:CAS:528:DC%2BD1MXjsFKlurc%3D1930911410.1021/ci900004a
Horvath D, Marcou G, Varnek A, de la Kayastha S, Bajorath J (2016) Prediction of activity cliffs using condensed graphs of reaction representations, descriptor recombination, support vector machine classification, and support vector regression. J Chem Inf Model 56:1631–1640
ZernovVVBalakinKVIvaschenkoAASavchukNPPletnevIVDrug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictionsJ Chem Inf Model200343204820561:CAS:528:DC%2BD3sXotFSht7w%3D
TangHWangXSHuangXRothBLButlerKVKozikowskiAPJungMTropshaANovel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validationJ Chem Inf Model2009494614761:CAS:528:DC%2BD1MXht1agt7g%3D1918286010.1021/ci800366f
StumpfeDBajorathJExploring activity cliffs in medicinal chemistryJ Med Chem201255293229421:CAS:528:DC%2BC38XmtFajsQ%3D%3D2223625010.1021/jm201706b
S Kar (442_CR19) 2013; 8
K Heikamp (442_CR36) 2012; 52
J Hussain (442_CR35) 2010; 50
MK Warmuth (442_CR7) 2003; 43
AM Wassermann (442_CR32) 2009; 49
V Vapnik (442_CR2) 1982
V Vapnik (442_CR1) 1979
XH Ma (442_CR25) 2010; 7
Z Shi (442_CR26) 2012; 32
442_CR48
K Kawai (442_CR27) 2008; 48
A Varnek (442_CR11) 2012; 52
V Vapnik (442_CR4) 1995
K Hasegawa (442_CR18) 2010; 6
AJ Smola (442_CR5) 2004; 14
V Svetnik (442_CR9) 2003; 43
R Rodríguez-Pérez (442_CR40) 2017; 57
II Baskin (442_CR12) 2016; 11
D Stumpfe (442_CR34) 2012; 55
J Saeh (442_CR20) 2005; 45
C Bishop (442_CR39) 2006
C Cortes (442_CR3) 1995; 20
N Barakat (442_CR43) 2010; 74
J Balfer (442_CR28) 2014; 84
L Jacob (442_CR29) 2008; 24
GM Maggiora (442_CR33) 2006; 46
P Polishchuk (442_CR42) 2017; 57
K Hansen (442_CR44) 2011; 30
B Iooss (442_CR47) 2016
J Balfer (442_CR14) 2015; 10
H Tang (442_CR23) 2009; 49
442_CR38
442_CR15
R Rodríguez-Pérez (442_CR46) 2017; 2
K Heikamp (442_CR17) 2014; 9
A Schuffenhauer (442_CR30) 2003; 43
L Ralaivola (442_CR16) 2005; 18
VV Zernov (442_CR8) 2003; 43
XH Ma (442_CR21) 2008; 48
A de León (442_CR37) 2014; 54
S Ekins (442_CR10) 2013; 20
XH Ma (442_CR22) 2010; 7
F Pedregosa (442_CR24) 2011; 12
H Geppert (442_CR31) 2009; 49
L Peltason (442_CR41) 2010; 50
R Burbridge (442_CR6) 2001; 26
H Chen (442_CR13) 2018; 23
J Balfer (442_CR45) 2015; 55
References_xml – volume: 43
  start-page: 2048
  year: 2003
  ident: 442_CR8
  publication-title: J Chem Inf Model
  contributor:
    fullname: VV Zernov
– volume: 52
  start-page: 2354
  year: 2012
  ident: 442_CR36
  publication-title: J Chem Inf Model
  doi: 10.1021/ci300306a
  contributor:
    fullname: K Heikamp
– volume: 54
  start-page: 2654
  year: 2014
  ident: 442_CR37
  publication-title: J Chem Inf Model
  doi: 10.1021/ci5003944
  contributor:
    fullname: A de León
– volume: 6
  start-page: 24
  year: 2010
  ident: 442_CR18
  publication-title: Curr Comput-Aided Drug Des
  doi: 10.2174/157340910790980124
  contributor:
    fullname: K Hasegawa
– volume: 84
  start-page: 75
  year: 2014
  ident: 442_CR28
  publication-title: Chem Biol Drug Des
  doi: 10.1111/cbdd.12294
  contributor:
    fullname: J Balfer
– volume: 74
  start-page: 178
  year: 2010
  ident: 442_CR43
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.02.016
  contributor:
    fullname: N Barakat
– volume: 48
  start-page: 1152
  year: 2008
  ident: 442_CR27
  publication-title: J Chem Inf Model
  doi: 10.1021/ci7004753
  contributor:
    fullname: K Kawai
– volume: 55
  start-page: 2932
  year: 2012
  ident: 442_CR34
  publication-title: J Med Chem
  doi: 10.1021/jm201706b
  contributor:
    fullname: D Stumpfe
– volume: 30
  start-page: 817
  year: 2011
  ident: 442_CR44
  publication-title: Mol Inf
  doi: 10.1002/minf.201100059
  contributor:
    fullname: K Hansen
– volume-title: The nature of statistical learning theory
  year: 1995
  ident: 442_CR4
  doi: 10.1007/978-1-4757-2440-0
  contributor:
    fullname: V Vapnik
– volume: 9
  start-page: 93
  year: 2014
  ident: 442_CR17
  publication-title: Expert Opin Drug Discov
  doi: 10.1517/17460441.2014.866943
  contributor:
    fullname: K Heikamp
– volume: 43
  start-page: 391
  year: 2003
  ident: 442_CR30
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci025569t
  contributor:
    fullname: A Schuffenhauer
– volume: 43
  start-page: 667
  year: 2003
  ident: 442_CR7
  publication-title: J Chem Inf Model
  contributor:
    fullname: MK Warmuth
– volume: 12
  start-page: 2825
  year: 2011
  ident: 442_CR24
  publication-title: J Mach Learn Res
  contributor:
    fullname: F Pedregosa
– volume: 46
  start-page: 1535
  year: 2006
  ident: 442_CR33
  publication-title: J Chem Inf Model
  doi: 10.1021/ci060117s
  contributor:
    fullname: GM Maggiora
– start-page: 1
  volume-title: Introduction to sensitivity analysis. Handbook of Uncertainty Quantification. Ghanem
  year: 2016
  ident: 442_CR47
  contributor:
    fullname: B Iooss
– volume: 8
  start-page: 245
  year: 2013
  ident: 442_CR19
  publication-title: Expert Opin Drug Discov
  doi: 10.1517/17460441.2013.761204
  contributor:
    fullname: S Kar
– volume: 55
  start-page: 1136
  year: 2015
  ident: 442_CR45
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.5b00175
  contributor:
    fullname: J Balfer
– volume: 23
  start-page: 1241
  year: 2018
  ident: 442_CR13
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2018.01.039
  contributor:
    fullname: H Chen
– volume-title: Estimation of dependencies based on empirical data [in Russian]
  year: 1979
  ident: 442_CR1
  contributor:
    fullname: V Vapnik
– volume: 48
  start-page: 1227
  year: 2008
  ident: 442_CR21
  publication-title: J Chem Inf Model
  doi: 10.1021/ci800022e
  contributor:
    fullname: XH Ma
– volume: 14
  start-page: 199
  year: 2004
  ident: 442_CR5
  publication-title: Stat Comput
  doi: 10.1023/B:STCO.0000035301.49549.88
  contributor:
    fullname: AJ Smola
– volume: 26
  start-page: 5
  year: 2001
  ident: 442_CR6
  publication-title: Comput Chem
  doi: 10.1016/S0097-8485(01)00094-8
  contributor:
    fullname: R Burbridge
– volume: 49
  start-page: 2155
  year: 2009
  ident: 442_CR32
  publication-title: J Chem Inf Model
  doi: 10.1021/ci9002624
  contributor:
    fullname: AM Wassermann
– volume: 10
  start-page: 0119301
  year: 2015
  ident: 442_CR14
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0119301
  contributor:
    fullname: J Balfer
– volume: 52
  start-page: 1413
  year: 2012
  ident: 442_CR11
  publication-title: Quo vadis? J Chem Inf Model
  doi: 10.1021/ci200409x
  contributor:
    fullname: A Varnek
– volume: 7
  start-page: 1545
  year: 2010
  ident: 442_CR22
  publication-title: Mol Pharm
  doi: 10.1021/mp100179t
  contributor:
    fullname: XH Ma
– volume: 49
  start-page: 461
  year: 2009
  ident: 442_CR23
  publication-title: J Chem Inf Model
  doi: 10.1021/ci800366f
  contributor:
    fullname: H Tang
– volume: 49
  start-page: 767
  year: 2009
  ident: 442_CR31
  publication-title: J Chem Inf Model
  doi: 10.1021/ci900004a
  contributor:
    fullname: H Geppert
– volume-title: Pattern recognition and machine learning
  year: 2006
  ident: 442_CR39
  contributor:
    fullname: C Bishop
– volume: 24
  start-page: 2149
  year: 2008
  ident: 442_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn409
  contributor:
    fullname: L Jacob
– volume: 50
  start-page: 339
  year: 2010
  ident: 442_CR35
  publication-title: J Chem Inf Model
  doi: 10.1021/ci900450m
  contributor:
    fullname: J Hussain
– volume: 18
  start-page: 1093
  year: 2005
  ident: 442_CR16
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2005.07.009
  contributor:
    fullname: L Ralaivola
– volume: 7
  start-page: 1545
  year: 2010
  ident: 442_CR25
  publication-title: Mol Pharm
  doi: 10.1021/mp100179t
  contributor:
    fullname: XH Ma
– ident: 442_CR48
– volume: 43
  start-page: 1947
  year: 2003
  ident: 442_CR9
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci034160g
  contributor:
    fullname: V Svetnik
– volume: 50
  start-page: 1021
  year: 2010
  ident: 442_CR41
  publication-title: J Chem Inf Model
  doi: 10.1021/ci100091e
  contributor:
    fullname: L Peltason
– volume: 45
  start-page: 1122
  year: 2005
  ident: 442_CR20
  publication-title: J Chem Inf Model
  doi: 10.1021/ci049732r
  contributor:
    fullname: J Saeh
– volume: 20
  start-page: 273
  year: 1995
  ident: 442_CR3
  publication-title: Mach Learn
  contributor:
    fullname: C Cortes
– ident: 442_CR15
  doi: 10.1145/130385.130401
– volume: 11
  start-page: 785
  year: 2016
  ident: 442_CR12
  publication-title: Expert Opin Drug Discov
  doi: 10.1080/17460441.2016.1201262
  contributor:
    fullname: II Baskin
– volume: 20
  start-page: 370
  year: 2013
  ident: 442_CR10
  publication-title: Chem Biol
  doi: 10.1016/j.chembiol.2013.01.011
  contributor:
    fullname: S Ekins
– ident: 442_CR38
  doi: 10.1021/acs.jcim.6b00359
– volume: 32
  start-page: 49
  year: 2012
  ident: 442_CR26
  publication-title: J Mol Graph Model
  doi: 10.1016/j.jmgm.2011.09.002
  contributor:
    fullname: Z Shi
– volume-title: Estimation of dependencies based on empirical data
  year: 1982
  ident: 442_CR2
  contributor:
    fullname: V Vapnik
– volume: 57
  start-page: 2618
  year: 2017
  ident: 442_CR42
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.7b00274
  contributor:
    fullname: P Polishchuk
– volume: 57
  start-page: 710
  year: 2017
  ident: 442_CR40
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.7b00088
  contributor:
    fullname: R Rodríguez-Pérez
– volume: 2
  start-page: 6371
  year: 2017
  ident: 442_CR46
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b01079
  contributor:
    fullname: R Rodríguez-Pérez
SSID ssj0007960
Score 2.599426
Snippet The support vector machine (SVM) algorithm is one of the most widely used machine learning (ML) methods for predicting active compounds and molecular...
SourceID pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 355
SubjectTerms Algorithms
Animal Anatomy
Chemistry
Chemistry and Materials Science
Classification
Computer Applications in Chemistry
Deep learning
Evolution
Histology
Machine learning
Modelling
Morphology
Perspective
Physical Chemistry
Space navigation
Support vector machines
SummonAdditionalLinks – databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH_i4zB2mICNrawgI3HbLIJjx_ZpmoAKIcEBwdRbFH8EekkYbZH47_FznZaCtkNOthLb78Xv974BDlVtUEuuKS-8odzomhrJHHXcVkEaulzEEhuXV8X5Lb8YimEyuI1TWGV3J8aL2rUWbeRHmHGpUJsrfj38pdg1Cr2rqYXGKqwfsyCZAj_L4VzhyqSOWcKZRhVJ8GFKmkmpc0E0UoxlR58mo3pZML1Dm--DJt94TqNAGmzCp4Qkye8Z6bdgxTfb8OGka-C2DR9f1Rr8DObsKXEZaWuCzTwD8CZ_otGeXMaQSk-qxpFrfzeLjW0INkrDdHUyagi-uE1lVrG0c5x7-ji9I6ejscVA0OcvcDs4uzk5p6nBArU84xMq88KGvUtmjNLMM5YZLVRlVGZqKSsjlbBB3VM2L7TLc-5Z5V2hhQ8wyaIBdQfWmrbx34DUmXRSuAAOVc39caUwDdEGbFeoyudK9OBHd7rlw6yORrmomIy0KDN8kBal7kG_I0CZ_qlxueCAHhzMh8OZooujanw7xTkcU4Elzvk6o9f8c7lAL7CQPZBLlJxPwErbyyPN6D5W3A4gN6hVYVk_O5ovlvXvXez-fxffYYNF_sPoyT6sTR6nfi8gnInZj2z8AmiB95g
  priority: 102
  providerName: ProQuest
Title Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery
URI https://link.springer.com/article/10.1007/s10822-022-00442-9
https://www.ncbi.nlm.nih.gov/pubmed/35304657
https://www.proquest.com/docview/2694800466
https://search.proquest.com/docview/2640997766
https://pubmed.ncbi.nlm.nih.gov/PMC9325859
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xOLB7QMA-KI_KK3HbtZR17Ng-ltKCQKAVoqh7iuLEYXtJEbQr7b_fGTdpKY8DhyRSPHJsj-P5xvMwwJEpHWnJJZeJd1w6W3KnRcELmWcoDYtYhRQbl1fJ2UCeD9VwEccdnN0bi2RYqJ_EuqEs4-R8TkZIwe0qrCN4iGkqD0RnvvxqG0KDI0t6kZLDOlLm9TqWpdELiPnSU_KZuTRIof4WbNbwkXVm_N6GFV_twEa3ObVtBz4-STD4CVzvbz212LhkdIInom12G3bq2WXwo_Qsqwp27e9mDrEVo9PRKEadjSpGFY_r3KqUzznQnjxM79jJ6DEn789_n2HQ7910z3h9qgLPZSQnXMdJjn3XwjljhRciclaZzJnIlVpnThuVo45n8jixRRxLLzJfJFZ5xEY57Zp-gbVqXPldYGWkC60KRISmlP5nZij2MEdAl5jMx0a14Hszuun9LHlGukiTTLxII7qIF6ltwUHDgLT-kR5TCrQ1pMQnLfg2L8YxJbtGVvnxlGgkxf9qovk649f8c7Ei06_SLdBLnJwTUHrt5ZJq9Cek2UZki7oUNutHw_NFs97uxd77yPfhgwjzkVwoD2Bt8jD1hwhzJq4Nq3qo8W76p21Y75z-vujh87h39esa33aTbjtM_P_7TPne
link.rule.ids 230,315,781,785,886,12061,12770,21393,27929,27930,31724,31725,33378,33379,33749,33750,41086,41125,41528,42155,42194,42597,43315,43605,43810,51581,52116,52239,73750,74040,74307
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH9i5cA4TMC-ujFmJG6btSyxY_s0DSjqgFYTgqm3KP4I6yUB2iLx38_Pddp1aBxy8lNi-73Y7_P3AA5kpdFKrijLnaZMq4pqkVpqmSn9bWgzHiA2BsO8f8VOR3wUHW6TmFbZnonhoLaNQR_5F6y4lGjN5d9ubil2jcLoamyh8QzWA1RVB9YPe8OfF4uzWKhQJ5woNJI4G8WymVg85y9HitnsGNVMqVq9mh7pm4_TJv-JnYYr6WQLXkRdknyfM38b1ly9AxtHbQu3Hdj8C23wJejefZQz0lQE23l61Zv8Cm57MghJlY6UtSUX7nqeHVsTbJWGBetkXBN8cROBVhHcOdAe382uyfF4YjAV9OEVXJ30Lo_6NLZYoIYlbEpFlhu_dpFqLVXq0jTRistSy0RXQpRaSG68wSdNliubZcylpbO54s4rSgZdqK-hUze1ewukSoQV3Hr1UFbMfS0lFiIar93lsnSZ5F341O5ucTNH0iiWmMnIiyLBB3lRqC7stgwo4l81KZYy0IX9xbDfUwxylLVrZkjDsBhYIM2bOb8Wn8s4xoG56IJY4eSCALG2V0fq8e-Aue3VXG9Y-Wl9bnm-nNb_V_Hu6VV8hI3-5eC8OP8xPHsPz9Mgi5hLuQud6d3MffD6zlTvRaH-A3Qi--4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLcYkxg8TIOxcezYMok3iOjapEmeponjxMZACMF0b1XzUXYvLdzHpP33xLn0bjcED32K1SaxG9vxzzbAvqw0eskVZbnTlGlVUS1SSy0zpdeGNuOhxMb5RX56w34M-CDin8YRVtmeieGgto3BO_IjzLiU6M3lR1WERVz2-l_v7il2kMJIa2yn8QJeiszrQS_bYjB3vhKhQsZwotBd4mwQE2hiGp1XkxRx7RjfTKlaVlKPLM_HAMr_oqhBOfXfwOtoVZJvMzHYhBVXb8Gr47aZ2xZs_FN38C3okz9R4khTEWzs6Y1w8itc4JPzAK90pKwtuXK3M5xsTbBpGqauk2FN8MVNLLmKZZ4DbW80vSW94dggKPTvNtz0T66PT2lstkANS9iEiiw3fu0i1Vqq1KVpohWXpZaJroQotZDceNdPmixXNsuYS0tnc8WdN5kMXqa-g9W6qd0OkCoRVnDrDUVZMfellJiSaLydl8vSZZJ34KDd3eJuVlOjWFRPRl4UCT7Ii0J1oNsyoIj_17hYSEMHPs-H_Z5iuKOsXTNFGoZpwQJp3s_4Nf9cxjEizEUHxBIn5wRYdXt5pB7-DtW3vcHrXSw_rcOW54tpPb2K3edX8QnWvDQXP79fnH2A9TSIIoIqu7A6GU3dnjd8JvpjkOgHIL3-vw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+Support+Vector+Machine+and+Regression+Modeling+in+Chemoinformatics+and+Drug+Discovery&rft.jtitle=Journal+of+computer-aided+molecular+design&rft.au=Rodr%C3%ADguez-P%C3%A9rez%2C+Raquel&rft.au=Bajorath%2C+J%C3%BCrgen&rft.date=2022-05-01&rft.pub=Springer+International+Publishing&rft.issn=0920-654X&rft.eissn=1573-4951&rft.volume=36&rft.issue=5&rft.spage=355&rft.epage=362&rft_id=info:doi/10.1007%2Fs10822-022-00442-9&rft_id=info%3Apmid%2F35304657&rft.externalDBID=PMC9325859
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-654X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-654X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-654X&client=summon