A Time-Dependent SIR Model for COVID-19 With Undetectable Infected Persons

In this paper, we conduct mathematical and numerical analyses for COVID-19. To predict the trend of COVID-19, we propose a time-dependent SIR model that tracks the transmission and recovering rate at time t. Using the data provided by China authority, we show our one-day prediction errors are almost...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on network science and engineering Vol. 7; no. 4; pp. 3279 - 3294
Main Authors Chen, Yi-Cheng, Lu, Ping-En, Chang, Cheng-Shang, Liu, Tzu-Hsuan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we conduct mathematical and numerical analyses for COVID-19. To predict the trend of COVID-19, we propose a time-dependent SIR model that tracks the transmission and recovering rate at time t. Using the data provided by China authority, we show our one-day prediction errors are almost less than 3%. The turning point and the total number of confirmed cases in China are predicted under our model. To analyze the impact of the undetectable infections on the spread of disease, we extend our model by considering two types of infected persons: detectable and undetectable infected persons. Whether there is an outbreak is characterized by the spectral radius of a 2 X 2 matrix. If R 0 > 1, then the spectral radius of that matrix is greater than 1, and there is an outbreak. We plot the phase transition diagram of an outbreak and show that there are several countries on the verge of COVID-19 outbreaks on Mar. 2, 2020. To illustrate the effectiveness of social distancing, we analyze the independent cascade model for disease propagation in a configuration random network. We show two approaches of social distancing that can lead to a reduction of the effective reproduction number R e .
AbstractList In this paper, we conduct mathematical and numerical analyses for COVID-19. To predict the trend of COVID-19, we propose a time-dependent SIR model that tracks the transmission and recovering rate at time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} $t$\end{document} . Using the data provided by China authority, we show our one-day prediction errors are almost less than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} $3\%$\end{document} . The turning point and the total number of confirmed cases in China are predicted under our model. To analyze the impact of the undetectable infections on the spread of disease, we extend our model by considering two types of infected persons: detectable and undetectable infected persons. Whether there is an outbreak is characterized by the spectral radius of a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} $2 \times 2$\end{document} matrix. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} $R_0>1$\end{document} , then the spectral radius of that matrix is greater than 1, and there is an outbreak. We plot the phase transition diagram of an outbreak and show that there are several countries on the verge of COVID-19 outbreaks on Mar. 2, 2020. To illustrate the effectiveness of social distancing, we analyze the independent cascade model for disease propagation in a configuration random network. We show two approaches of social distancing that can lead to a reduction of the effective reproduction number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} $R_e$\end{document} .
In this paper, we conduct mathematical and numerical analyses for COVID-19. To predict the trend of COVID-19, we propose a time-dependent SIR model that tracks the transmission and recovering rate at time [Formula: see text]. Using the data provided by China authority, we show our one-day prediction errors are almost less than [Formula: see text]. The turning point and the total number of confirmed cases in China are predicted under our model. To analyze the impact of the undetectable infections on the spread of disease, we extend our model by considering two types of infected persons: detectable and undetectable infected persons. Whether there is an outbreak is characterized by the spectral radius of a [Formula: see text] matrix. If [Formula: see text], then the spectral radius of that matrix is greater than 1, and there is an outbreak. We plot the phase transition diagram of an outbreak and show that there are several countries on the verge of COVID-19 outbreaks on Mar. 2, 2020. To illustrate the effectiveness of social distancing, we analyze the independent cascade model for disease propagation in a configuration random network. We show two approaches of social distancing that can lead to a reduction of the effective reproduction number [Formula: see text].
In this paper, we conduct mathematical and numerical analyses for COVID-19. To predict the trend of COVID-19, we propose a time-dependent SIR model that tracks the transmission and recovering rate at time [Formula: see text]. Using the data provided by China authority, we show our one-day prediction errors are almost less than [Formula: see text]. The turning point and the total number of confirmed cases in China are predicted under our model. To analyze the impact of the undetectable infections on the spread of disease, we extend our model by considering two types of infected persons: detectable and undetectable infected persons. Whether there is an outbreak is characterized by the spectral radius of a [Formula: see text] matrix. If [Formula: see text], then the spectral radius of that matrix is greater than 1, and there is an outbreak. We plot the phase transition diagram of an outbreak and show that there are several countries on the verge of COVID-19 outbreaks on Mar. 2, 2020. To illustrate the effectiveness of social distancing, we analyze the independent cascade model for disease propagation in a configuration random network. We show two approaches of social distancing that can lead to a reduction of the effective reproduction number [Formula: see text].In this paper, we conduct mathematical and numerical analyses for COVID-19. To predict the trend of COVID-19, we propose a time-dependent SIR model that tracks the transmission and recovering rate at time [Formula: see text]. Using the data provided by China authority, we show our one-day prediction errors are almost less than [Formula: see text]. The turning point and the total number of confirmed cases in China are predicted under our model. To analyze the impact of the undetectable infections on the spread of disease, we extend our model by considering two types of infected persons: detectable and undetectable infected persons. Whether there is an outbreak is characterized by the spectral radius of a [Formula: see text] matrix. If [Formula: see text], then the spectral radius of that matrix is greater than 1, and there is an outbreak. We plot the phase transition diagram of an outbreak and show that there are several countries on the verge of COVID-19 outbreaks on Mar. 2, 2020. To illustrate the effectiveness of social distancing, we analyze the independent cascade model for disease propagation in a configuration random network. We show two approaches of social distancing that can lead to a reduction of the effective reproduction number [Formula: see text].
In this paper, we conduct mathematical and numerical analyses for COVID-19. To predict the trend of COVID-19, we propose a time-dependent SIR model that tracks the transmission and recovering rate at time t. Using the data provided by China authority, we show our one-day prediction errors are almost less than 3%. The turning point and the total number of confirmed cases in China are predicted under our model. To analyze the impact of the undetectable infections on the spread of disease, we extend our model by considering two types of infected persons: detectable and undetectable infected persons. Whether there is an outbreak is characterized by the spectral radius of a 2 X 2 matrix. If R 0 > 1, then the spectral radius of that matrix is greater than 1, and there is an outbreak. We plot the phase transition diagram of an outbreak and show that there are several countries on the verge of COVID-19 outbreaks on Mar. 2, 2020. To illustrate the effectiveness of social distancing, we analyze the independent cascade model for disease propagation in a configuration random network. We show two approaches of social distancing that can lead to a reduction of the effective reproduction number R e .
In this paper, we conduct mathematical and numerical analyses for COVID-19. To predict the trend of COVID-19, we propose a time-dependent SIR model that tracks the transmission and recovering rate at time [Formula Omitted]. Using the data provided by China authority, we show our one-day prediction errors are almost less than [Formula Omitted]. The turning point and the total number of confirmed cases in China are predicted under our model. To analyze the impact of the undetectable infections on the spread of disease, we extend our model by considering two types of infected persons: detectable and undetectable infected persons. Whether there is an outbreak is characterized by the spectral radius of a [Formula Omitted] matrix. If [Formula Omitted], then the spectral radius of that matrix is greater than 1, and there is an outbreak. We plot the phase transition diagram of an outbreak and show that there are several countries on the verge of COVID-19 outbreaks on Mar. 2, 2020. To illustrate the effectiveness of social distancing, we analyze the independent cascade model for disease propagation in a configuration random network. We show two approaches of social distancing that can lead to a reduction of the effective reproduction number [Formula Omitted].
Author Chang, Cheng-Shang
Liu, Tzu-Hsuan
Lu, Ping-En
Chen, Yi-Cheng
AuthorAffiliation Institute of Communications Engineering National Tsing Hua University 34881 Hsinchu 30013 Taiwan R.O.C
AuthorAffiliation_xml – name: Institute of Communications Engineering National Tsing Hua University 34881 Hsinchu 30013 Taiwan R.O.C
Author_xml – sequence: 1
  givenname: Yi-Cheng
  surname: Chen
  fullname: Chen, Yi-Cheng
  email: yichengchen@gapp.nthu.edu.tw
  organization: Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan R.O.C
– sequence: 2
  givenname: Ping-En
  orcidid: 0000-0002-1352-0983
  surname: Lu
  fullname: Lu, Ping-En
  email: j94223@gmail.com
  organization: Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan R.O.C
– sequence: 3
  givenname: Cheng-Shang
  orcidid: 0000-0002-5386-4756
  surname: Chang
  fullname: Chang, Cheng-Shang
  email: cschang@ee.nthu.edu.tw
  organization: Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan R.O.C
– sequence: 4
  givenname: Tzu-Hsuan
  surname: Liu
  fullname: Liu, Tzu-Hsuan
  email: carinaliu@gapp.nthu.edu.tw
  organization: Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan R.O.C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37981959$$D View this record in MEDLINE/PubMed
BookMark eNp9UcFuEzEUtFARLWk_ACEhS71w2WA_O-v1BalKSwkqtKIpcLO8u8_U1WYd7A0Sf1-vklbQAyc_yTPzZt68JHt96JGQV5xNOWf63fLL9dkUGLCpYCAViGfkAISQhQD9Y2-cQRWy1GqfHKV0xxjjUJVCiBdkXyhdcT3TB-TTCV36FRanuMa-xX6g14uv9HNosaMuRDq__LY4Lbim3_1wS28yZMBmsHWHdNG7PGJLrzCm0KdD8tzZLuHR7p2Qmw9ny_nH4uLyfDE_uSgayeRQlLJiDJRCiTV3trRlLWfQNpWWEittNeRQVtnSOVASEFt0jqsG6koo0bRiQt5vddebeoVtk01H25l19Csb_5hgvfn3p_e35mf4bSpVagY8C7zdCcTwa4NpMCufGuw622PYJAOVBsY55HUTcvwEehc2sc_xTL75TJeMzSCj3vzt6NHKw5kzQG0BTQwpRXSm8YMdfBgN-s5wZsZOzdipGTs1u04zkz9hPoj_j_N6y_GI-IjPmbJXLe4B8m6p8A
CODEN ITNSD5
CitedBy_id crossref_primary_10_1109_TNSE_2022_3176214
crossref_primary_10_18359_ries_6547
crossref_primary_10_22207_JPAM_14_2_40
crossref_primary_10_1109_JSYST_2022_3170406
crossref_primary_10_26782_jmcms_2021_02_00001
crossref_primary_10_1109_TBDATA_2021_3103458
crossref_primary_10_1109_TNSE_2022_3142316
crossref_primary_10_1016_j_cie_2023_109694
crossref_primary_10_1016_j_jbi_2021_103793
crossref_primary_10_1080_24754269_2021_1872131
crossref_primary_10_1136_bmjopen_2020_041472
crossref_primary_10_3389_fpubh_2021_768852
crossref_primary_10_1038_s41598_022_05286_9
crossref_primary_10_1016_j_bpj_2024_01_008
crossref_primary_10_1155_2021_6680135
crossref_primary_10_1016_j_rinp_2022_105758
crossref_primary_10_5937_afmnai39_38354
crossref_primary_10_1371_journal_pone_0283874
crossref_primary_10_1007_s10586_024_04764_1
crossref_primary_10_3390_math11183876
crossref_primary_10_1109_TCSS_2022_3225639
crossref_primary_10_1080_17538947_2024_2434651
crossref_primary_10_1371_journal_pone_0283517
crossref_primary_10_3390_su131910762
crossref_primary_10_3389_fpubh_2020_556689
crossref_primary_10_1016_j_cam_2022_114506
crossref_primary_10_1016_j_bspc_2024_106435
crossref_primary_10_1109_ACCESS_2021_3129904
crossref_primary_10_1016_j_apnum_2024_08_008
crossref_primary_10_1016_j_cmpbup_2021_100047
crossref_primary_10_1016_j_chaos_2025_116151
crossref_primary_10_1109_ACCESS_2020_3021952
crossref_primary_10_3390_fractalfract6020053
crossref_primary_10_1016_j_measurement_2020_108432
crossref_primary_10_1371_journal_pone_0256971
crossref_primary_10_1016_j_dsm_2023_03_003
crossref_primary_10_1016_j_healthplace_2025_103422
crossref_primary_10_3390_math9233054
crossref_primary_10_1016_j_ifacol_2022_07_228
crossref_primary_10_1155_2022_3309420
crossref_primary_10_1016_j_isatra_2021_08_008
crossref_primary_10_2139_ssrn_3980184
crossref_primary_10_1038_s41598_024_79525_6
crossref_primary_10_1109_JBHI_2022_3168825
crossref_primary_10_1109_TIFS_2025_3546850
crossref_primary_10_1142_S0129183125500111
crossref_primary_10_1021_acsomega_2c06006
crossref_primary_10_1016_j_eswa_2022_116611
crossref_primary_10_1111_poms_13985
crossref_primary_10_1155_2022_6142981
crossref_primary_10_1098_rsif_2020_0599
crossref_primary_10_1088_1742_6596_2580_1_012041
crossref_primary_10_1016_j_physd_2021_132981
crossref_primary_10_1140_epjb_s10051_024_00746_9
crossref_primary_10_1016_j_cnsns_2023_107517
crossref_primary_10_1080_00949655_2022_2133118
crossref_primary_10_1080_02664763_2021_1936467
crossref_primary_10_1080_00207160_2021_1929942
crossref_primary_10_2139_ssrn_3901449
crossref_primary_10_22207_JPAM_14_SPL1_43
crossref_primary_10_17352_2455_5479_000176
crossref_primary_10_1002_hpm_3164
crossref_primary_10_17352_2455_5479_000175
crossref_primary_10_1016_j_ssci_2020_104962
crossref_primary_10_1109_TNSE_2023_3295911
crossref_primary_10_1007_s12065_021_00600_2
crossref_primary_10_1016_j_trip_2024_101301
crossref_primary_10_1007_s11071_021_06778_5
crossref_primary_10_1038_s41598_023_50219_9
crossref_primary_10_1007_s13278_023_01130_8
crossref_primary_10_1142_S0218202521500512
crossref_primary_10_7232_JKIIE_2023_49_2_120
crossref_primary_10_1016_j_omega_2023_102909
crossref_primary_10_1145_3493499_3493500
crossref_primary_10_1177_21582440221087260
crossref_primary_10_1109_TNSE_2023_3272472
crossref_primary_10_33959_cuijca_v4i01_43
crossref_primary_10_4018_JDM_299560
crossref_primary_10_32604_cmes_2021_016981
crossref_primary_10_1002_jgf2_382
crossref_primary_10_1098_rsfs_2021_0013
crossref_primary_10_3390_ijerph19095546
crossref_primary_10_1137_22M1518189
crossref_primary_10_1109_TEM_2022_3199039
crossref_primary_10_3390_axioms11030121
crossref_primary_10_1109_TNSE_2024_3468991
crossref_primary_10_3934_math_2022515
crossref_primary_10_1142_S0218202522500506
crossref_primary_10_3389_frai_2021_648579
crossref_primary_10_1109_TNSE_2023_3348474
crossref_primary_10_1109_TSIPN_2025_3530346
crossref_primary_10_3389_fpubh_2023_1185720
crossref_primary_10_1109_JSTSP_2022_3153168
crossref_primary_10_1016_j_chaos_2021_110922
crossref_primary_10_1088_1742_6596_2199_1_012006
crossref_primary_10_1186_s43556_024_00238_3
crossref_primary_10_3390_ijerph18126563
crossref_primary_10_3934_nhm_2022016
crossref_primary_10_3934_nhm_2022015
crossref_primary_10_1088_1402_4896_ad8271
crossref_primary_10_1016_j_chaos_2020_110074
crossref_primary_10_3390_math10010021
crossref_primary_10_1109_ACCESS_2021_3136191
crossref_primary_10_1002_jmv_26945
crossref_primary_10_1016_j_eswa_2021_115710
crossref_primary_10_2139_ssrn_4155175
crossref_primary_10_1002_eng2_12550
crossref_primary_10_3390_biomimetics8020158
crossref_primary_10_3390_math10183347
crossref_primary_10_1109_MVT_2022_3202025
crossref_primary_10_3390_math9192454
crossref_primary_10_1109_TNSE_2021_3075222
crossref_primary_10_1038_s41598_022_06159_x
crossref_primary_10_1080_22221751_2024_2437240
crossref_primary_10_1016_j_chaos_2022_112735
crossref_primary_10_1088_2632_2153_ac0314
crossref_primary_10_1145_3494531
crossref_primary_10_3934_jdg_2021004
crossref_primary_10_1109_TCSS_2024_3362885
crossref_primary_10_1016_j_engappai_2023_106644
crossref_primary_10_1140_epjs_s11734_024_01274_4
crossref_primary_10_1016_j_idm_2021_12_003
crossref_primary_10_1016_j_jocs_2025_102540
crossref_primary_10_1007_s41060_022_00334_z
crossref_primary_10_1214_22_BA1334
crossref_primary_10_1109_TCSS_2023_3243894
crossref_primary_10_1186_s12879_022_07794_5
crossref_primary_10_3390_vaccines10030343
crossref_primary_10_1016_j_physa_2023_129196
crossref_primary_10_1038_s41598_022_09879_2
crossref_primary_10_1155_2022_6001876
crossref_primary_10_3390_s21020540
crossref_primary_10_1016_j_jbi_2023_104364
crossref_primary_10_1007_s00285_021_01615_0
crossref_primary_10_1063_5_0062867
crossref_primary_10_1080_0376835X_2022_2046550
crossref_primary_10_1016_j_chaos_2021_110918
crossref_primary_10_1371_journal_pone_0307092
crossref_primary_10_1109_ACCESS_2024_3389104
crossref_primary_10_1016_j_matcom_2024_12_012
crossref_primary_10_1016_j_knosys_2022_109806
crossref_primary_10_1140_epjs_s11734_021_00340_5
crossref_primary_10_1016_j_ejco_2022_100025
crossref_primary_10_1088_2632_2153_abf0f7
crossref_primary_10_1016_j_jbi_2021_103920
crossref_primary_10_1214_22_AOAS1601
crossref_primary_10_47470_0016_9900_2023_102_8_740_749
crossref_primary_10_1093_pnasnexus_pgae237
crossref_primary_10_1371_journal_pone_0273469
crossref_primary_10_1016_j_ece_2022_12_002
crossref_primary_10_1007_s10994_022_06234_4
crossref_primary_10_1016_j_eswa_2023_120326
crossref_primary_10_1007_s12597_021_00557_x
crossref_primary_10_1007_s43069_022_00139_7
crossref_primary_10_1109_TNSE_2024_3421308
crossref_primary_10_1016_j_idm_2022_06_006
crossref_primary_10_1109_TNSE_2021_3121709
crossref_primary_10_1126_science_abb9789
crossref_primary_10_3389_fbuil_2020_607961
crossref_primary_10_52547_hsm_1_1_1
crossref_primary_10_23919_JSC_2022_0005
crossref_primary_10_3390_ijgi12120485
crossref_primary_10_1140_epjp_s13360_021_01586_7
crossref_primary_10_1109_ACCESS_2021_3104519
crossref_primary_10_23919_JSC_2022_0002
crossref_primary_10_1007_s12043_024_02864_6
crossref_primary_10_1016_j_matpr_2021_11_480
crossref_primary_10_29233_sdufeffd_852222
crossref_primary_10_4081_gh_2022_1060
crossref_primary_10_1007_s11071_021_06811_7
crossref_primary_10_1109_TSMC_2022_3207319
crossref_primary_10_3389_fpubh_2021_727274
crossref_primary_10_1109_JBHI_2020_3027987
crossref_primary_10_1109_TNSE_2020_3024723
crossref_primary_10_1088_1751_8121_acd233
crossref_primary_10_3390_math10173046
crossref_primary_10_1017_dsj_2021_16
crossref_primary_10_3390_su142114657
crossref_primary_10_1186_s12874_024_02423_y
crossref_primary_10_1140_epje_s10189_022_00225_y
crossref_primary_10_1186_s12889_023_14992_6
crossref_primary_10_59324_ejtas_2024_2_2__06
crossref_primary_10_1057_s41599_022_01142_3
crossref_primary_10_1109_TNSE_2021_3131954
crossref_primary_10_1038_s41598_023_49949_7
crossref_primary_10_1038_s41598_021_01317_z
crossref_primary_10_4103_jmss_jmss_134_21
crossref_primary_10_1007_s11831_021_09641_3
crossref_primary_10_1016_j_jtbi_2023_111671
crossref_primary_10_1109_ACCESS_2022_3181605
crossref_primary_10_1142_S0218126623502791
crossref_primary_10_1016_j_knosys_2025_112997
crossref_primary_10_1016_j_omega_2025_103318
crossref_primary_10_1098_rsos_201382
crossref_primary_10_1111_poms_13648
crossref_primary_10_1016_j_inffus_2024_102439
crossref_primary_10_3389_fpubh_2024_1338052
crossref_primary_10_1007_s00500_021_06133_1
crossref_primary_10_1016_j_jbi_2021_103901
crossref_primary_10_3934_nhm_2024022
crossref_primary_10_1080_23311886_2020_1829806
crossref_primary_10_3390_info15080433
crossref_primary_10_1371_journal_pone_0265489
crossref_primary_10_3389_fphy_2020_589963
crossref_primary_10_1103_PhysRevResearch_5_043264
crossref_primary_10_1093_ofid_ofac087
crossref_primary_10_3389_fpubh_2023_1202996
crossref_primary_10_1103_PhysRevE_105_014302
crossref_primary_10_1140_epjp_s13360_022_03216_2
crossref_primary_10_1016_j_ssci_2021_105164
crossref_primary_10_1016_j_ssci_2025_106777
crossref_primary_10_1109_TNSE_2021_3081759
crossref_primary_10_1021_acs_jchemed_4c00015
crossref_primary_10_1371_journal_pone_0258710
crossref_primary_10_1109_TCSS_2024_3404590
crossref_primary_10_3390_math9050485
crossref_primary_10_1371_journal_pone_0253381
crossref_primary_10_1140_epjs_s11734_022_00426_8
crossref_primary_10_3390_ijerph20032408
crossref_primary_10_1145_3686150
crossref_primary_10_3390_e24060779
crossref_primary_10_3390_v12070777
crossref_primary_10_1016_j_cmpb_2022_106981
crossref_primary_10_5802_crmath_99
crossref_primary_10_3934_math_2022376
crossref_primary_10_1016_j_pdisas_2023_100281
crossref_primary_10_3389_fams_2020_611854
crossref_primary_10_2478_stattrans_2022_0024
crossref_primary_10_4081_jphr_2022_2748
crossref_primary_10_1007_s00500_023_09170_0
crossref_primary_10_1109_JSTSP_2022_3140703
crossref_primary_10_1109_TSP_2023_3293908
crossref_primary_10_3390_forecast4010005
Cites_doi 10.1016/j.ijid.2020.01.050
10.1021/ie960180e
10.1515/jiip-2020-0010
10.1109/TNSE.2020.3024723
10.1016/j.immuni.2020.04.012
10.7717/peerj.8601
10.1145/956750.956769
10.1038/318323a0
10.1111/1467-9876.00187
10.1145/383952.384003
10.1145/3341161.3342890
10.1371/journal.pone.0185528
10.1056/NEJMoa2001316
10.1093/acprof:oso/9780199206650.001.0001
10.1201/b18377
10.1111/jebm.12376
10.1016/j.ijid.2020.02.058
10.1126/science.abb9789
10.1016/j.ijid.2020.03.020
ContentType Journal Article
Copyright IEEE 2020.
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
IEEE 2020. IEEE
Copyright_xml – notice: IEEE 2020.
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
– notice: IEEE 2020. IEEE
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1109/TNSE.2020.3024723
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Government
Statistics
EISSN 2334-329X
EndPage 3294
ExternalDocumentID PMC8769021
37981959
10_1109_TNSE_2020_3024723
9200529
Genre orig-research
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST108-2221-E007-016-MY3
  funderid: 10.13039/501100004663
– fundername: ;
  grantid: MOST108-2221-E007-016-MY3
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
NPM
RIC
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c404t-64800277e4eb1fa6a6b452dc8944e89a92202a7a6ff2742eedeff17c2b8373cd3
IEDL.DBID RIE
ISSN 2327-4697
IngestDate Thu Aug 21 18:36:25 EDT 2025
Fri Jul 11 16:02:38 EDT 2025
Mon Jun 30 10:00:20 EDT 2025
Wed Feb 19 02:18:48 EST 2025
Tue Jul 01 03:10:42 EDT 2025
Thu Apr 24 23:00:11 EDT 2025
Wed Aug 27 02:29:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords COVID-19
herd immunity
undetectable infection
SARS-CoV-2
independent cascade
time-dependent SIR model
Coronavirus
social distancing
superspreader
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
IEEE 2020.
This article is free to access and download, along with rights for full text and data mining, re-use and analysis.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-64800277e4eb1fa6a6b452dc8944e89a92202a7a6ff2742eedeff17c2b8373cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1352-0983
0000-0002-5386-4756
PMID 37981959
PQID 2475960052
PQPubID 2040409
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TNSE_2020_3024723
proquest_miscellaneous_2892011237
proquest_journals_2475960052
ieee_primary_9200529
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8769021
pubmed_primary_37981959
crossref_primary_10_1109_TNSE_2020_3024723
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on network science and engineering
PublicationTitleAbbrev TNSE
PublicationTitleAlternate IEEE Trans Netw Sci Eng
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref31
ref32
nesteruk (ref3) 0
(ref2) 2020
ref1
ref17
peng (ref5) 0
ref19
ref18
maier (ref7) 0
wyman (ref21) 2020
ref24
ref23
ganyani (ref25) 0
ref26
ref20
(ref12) 2020
ref22
althouse (ref33) 0
chen (ref27) 1999
ref28
ref8
(ref16) 2020
ref9
(ref30) 2020
ref4
ref6
hu (ref11) 0
pedregosa (ref29) 2011; 12
zeng (ref10) 0
References_xml – ident: ref9
  doi: 10.1016/j.ijid.2020.01.050
– ident: ref24
  doi: 10.1021/ie960180e
– ident: ref4
  doi: 10.1515/jiip-2020-0010
– ident: ref20
  doi: 10.1109/TNSE.2020.3024723
– year: 0
  ident: ref5
  article-title: Epidemic analysis of Covid-19 in china by dynamical modeling
  publication-title: arXiv 2002 06563
– year: 0
  ident: ref7
  article-title: Effective containment explains sub-exponential growth in confirmed cases of recent covid-19 outbreak in mainland china
  publication-title: arXiv 2002 07572
– ident: ref26
  doi: 10.1016/j.immuni.2020.04.012
– ident: ref14
  doi: 10.7717/peerj.8601
– ident: ref22
  doi: 10.1145/956750.956769
– year: 2020
  ident: ref21
  article-title: Covid-19 pandemic navigator core model: Overview of methodology and use cases
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref29
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– year: 0
  ident: ref11
  article-title: Artificial intelligence forecasting of covid-19 in china
  publication-title: arXiv 2002 07112
– ident: ref13
  doi: 10.1038/318323a0
– ident: ref17
  doi: 10.1111/1467-9876.00187
– year: 1999
  ident: ref27
  publication-title: Epidemiology Principles and Methods
– ident: ref23
  doi: 10.1145/383952.384003
– ident: ref31
  doi: 10.1145/3341161.3342890
– ident: ref18
  doi: 10.1371/journal.pone.0185528
– year: 2020
  ident: ref12
  article-title: Outbreak notification
– ident: ref32
  doi: 10.1056/NEJMoa2001316
– ident: ref15
  doi: 10.1093/acprof:oso/9780199206650.001.0001
– ident: ref28
  doi: 10.1201/b18377
– year: 2020
  ident: ref30
  article-title: Coronavirus pandemic (covid-19)
  publication-title: Our World in Data
– year: 2020
  ident: ref2
  article-title: Coronavirus disease (covid-19) outbreak
– ident: ref6
  doi: 10.1111/jebm.12376
– year: 0
  ident: ref33
  article-title: Stochasticity and heterogeneity in the transmission dynamics of SARS-COV-2
– year: 0
  ident: ref10
  article-title: Predictions of 2019-ncov transmission ending via comprehensive methods
– year: 2020
  ident: ref16
  article-title: COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University
– ident: ref8
  doi: 10.1016/j.ijid.2020.02.058
– year: 0
  ident: ref25
  article-title: Estimating the generation interval for Covid-19 based on symptom onset data
  publication-title: medRxiv
– ident: ref19
  doi: 10.1126/science.abb9789
– year: 0
  ident: ref3
  article-title: Statistics based predictions of coronavirus 2019-ncov spreading in mainland china
  publication-title: medRxiv
– ident: ref1
  doi: 10.1016/j.ijid.2020.03.020
SSID ssj0001286333
Score 2.6000936
Snippet In this paper, we conduct mathematical and numerical analyses for COVID-19. To predict the trend of COVID-19, we propose a time-dependent SIR model that tracks...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3279
SubjectTerms Coronavirus
Coronaviruses
COVID-19
Disease control
Disease transmission
Diseases
Epidemics
Government
herd immunity
Impact analysis
independent cascade
Mathematical analysis
Mathematical model
Matrix methods
Numerical models
Outbreaks
Phase transitions
Predictive models
SARS-CoV-2
Social distancing
Sociology
Statistics
superspreader
Time dependence
time-dependent SIR model
undetectable infection
Viral diseases
Title A Time-Dependent SIR Model for COVID-19 With Undetectable Infected Persons
URI https://ieeexplore.ieee.org/document/9200529
https://www.ncbi.nlm.nih.gov/pubmed/37981959
https://www.proquest.com/docview/2475960052
https://www.proquest.com/docview/2892011237
https://pubmed.ncbi.nlm.nih.gov/PMC8769021
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3poC_SRliIj9VTVSxJ77fiIeIhFAqoCLbfIccYCFWWrkr3019fjZNNdhKreEtmx4oyd-cYz8w3AxwzHlbCoeOWw5tJbzaugtbhFL7Aq0hpTShQ-O1cn1_L0ZnyzAp-HXBhEjMFnOKLL6Muvp25GR2V7JtIEmVVYDYZbl6u1cJ5SKCFE77jMUrN3dX55FAzAPNilQRHpXCypnlhL5SlY-Tg6ckHdHL-As_mLdlEmP0azthq53484HP93Ji_heY872X63UDZgBZtNeLbARrgJ63_r7oYbQqEdifMWnO4zShXhh33F3JZdTr4yKqN2zwLoZQcX3yaHPDPs-117y6iUErkmKCmLTWKwF9bsS4T2D6_g-vjo6uCE90UYuJOpbLmSBCm1Rhn-6t4qqyo5zmtXGCmxMNbk4RNbbZX35PUNKhe9z7TLq2D6CleL17DWTBt8C6xQWWYMijode-lUbRA15r5KrcbMaZlAOpdP6XqGciqUcV9GSyU1JYm0JJGWvUgT-DQ88rOj5_hX5y2SxNCxF0IC2_NFUPYb-KHMiQdRUXsCu0Nz2HrkT7ENTmehT2EIPuVCJ_CmWzPD2EIb8lCGwfXSaho6EK33cktzdxvpvYN-MgF5vXv6bd_DOs2piyfchrX21ww_BFzUVjtxQ_wBmAoKwQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcqAceLQ8AgWMBBekbBPba8cHDlW31aaPBdEt9BYSZ6JWVFnEZoXgt_BX-G94kmzYrSpulbglsmMl9tjzTWbmG4BXIfYzkaLyM4u5L4tU-5nTWn6KhcAsCnIMKFH4aKSGJ3L_tH-6Ar-6XBhErIPPsEeXtS8_n9gZ_SrbMjVNkGlDKA_wx3dnoE3fxgO3mq8539sd7wz9toaAb2UgK19JQkRao3SHUpGqVGWyz3MbGSkxMqnhzvpPdaqKgpyWTmNgUYTa8sxZbsLmwo17A246nNHnTXbYwh-cSAkhWldpGJit8eh415mc3FnCTvVpLpaUXV295Sogezkec0HB7d2F3_OpaeJavvRmVdazPy-xRv6vc3cP7rTImm03W-E-rGC5DrcX-BbXYe1vZWF3Qzi7oanegP1tRskw_qCtCVyx4_gDo0JxF8zBerbz7mM88EPDPp1XZ4yKRZHzhdLOWFyHs2HO3tfGy_QBnFzLZz6E1XJS4mNgkQpDY1DkQb-QVuUGUSMvsiDVGFotPQjm8pDYloOdSoFcJLUtFpiERCghEUpaEfLgTffI14aA5F-dN2jlu47tonuwORe6pD2ipgknpkdF7R687Jrd4UIeo7TEycz1iQwBRC60B48aGe3GFtqQD9YNrpekt-tAxOXLLeX5WU1g7jSwcdjyydVv-wJuDcdHh8lhPDp4Cmv0fU305CasVt9m-MyhwCp7Xm9GBp-vW4L_ABvwaIs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Time-Dependent+SIR+Model+for+COVID-19+With+Undetectable+Infected+Persons&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Yi-Cheng%2C+Chen&rft.au=Ping-En+Lu&rft.au=Cheng-Shang%2C+Chang&rft.au=Liu%2C+Tzu-Hsuan&rft.date=2020-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2334-329X&rft.volume=7&rft.issue=4&rft.spage=3279&rft_id=info:doi/10.1109%2FTNSE.2020.3024723&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon