A Time-Dependent SIR Model for COVID-19 With Undetectable Infected Persons
In this paper, we conduct mathematical and numerical analyses for COVID-19. To predict the trend of COVID-19, we propose a time-dependent SIR model that tracks the transmission and recovering rate at time t. Using the data provided by China authority, we show our one-day prediction errors are almost...
Saved in:
Published in | IEEE transactions on network science and engineering Vol. 7; no. 4; pp. 3279 - 3294 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we conduct mathematical and numerical analyses for COVID-19. To predict the trend of COVID-19, we propose a time-dependent SIR model that tracks the transmission and recovering rate at time t. Using the data provided by China authority, we show our one-day prediction errors are almost less than 3%. The turning point and the total number of confirmed cases in China are predicted under our model. To analyze the impact of the undetectable infections on the spread of disease, we extend our model by considering two types of infected persons: detectable and undetectable infected persons. Whether there is an outbreak is characterized by the spectral radius of a 2 X 2 matrix. If R 0 > 1, then the spectral radius of that matrix is greater than 1, and there is an outbreak. We plot the phase transition diagram of an outbreak and show that there are several countries on the verge of COVID-19 outbreaks on Mar. 2, 2020. To illustrate the effectiveness of social distancing, we analyze the independent cascade model for disease propagation in a configuration random network. We show two approaches of social distancing that can lead to a reduction of the effective reproduction number R e . |
---|---|
AbstractList | In this paper, we conduct mathematical and numerical analyses for COVID-19. To predict the trend of COVID-19, we propose a time-dependent SIR model that tracks the transmission and recovering rate at time
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$t$\end{document}
. Using the data provided by China authority, we show our one-day prediction errors are almost less than
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$3\%$\end{document}
. The turning point and the total number of confirmed cases in China are predicted under our model. To analyze the impact of the undetectable infections on the spread of disease, we extend our model by considering two types of infected persons: detectable and undetectable infected persons. Whether there is an outbreak is characterized by the spectral radius of a
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$2 \times 2$\end{document}
matrix. If
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$R_0>1$\end{document}
, then the spectral radius of that matrix is greater than 1, and there is an outbreak. We plot the phase transition diagram of an outbreak and show that there are several countries on the verge of COVID-19 outbreaks on Mar. 2, 2020. To illustrate the effectiveness of social distancing, we analyze the independent cascade model for disease propagation in a configuration random network. We show two approaches of social distancing that can lead to a reduction of the effective reproduction number
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$R_e$\end{document}
. In this paper, we conduct mathematical and numerical analyses for COVID-19. To predict the trend of COVID-19, we propose a time-dependent SIR model that tracks the transmission and recovering rate at time [Formula: see text]. Using the data provided by China authority, we show our one-day prediction errors are almost less than [Formula: see text]. The turning point and the total number of confirmed cases in China are predicted under our model. To analyze the impact of the undetectable infections on the spread of disease, we extend our model by considering two types of infected persons: detectable and undetectable infected persons. Whether there is an outbreak is characterized by the spectral radius of a [Formula: see text] matrix. If [Formula: see text], then the spectral radius of that matrix is greater than 1, and there is an outbreak. We plot the phase transition diagram of an outbreak and show that there are several countries on the verge of COVID-19 outbreaks on Mar. 2, 2020. To illustrate the effectiveness of social distancing, we analyze the independent cascade model for disease propagation in a configuration random network. We show two approaches of social distancing that can lead to a reduction of the effective reproduction number [Formula: see text]. In this paper, we conduct mathematical and numerical analyses for COVID-19. To predict the trend of COVID-19, we propose a time-dependent SIR model that tracks the transmission and recovering rate at time [Formula: see text]. Using the data provided by China authority, we show our one-day prediction errors are almost less than [Formula: see text]. The turning point and the total number of confirmed cases in China are predicted under our model. To analyze the impact of the undetectable infections on the spread of disease, we extend our model by considering two types of infected persons: detectable and undetectable infected persons. Whether there is an outbreak is characterized by the spectral radius of a [Formula: see text] matrix. If [Formula: see text], then the spectral radius of that matrix is greater than 1, and there is an outbreak. We plot the phase transition diagram of an outbreak and show that there are several countries on the verge of COVID-19 outbreaks on Mar. 2, 2020. To illustrate the effectiveness of social distancing, we analyze the independent cascade model for disease propagation in a configuration random network. We show two approaches of social distancing that can lead to a reduction of the effective reproduction number [Formula: see text].In this paper, we conduct mathematical and numerical analyses for COVID-19. To predict the trend of COVID-19, we propose a time-dependent SIR model that tracks the transmission and recovering rate at time [Formula: see text]. Using the data provided by China authority, we show our one-day prediction errors are almost less than [Formula: see text]. The turning point and the total number of confirmed cases in China are predicted under our model. To analyze the impact of the undetectable infections on the spread of disease, we extend our model by considering two types of infected persons: detectable and undetectable infected persons. Whether there is an outbreak is characterized by the spectral radius of a [Formula: see text] matrix. If [Formula: see text], then the spectral radius of that matrix is greater than 1, and there is an outbreak. We plot the phase transition diagram of an outbreak and show that there are several countries on the verge of COVID-19 outbreaks on Mar. 2, 2020. To illustrate the effectiveness of social distancing, we analyze the independent cascade model for disease propagation in a configuration random network. We show two approaches of social distancing that can lead to a reduction of the effective reproduction number [Formula: see text]. In this paper, we conduct mathematical and numerical analyses for COVID-19. To predict the trend of COVID-19, we propose a time-dependent SIR model that tracks the transmission and recovering rate at time t. Using the data provided by China authority, we show our one-day prediction errors are almost less than 3%. The turning point and the total number of confirmed cases in China are predicted under our model. To analyze the impact of the undetectable infections on the spread of disease, we extend our model by considering two types of infected persons: detectable and undetectable infected persons. Whether there is an outbreak is characterized by the spectral radius of a 2 X 2 matrix. If R 0 > 1, then the spectral radius of that matrix is greater than 1, and there is an outbreak. We plot the phase transition diagram of an outbreak and show that there are several countries on the verge of COVID-19 outbreaks on Mar. 2, 2020. To illustrate the effectiveness of social distancing, we analyze the independent cascade model for disease propagation in a configuration random network. We show two approaches of social distancing that can lead to a reduction of the effective reproduction number R e . In this paper, we conduct mathematical and numerical analyses for COVID-19. To predict the trend of COVID-19, we propose a time-dependent SIR model that tracks the transmission and recovering rate at time [Formula Omitted]. Using the data provided by China authority, we show our one-day prediction errors are almost less than [Formula Omitted]. The turning point and the total number of confirmed cases in China are predicted under our model. To analyze the impact of the undetectable infections on the spread of disease, we extend our model by considering two types of infected persons: detectable and undetectable infected persons. Whether there is an outbreak is characterized by the spectral radius of a [Formula Omitted] matrix. If [Formula Omitted], then the spectral radius of that matrix is greater than 1, and there is an outbreak. We plot the phase transition diagram of an outbreak and show that there are several countries on the verge of COVID-19 outbreaks on Mar. 2, 2020. To illustrate the effectiveness of social distancing, we analyze the independent cascade model for disease propagation in a configuration random network. We show two approaches of social distancing that can lead to a reduction of the effective reproduction number [Formula Omitted]. |
Author | Chang, Cheng-Shang Liu, Tzu-Hsuan Lu, Ping-En Chen, Yi-Cheng |
AuthorAffiliation | Institute of Communications Engineering National Tsing Hua University 34881 Hsinchu 30013 Taiwan R.O.C |
AuthorAffiliation_xml | – name: Institute of Communications Engineering National Tsing Hua University 34881 Hsinchu 30013 Taiwan R.O.C |
Author_xml | – sequence: 1 givenname: Yi-Cheng surname: Chen fullname: Chen, Yi-Cheng email: yichengchen@gapp.nthu.edu.tw organization: Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan R.O.C – sequence: 2 givenname: Ping-En orcidid: 0000-0002-1352-0983 surname: Lu fullname: Lu, Ping-En email: j94223@gmail.com organization: Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan R.O.C – sequence: 3 givenname: Cheng-Shang orcidid: 0000-0002-5386-4756 surname: Chang fullname: Chang, Cheng-Shang email: cschang@ee.nthu.edu.tw organization: Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan R.O.C – sequence: 4 givenname: Tzu-Hsuan surname: Liu fullname: Liu, Tzu-Hsuan email: carinaliu@gapp.nthu.edu.tw organization: Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan R.O.C |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37981959$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UcFuEzEUtFARLWk_ACEhS71w2WA_O-v1BalKSwkqtKIpcLO8u8_U1WYd7A0Sf1-vklbQAyc_yTPzZt68JHt96JGQV5xNOWf63fLL9dkUGLCpYCAViGfkAISQhQD9Y2-cQRWy1GqfHKV0xxjjUJVCiBdkXyhdcT3TB-TTCV36FRanuMa-xX6g14uv9HNosaMuRDq__LY4Lbim3_1wS28yZMBmsHWHdNG7PGJLrzCm0KdD8tzZLuHR7p2Qmw9ny_nH4uLyfDE_uSgayeRQlLJiDJRCiTV3trRlLWfQNpWWEittNeRQVtnSOVASEFt0jqsG6koo0bRiQt5vddebeoVtk01H25l19Csb_5hgvfn3p_e35mf4bSpVagY8C7zdCcTwa4NpMCufGuw622PYJAOVBsY55HUTcvwEehc2sc_xTL75TJeMzSCj3vzt6NHKw5kzQG0BTQwpRXSm8YMdfBgN-s5wZsZOzdipGTs1u04zkz9hPoj_j_N6y_GI-IjPmbJXLe4B8m6p8A |
CODEN | ITNSD5 |
CitedBy_id | crossref_primary_10_1109_TNSE_2022_3176214 crossref_primary_10_18359_ries_6547 crossref_primary_10_22207_JPAM_14_2_40 crossref_primary_10_1109_JSYST_2022_3170406 crossref_primary_10_26782_jmcms_2021_02_00001 crossref_primary_10_1109_TBDATA_2021_3103458 crossref_primary_10_1109_TNSE_2022_3142316 crossref_primary_10_1016_j_cie_2023_109694 crossref_primary_10_1016_j_jbi_2021_103793 crossref_primary_10_1080_24754269_2021_1872131 crossref_primary_10_1136_bmjopen_2020_041472 crossref_primary_10_3389_fpubh_2021_768852 crossref_primary_10_1038_s41598_022_05286_9 crossref_primary_10_1016_j_bpj_2024_01_008 crossref_primary_10_1155_2021_6680135 crossref_primary_10_1016_j_rinp_2022_105758 crossref_primary_10_5937_afmnai39_38354 crossref_primary_10_1371_journal_pone_0283874 crossref_primary_10_1007_s10586_024_04764_1 crossref_primary_10_3390_math11183876 crossref_primary_10_1109_TCSS_2022_3225639 crossref_primary_10_1080_17538947_2024_2434651 crossref_primary_10_1371_journal_pone_0283517 crossref_primary_10_3390_su131910762 crossref_primary_10_3389_fpubh_2020_556689 crossref_primary_10_1016_j_cam_2022_114506 crossref_primary_10_1016_j_bspc_2024_106435 crossref_primary_10_1109_ACCESS_2021_3129904 crossref_primary_10_1016_j_apnum_2024_08_008 crossref_primary_10_1016_j_cmpbup_2021_100047 crossref_primary_10_1016_j_chaos_2025_116151 crossref_primary_10_1109_ACCESS_2020_3021952 crossref_primary_10_3390_fractalfract6020053 crossref_primary_10_1016_j_measurement_2020_108432 crossref_primary_10_1371_journal_pone_0256971 crossref_primary_10_1016_j_dsm_2023_03_003 crossref_primary_10_1016_j_healthplace_2025_103422 crossref_primary_10_3390_math9233054 crossref_primary_10_1016_j_ifacol_2022_07_228 crossref_primary_10_1155_2022_3309420 crossref_primary_10_1016_j_isatra_2021_08_008 crossref_primary_10_2139_ssrn_3980184 crossref_primary_10_1038_s41598_024_79525_6 crossref_primary_10_1109_JBHI_2022_3168825 crossref_primary_10_1109_TIFS_2025_3546850 crossref_primary_10_1142_S0129183125500111 crossref_primary_10_1021_acsomega_2c06006 crossref_primary_10_1016_j_eswa_2022_116611 crossref_primary_10_1111_poms_13985 crossref_primary_10_1155_2022_6142981 crossref_primary_10_1098_rsif_2020_0599 crossref_primary_10_1088_1742_6596_2580_1_012041 crossref_primary_10_1016_j_physd_2021_132981 crossref_primary_10_1140_epjb_s10051_024_00746_9 crossref_primary_10_1016_j_cnsns_2023_107517 crossref_primary_10_1080_00949655_2022_2133118 crossref_primary_10_1080_02664763_2021_1936467 crossref_primary_10_1080_00207160_2021_1929942 crossref_primary_10_2139_ssrn_3901449 crossref_primary_10_22207_JPAM_14_SPL1_43 crossref_primary_10_17352_2455_5479_000176 crossref_primary_10_1002_hpm_3164 crossref_primary_10_17352_2455_5479_000175 crossref_primary_10_1016_j_ssci_2020_104962 crossref_primary_10_1109_TNSE_2023_3295911 crossref_primary_10_1007_s12065_021_00600_2 crossref_primary_10_1016_j_trip_2024_101301 crossref_primary_10_1007_s11071_021_06778_5 crossref_primary_10_1038_s41598_023_50219_9 crossref_primary_10_1007_s13278_023_01130_8 crossref_primary_10_1142_S0218202521500512 crossref_primary_10_7232_JKIIE_2023_49_2_120 crossref_primary_10_1016_j_omega_2023_102909 crossref_primary_10_1145_3493499_3493500 crossref_primary_10_1177_21582440221087260 crossref_primary_10_1109_TNSE_2023_3272472 crossref_primary_10_33959_cuijca_v4i01_43 crossref_primary_10_4018_JDM_299560 crossref_primary_10_32604_cmes_2021_016981 crossref_primary_10_1002_jgf2_382 crossref_primary_10_1098_rsfs_2021_0013 crossref_primary_10_3390_ijerph19095546 crossref_primary_10_1137_22M1518189 crossref_primary_10_1109_TEM_2022_3199039 crossref_primary_10_3390_axioms11030121 crossref_primary_10_1109_TNSE_2024_3468991 crossref_primary_10_3934_math_2022515 crossref_primary_10_1142_S0218202522500506 crossref_primary_10_3389_frai_2021_648579 crossref_primary_10_1109_TNSE_2023_3348474 crossref_primary_10_1109_TSIPN_2025_3530346 crossref_primary_10_3389_fpubh_2023_1185720 crossref_primary_10_1109_JSTSP_2022_3153168 crossref_primary_10_1016_j_chaos_2021_110922 crossref_primary_10_1088_1742_6596_2199_1_012006 crossref_primary_10_1186_s43556_024_00238_3 crossref_primary_10_3390_ijerph18126563 crossref_primary_10_3934_nhm_2022016 crossref_primary_10_3934_nhm_2022015 crossref_primary_10_1088_1402_4896_ad8271 crossref_primary_10_1016_j_chaos_2020_110074 crossref_primary_10_3390_math10010021 crossref_primary_10_1109_ACCESS_2021_3136191 crossref_primary_10_1002_jmv_26945 crossref_primary_10_1016_j_eswa_2021_115710 crossref_primary_10_2139_ssrn_4155175 crossref_primary_10_1002_eng2_12550 crossref_primary_10_3390_biomimetics8020158 crossref_primary_10_3390_math10183347 crossref_primary_10_1109_MVT_2022_3202025 crossref_primary_10_3390_math9192454 crossref_primary_10_1109_TNSE_2021_3075222 crossref_primary_10_1038_s41598_022_06159_x crossref_primary_10_1080_22221751_2024_2437240 crossref_primary_10_1016_j_chaos_2022_112735 crossref_primary_10_1088_2632_2153_ac0314 crossref_primary_10_1145_3494531 crossref_primary_10_3934_jdg_2021004 crossref_primary_10_1109_TCSS_2024_3362885 crossref_primary_10_1016_j_engappai_2023_106644 crossref_primary_10_1140_epjs_s11734_024_01274_4 crossref_primary_10_1016_j_idm_2021_12_003 crossref_primary_10_1016_j_jocs_2025_102540 crossref_primary_10_1007_s41060_022_00334_z crossref_primary_10_1214_22_BA1334 crossref_primary_10_1109_TCSS_2023_3243894 crossref_primary_10_1186_s12879_022_07794_5 crossref_primary_10_3390_vaccines10030343 crossref_primary_10_1016_j_physa_2023_129196 crossref_primary_10_1038_s41598_022_09879_2 crossref_primary_10_1155_2022_6001876 crossref_primary_10_3390_s21020540 crossref_primary_10_1016_j_jbi_2023_104364 crossref_primary_10_1007_s00285_021_01615_0 crossref_primary_10_1063_5_0062867 crossref_primary_10_1080_0376835X_2022_2046550 crossref_primary_10_1016_j_chaos_2021_110918 crossref_primary_10_1371_journal_pone_0307092 crossref_primary_10_1109_ACCESS_2024_3389104 crossref_primary_10_1016_j_matcom_2024_12_012 crossref_primary_10_1016_j_knosys_2022_109806 crossref_primary_10_1140_epjs_s11734_021_00340_5 crossref_primary_10_1016_j_ejco_2022_100025 crossref_primary_10_1088_2632_2153_abf0f7 crossref_primary_10_1016_j_jbi_2021_103920 crossref_primary_10_1214_22_AOAS1601 crossref_primary_10_47470_0016_9900_2023_102_8_740_749 crossref_primary_10_1093_pnasnexus_pgae237 crossref_primary_10_1371_journal_pone_0273469 crossref_primary_10_1016_j_ece_2022_12_002 crossref_primary_10_1007_s10994_022_06234_4 crossref_primary_10_1016_j_eswa_2023_120326 crossref_primary_10_1007_s12597_021_00557_x crossref_primary_10_1007_s43069_022_00139_7 crossref_primary_10_1109_TNSE_2024_3421308 crossref_primary_10_1016_j_idm_2022_06_006 crossref_primary_10_1109_TNSE_2021_3121709 crossref_primary_10_1126_science_abb9789 crossref_primary_10_3389_fbuil_2020_607961 crossref_primary_10_52547_hsm_1_1_1 crossref_primary_10_23919_JSC_2022_0005 crossref_primary_10_3390_ijgi12120485 crossref_primary_10_1140_epjp_s13360_021_01586_7 crossref_primary_10_1109_ACCESS_2021_3104519 crossref_primary_10_23919_JSC_2022_0002 crossref_primary_10_1007_s12043_024_02864_6 crossref_primary_10_1016_j_matpr_2021_11_480 crossref_primary_10_29233_sdufeffd_852222 crossref_primary_10_4081_gh_2022_1060 crossref_primary_10_1007_s11071_021_06811_7 crossref_primary_10_1109_TSMC_2022_3207319 crossref_primary_10_3389_fpubh_2021_727274 crossref_primary_10_1109_JBHI_2020_3027987 crossref_primary_10_1109_TNSE_2020_3024723 crossref_primary_10_1088_1751_8121_acd233 crossref_primary_10_3390_math10173046 crossref_primary_10_1017_dsj_2021_16 crossref_primary_10_3390_su142114657 crossref_primary_10_1186_s12874_024_02423_y crossref_primary_10_1140_epje_s10189_022_00225_y crossref_primary_10_1186_s12889_023_14992_6 crossref_primary_10_59324_ejtas_2024_2_2__06 crossref_primary_10_1057_s41599_022_01142_3 crossref_primary_10_1109_TNSE_2021_3131954 crossref_primary_10_1038_s41598_023_49949_7 crossref_primary_10_1038_s41598_021_01317_z crossref_primary_10_4103_jmss_jmss_134_21 crossref_primary_10_1007_s11831_021_09641_3 crossref_primary_10_1016_j_jtbi_2023_111671 crossref_primary_10_1109_ACCESS_2022_3181605 crossref_primary_10_1142_S0218126623502791 crossref_primary_10_1016_j_knosys_2025_112997 crossref_primary_10_1016_j_omega_2025_103318 crossref_primary_10_1098_rsos_201382 crossref_primary_10_1111_poms_13648 crossref_primary_10_1016_j_inffus_2024_102439 crossref_primary_10_3389_fpubh_2024_1338052 crossref_primary_10_1007_s00500_021_06133_1 crossref_primary_10_1016_j_jbi_2021_103901 crossref_primary_10_3934_nhm_2024022 crossref_primary_10_1080_23311886_2020_1829806 crossref_primary_10_3390_info15080433 crossref_primary_10_1371_journal_pone_0265489 crossref_primary_10_3389_fphy_2020_589963 crossref_primary_10_1103_PhysRevResearch_5_043264 crossref_primary_10_1093_ofid_ofac087 crossref_primary_10_3389_fpubh_2023_1202996 crossref_primary_10_1103_PhysRevE_105_014302 crossref_primary_10_1140_epjp_s13360_022_03216_2 crossref_primary_10_1016_j_ssci_2021_105164 crossref_primary_10_1016_j_ssci_2025_106777 crossref_primary_10_1109_TNSE_2021_3081759 crossref_primary_10_1021_acs_jchemed_4c00015 crossref_primary_10_1371_journal_pone_0258710 crossref_primary_10_1109_TCSS_2024_3404590 crossref_primary_10_3390_math9050485 crossref_primary_10_1371_journal_pone_0253381 crossref_primary_10_1140_epjs_s11734_022_00426_8 crossref_primary_10_3390_ijerph20032408 crossref_primary_10_1145_3686150 crossref_primary_10_3390_e24060779 crossref_primary_10_3390_v12070777 crossref_primary_10_1016_j_cmpb_2022_106981 crossref_primary_10_5802_crmath_99 crossref_primary_10_3934_math_2022376 crossref_primary_10_1016_j_pdisas_2023_100281 crossref_primary_10_3389_fams_2020_611854 crossref_primary_10_2478_stattrans_2022_0024 crossref_primary_10_4081_jphr_2022_2748 crossref_primary_10_1007_s00500_023_09170_0 crossref_primary_10_1109_JSTSP_2022_3140703 crossref_primary_10_1109_TSP_2023_3293908 crossref_primary_10_3390_forecast4010005 |
Cites_doi | 10.1016/j.ijid.2020.01.050 10.1021/ie960180e 10.1515/jiip-2020-0010 10.1109/TNSE.2020.3024723 10.1016/j.immuni.2020.04.012 10.7717/peerj.8601 10.1145/956750.956769 10.1038/318323a0 10.1111/1467-9876.00187 10.1145/383952.384003 10.1145/3341161.3342890 10.1371/journal.pone.0185528 10.1056/NEJMoa2001316 10.1093/acprof:oso/9780199206650.001.0001 10.1201/b18377 10.1111/jebm.12376 10.1016/j.ijid.2020.02.058 10.1126/science.abb9789 10.1016/j.ijid.2020.03.020 |
ContentType | Journal Article |
Copyright | IEEE 2020. Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 IEEE 2020. IEEE |
Copyright_xml | – notice: IEEE 2020. – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 – notice: IEEE 2020. IEEE |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 5PM |
DOI | 10.1109/TNSE.2020.3024723 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Government Statistics |
EISSN | 2334-329X |
EndPage | 3294 |
ExternalDocumentID | PMC8769021 37981959 10_1109_TNSE_2020_3024723 9200529 |
Genre | orig-research Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: MOST108-2221-E007-016-MY3 funderid: 10.13039/501100004663 – fundername: ; grantid: MOST108-2221-E007-016-MY3 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION NPM RIC 7SC 8FD JQ2 L7M L~C L~D 7X8 5PM |
ID | FETCH-LOGICAL-c404t-64800277e4eb1fa6a6b452dc8944e89a92202a7a6ff2742eedeff17c2b8373cd3 |
IEDL.DBID | RIE |
ISSN | 2327-4697 |
IngestDate | Thu Aug 21 18:36:25 EDT 2025 Fri Jul 11 16:02:38 EDT 2025 Mon Jun 30 10:00:20 EDT 2025 Wed Feb 19 02:18:48 EST 2025 Tue Jul 01 03:10:42 EDT 2025 Thu Apr 24 23:00:11 EDT 2025 Wed Aug 27 02:29:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | COVID-19 herd immunity undetectable infection SARS-CoV-2 independent cascade time-dependent SIR model Coronavirus social distancing superspreader |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html IEEE 2020. This article is free to access and download, along with rights for full text and data mining, re-use and analysis. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-64800277e4eb1fa6a6b452dc8944e89a92202a7a6ff2742eedeff17c2b8373cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1352-0983 0000-0002-5386-4756 |
PMID | 37981959 |
PQID | 2475960052 |
PQPubID | 2040409 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1109_TNSE_2020_3024723 proquest_miscellaneous_2892011237 proquest_journals_2475960052 ieee_primary_9200529 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8769021 pubmed_primary_37981959 crossref_primary_10_1109_TNSE_2020_3024723 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on network science and engineering |
PublicationTitleAbbrev | TNSE |
PublicationTitleAlternate | IEEE Trans Netw Sci Eng |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref14 ref31 ref32 nesteruk (ref3) 0 (ref2) 2020 ref1 ref17 peng (ref5) 0 ref19 ref18 maier (ref7) 0 wyman (ref21) 2020 ref24 ref23 ganyani (ref25) 0 ref26 ref20 (ref12) 2020 ref22 althouse (ref33) 0 chen (ref27) 1999 ref28 ref8 (ref16) 2020 ref9 (ref30) 2020 ref4 ref6 hu (ref11) 0 pedregosa (ref29) 2011; 12 zeng (ref10) 0 |
References_xml | – ident: ref9 doi: 10.1016/j.ijid.2020.01.050 – ident: ref24 doi: 10.1021/ie960180e – ident: ref4 doi: 10.1515/jiip-2020-0010 – ident: ref20 doi: 10.1109/TNSE.2020.3024723 – year: 0 ident: ref5 article-title: Epidemic analysis of Covid-19 in china by dynamical modeling publication-title: arXiv 2002 06563 – year: 0 ident: ref7 article-title: Effective containment explains sub-exponential growth in confirmed cases of recent covid-19 outbreak in mainland china publication-title: arXiv 2002 07572 – ident: ref26 doi: 10.1016/j.immuni.2020.04.012 – ident: ref14 doi: 10.7717/peerj.8601 – ident: ref22 doi: 10.1145/956750.956769 – year: 2020 ident: ref21 article-title: Covid-19 pandemic navigator core model: Overview of methodology and use cases – volume: 12 start-page: 2825 year: 2011 ident: ref29 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res – year: 0 ident: ref11 article-title: Artificial intelligence forecasting of covid-19 in china publication-title: arXiv 2002 07112 – ident: ref13 doi: 10.1038/318323a0 – ident: ref17 doi: 10.1111/1467-9876.00187 – year: 1999 ident: ref27 publication-title: Epidemiology Principles and Methods – ident: ref23 doi: 10.1145/383952.384003 – ident: ref31 doi: 10.1145/3341161.3342890 – ident: ref18 doi: 10.1371/journal.pone.0185528 – year: 2020 ident: ref12 article-title: Outbreak notification – ident: ref32 doi: 10.1056/NEJMoa2001316 – ident: ref15 doi: 10.1093/acprof:oso/9780199206650.001.0001 – ident: ref28 doi: 10.1201/b18377 – year: 2020 ident: ref30 article-title: Coronavirus pandemic (covid-19) publication-title: Our World in Data – year: 2020 ident: ref2 article-title: Coronavirus disease (covid-19) outbreak – ident: ref6 doi: 10.1111/jebm.12376 – year: 0 ident: ref33 article-title: Stochasticity and heterogeneity in the transmission dynamics of SARS-COV-2 – year: 0 ident: ref10 article-title: Predictions of 2019-ncov transmission ending via comprehensive methods – year: 2020 ident: ref16 article-title: COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University – ident: ref8 doi: 10.1016/j.ijid.2020.02.058 – year: 0 ident: ref25 article-title: Estimating the generation interval for Covid-19 based on symptom onset data publication-title: medRxiv – ident: ref19 doi: 10.1126/science.abb9789 – year: 0 ident: ref3 article-title: Statistics based predictions of coronavirus 2019-ncov spreading in mainland china publication-title: medRxiv – ident: ref1 doi: 10.1016/j.ijid.2020.03.020 |
SSID | ssj0001286333 |
Score | 2.6000936 |
Snippet | In this paper, we conduct mathematical and numerical analyses for COVID-19. To predict the trend of COVID-19, we propose a time-dependent SIR model that tracks... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3279 |
SubjectTerms | Coronavirus Coronaviruses COVID-19 Disease control Disease transmission Diseases Epidemics Government herd immunity Impact analysis independent cascade Mathematical analysis Mathematical model Matrix methods Numerical models Outbreaks Phase transitions Predictive models SARS-CoV-2 Social distancing Sociology Statistics superspreader Time dependence time-dependent SIR model undetectable infection Viral diseases |
Title | A Time-Dependent SIR Model for COVID-19 With Undetectable Infected Persons |
URI | https://ieeexplore.ieee.org/document/9200529 https://www.ncbi.nlm.nih.gov/pubmed/37981959 https://www.proquest.com/docview/2475960052 https://www.proquest.com/docview/2892011237 https://pubmed.ncbi.nlm.nih.gov/PMC8769021 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3poC_SRliIj9VTVSxJ77fiIeIhFAqoCLbfIccYCFWWrkr3019fjZNNdhKreEtmx4oyd-cYz8w3AxwzHlbCoeOWw5tJbzaugtbhFL7Aq0hpTShQ-O1cn1_L0ZnyzAp-HXBhEjMFnOKLL6Muvp25GR2V7JtIEmVVYDYZbl6u1cJ5SKCFE77jMUrN3dX55FAzAPNilQRHpXCypnlhL5SlY-Tg6ckHdHL-As_mLdlEmP0azthq53484HP93Ji_heY872X63UDZgBZtNeLbARrgJ63_r7oYbQqEdifMWnO4zShXhh33F3JZdTr4yKqN2zwLoZQcX3yaHPDPs-117y6iUErkmKCmLTWKwF9bsS4T2D6_g-vjo6uCE90UYuJOpbLmSBCm1Rhn-6t4qqyo5zmtXGCmxMNbk4RNbbZX35PUNKhe9z7TLq2D6CleL17DWTBt8C6xQWWYMijode-lUbRA15r5KrcbMaZlAOpdP6XqGciqUcV9GSyU1JYm0JJGWvUgT-DQ88rOj5_hX5y2SxNCxF0IC2_NFUPYb-KHMiQdRUXsCu0Nz2HrkT7ENTmehT2EIPuVCJ_CmWzPD2EIb8lCGwfXSaho6EK33cktzdxvpvYN-MgF5vXv6bd_DOs2piyfchrX21ww_BFzUVjtxQ_wBmAoKwQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcqAceLQ8AgWMBBekbBPba8cHDlW31aaPBdEt9BYSZ6JWVFnEZoXgt_BX-G94kmzYrSpulbglsmMl9tjzTWbmG4BXIfYzkaLyM4u5L4tU-5nTWn6KhcAsCnIMKFH4aKSGJ3L_tH-6Ar-6XBhErIPPsEeXtS8_n9gZ_SrbMjVNkGlDKA_wx3dnoE3fxgO3mq8539sd7wz9toaAb2UgK19JQkRao3SHUpGqVGWyz3MbGSkxMqnhzvpPdaqKgpyWTmNgUYTa8sxZbsLmwo17A246nNHnTXbYwh-cSAkhWldpGJit8eh415mc3FnCTvVpLpaUXV295Sogezkec0HB7d2F3_OpaeJavvRmVdazPy-xRv6vc3cP7rTImm03W-E-rGC5DrcX-BbXYe1vZWF3Qzi7oanegP1tRskw_qCtCVyx4_gDo0JxF8zBerbz7mM88EPDPp1XZ4yKRZHzhdLOWFyHs2HO3tfGy_QBnFzLZz6E1XJS4mNgkQpDY1DkQb-QVuUGUSMvsiDVGFotPQjm8pDYloOdSoFcJLUtFpiERCghEUpaEfLgTffI14aA5F-dN2jlu47tonuwORe6pD2ipgknpkdF7R687Jrd4UIeo7TEycz1iQwBRC60B48aGe3GFtqQD9YNrpekt-tAxOXLLeX5WU1g7jSwcdjyydVv-wJuDcdHh8lhPDp4Cmv0fU305CasVt9m-MyhwCp7Xm9GBp-vW4L_ABvwaIs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Time-Dependent+SIR+Model+for+COVID-19+With+Undetectable+Infected+Persons&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Yi-Cheng%2C+Chen&rft.au=Ping-En+Lu&rft.au=Cheng-Shang%2C+Chang&rft.au=Liu%2C+Tzu-Hsuan&rft.date=2020-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2334-329X&rft.volume=7&rft.issue=4&rft.spage=3279&rft_id=info:doi/10.1109%2FTNSE.2020.3024723&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |