SnO₂/graphene composite as a high stability electrode for lithium ion batteries
A simple solution-based synthesis route, based on an oxidation–reduction reaction between graphene oxide and SnCl₂•2H₂O, has been developed to produce a SnO₂/graphene composite. In the prepared composite, crystalline SnO₂ nanoparticles with sizes of 3–5nm uniformly clung to the graphene matrix. When...
Saved in:
Published in | Carbon (New York) Vol. 49; no. 1; pp. 133 - 139 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A simple solution-based synthesis route, based on an oxidation–reduction reaction between graphene oxide and SnCl₂•2H₂O, has been developed to produce a SnO₂/graphene composite. In the prepared composite, crystalline SnO₂ nanoparticles with sizes of 3–5nm uniformly clung to the graphene matrix. When used as an electrode material for lithium ion batteries, the composite presented excellent rate performance and high cyclic stability. The effect of SnO₂/graphene ratio on electrochemical performance has been investigated. It was found that the optimum molar ratio of SnO₂/graphene was about 3.2:1, corresponding to 2.4 wt.% of graphene. The composite could deliver a charge capacity of 840mAh/g (with capacity retention of 86%) after 30 charge/discharge cycles at a current density of 67mA/g, and it could retain a charge capacity of about 590 and 270mAh/g after 50 cycles at the current density of 400 and 1000mA/g, respectively. |
---|---|
AbstractList | A simple solution-based synthesis route, based on an oxidation–reduction reaction between graphene oxide and SnCl₂•2H₂O, has been developed to produce a SnO₂/graphene composite. In the prepared composite, crystalline SnO₂ nanoparticles with sizes of 3–5nm uniformly clung to the graphene matrix. When used as an electrode material for lithium ion batteries, the composite presented excellent rate performance and high cyclic stability. The effect of SnO₂/graphene ratio on electrochemical performance has been investigated. It was found that the optimum molar ratio of SnO₂/graphene was about 3.2:1, corresponding to 2.4 wt.% of graphene. The composite could deliver a charge capacity of 840mAh/g (with capacity retention of 86%) after 30 charge/discharge cycles at a current density of 67mA/g, and it could retain a charge capacity of about 590 and 270mAh/g after 50 cycles at the current density of 400 and 1000mA/g, respectively. |
Author | Wang, Xuyang Yao, Ke Liu, Zhaoping Zhou, Xufeng Zhang, Jiangang |
Author_xml | – sequence: 1 fullname: Wang, Xuyang – sequence: 2 fullname: Zhou, Xufeng – sequence: 3 fullname: Yao, Ke – sequence: 4 fullname: Zhang, Jiangang – sequence: 5 fullname: Liu, Zhaoping |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23419459$$DView record in Pascal Francis |
BookMark | eNqFkc9qGzEQh0VwIU6aNwhEl0Iv6-jfale9FdOkhUAoac5iVjtry6xXjiQffPWj9kkq49BDLz0NM3y_YfjmisymMCEht5wtOOP6frNwELswLQQrI9YuWC0uyJy3jaxka_iMzBljbaWFkJfkKqVNaVXL1Zz8fJmefx-P96sIuzVOSF3Y7kLyGSkkCnTtV2uaMnR-9PlAcUSXY-iRDiHSMlr7_Zb6MNEOcsboMX0kHwYYE96812vy-vDt1_J79fT8-GP59alyiqlcaeU6oxH5YBxnDpzqUNWd1m1fC9UNfSOVNtqgEz1o0XCtpOJGglGu73knr8nn895dDG97TNlufXI4jjBh2CfLtZa1lg0TBf30jkJyMA4RJueT3UW_hXiw4rRY1aZw6sy5GFKKOPxFOLMn03Zjz6btybRlrS2mS-zLPzHnM-RiJUfw4__Cd-fwAMHCKpa7Xl8KUJcXNbVpufwD2AWS_g |
CODEN | CRBNAH |
CitedBy_id | crossref_primary_10_1007_s11581_021_04150_6 crossref_primary_10_1002_smll_201702614 crossref_primary_10_1016_j_jpowsour_2012_11_113 crossref_primary_10_4028_www_scientific_net_AMR_709_157 crossref_primary_10_1016_j_jpowsour_2012_05_084 crossref_primary_10_1039_D3SE00141E crossref_primary_10_1177_0021998316644856 crossref_primary_10_1021_la302162c crossref_primary_10_1016_j_electacta_2015_10_026 crossref_primary_10_1039_c3ra44109a crossref_primary_10_1016_j_hybadv_2024_100168 crossref_primary_10_1016_j_powtec_2017_09_004 crossref_primary_10_1039_c2nr31750h crossref_primary_10_1007_s11581_023_05093_w crossref_primary_10_1016_j_jallcom_2011_10_087 crossref_primary_10_1016_j_jelechem_2017_03_022 crossref_primary_10_1155_2015_965061 crossref_primary_10_1016_j_actamat_2016_04_010 crossref_primary_10_1002_er_4244 crossref_primary_10_1039_C8RA00958A crossref_primary_10_1002_chem_201500303 crossref_primary_10_1039_C4RA06678B crossref_primary_10_1039_C6RA19004A crossref_primary_10_1149_2_0341606jss crossref_primary_10_1016_j_apsusc_2017_06_052 crossref_primary_10_1039_C4CP02615B crossref_primary_10_1016_j_apenergy_2016_02_094 crossref_primary_10_1016_j_electacta_2022_141453 crossref_primary_10_1021_am201541s crossref_primary_10_1016_j_jpowsour_2010_12_021 crossref_primary_10_1002_adma_201201587 crossref_primary_10_1016_j_ssi_2023_116319 crossref_primary_10_1016_j_electacta_2011_09_008 crossref_primary_10_1016_j_electacta_2023_143255 crossref_primary_10_1016_j_arabjc_2015_09_007 crossref_primary_10_1016_j_electacta_2014_07_119 crossref_primary_10_1016_j_electacta_2016_01_079 crossref_primary_10_1016_j_physe_2019_113729 crossref_primary_10_1016_j_proeng_2015_01_140 crossref_primary_10_1016_j_snb_2015_08_020 crossref_primary_10_1088_2632_959X_ac6e78 crossref_primary_10_1016_j_jcis_2012_11_006 crossref_primary_10_1039_C1JM14199F crossref_primary_10_3390_cryst14090800 crossref_primary_10_1016_j_jallcom_2013_12_029 crossref_primary_10_1016_j_physb_2021_413621 crossref_primary_10_1016_j_tsf_2012_05_056 crossref_primary_10_1002_er_3143 crossref_primary_10_1002_adma_201603421 crossref_primary_10_1088_1757_899X_46_1_012005 crossref_primary_10_1007_s00604_014_1328_0 crossref_primary_10_1021_am505747w crossref_primary_10_1016_j_electacta_2015_01_007 crossref_primary_10_1002_ente_201801048 crossref_primary_10_1016_j_cej_2022_136052 crossref_primary_10_4028_www_scientific_net_AMR_785_786_808 crossref_primary_10_1039_c3ta11442b crossref_primary_10_1002_cssc_201300838 crossref_primary_10_1016_j_electacta_2011_01_126 crossref_primary_10_1016_j_matlet_2012_09_067 crossref_primary_10_1039_D1NR07040A crossref_primary_10_1039_c3ra42780c crossref_primary_10_1016_j_electacta_2018_09_086 crossref_primary_10_1021_acsami_5b08719 crossref_primary_10_1016_j_electacta_2013_07_197 crossref_primary_10_1007_s11172_018_2194_4 crossref_primary_10_1007_s12274_017_1756_3 crossref_primary_10_20964_2020_12_06 crossref_primary_10_1016_j_cej_2017_11_020 crossref_primary_10_1016_j_ceramint_2015_08_087 crossref_primary_10_1016_j_jpowsour_2011_07_061 crossref_primary_10_1039_C9NR01953G crossref_primary_10_1039_C4NR07068B crossref_primary_10_1039_C4RA13336F crossref_primary_10_1039_c3nr00085k crossref_primary_10_1016_j_apcatb_2019_117855 crossref_primary_10_1021_acssuschemeng_9b00641 crossref_primary_10_1016_j_ceramint_2021_05_163 crossref_primary_10_1016_j_electacta_2015_01_146 crossref_primary_10_1016_j_jallcom_2019_151793 crossref_primary_10_1021_acsnano_5b04138 crossref_primary_10_1039_C4EE02578D crossref_primary_10_1039_C2TA00064D crossref_primary_10_1016_j_electacta_2012_12_070 crossref_primary_10_1002_cssc_201200970 crossref_primary_10_1016_j_jpowsour_2013_01_025 crossref_primary_10_15407_nnn_18_04_1041 crossref_primary_10_1016_j_carbon_2015_12_074 crossref_primary_10_3389_fchem_2019_00878 crossref_primary_10_1111_jace_19010 crossref_primary_10_3390_cryst12020274 crossref_primary_10_1016_j_ssi_2012_08_014 crossref_primary_10_1021_jp3041499 crossref_primary_10_1016_j_jpowsour_2012_02_073 crossref_primary_10_1007_s10853_017_1194_3 crossref_primary_10_1016_j_jallcom_2015_08_199 crossref_primary_10_1016_j_jallcom_2018_08_076 crossref_primary_10_1021_cr4007335 crossref_primary_10_1002_smll_201203155 crossref_primary_10_1007_s10854_021_05478_5 crossref_primary_10_1021_nn201802c crossref_primary_10_1016_j_seppur_2018_11_044 crossref_primary_10_1007_s10853_015_9429_7 crossref_primary_10_1039_c1nr10577a crossref_primary_10_1007_s00289_018_2568_7 crossref_primary_10_1016_j_colsurfb_2018_02_040 crossref_primary_10_1007_s10800_018_1205_3 crossref_primary_10_1039_c3ra41485j crossref_primary_10_1080_28361466_2024_2350174 crossref_primary_10_1021_am2009635 crossref_primary_10_1002_admi_202202484 crossref_primary_10_1007_s40820_019_0296_7 crossref_primary_10_1039_C6RA21444D crossref_primary_10_1016_j_apsusc_2015_03_030 crossref_primary_10_1039_C8NJ02030B crossref_primary_10_1002_ppap_201400083 crossref_primary_10_1016_j_jelechem_2016_01_043 crossref_primary_10_1039_c2jm00120a crossref_primary_10_1039_C5NR04255K crossref_primary_10_1039_c3ra40873f crossref_primary_10_1016_j_jpowsour_2015_11_017 crossref_primary_10_1007_s11581_017_2261_0 crossref_primary_10_1016_j_memsci_2020_118368 crossref_primary_10_1134_S1023193524020095 crossref_primary_10_4028_www_scientific_net_AMR_774_776_640 crossref_primary_10_1007_s11595_013_0668_7 crossref_primary_10_1177_09544062211003607 crossref_primary_10_2139_ssrn_4159527 crossref_primary_10_1016_j_electacta_2011_07_100 crossref_primary_10_1016_j_apsusc_2012_01_119 crossref_primary_10_1039_C4NR04374J crossref_primary_10_1016_j_jallcom_2014_01_192 crossref_primary_10_2174_1573413716999210101122503 crossref_primary_10_4028_www_scientific_net_AMM_556_562_96 crossref_primary_10_1016_j_nanoen_2012_04_001 crossref_primary_10_1016_j_micromeso_2020_110853 crossref_primary_10_1002_aic_14133 crossref_primary_10_1002_smll_201202601 crossref_primary_10_1016_j_jpowsour_2012_09_041 crossref_primary_10_1016_j_commatsci_2012_10_027 crossref_primary_10_1016_j_electacta_2019_04_184 crossref_primary_10_1039_c2ra21740f crossref_primary_10_1039_c2jm32984k crossref_primary_10_1016_j_materresbull_2012_08_077 crossref_primary_10_1002_aenm_201502057 crossref_primary_10_1016_j_carbon_2016_01_008 crossref_primary_10_1016_j_jallcom_2015_02_160 crossref_primary_10_1016_j_mtener_2018_10_017 crossref_primary_10_1021_acs_energyfuels_3c01871 crossref_primary_10_1039_C4NR00916A crossref_primary_10_1002_er_8346 crossref_primary_10_1039_C6NR09689A crossref_primary_10_1039_c1ra00797a crossref_primary_10_1016_j_matpr_2022_10_272 crossref_primary_10_1016_j_jpowsour_2012_05_051 crossref_primary_10_1007_s11581_020_03678_3 crossref_primary_10_1016_j_matchemphys_2021_125488 crossref_primary_10_1016_j_physe_2012_05_023 crossref_primary_10_1021_acsami_5b02774 crossref_primary_10_1002_slct_202100877 crossref_primary_10_1016_j_electacta_2012_12_066 crossref_primary_10_1002_celc_201900235 crossref_primary_10_1039_C3TA13746E crossref_primary_10_1016_j_electacta_2016_04_077 crossref_primary_10_1016_j_ijhydene_2016_01_015 crossref_primary_10_1088_2053_1583_2_1_014005 crossref_primary_10_1007_s10971_012_2776_9 crossref_primary_10_1016_j_carbon_2016_02_032 crossref_primary_10_1016_j_electacta_2012_04_118 crossref_primary_10_1016_j_electacta_2015_07_080 crossref_primary_10_1016_j_jpowsour_2013_03_116 crossref_primary_10_1039_c3nr01233f crossref_primary_10_1134_S0036023616120147 crossref_primary_10_1002_aenm_201601424 crossref_primary_10_1016_j_jpowsour_2011_12_038 crossref_primary_10_1002_cssc_201500674 crossref_primary_10_1007_s00339_024_08221_z crossref_primary_10_1016_j_electacta_2023_143401 crossref_primary_10_1039_C1RA00260K crossref_primary_10_1039_C4RA04434G crossref_primary_10_1016_j_materresbull_2013_06_004 crossref_primary_10_1021_nl400269d crossref_primary_10_1016_j_mtcomm_2019_100713 crossref_primary_10_1021_ac5007365 crossref_primary_10_1002_smll_201503419 crossref_primary_10_1016_j_jallcom_2018_01_046 crossref_primary_10_1039_c2jm15865e crossref_primary_10_1016_j_ultsonch_2015_09_013 crossref_primary_10_1039_c1ee02168k crossref_primary_10_1021_acsanm_8b00586 crossref_primary_10_1021_acsaem_8b01408 crossref_primary_10_1016_j_cep_2013_05_008 crossref_primary_10_1016_j_jpowsour_2016_06_058 crossref_primary_10_1039_c0cp02477e crossref_primary_10_1016_j_ensm_2016_02_004 crossref_primary_10_1039_c1jm13263f crossref_primary_10_1557_opl_2013_1040 crossref_primary_10_3390_nano8110962 crossref_primary_10_1016_j_nanoen_2018_04_001 crossref_primary_10_1016_S1452_3981_23_18426_4 crossref_primary_10_1039_C4TA01850H crossref_primary_10_1016_j_ssi_2019_03_011 crossref_primary_10_1039_c2cs35105f crossref_primary_10_1002_qua_26871 crossref_primary_10_1007_s11581_012_0813_x crossref_primary_10_1016_j_jallcom_2014_11_209 crossref_primary_10_1039_C1CY00361E crossref_primary_10_1039_C1NR10962F crossref_primary_10_1039_c1cc13584h crossref_primary_10_1016_j_jallcom_2020_153686 crossref_primary_10_1007_s10854_018_8690_3 crossref_primary_10_1016_j_electacta_2017_04_031 crossref_primary_10_1039_c4ta01493f crossref_primary_10_1039_c3ra43905d crossref_primary_10_1002_adma_201104993 crossref_primary_10_1002_smll_201303898 crossref_primary_10_1007_s10008_024_06092_1 crossref_primary_10_1002_smll_201002009 crossref_primary_10_1016_j_carbon_2011_08_049 crossref_primary_10_1021_am506818h crossref_primary_10_1016_j_jmst_2014_07_003 crossref_primary_10_1179_1743280415Y_0000000004 crossref_primary_10_1007_s12274_013_0375_x crossref_primary_10_1002_tcr_201500279 crossref_primary_10_1007_s10008_013_2352_4 crossref_primary_10_1016_j_carbon_2011_12_040 crossref_primary_10_1039_C4RA06235C crossref_primary_10_1039_c1cc11968k crossref_primary_10_1039_C4RA10120K crossref_primary_10_1016_j_ceramint_2017_06_189 crossref_primary_10_1016_j_jallcom_2011_03_151 crossref_primary_10_1002_crat_201100302 crossref_primary_10_1039_C5TA02107C crossref_primary_10_1039_D1TA09716D crossref_primary_10_3390_nano10122558 crossref_primary_10_1016_j_jpowsour_2016_04_105 crossref_primary_10_1016_S1452_3981_23_07697_6 crossref_primary_10_1016_j_jallcom_2017_04_316 crossref_primary_10_1016_j_colsurfa_2025_136303 crossref_primary_10_1016_j_jssc_2014_08_017 crossref_primary_10_1016_j_jallcom_2016_08_058 crossref_primary_10_1007_s11581_021_04307_3 crossref_primary_10_1016_j_carbon_2011_04_053 crossref_primary_10_1039_C5TA08508J crossref_primary_10_1088_0957_4484_23_46_465402 crossref_primary_10_1039_C6NR07650E crossref_primary_10_1039_C4CP03964E crossref_primary_10_1002_cssc_201200480 crossref_primary_10_1007_s11581_015_1490_3 crossref_primary_10_1002_ente_201800103 crossref_primary_10_1016_j_apsusc_2014_06_131 crossref_primary_10_1021_acsami_6b05271 crossref_primary_10_1016_j_carbon_2015_03_010 crossref_primary_10_1039_C5TA05068E crossref_primary_10_1016_j_electacta_2019_04_134 crossref_primary_10_1016_j_jpowsour_2014_10_008 crossref_primary_10_1016_j_solmat_2014_05_038 crossref_primary_10_1021_am301962d crossref_primary_10_1039_C4NJ00970C crossref_primary_10_1016_j_ceramint_2012_03_019 crossref_primary_10_1039_C4TA03770G crossref_primary_10_1016_j_electacta_2013_11_007 crossref_primary_10_1016_j_tsf_2016_03_044 crossref_primary_10_1039_c1jm12262b crossref_primary_10_1007_s10971_012_2778_7 crossref_primary_10_1016_j_nanoen_2017_03_017 crossref_primary_10_1016_j_ceramint_2018_12_190 crossref_primary_10_1016_j_jpowsour_2013_08_059 crossref_primary_10_1002_aenm_201500400 crossref_primary_10_1002_macp_202000160 crossref_primary_10_1016_j_susc_2013_10_001 crossref_primary_10_3390_cryst14090781 crossref_primary_10_1038_srep09055 crossref_primary_10_1002_aenm_201600376 crossref_primary_10_1002_adfm_201101068 crossref_primary_10_1002_adma_201300071 crossref_primary_10_1007_s10008_019_04283_9 crossref_primary_10_1039_c4ta00574k crossref_primary_10_1016_j_jallcom_2018_05_268 crossref_primary_10_1021_am404072k crossref_primary_10_1016_j_electacta_2012_12_116 crossref_primary_10_1021_acsami_5b07858 crossref_primary_10_1007_s11771_019_4107_6 crossref_primary_10_1007_s10854_020_03200_5 crossref_primary_10_1088_0957_4484_23_48_485601 crossref_primary_10_1002_aenm_201100464 crossref_primary_10_1007_s11581_021_04296_3 crossref_primary_10_1021_la304753x crossref_primary_10_1039_c3nj00797a crossref_primary_10_1002_celc_201901845 crossref_primary_10_3934_matersci_2016_3_1054 crossref_primary_10_1016_j_mser_2015_12_003 crossref_primary_10_1016_j_polymer_2019_02_007 crossref_primary_10_1016_j_electacta_2011_08_088 crossref_primary_10_1016_j_jpowsour_2017_12_005 crossref_primary_10_1039_C5RA06351E crossref_primary_10_1016_j_ssc_2022_114723 crossref_primary_10_1016_j_electacta_2013_08_003 crossref_primary_10_1021_jp303552j crossref_primary_10_1039_c1jm11364j crossref_primary_10_1007_s11581_021_03985_3 crossref_primary_10_1016_j_electacta_2019_04_004 crossref_primary_10_1002_cssc_201501151 crossref_primary_10_1088_1674_1056_26_11_116503 crossref_primary_10_1002_celc_201400026 crossref_primary_10_1016_S1452_3981_23_13870_3 crossref_primary_10_1021_cr3001884 crossref_primary_10_1007_s10008_011_1602_6 crossref_primary_10_1016_j_apsusc_2020_147746 crossref_primary_10_1016_j_jpowsour_2011_11_049 crossref_primary_10_1016_j_matchemphys_2013_03_017 crossref_primary_10_3390_nano11082001 crossref_primary_10_1039_c2jm16042k crossref_primary_10_20964_2020_07_18 crossref_primary_10_1016_j_carbon_2012_07_033 crossref_primary_10_1039_c1jm11612f crossref_primary_10_1021_jp306572c crossref_primary_10_1002_chem_201505122 crossref_primary_10_1016_j_matpr_2018_06_628 crossref_primary_10_1007_s11581_014_1258_1 crossref_primary_10_1016_j_apsusc_2013_11_130 crossref_primary_10_1021_acsomega_0c01315 crossref_primary_10_1080_17458080_2012_664791 crossref_primary_10_1016_j_jelechem_2020_113943 crossref_primary_10_1039_c1cc10542f crossref_primary_10_1016_j_carbon_2011_06_059 crossref_primary_10_1039_c3ra40529j crossref_primary_10_1039_C5NR06680H crossref_primary_10_1016_j_polymdegradstab_2012_09_006 crossref_primary_10_1016_j_nanoen_2011_11_001 crossref_primary_10_1016_S1369_7021_12_70115_3 crossref_primary_10_1088_0957_4484_23_5_055402 crossref_primary_10_1016_j_electacta_2013_11_178 crossref_primary_10_1016_S1003_6326_11_61494_5 crossref_primary_10_1039_c3ee42518e crossref_primary_10_1016_j_matlet_2011_05_019 crossref_primary_10_1039_D2TA07435D crossref_primary_10_1016_j_apsusc_2015_11_169 crossref_primary_10_3390_molecules26206108 crossref_primary_10_1039_c2nr11936f crossref_primary_10_1016_S1452_3981_23_14642_6 crossref_primary_10_1016_j_electacta_2015_05_090 crossref_primary_10_1016_j_electacta_2014_03_081 crossref_primary_10_1016_j_scriptamat_2012_01_003 crossref_primary_10_1021_acsami_6b03332 crossref_primary_10_3390_c6040081 crossref_primary_10_1016_j_carbon_2017_03_098 crossref_primary_10_1016_j_snb_2017_03_106 crossref_primary_10_1016_j_electacta_2016_09_004 crossref_primary_10_1039_c2nr31357j crossref_primary_10_1039_C5RA04946F crossref_primary_10_1039_C4RA00477A crossref_primary_10_1016_j_nanoen_2016_12_058 crossref_primary_10_1039_c2ra21292g crossref_primary_10_1016_j_matchemphys_2020_123298 crossref_primary_10_1016_j_electacta_2016_09_012 crossref_primary_10_1016_j_electacta_2018_01_093 crossref_primary_10_1016_j_electacta_2013_04_130 crossref_primary_10_1007_s10853_013_7874_8 crossref_primary_10_12677_MS_2018_83022 crossref_primary_10_1016_j_jallcom_2021_159267 crossref_primary_10_1016_j_ceramint_2018_03_256 crossref_primary_10_1016_j_ceramint_2019_05_146 crossref_primary_10_1016_j_jallcom_2019_06_251 |
Cites_doi | 10.1021/jp904209k 10.1103/PhysRevB.73.195411 10.1002/adma.200600733 10.1016/j.elecom.2009.07.035 10.1088/0957-4484/20/45/455602 10.1016/j.carbon.2007.10.032 10.1021/jp908244m 10.1002/adfm.200500243 10.1021/cm050724f 10.1021/ja909321d 10.1016/j.elecom.2010.02.002 10.1039/b401890g 10.1021/jp802868e 10.1039/b914412a 10.1021/cm900702d 10.1039/b901551e 10.1021/nl0731872 10.1021/cm801607e 10.1126/science.1102896 10.1021/cm7031288 10.1149/1.1342167 10.1021/nn901311t 10.1126/science.1144359 10.1021/nl800957b 10.1021/nl802484w 10.1002/adma.200400106 10.1021/nn100740x 10.1039/b809712g 10.1088/0957-4484/20/34/345704 10.1039/b714904b 10.1021/nn901819n 10.1021/nl802864a 10.1021/cm900613d 10.1002/adma.200803439 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 |
DOI | 10.1016/j.carbon.2010.08.052 |
DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1873-3891 |
EndPage | 139 |
ExternalDocumentID | 23419459 10_1016_j_carbon_2010_08_052 US201500075981 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABPIF ABPTK ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FBQ FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SSM SSR SSZ T5K TWZ WUQ XPP ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFRZQ AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7S9 L.6 |
ID | FETCH-LOGICAL-c404t-64cb96ee1f9c10cac4be45b668d524bfd7346969ec2da62716434193a94cdd1b3 |
ISSN | 0008-6223 |
IngestDate | Thu Jul 10 16:53:47 EDT 2025 Mon Jul 21 09:18:12 EDT 2025 Tue Jul 01 01:14:17 EDT 2025 Thu Apr 24 22:50:26 EDT 2025 Wed Dec 27 19:10:08 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Electrodes Nanoparticles Composite materials Stability Synthesis Redox reactions Tin oxide Electrochemistry Binary compounds Lithium ions Retention Current density |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c404t-64cb96ee1f9c10cac4be45b668d524bfd7346969ec2da62716434193a94cdd1b3 |
Notes | http://dx.doi.org/10.1016/j.carbon.2010.08.052 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1663563702 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1663563702 pascalfrancis_primary_23419459 crossref_primary_10_1016_j_carbon_2010_08_052 crossref_citationtrail_10_1016_j_carbon_2010_08_052 fao_agris_US201500075981 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011 2011-01-00 20110101 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – year: 2011 text: 2011 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Carbon (New York) |
PublicationYear | 2011 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Zhou (10.1016/j.carbon.2010.08.052_b0125) 2010; 46 Wu (10.1016/j.carbon.2010.08.052_b0175) 2010; 4 Wang (10.1016/j.carbon.2010.08.052_b0030) 2005; 17 Yao (10.1016/j.carbon.2010.08.052_b0110) 2009; 11 Wang (10.1016/j.carbon.2010.08.052_b0120) 2010; 4 Wang (10.1016/j.carbon.2010.08.052_b0025) 2009; 21 Fan (10.1016/j.carbon.2010.08.052_b0035) 2004; 16 Meduri (10.1016/j.carbon.2010.08.052_b0045) 2009; 9 Lou (10.1016/j.carbon.2010.08.052_b0160) 2009; 21 Parka (10.1016/j.carbon.2010.08.052_b0080) 2008; 46 Lytle (10.1016/j.carbon.2010.08.052_b0155) 2004; 14 Peres (10.1016/j.carbon.2010.08.052_b0100) 2006; 73 Lou (10.1016/j.carbon.2010.08.052_b0020) 2008; 20 Park (10.1016/j.carbon.2010.08.052_b0070) 2008; 112 Rezan (10.1016/j.carbon.2010.08.052_b0150) 2008; 20 Novoselov (10.1016/j.carbon.2010.08.052_b0090) 2004; 306 Yoo (10.1016/j.carbon.2010.08.052_b0170) 2008; 8 Chen (10.1016/j.carbon.2010.08.052_b0135) 2010; 4 Li (10.1016/j.carbon.2010.08.052_b0165) 2001; 148 Chen (10.1016/j.carbon.2010.08.052_b0075) 2009; 113 Lou (10.1016/j.carbon.2010.08.052_b0085) 2009; 21 Balandin (10.1016/j.carbon.2010.08.052_b0105) 2008; 8 Miao (10.1016/j.carbon.2010.08.052_b0095) 2007; 317 He (10.1016/j.carbon.2010.08.052_b0180) 2010; 12 Kim (10.1016/j.carbon.2010.08.052_b0050) 2008; 18 Wang (10.1016/j.carbon.2010.08.052_b0040) 2009; 20 Xu (10.1016/j.carbon.2010.08.052_b0130) 2008; 18 Lou (10.1016/j.carbon.2010.08.052_b0055) 2006; 18 Chen (10.1016/j.carbon.2010.08.052_b0015) 2009; 113 Li (10.1016/j.carbon.2010.08.052_b0115) 2009; 20 Liang (10.1016/j.carbon.2010.08.052_b0005) 2009; 19 Wang (10.1016/j.carbon.2010.08.052_b0145) 2010; 132 Han (10.1016/j.carbon.2010.08.052_b0060) 2005; 15 Jiang (10.1016/j.carbon.2010.08.052_b0065) 2009; 113 Park (10.1016/j.carbon.2010.08.052_b0140) 2008; 46 Paek (10.1016/j.carbon.2010.08.052_b0010) 2009; 9 |
References_xml | – volume: 113 start-page: 14213 issue: 32 year: 2009 ident: 10.1016/j.carbon.2010.08.052_b0065 article-title: SnO2-based hierarchical nanomicrostructures: facile synthesis and their applications in gas sensors and lithium-ion batteries publication-title: J. Phys. Chem. C doi: 10.1021/jp904209k – volume: 73 start-page: 195411 issue: 19 year: 2006 ident: 10.1016/j.carbon.2010.08.052_b0100 article-title: Conductance quantization in mesoscopic graphene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.195411 – volume: 18 start-page: 2325 issue: 17 year: 2006 ident: 10.1016/j.carbon.2010.08.052_b0055 article-title: Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity publication-title: Adv. Mater. doi: 10.1002/adma.200600733 – volume: 11 start-page: 1849 issue: 10 year: 2009 ident: 10.1016/j.carbon.2010.08.052_b0110 article-title: In situ chemical synthesis of SnO2–graphene composite as anode materials for lithium-ion batteries publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.07.035 – volume: 20 start-page: 455602 issue: 45 year: 2009 ident: 10.1016/j.carbon.2010.08.052_b0115 article-title: One-step synthesis of graphene/SnO2 nanocomposite and its application electrochemical supercapacitors publication-title: Nanotechnology doi: 10.1088/0957-4484/20/45/455602 – volume: 46 start-page: 35 issue: 1 year: 2008 ident: 10.1016/j.carbon.2010.08.052_b0140 article-title: Effects of low-temperature carbon encapsulation carbon encapsulation on the electrochemical performance of SnO2 nanopowders publication-title: Carbon doi: 10.1016/j.carbon.2007.10.032 – volume: 113 start-page: 20504 issue: 47 year: 2009 ident: 10.1016/j.carbon.2010.08.052_b0015 article-title: SnO2 Nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries publication-title: J. Phys. Chem. C doi: 10.1021/jp908244m – volume: 15 start-page: 1845 issue: 11 year: 2005 ident: 10.1016/j.carbon.2010.08.052_b0060 article-title: Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes publication-title: Adv. Funct. Mater doi: 10.1002/adfm.200500243 – volume: 17 start-page: 3899 issue: 15 year: 2005 ident: 10.1016/j.carbon.2010.08.052_b0030 article-title: Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application publication-title: Chem. Mater. doi: 10.1021/cm050724f – volume: 132 start-page: 46 issue: 1 year: 2010 ident: 10.1016/j.carbon.2010.08.052_b0145 article-title: Large-Scale synthesis of SnO2 nanosheets with high lithium storage capacity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909321d – volume: 12 start-page: 570 issue: 4 year: 2010 ident: 10.1016/j.carbon.2010.08.052_b0180 article-title: A Co(OH)2-graphene nanosheets composite as a high performance anode material for rechargeable lithium batteries publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2010.02.002 – volume: 14 start-page: 1616 issue: 10 year: 2004 ident: 10.1016/j.carbon.2010.08.052_b0155 article-title: Structural and electrochemical properties of three-dimensionally ordered macroporous tin (IV) oxide films publication-title: J. Mater. Chem. doi: 10.1039/b401890g – volume: 112 start-page: 11286 issue: 30 year: 2008 ident: 10.1016/j.carbon.2010.08.052_b0070 article-title: Reduction-free synthesis of carbon-encapsulated sno2 nanowires and their superiority in electrochemical performance publication-title: J. Phys. Chem. C doi: 10.1021/jp802868e – volume: 46 start-page: 2611 issue: 15 year: 2010 ident: 10.1016/j.carbon.2010.08.052_b0125 article-title: A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets publication-title: Chem. Commun. doi: 10.1039/b914412a – volume: 21 start-page: 3210 issue: 14 year: 2009 ident: 10.1016/j.carbon.2010.08.052_b0025 article-title: Sn@CNT and Sn@C@CNT nanostructuresfor superior reversible lithium ion storage publication-title: Chem. Mater. doi: 10.1021/cm900702d – volume: 19 start-page: 5871 issue: 33 year: 2009 ident: 10.1016/j.carbon.2010.08.052_b0005 article-title: Graphene-based electrode materials for rechargeable lithium batteries publication-title: J. Mater. Chem. doi: 10.1039/b901551e – volume: 8 start-page: 902 issue: 3 year: 2008 ident: 10.1016/j.carbon.2010.08.052_b0105 article-title: Superior thermal conductivity of single-layer graphene publication-title: Nano Lett. doi: 10.1021/nl0731872 – volume: 20 start-page: 6562 issue: 20 year: 2008 ident: 10.1016/j.carbon.2010.08.052_b0020 article-title: Preparation of SnO2/carbon composite hollow spheres and their Lithium storage properties publication-title: Chem. Mater. doi: 10.1021/cm801607e – volume: 306 start-page: 666 issue: 5296 year: 2004 ident: 10.1016/j.carbon.2010.08.052_b0090 article-title: Electric field effect in atomically thin carbon films publication-title: Science doi: 10.1126/science.1102896 – volume: 20 start-page: 1227 issue: 4 year: 2008 ident: 10.1016/j.carbon.2010.08.052_b0150 article-title: Facile one-pot synthesis of mesoporous sno2 microspheres via nanoparticles assembly and lithium storage properties publication-title: Chem. Mater. doi: 10.1021/cm7031288 – volume: 148 start-page: A164 issue: 2 year: 2001 ident: 10.1016/j.carbon.2010.08.052_b0165 article-title: A High-Rate, High-Capacity, nanostructured Sn-Based anode prepared using Sol-Gel template synthesis publication-title: J. Electrochem. Soc. doi: 10.1149/1.1342167 – volume: 4 start-page: 2822 issue: 5 year: 2010 ident: 10.1016/j.carbon.2010.08.052_b0135 article-title: Graphene oxide-MnO2 nanocomposites for supercapacitors publication-title: ACS Nano doi: 10.1021/nn901311t – volume: 317 start-page: 1530 issue: 5844 year: 2007 ident: 10.1016/j.carbon.2010.08.052_b0095 article-title: Phase-coherent transport in graphene quantum billiards publication-title: Science doi: 10.1126/science.1144359 – volume: 8 start-page: 2277 issue: 8 year: 2008 ident: 10.1016/j.carbon.2010.08.052_b0170 article-title: Large reversible Li storage of graphene nanosheet families for use in rechargeable Lithium Ion batteries publication-title: Nano Lett. doi: 10.1021/nl800957b – volume: 9 start-page: 72 issue: 1 year: 2009 ident: 10.1016/j.carbon.2010.08.052_b0010 article-title: Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure publication-title: Nano Lett. doi: 10.1021/nl802484w – volume: 16 start-page: 1432 issue: 16 year: 2004 ident: 10.1016/j.carbon.2010.08.052_b0035 article-title: Ordered, Nanostructured Tin-Based oxides/carbon composite as the negative-electrode material for Lithium-Ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.200400106 – volume: 4 start-page: 3187 issue: 6 year: 2010 ident: 10.1016/j.carbon.2010.08.052_b0175 article-title: Graphene anchored with Co3O4 nanoparticles as anode of LITHIUM Ion batteries with enhanced reversible capacity and cyclic performance publication-title: ACS Nano doi: 10.1021/nn100740x – volume: 46 start-page: 35 issue: 1 year: 2008 ident: 10.1016/j.carbon.2010.08.052_b0080 article-title: Effects of low-temperature carbon encapsulation on the electrochemical performance of SnO2 nanopowders publication-title: Carbon doi: 10.1016/j.carbon.2007.10.032 – volume: 18 start-page: 5625 issue: 46 year: 2008 ident: 10.1016/j.carbon.2010.08.052_b0130 article-title: Deposition of Co3 O4 nanoparticles onto exfoliated graphite oxide sheets publication-title: J. Mater. Chem. doi: 10.1039/b809712g – volume: 20 start-page: 345704 issue: 34 year: 2009 ident: 10.1016/j.carbon.2010.08.052_b0040 article-title: One-dimensional SnO2 nanostructures: facile morphology tuning and lithium storage properties publication-title: Nanotechnology doi: 10.1088/0957-4484/20/34/345704 – volume: 113 start-page: 20504 issue: 47 year: 2009 ident: 10.1016/j.carbon.2010.08.052_b0075 article-title: SnO2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries publication-title: J. Phys. Chem. C doi: 10.1021/jp908244m – volume: 18 start-page: 771 issue: 7 year: 2008 ident: 10.1016/j.carbon.2010.08.052_b0050 article-title: Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials publication-title: J. Mater. Chem. doi: 10.1039/b714904b – volume: 4 start-page: 1587 issue: 3 year: 2010 ident: 10.1016/j.carbon.2010.08.052_b0120 article-title: Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage publication-title: ACS Nano doi: 10.1021/nn901819n – volume: 9 start-page: 612 issue: 2 year: 2009 ident: 10.1016/j.carbon.2010.08.052_b0045 article-title: Hybrid tin oxide nanowires as stable and high capacity anodes for Li-Ion batteries publication-title: Nano Lett. doi: 10.1021/nl802864a – volume: 21 start-page: 2868 issue: 13 year: 2009 ident: 10.1016/j.carbon.2010.08.052_b0085 article-title: One-Pot synthesis of carbon-coated sno2 nanocolloids with improved reversible lithium storage properties publication-title: Chem. Mater doi: 10.1021/cm900613d – volume: 21 start-page: 2536 issue: 24 year: 2009 ident: 10.1016/j.carbon.2010.08.052_b0160 article-title: Designed synthesis of coaxial sno2 @carbon hollow nanospheres for highly reversible lithium storage publication-title: Adv. Mater. doi: 10.1002/adma.200803439 |
SSID | ssj0004814 |
Score | 2.5217748 |
Snippet | A simple solution-based synthesis route, based on an oxidation–reduction reaction between graphene oxide and SnCl₂•2H₂O, has been developed to produce a... |
SourceID | proquest pascalfrancis crossref fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 133 |
SubjectTerms | batteries chemical reduction Chemistry Colloidal state and disperse state Cross-disciplinary physics: materials science; rheology crystal structure electrical charges Electrochemistry electrodes Exact sciences and technology Fullerenes and related materials; diamonds, graphite General and physical chemistry graphene ions lithium Materials science nanoparticles oxidation oxides particle size Physical and chemical studies. Granulometry. Electrokinetic phenomena Physics solutions Specific materials tin |
Title | SnO₂/graphene composite as a high stability electrode for lithium ion batteries |
URI | https://www.proquest.com/docview/1663563702 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbYEGIvCAZo5cdkJN6ilMZxnOQxmsYKEq3QVtHxEtmOA0wsRWv7AA_87dzFsbtQpAFSFVWW47a-r3fny913hLxUSVJlJjUh44aFPGMqlDIXYSwqneSRlKbGQuF3EzGe8bfzZH6t4hqrS1ZqqH_8sa7kf6QKYyBXrJL9B8n6RWEA3oN84QoShutfybgITpspUpu2tNOgtdoMcUzDMtg_RgZIRozRgjYD9nvQ9bypLNE3DH3-sr4MEACqpdl0CYWeueBKteC41q_Hxw3ms_NichJ8KCYnm6HXxzD0cTydeT1-HJwXU5-m8wZmF-0Ud1vlIqib-FdnrHv6NAsFsxXDTp9aCtIebqxyjCzlRWdnI0titKXCbTThAo7n-Bu75LtsOLJEt33G7N8smc8vZMhSx5N8h9xmcHzAzhbDn5vUH55Zznf37V1JZZv3t_25PZdlp5YLTKCVS_gP1bb5yZYdb52Ts_vkXneqoIWFyANyyzT75O6Ra-a3T-60mb56-ZC8LyiC5pWDDPWQoXJJJUXIUA8Z6iFDATK0gwwFyFAPmUcE5H52NA67vhqh5iO-CgXXKhfGRHWuo5GWmivDEyVEViWMq7pKYy5ykRvNKikYnqhxP2OZc11VkYofk91m0ZgDQpM6VnWKhgBc8VpIFala61imlcwzno0GJHZbV-qOdB57n3wtXXbhRWk3vMQNL7ElasIGJPR3fbOkKzfMPwCplPIT2MVydsowioe-cJ5FA3LYE5Vfz0FkQF442ZUgE3xcJhuzWC_LCJ1xEacj9uSmRZ6SPfusAV_PyO7qam2eg7O6Uoct8n4BCnCR0w |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+SnO2%2Fgraphene+composite+as+a+high+stability+electrode+for+lithium+ion+batteries&rft.jtitle=Carbon+%28New+York%29&rft.au=XUYANG+WANG&rft.au=XUFENG+ZHOU&rft.au=KE+YAO&rft.au=JIANGANG+ZHANG&rft.date=2011&rft.pub=Elsevier&rft.issn=0008-6223&rft.volume=49&rft.issue=1&rft.spage=133&rft.epage=139&rft_id=info:doi/10.1016%2Fj.carbon.2010.08.052&rft.externalDBID=n%2Fa&rft.externalDocID=23419459 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon |