SnO₂/graphene composite as a high stability electrode for lithium ion batteries

A simple solution-based synthesis route, based on an oxidation–reduction reaction between graphene oxide and SnCl₂•2H₂O, has been developed to produce a SnO₂/graphene composite. In the prepared composite, crystalline SnO₂ nanoparticles with sizes of 3–5nm uniformly clung to the graphene matrix. When...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 49; no. 1; pp. 133 - 139
Main Authors Wang, Xuyang, Zhou, Xufeng, Yao, Ke, Zhang, Jiangang, Liu, Zhaoping
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A simple solution-based synthesis route, based on an oxidation–reduction reaction between graphene oxide and SnCl₂•2H₂O, has been developed to produce a SnO₂/graphene composite. In the prepared composite, crystalline SnO₂ nanoparticles with sizes of 3–5nm uniformly clung to the graphene matrix. When used as an electrode material for lithium ion batteries, the composite presented excellent rate performance and high cyclic stability. The effect of SnO₂/graphene ratio on electrochemical performance has been investigated. It was found that the optimum molar ratio of SnO₂/graphene was about 3.2:1, corresponding to 2.4 wt.% of graphene. The composite could deliver a charge capacity of 840mAh/g (with capacity retention of 86%) after 30 charge/discharge cycles at a current density of 67mA/g, and it could retain a charge capacity of about 590 and 270mAh/g after 50 cycles at the current density of 400 and 1000mA/g, respectively.
AbstractList A simple solution-based synthesis route, based on an oxidation–reduction reaction between graphene oxide and SnCl₂•2H₂O, has been developed to produce a SnO₂/graphene composite. In the prepared composite, crystalline SnO₂ nanoparticles with sizes of 3–5nm uniformly clung to the graphene matrix. When used as an electrode material for lithium ion batteries, the composite presented excellent rate performance and high cyclic stability. The effect of SnO₂/graphene ratio on electrochemical performance has been investigated. It was found that the optimum molar ratio of SnO₂/graphene was about 3.2:1, corresponding to 2.4 wt.% of graphene. The composite could deliver a charge capacity of 840mAh/g (with capacity retention of 86%) after 30 charge/discharge cycles at a current density of 67mA/g, and it could retain a charge capacity of about 590 and 270mAh/g after 50 cycles at the current density of 400 and 1000mA/g, respectively.
Author Wang, Xuyang
Yao, Ke
Liu, Zhaoping
Zhou, Xufeng
Zhang, Jiangang
Author_xml – sequence: 1
  fullname: Wang, Xuyang
– sequence: 2
  fullname: Zhou, Xufeng
– sequence: 3
  fullname: Yao, Ke
– sequence: 4
  fullname: Zhang, Jiangang
– sequence: 5
  fullname: Liu, Zhaoping
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23419459$$DView record in Pascal Francis
BookMark eNqFkc9qGzEQh0VwIU6aNwhEl0Iv6-jfale9FdOkhUAoac5iVjtry6xXjiQffPWj9kkq49BDLz0NM3y_YfjmisymMCEht5wtOOP6frNwELswLQQrI9YuWC0uyJy3jaxka_iMzBljbaWFkJfkKqVNaVXL1Zz8fJmefx-P96sIuzVOSF3Y7kLyGSkkCnTtV2uaMnR-9PlAcUSXY-iRDiHSMlr7_Zb6MNEOcsboMX0kHwYYE96812vy-vDt1_J79fT8-GP59alyiqlcaeU6oxH5YBxnDpzqUNWd1m1fC9UNfSOVNtqgEz1o0XCtpOJGglGu73knr8nn895dDG97TNlufXI4jjBh2CfLtZa1lg0TBf30jkJyMA4RJueT3UW_hXiw4rRY1aZw6sy5GFKKOPxFOLMn03Zjz6btybRlrS2mS-zLPzHnM-RiJUfw4__Cd-fwAMHCKpa7Xl8KUJcXNbVpufwD2AWS_g
CODEN CRBNAH
CitedBy_id crossref_primary_10_1007_s11581_021_04150_6
crossref_primary_10_1002_smll_201702614
crossref_primary_10_1016_j_jpowsour_2012_11_113
crossref_primary_10_4028_www_scientific_net_AMR_709_157
crossref_primary_10_1016_j_jpowsour_2012_05_084
crossref_primary_10_1039_D3SE00141E
crossref_primary_10_1177_0021998316644856
crossref_primary_10_1021_la302162c
crossref_primary_10_1016_j_electacta_2015_10_026
crossref_primary_10_1039_c3ra44109a
crossref_primary_10_1016_j_hybadv_2024_100168
crossref_primary_10_1016_j_powtec_2017_09_004
crossref_primary_10_1039_c2nr31750h
crossref_primary_10_1007_s11581_023_05093_w
crossref_primary_10_1016_j_jallcom_2011_10_087
crossref_primary_10_1016_j_jelechem_2017_03_022
crossref_primary_10_1155_2015_965061
crossref_primary_10_1016_j_actamat_2016_04_010
crossref_primary_10_1002_er_4244
crossref_primary_10_1039_C8RA00958A
crossref_primary_10_1002_chem_201500303
crossref_primary_10_1039_C4RA06678B
crossref_primary_10_1039_C6RA19004A
crossref_primary_10_1149_2_0341606jss
crossref_primary_10_1016_j_apsusc_2017_06_052
crossref_primary_10_1039_C4CP02615B
crossref_primary_10_1016_j_apenergy_2016_02_094
crossref_primary_10_1016_j_electacta_2022_141453
crossref_primary_10_1021_am201541s
crossref_primary_10_1016_j_jpowsour_2010_12_021
crossref_primary_10_1002_adma_201201587
crossref_primary_10_1016_j_ssi_2023_116319
crossref_primary_10_1016_j_electacta_2011_09_008
crossref_primary_10_1016_j_electacta_2023_143255
crossref_primary_10_1016_j_arabjc_2015_09_007
crossref_primary_10_1016_j_electacta_2014_07_119
crossref_primary_10_1016_j_electacta_2016_01_079
crossref_primary_10_1016_j_physe_2019_113729
crossref_primary_10_1016_j_proeng_2015_01_140
crossref_primary_10_1016_j_snb_2015_08_020
crossref_primary_10_1088_2632_959X_ac6e78
crossref_primary_10_1016_j_jcis_2012_11_006
crossref_primary_10_1039_C1JM14199F
crossref_primary_10_3390_cryst14090800
crossref_primary_10_1016_j_jallcom_2013_12_029
crossref_primary_10_1016_j_physb_2021_413621
crossref_primary_10_1016_j_tsf_2012_05_056
crossref_primary_10_1002_er_3143
crossref_primary_10_1002_adma_201603421
crossref_primary_10_1088_1757_899X_46_1_012005
crossref_primary_10_1007_s00604_014_1328_0
crossref_primary_10_1021_am505747w
crossref_primary_10_1016_j_electacta_2015_01_007
crossref_primary_10_1002_ente_201801048
crossref_primary_10_1016_j_cej_2022_136052
crossref_primary_10_4028_www_scientific_net_AMR_785_786_808
crossref_primary_10_1039_c3ta11442b
crossref_primary_10_1002_cssc_201300838
crossref_primary_10_1016_j_electacta_2011_01_126
crossref_primary_10_1016_j_matlet_2012_09_067
crossref_primary_10_1039_D1NR07040A
crossref_primary_10_1039_c3ra42780c
crossref_primary_10_1016_j_electacta_2018_09_086
crossref_primary_10_1021_acsami_5b08719
crossref_primary_10_1016_j_electacta_2013_07_197
crossref_primary_10_1007_s11172_018_2194_4
crossref_primary_10_1007_s12274_017_1756_3
crossref_primary_10_20964_2020_12_06
crossref_primary_10_1016_j_cej_2017_11_020
crossref_primary_10_1016_j_ceramint_2015_08_087
crossref_primary_10_1016_j_jpowsour_2011_07_061
crossref_primary_10_1039_C9NR01953G
crossref_primary_10_1039_C4NR07068B
crossref_primary_10_1039_C4RA13336F
crossref_primary_10_1039_c3nr00085k
crossref_primary_10_1016_j_apcatb_2019_117855
crossref_primary_10_1021_acssuschemeng_9b00641
crossref_primary_10_1016_j_ceramint_2021_05_163
crossref_primary_10_1016_j_electacta_2015_01_146
crossref_primary_10_1016_j_jallcom_2019_151793
crossref_primary_10_1021_acsnano_5b04138
crossref_primary_10_1039_C4EE02578D
crossref_primary_10_1039_C2TA00064D
crossref_primary_10_1016_j_electacta_2012_12_070
crossref_primary_10_1002_cssc_201200970
crossref_primary_10_1016_j_jpowsour_2013_01_025
crossref_primary_10_15407_nnn_18_04_1041
crossref_primary_10_1016_j_carbon_2015_12_074
crossref_primary_10_3389_fchem_2019_00878
crossref_primary_10_1111_jace_19010
crossref_primary_10_3390_cryst12020274
crossref_primary_10_1016_j_ssi_2012_08_014
crossref_primary_10_1021_jp3041499
crossref_primary_10_1016_j_jpowsour_2012_02_073
crossref_primary_10_1007_s10853_017_1194_3
crossref_primary_10_1016_j_jallcom_2015_08_199
crossref_primary_10_1016_j_jallcom_2018_08_076
crossref_primary_10_1021_cr4007335
crossref_primary_10_1002_smll_201203155
crossref_primary_10_1007_s10854_021_05478_5
crossref_primary_10_1021_nn201802c
crossref_primary_10_1016_j_seppur_2018_11_044
crossref_primary_10_1007_s10853_015_9429_7
crossref_primary_10_1039_c1nr10577a
crossref_primary_10_1007_s00289_018_2568_7
crossref_primary_10_1016_j_colsurfb_2018_02_040
crossref_primary_10_1007_s10800_018_1205_3
crossref_primary_10_1039_c3ra41485j
crossref_primary_10_1080_28361466_2024_2350174
crossref_primary_10_1021_am2009635
crossref_primary_10_1002_admi_202202484
crossref_primary_10_1007_s40820_019_0296_7
crossref_primary_10_1039_C6RA21444D
crossref_primary_10_1016_j_apsusc_2015_03_030
crossref_primary_10_1039_C8NJ02030B
crossref_primary_10_1002_ppap_201400083
crossref_primary_10_1016_j_jelechem_2016_01_043
crossref_primary_10_1039_c2jm00120a
crossref_primary_10_1039_C5NR04255K
crossref_primary_10_1039_c3ra40873f
crossref_primary_10_1016_j_jpowsour_2015_11_017
crossref_primary_10_1007_s11581_017_2261_0
crossref_primary_10_1016_j_memsci_2020_118368
crossref_primary_10_1134_S1023193524020095
crossref_primary_10_4028_www_scientific_net_AMR_774_776_640
crossref_primary_10_1007_s11595_013_0668_7
crossref_primary_10_1177_09544062211003607
crossref_primary_10_2139_ssrn_4159527
crossref_primary_10_1016_j_electacta_2011_07_100
crossref_primary_10_1016_j_apsusc_2012_01_119
crossref_primary_10_1039_C4NR04374J
crossref_primary_10_1016_j_jallcom_2014_01_192
crossref_primary_10_2174_1573413716999210101122503
crossref_primary_10_4028_www_scientific_net_AMM_556_562_96
crossref_primary_10_1016_j_nanoen_2012_04_001
crossref_primary_10_1016_j_micromeso_2020_110853
crossref_primary_10_1002_aic_14133
crossref_primary_10_1002_smll_201202601
crossref_primary_10_1016_j_jpowsour_2012_09_041
crossref_primary_10_1016_j_commatsci_2012_10_027
crossref_primary_10_1016_j_electacta_2019_04_184
crossref_primary_10_1039_c2ra21740f
crossref_primary_10_1039_c2jm32984k
crossref_primary_10_1016_j_materresbull_2012_08_077
crossref_primary_10_1002_aenm_201502057
crossref_primary_10_1016_j_carbon_2016_01_008
crossref_primary_10_1016_j_jallcom_2015_02_160
crossref_primary_10_1016_j_mtener_2018_10_017
crossref_primary_10_1021_acs_energyfuels_3c01871
crossref_primary_10_1039_C4NR00916A
crossref_primary_10_1002_er_8346
crossref_primary_10_1039_C6NR09689A
crossref_primary_10_1039_c1ra00797a
crossref_primary_10_1016_j_matpr_2022_10_272
crossref_primary_10_1016_j_jpowsour_2012_05_051
crossref_primary_10_1007_s11581_020_03678_3
crossref_primary_10_1016_j_matchemphys_2021_125488
crossref_primary_10_1016_j_physe_2012_05_023
crossref_primary_10_1021_acsami_5b02774
crossref_primary_10_1002_slct_202100877
crossref_primary_10_1016_j_electacta_2012_12_066
crossref_primary_10_1002_celc_201900235
crossref_primary_10_1039_C3TA13746E
crossref_primary_10_1016_j_electacta_2016_04_077
crossref_primary_10_1016_j_ijhydene_2016_01_015
crossref_primary_10_1088_2053_1583_2_1_014005
crossref_primary_10_1007_s10971_012_2776_9
crossref_primary_10_1016_j_carbon_2016_02_032
crossref_primary_10_1016_j_electacta_2012_04_118
crossref_primary_10_1016_j_electacta_2015_07_080
crossref_primary_10_1016_j_jpowsour_2013_03_116
crossref_primary_10_1039_c3nr01233f
crossref_primary_10_1134_S0036023616120147
crossref_primary_10_1002_aenm_201601424
crossref_primary_10_1016_j_jpowsour_2011_12_038
crossref_primary_10_1002_cssc_201500674
crossref_primary_10_1007_s00339_024_08221_z
crossref_primary_10_1016_j_electacta_2023_143401
crossref_primary_10_1039_C1RA00260K
crossref_primary_10_1039_C4RA04434G
crossref_primary_10_1016_j_materresbull_2013_06_004
crossref_primary_10_1021_nl400269d
crossref_primary_10_1016_j_mtcomm_2019_100713
crossref_primary_10_1021_ac5007365
crossref_primary_10_1002_smll_201503419
crossref_primary_10_1016_j_jallcom_2018_01_046
crossref_primary_10_1039_c2jm15865e
crossref_primary_10_1016_j_ultsonch_2015_09_013
crossref_primary_10_1039_c1ee02168k
crossref_primary_10_1021_acsanm_8b00586
crossref_primary_10_1021_acsaem_8b01408
crossref_primary_10_1016_j_cep_2013_05_008
crossref_primary_10_1016_j_jpowsour_2016_06_058
crossref_primary_10_1039_c0cp02477e
crossref_primary_10_1016_j_ensm_2016_02_004
crossref_primary_10_1039_c1jm13263f
crossref_primary_10_1557_opl_2013_1040
crossref_primary_10_3390_nano8110962
crossref_primary_10_1016_j_nanoen_2018_04_001
crossref_primary_10_1016_S1452_3981_23_18426_4
crossref_primary_10_1039_C4TA01850H
crossref_primary_10_1016_j_ssi_2019_03_011
crossref_primary_10_1039_c2cs35105f
crossref_primary_10_1002_qua_26871
crossref_primary_10_1007_s11581_012_0813_x
crossref_primary_10_1016_j_jallcom_2014_11_209
crossref_primary_10_1039_C1CY00361E
crossref_primary_10_1039_C1NR10962F
crossref_primary_10_1039_c1cc13584h
crossref_primary_10_1016_j_jallcom_2020_153686
crossref_primary_10_1007_s10854_018_8690_3
crossref_primary_10_1016_j_electacta_2017_04_031
crossref_primary_10_1039_c4ta01493f
crossref_primary_10_1039_c3ra43905d
crossref_primary_10_1002_adma_201104993
crossref_primary_10_1002_smll_201303898
crossref_primary_10_1007_s10008_024_06092_1
crossref_primary_10_1002_smll_201002009
crossref_primary_10_1016_j_carbon_2011_08_049
crossref_primary_10_1021_am506818h
crossref_primary_10_1016_j_jmst_2014_07_003
crossref_primary_10_1179_1743280415Y_0000000004
crossref_primary_10_1007_s12274_013_0375_x
crossref_primary_10_1002_tcr_201500279
crossref_primary_10_1007_s10008_013_2352_4
crossref_primary_10_1016_j_carbon_2011_12_040
crossref_primary_10_1039_C4RA06235C
crossref_primary_10_1039_c1cc11968k
crossref_primary_10_1039_C4RA10120K
crossref_primary_10_1016_j_ceramint_2017_06_189
crossref_primary_10_1016_j_jallcom_2011_03_151
crossref_primary_10_1002_crat_201100302
crossref_primary_10_1039_C5TA02107C
crossref_primary_10_1039_D1TA09716D
crossref_primary_10_3390_nano10122558
crossref_primary_10_1016_j_jpowsour_2016_04_105
crossref_primary_10_1016_S1452_3981_23_07697_6
crossref_primary_10_1016_j_jallcom_2017_04_316
crossref_primary_10_1016_j_colsurfa_2025_136303
crossref_primary_10_1016_j_jssc_2014_08_017
crossref_primary_10_1016_j_jallcom_2016_08_058
crossref_primary_10_1007_s11581_021_04307_3
crossref_primary_10_1016_j_carbon_2011_04_053
crossref_primary_10_1039_C5TA08508J
crossref_primary_10_1088_0957_4484_23_46_465402
crossref_primary_10_1039_C6NR07650E
crossref_primary_10_1039_C4CP03964E
crossref_primary_10_1002_cssc_201200480
crossref_primary_10_1007_s11581_015_1490_3
crossref_primary_10_1002_ente_201800103
crossref_primary_10_1016_j_apsusc_2014_06_131
crossref_primary_10_1021_acsami_6b05271
crossref_primary_10_1016_j_carbon_2015_03_010
crossref_primary_10_1039_C5TA05068E
crossref_primary_10_1016_j_electacta_2019_04_134
crossref_primary_10_1016_j_jpowsour_2014_10_008
crossref_primary_10_1016_j_solmat_2014_05_038
crossref_primary_10_1021_am301962d
crossref_primary_10_1039_C4NJ00970C
crossref_primary_10_1016_j_ceramint_2012_03_019
crossref_primary_10_1039_C4TA03770G
crossref_primary_10_1016_j_electacta_2013_11_007
crossref_primary_10_1016_j_tsf_2016_03_044
crossref_primary_10_1039_c1jm12262b
crossref_primary_10_1007_s10971_012_2778_7
crossref_primary_10_1016_j_nanoen_2017_03_017
crossref_primary_10_1016_j_ceramint_2018_12_190
crossref_primary_10_1016_j_jpowsour_2013_08_059
crossref_primary_10_1002_aenm_201500400
crossref_primary_10_1002_macp_202000160
crossref_primary_10_1016_j_susc_2013_10_001
crossref_primary_10_3390_cryst14090781
crossref_primary_10_1038_srep09055
crossref_primary_10_1002_aenm_201600376
crossref_primary_10_1002_adfm_201101068
crossref_primary_10_1002_adma_201300071
crossref_primary_10_1007_s10008_019_04283_9
crossref_primary_10_1039_c4ta00574k
crossref_primary_10_1016_j_jallcom_2018_05_268
crossref_primary_10_1021_am404072k
crossref_primary_10_1016_j_electacta_2012_12_116
crossref_primary_10_1021_acsami_5b07858
crossref_primary_10_1007_s11771_019_4107_6
crossref_primary_10_1007_s10854_020_03200_5
crossref_primary_10_1088_0957_4484_23_48_485601
crossref_primary_10_1002_aenm_201100464
crossref_primary_10_1007_s11581_021_04296_3
crossref_primary_10_1021_la304753x
crossref_primary_10_1039_c3nj00797a
crossref_primary_10_1002_celc_201901845
crossref_primary_10_3934_matersci_2016_3_1054
crossref_primary_10_1016_j_mser_2015_12_003
crossref_primary_10_1016_j_polymer_2019_02_007
crossref_primary_10_1016_j_electacta_2011_08_088
crossref_primary_10_1016_j_jpowsour_2017_12_005
crossref_primary_10_1039_C5RA06351E
crossref_primary_10_1016_j_ssc_2022_114723
crossref_primary_10_1016_j_electacta_2013_08_003
crossref_primary_10_1021_jp303552j
crossref_primary_10_1039_c1jm11364j
crossref_primary_10_1007_s11581_021_03985_3
crossref_primary_10_1016_j_electacta_2019_04_004
crossref_primary_10_1002_cssc_201501151
crossref_primary_10_1088_1674_1056_26_11_116503
crossref_primary_10_1002_celc_201400026
crossref_primary_10_1016_S1452_3981_23_13870_3
crossref_primary_10_1021_cr3001884
crossref_primary_10_1007_s10008_011_1602_6
crossref_primary_10_1016_j_apsusc_2020_147746
crossref_primary_10_1016_j_jpowsour_2011_11_049
crossref_primary_10_1016_j_matchemphys_2013_03_017
crossref_primary_10_3390_nano11082001
crossref_primary_10_1039_c2jm16042k
crossref_primary_10_20964_2020_07_18
crossref_primary_10_1016_j_carbon_2012_07_033
crossref_primary_10_1039_c1jm11612f
crossref_primary_10_1021_jp306572c
crossref_primary_10_1002_chem_201505122
crossref_primary_10_1016_j_matpr_2018_06_628
crossref_primary_10_1007_s11581_014_1258_1
crossref_primary_10_1016_j_apsusc_2013_11_130
crossref_primary_10_1021_acsomega_0c01315
crossref_primary_10_1080_17458080_2012_664791
crossref_primary_10_1016_j_jelechem_2020_113943
crossref_primary_10_1039_c1cc10542f
crossref_primary_10_1016_j_carbon_2011_06_059
crossref_primary_10_1039_c3ra40529j
crossref_primary_10_1039_C5NR06680H
crossref_primary_10_1016_j_polymdegradstab_2012_09_006
crossref_primary_10_1016_j_nanoen_2011_11_001
crossref_primary_10_1016_S1369_7021_12_70115_3
crossref_primary_10_1088_0957_4484_23_5_055402
crossref_primary_10_1016_j_electacta_2013_11_178
crossref_primary_10_1016_S1003_6326_11_61494_5
crossref_primary_10_1039_c3ee42518e
crossref_primary_10_1016_j_matlet_2011_05_019
crossref_primary_10_1039_D2TA07435D
crossref_primary_10_1016_j_apsusc_2015_11_169
crossref_primary_10_3390_molecules26206108
crossref_primary_10_1039_c2nr11936f
crossref_primary_10_1016_S1452_3981_23_14642_6
crossref_primary_10_1016_j_electacta_2015_05_090
crossref_primary_10_1016_j_electacta_2014_03_081
crossref_primary_10_1016_j_scriptamat_2012_01_003
crossref_primary_10_1021_acsami_6b03332
crossref_primary_10_3390_c6040081
crossref_primary_10_1016_j_carbon_2017_03_098
crossref_primary_10_1016_j_snb_2017_03_106
crossref_primary_10_1016_j_electacta_2016_09_004
crossref_primary_10_1039_c2nr31357j
crossref_primary_10_1039_C5RA04946F
crossref_primary_10_1039_C4RA00477A
crossref_primary_10_1016_j_nanoen_2016_12_058
crossref_primary_10_1039_c2ra21292g
crossref_primary_10_1016_j_matchemphys_2020_123298
crossref_primary_10_1016_j_electacta_2016_09_012
crossref_primary_10_1016_j_electacta_2018_01_093
crossref_primary_10_1016_j_electacta_2013_04_130
crossref_primary_10_1007_s10853_013_7874_8
crossref_primary_10_12677_MS_2018_83022
crossref_primary_10_1016_j_jallcom_2021_159267
crossref_primary_10_1016_j_ceramint_2018_03_256
crossref_primary_10_1016_j_ceramint_2019_05_146
crossref_primary_10_1016_j_jallcom_2019_06_251
Cites_doi 10.1021/jp904209k
10.1103/PhysRevB.73.195411
10.1002/adma.200600733
10.1016/j.elecom.2009.07.035
10.1088/0957-4484/20/45/455602
10.1016/j.carbon.2007.10.032
10.1021/jp908244m
10.1002/adfm.200500243
10.1021/cm050724f
10.1021/ja909321d
10.1016/j.elecom.2010.02.002
10.1039/b401890g
10.1021/jp802868e
10.1039/b914412a
10.1021/cm900702d
10.1039/b901551e
10.1021/nl0731872
10.1021/cm801607e
10.1126/science.1102896
10.1021/cm7031288
10.1149/1.1342167
10.1021/nn901311t
10.1126/science.1144359
10.1021/nl800957b
10.1021/nl802484w
10.1002/adma.200400106
10.1021/nn100740x
10.1039/b809712g
10.1088/0957-4484/20/34/345704
10.1039/b714904b
10.1021/nn901819n
10.1021/nl802864a
10.1021/cm900613d
10.1002/adma.200803439
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1016/j.carbon.2010.08.052
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-3891
EndPage 139
ExternalDocumentID 23419459
10_1016_j_carbon_2010_08_052
US201500075981
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABPIF
ABPTK
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FBQ
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
WUQ
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFRZQ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7S9
L.6
ID FETCH-LOGICAL-c404t-64cb96ee1f9c10cac4be45b668d524bfd7346969ec2da62716434193a94cdd1b3
ISSN 0008-6223
IngestDate Thu Jul 10 16:53:47 EDT 2025
Mon Jul 21 09:18:12 EDT 2025
Tue Jul 01 01:14:17 EDT 2025
Thu Apr 24 22:50:26 EDT 2025
Wed Dec 27 19:10:08 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Electrodes
Nanoparticles
Composite materials
Stability
Synthesis
Redox reactions
Tin oxide
Electrochemistry
Binary compounds
Lithium ions
Retention
Current density
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c404t-64cb96ee1f9c10cac4be45b668d524bfd7346969ec2da62716434193a94cdd1b3
Notes http://dx.doi.org/10.1016/j.carbon.2010.08.052
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1663563702
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_1663563702
pascalfrancis_primary_23419459
crossref_primary_10_1016_j_carbon_2010_08_052
crossref_citationtrail_10_1016_j_carbon_2010_08_052
fao_agris_US201500075981
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011
2011-01-00
20110101
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – year: 2011
  text: 2011
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Carbon (New York)
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Zhou (10.1016/j.carbon.2010.08.052_b0125) 2010; 46
Wu (10.1016/j.carbon.2010.08.052_b0175) 2010; 4
Wang (10.1016/j.carbon.2010.08.052_b0030) 2005; 17
Yao (10.1016/j.carbon.2010.08.052_b0110) 2009; 11
Wang (10.1016/j.carbon.2010.08.052_b0120) 2010; 4
Wang (10.1016/j.carbon.2010.08.052_b0025) 2009; 21
Fan (10.1016/j.carbon.2010.08.052_b0035) 2004; 16
Meduri (10.1016/j.carbon.2010.08.052_b0045) 2009; 9
Lou (10.1016/j.carbon.2010.08.052_b0160) 2009; 21
Parka (10.1016/j.carbon.2010.08.052_b0080) 2008; 46
Lytle (10.1016/j.carbon.2010.08.052_b0155) 2004; 14
Peres (10.1016/j.carbon.2010.08.052_b0100) 2006; 73
Lou (10.1016/j.carbon.2010.08.052_b0020) 2008; 20
Park (10.1016/j.carbon.2010.08.052_b0070) 2008; 112
Rezan (10.1016/j.carbon.2010.08.052_b0150) 2008; 20
Novoselov (10.1016/j.carbon.2010.08.052_b0090) 2004; 306
Yoo (10.1016/j.carbon.2010.08.052_b0170) 2008; 8
Chen (10.1016/j.carbon.2010.08.052_b0135) 2010; 4
Li (10.1016/j.carbon.2010.08.052_b0165) 2001; 148
Chen (10.1016/j.carbon.2010.08.052_b0075) 2009; 113
Lou (10.1016/j.carbon.2010.08.052_b0085) 2009; 21
Balandin (10.1016/j.carbon.2010.08.052_b0105) 2008; 8
Miao (10.1016/j.carbon.2010.08.052_b0095) 2007; 317
He (10.1016/j.carbon.2010.08.052_b0180) 2010; 12
Kim (10.1016/j.carbon.2010.08.052_b0050) 2008; 18
Wang (10.1016/j.carbon.2010.08.052_b0040) 2009; 20
Xu (10.1016/j.carbon.2010.08.052_b0130) 2008; 18
Lou (10.1016/j.carbon.2010.08.052_b0055) 2006; 18
Chen (10.1016/j.carbon.2010.08.052_b0015) 2009; 113
Li (10.1016/j.carbon.2010.08.052_b0115) 2009; 20
Liang (10.1016/j.carbon.2010.08.052_b0005) 2009; 19
Wang (10.1016/j.carbon.2010.08.052_b0145) 2010; 132
Han (10.1016/j.carbon.2010.08.052_b0060) 2005; 15
Jiang (10.1016/j.carbon.2010.08.052_b0065) 2009; 113
Park (10.1016/j.carbon.2010.08.052_b0140) 2008; 46
Paek (10.1016/j.carbon.2010.08.052_b0010) 2009; 9
References_xml – volume: 113
  start-page: 14213
  issue: 32
  year: 2009
  ident: 10.1016/j.carbon.2010.08.052_b0065
  article-title: SnO2-based hierarchical nanomicrostructures: facile synthesis and their applications in gas sensors and lithium-ion batteries
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp904209k
– volume: 73
  start-page: 195411
  issue: 19
  year: 2006
  ident: 10.1016/j.carbon.2010.08.052_b0100
  article-title: Conductance quantization in mesoscopic graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.195411
– volume: 18
  start-page: 2325
  issue: 17
  year: 2006
  ident: 10.1016/j.carbon.2010.08.052_b0055
  article-title: Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200600733
– volume: 11
  start-page: 1849
  issue: 10
  year: 2009
  ident: 10.1016/j.carbon.2010.08.052_b0110
  article-title: In situ chemical synthesis of SnO2–graphene composite as anode materials for lithium-ion batteries
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.07.035
– volume: 20
  start-page: 455602
  issue: 45
  year: 2009
  ident: 10.1016/j.carbon.2010.08.052_b0115
  article-title: One-step synthesis of graphene/SnO2 nanocomposite and its application electrochemical supercapacitors
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/45/455602
– volume: 46
  start-page: 35
  issue: 1
  year: 2008
  ident: 10.1016/j.carbon.2010.08.052_b0140
  article-title: Effects of low-temperature carbon encapsulation carbon encapsulation on the electrochemical performance of SnO2 nanopowders
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.10.032
– volume: 113
  start-page: 20504
  issue: 47
  year: 2009
  ident: 10.1016/j.carbon.2010.08.052_b0015
  article-title: SnO2 Nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp908244m
– volume: 15
  start-page: 1845
  issue: 11
  year: 2005
  ident: 10.1016/j.carbon.2010.08.052_b0060
  article-title: Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes
  publication-title: Adv. Funct. Mater
  doi: 10.1002/adfm.200500243
– volume: 17
  start-page: 3899
  issue: 15
  year: 2005
  ident: 10.1016/j.carbon.2010.08.052_b0030
  article-title: Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application
  publication-title: Chem. Mater.
  doi: 10.1021/cm050724f
– volume: 132
  start-page: 46
  issue: 1
  year: 2010
  ident: 10.1016/j.carbon.2010.08.052_b0145
  article-title: Large-Scale synthesis of SnO2 nanosheets with high lithium storage capacity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909321d
– volume: 12
  start-page: 570
  issue: 4
  year: 2010
  ident: 10.1016/j.carbon.2010.08.052_b0180
  article-title: A Co(OH)2-graphene nanosheets composite as a high performance anode material for rechargeable lithium batteries
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2010.02.002
– volume: 14
  start-page: 1616
  issue: 10
  year: 2004
  ident: 10.1016/j.carbon.2010.08.052_b0155
  article-title: Structural and electrochemical properties of three-dimensionally ordered macroporous tin (IV) oxide films
  publication-title: J. Mater. Chem.
  doi: 10.1039/b401890g
– volume: 112
  start-page: 11286
  issue: 30
  year: 2008
  ident: 10.1016/j.carbon.2010.08.052_b0070
  article-title: Reduction-free synthesis of carbon-encapsulated sno2 nanowires and their superiority in electrochemical performance
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp802868e
– volume: 46
  start-page: 2611
  issue: 15
  year: 2010
  ident: 10.1016/j.carbon.2010.08.052_b0125
  article-title: A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets
  publication-title: Chem. Commun.
  doi: 10.1039/b914412a
– volume: 21
  start-page: 3210
  issue: 14
  year: 2009
  ident: 10.1016/j.carbon.2010.08.052_b0025
  article-title: Sn@CNT and Sn@C@CNT nanostructuresfor superior reversible lithium ion storage
  publication-title: Chem. Mater.
  doi: 10.1021/cm900702d
– volume: 19
  start-page: 5871
  issue: 33
  year: 2009
  ident: 10.1016/j.carbon.2010.08.052_b0005
  article-title: Graphene-based electrode materials for rechargeable lithium batteries
  publication-title: J. Mater. Chem.
  doi: 10.1039/b901551e
– volume: 8
  start-page: 902
  issue: 3
  year: 2008
  ident: 10.1016/j.carbon.2010.08.052_b0105
  article-title: Superior thermal conductivity of single-layer graphene
  publication-title: Nano Lett.
  doi: 10.1021/nl0731872
– volume: 20
  start-page: 6562
  issue: 20
  year: 2008
  ident: 10.1016/j.carbon.2010.08.052_b0020
  article-title: Preparation of SnO2/carbon composite hollow spheres and their Lithium storage properties
  publication-title: Chem. Mater.
  doi: 10.1021/cm801607e
– volume: 306
  start-page: 666
  issue: 5296
  year: 2004
  ident: 10.1016/j.carbon.2010.08.052_b0090
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 20
  start-page: 1227
  issue: 4
  year: 2008
  ident: 10.1016/j.carbon.2010.08.052_b0150
  article-title: Facile one-pot synthesis of mesoporous sno2 microspheres via nanoparticles assembly and lithium storage properties
  publication-title: Chem. Mater.
  doi: 10.1021/cm7031288
– volume: 148
  start-page: A164
  issue: 2
  year: 2001
  ident: 10.1016/j.carbon.2010.08.052_b0165
  article-title: A High-Rate, High-Capacity, nanostructured Sn-Based anode prepared using Sol-Gel template synthesis
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1342167
– volume: 4
  start-page: 2822
  issue: 5
  year: 2010
  ident: 10.1016/j.carbon.2010.08.052_b0135
  article-title: Graphene oxide-MnO2 nanocomposites for supercapacitors
  publication-title: ACS Nano
  doi: 10.1021/nn901311t
– volume: 317
  start-page: 1530
  issue: 5844
  year: 2007
  ident: 10.1016/j.carbon.2010.08.052_b0095
  article-title: Phase-coherent transport in graphene quantum billiards
  publication-title: Science
  doi: 10.1126/science.1144359
– volume: 8
  start-page: 2277
  issue: 8
  year: 2008
  ident: 10.1016/j.carbon.2010.08.052_b0170
  article-title: Large reversible Li storage of graphene nanosheet families for use in rechargeable Lithium Ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl800957b
– volume: 9
  start-page: 72
  issue: 1
  year: 2009
  ident: 10.1016/j.carbon.2010.08.052_b0010
  article-title: Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure
  publication-title: Nano Lett.
  doi: 10.1021/nl802484w
– volume: 16
  start-page: 1432
  issue: 16
  year: 2004
  ident: 10.1016/j.carbon.2010.08.052_b0035
  article-title: Ordered, Nanostructured Tin-Based oxides/carbon composite as the negative-electrode material for Lithium-Ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200400106
– volume: 4
  start-page: 3187
  issue: 6
  year: 2010
  ident: 10.1016/j.carbon.2010.08.052_b0175
  article-title: Graphene anchored with Co3O4 nanoparticles as anode of LITHIUM Ion batteries with enhanced reversible capacity and cyclic performance
  publication-title: ACS Nano
  doi: 10.1021/nn100740x
– volume: 46
  start-page: 35
  issue: 1
  year: 2008
  ident: 10.1016/j.carbon.2010.08.052_b0080
  article-title: Effects of low-temperature carbon encapsulation on the electrochemical performance of SnO2 nanopowders
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.10.032
– volume: 18
  start-page: 5625
  issue: 46
  year: 2008
  ident: 10.1016/j.carbon.2010.08.052_b0130
  article-title: Deposition of Co3 O4 nanoparticles onto exfoliated graphite oxide sheets
  publication-title: J. Mater. Chem.
  doi: 10.1039/b809712g
– volume: 20
  start-page: 345704
  issue: 34
  year: 2009
  ident: 10.1016/j.carbon.2010.08.052_b0040
  article-title: One-dimensional SnO2 nanostructures: facile morphology tuning and lithium storage properties
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/34/345704
– volume: 113
  start-page: 20504
  issue: 47
  year: 2009
  ident: 10.1016/j.carbon.2010.08.052_b0075
  article-title: SnO2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp908244m
– volume: 18
  start-page: 771
  issue: 7
  year: 2008
  ident: 10.1016/j.carbon.2010.08.052_b0050
  article-title: Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials
  publication-title: J. Mater. Chem.
  doi: 10.1039/b714904b
– volume: 4
  start-page: 1587
  issue: 3
  year: 2010
  ident: 10.1016/j.carbon.2010.08.052_b0120
  article-title: Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage
  publication-title: ACS Nano
  doi: 10.1021/nn901819n
– volume: 9
  start-page: 612
  issue: 2
  year: 2009
  ident: 10.1016/j.carbon.2010.08.052_b0045
  article-title: Hybrid tin oxide nanowires as stable and high capacity anodes for Li-Ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl802864a
– volume: 21
  start-page: 2868
  issue: 13
  year: 2009
  ident: 10.1016/j.carbon.2010.08.052_b0085
  article-title: One-Pot synthesis of carbon-coated sno2 nanocolloids with improved reversible lithium storage properties
  publication-title: Chem. Mater
  doi: 10.1021/cm900613d
– volume: 21
  start-page: 2536
  issue: 24
  year: 2009
  ident: 10.1016/j.carbon.2010.08.052_b0160
  article-title: Designed synthesis of coaxial sno2 @carbon hollow nanospheres for highly reversible lithium storage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200803439
SSID ssj0004814
Score 2.5217748
Snippet A simple solution-based synthesis route, based on an oxidation–reduction reaction between graphene oxide and SnCl₂•2H₂O, has been developed to produce a...
SourceID proquest
pascalfrancis
crossref
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 133
SubjectTerms batteries
chemical reduction
Chemistry
Colloidal state and disperse state
Cross-disciplinary physics: materials science; rheology
crystal structure
electrical charges
Electrochemistry
electrodes
Exact sciences and technology
Fullerenes and related materials; diamonds, graphite
General and physical chemistry
graphene
ions
lithium
Materials science
nanoparticles
oxidation
oxides
particle size
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Physics
solutions
Specific materials
tin
Title SnO₂/graphene composite as a high stability electrode for lithium ion batteries
URI https://www.proquest.com/docview/1663563702
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbYEGIvCAZo5cdkJN6ilMZxnOQxmsYKEq3QVtHxEtmOA0wsRWv7AA_87dzFsbtQpAFSFVWW47a-r3fny913hLxUSVJlJjUh44aFPGMqlDIXYSwqneSRlKbGQuF3EzGe8bfzZH6t4hqrS1ZqqH_8sa7kf6QKYyBXrJL9B8n6RWEA3oN84QoShutfybgITpspUpu2tNOgtdoMcUzDMtg_RgZIRozRgjYD9nvQ9bypLNE3DH3-sr4MEACqpdl0CYWeueBKteC41q_Hxw3ms_NichJ8KCYnm6HXxzD0cTydeT1-HJwXU5-m8wZmF-0Ud1vlIqib-FdnrHv6NAsFsxXDTp9aCtIebqxyjCzlRWdnI0titKXCbTThAo7n-Bu75LtsOLJEt33G7N8smc8vZMhSx5N8h9xmcHzAzhbDn5vUH55Zznf37V1JZZv3t_25PZdlp5YLTKCVS_gP1bb5yZYdb52Ts_vkXneqoIWFyANyyzT75O6Ra-a3T-60mb56-ZC8LyiC5pWDDPWQoXJJJUXIUA8Z6iFDATK0gwwFyFAPmUcE5H52NA67vhqh5iO-CgXXKhfGRHWuo5GWmivDEyVEViWMq7pKYy5ykRvNKikYnqhxP2OZc11VkYofk91m0ZgDQpM6VnWKhgBc8VpIFala61imlcwzno0GJHZbV-qOdB57n3wtXXbhRWk3vMQNL7ElasIGJPR3fbOkKzfMPwCplPIT2MVydsowioe-cJ5FA3LYE5Vfz0FkQF442ZUgE3xcJhuzWC_LCJ1xEacj9uSmRZ6SPfusAV_PyO7qam2eg7O6Uoct8n4BCnCR0w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+SnO2%2Fgraphene+composite+as+a+high+stability+electrode+for+lithium+ion+batteries&rft.jtitle=Carbon+%28New+York%29&rft.au=XUYANG+WANG&rft.au=XUFENG+ZHOU&rft.au=KE+YAO&rft.au=JIANGANG+ZHANG&rft.date=2011&rft.pub=Elsevier&rft.issn=0008-6223&rft.volume=49&rft.issue=1&rft.spage=133&rft.epage=139&rft_id=info:doi/10.1016%2Fj.carbon.2010.08.052&rft.externalDBID=n%2Fa&rft.externalDocID=23419459
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon