Test of Significance for High-Dimensional Thresholds with Application to Individualized Minimal Clinically Important Difference

This work is motivated by learning the individualized minimal clinically important difference, a vital concept to assess clinical importance in various biomedical studies. We formulate the scientific question into a high-dimensional statistical problem where the parameter of interest lies in an indi...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 119; no. 546; pp. 1396 - 1408
Main Authors Feng, Huijie, Duan, Jingyi, Ning, Yang, Zhao, Jiwei
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 02.04.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work is motivated by learning the individualized minimal clinically important difference, a vital concept to assess clinical importance in various biomedical studies. We formulate the scientific question into a high-dimensional statistical problem where the parameter of interest lies in an individualized linear threshold. The goal is to develop a hypothesis testing procedure for the significance of a single element in this parameter as well as of a linear combination of this parameter. The difficulty dues to the high-dimensional nuisance in developing such a testing procedure, and also stems from the fact that this high-dimensional threshold model is nonregular and the limiting distribution of the corresponding estimator is nonstandard. To deal with these challenges, we construct a test statistic via a new bias-corrected smoothed decorrelated score approach, and establish its asymptotic distributions under both null and local alternative hypotheses. We propose a double-smoothing approach to select the optimal bandwidth in our test statistic and provide theoretical guarantees for the selected bandwidth. We conduct simulation studies to demonstrate how our proposed procedure can be applied in empirical studies. We apply the proposed method to a clinical trial where the scientific goal is to assess the clinical importance of a surgery procedure. Supplementary materials for this article are available online.
AbstractList This work is motivated by learning the individualized minimal clinically important difference, a vital concept to assess clinical importance in various biomedical studies. We formulate the scientific question into a high-dimensional statistical problem where the parameter of interest lies in an individualized linear threshold. The goal is to develop a hypothesis testing procedure for the significance of a single element in this parameter as well as of a linear combination of this parameter. The difficulty dues to the high-dimensional nuisance in developing such a testing procedure, and also stems from the fact that this high-dimensional threshold model is nonregular and the limiting distribution of the corresponding estimator is nonstandard. To deal with these challenges, we construct a test statistic via a new bias-corrected smoothed decorrelated score approach, and establish its asymptotic distributions under both null and local alternative hypotheses. We propose a double-smoothing approach to select the optimal bandwidth in our test statistic and provide theoretical guarantees for the selected bandwidth. We conduct simulation studies to demonstrate how our proposed procedure can be applied in empirical studies. We apply the proposed method to a clinical trial where the scientific goal is to assess the clinical importance of a surgery procedure. Supplementary materials for this article are available online.
This work is motivated by learning the individualized minimal clinically important difference, a vital concept to assess clinical importance in various biomedical studies. We formulate the scientific question into a high-dimensional statistical problem where the parameter of interest lies in an individualized linear threshold. The goal is to develop a hypothesis testing procedure for the significance of a single element in this parameter as well as of a linear combination of this parameter. The difficulty dues to the high-dimensional nuisance in developing such a testing procedure, and also stems from the fact that this high-dimensional threshold model is nonregular and the limiting distribution of the corresponding estimator is nonstandard. To deal with these challenges, we construct a test statistic via a new bias-corrected smoothed decorrelated score approach, and establish its asymptotic distributions under both null and local alternative hypotheses. We propose a double-smoothing approach to select the optimal bandwidth in our test statistic and provide theoretical guarantees for the selected bandwidth. We conduct simulation studies to demonstrate how our proposed procedure can be applied in empirical studies. We apply the proposed method to a clinical trial where the scientific goal is to assess the clinical importance of a surgery procedure. Supplementary materials for this article are available online.
Author Feng, Huijie
Zhao, Jiwei
Duan, Jingyi
Ning, Yang
Author_xml – sequence: 1
  givenname: Huijie
  surname: Feng
  fullname: Feng, Huijie
  organization: Department of Statistics and Data Science, Cornell University
– sequence: 2
  givenname: Jingyi
  surname: Duan
  fullname: Duan, Jingyi
  organization: Department of Statistics and Data Science, Cornell University
– sequence: 3
  givenname: Yang
  surname: Ning
  fullname: Ning, Yang
  organization: Department of Statistics and Data Science, Cornell University
– sequence: 4
  givenname: Jiwei
  surname: Zhao
  fullname: Zhao, Jiwei
  organization: Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison
BookMark eNqFkU9vFCEchompidvqRzAh8eJlVmD4M8SLzdbaTWp66Jp4m7AMdGkYGIG12V786jJuvfSgXCDheSG_9zkFJyEGA8BbjJYYdegDwpxgyuSSINIuCZZMCvECLDBrRUME_X4CFjPTzNArcJrzPapLdN0C_NqYXGC08NbdBWedVkEbaGOCV-5u11y40YTsYlAebnbJ5F30Q4YPruzg-TT5ypd6C0uE6zC4n27YK-8ezQC_uuDGmlr5etDK-wNcj1NMRYUCL5y1Jpn61Wvw0iqfzZun_Qx8u_y8WV011zdf1qvz60ZTREvDyRYTLRjVXHZdR7iknUSyw5wjarm0g2ztQDWzjHDOpOQWE7NFRgzddktZewbeH9-dUvyxrzP3o8vaeK-Cifvct7UszlqCeUXfPUPv4z7VBiqFREupaJmo1McjpVPMORnba1f-lFGScr7HqJ_l9H_l9LOc_klOTbNn6SnVutLhv7lPx5wL1dGoHmLyQ1_UwcdkU3Xn5lH--cRv-iWoUg
CitedBy_id crossref_primary_10_1007_s11222_024_10556_9
crossref_primary_10_1080_01621459_2024_2428467
Cites_doi 10.1001/jama.2014.13128
10.1214/19-AOS1900
10.1214/16-AOS1448
10.1214/aos/1176347498
10.1093/biomet/asu056
10.1214/18-STS661
10.1016/0304-4076(85)90009-0
10.3899/jrheum.141150
10.1080/01621459.1996.10476701
10.1111/j.2517-6161.1991.tb01857.x
10.1007/978-1-4899-3324-9
10.1080/01621459.2017.1330204
10.1097/01.MLR.0000062554.74615.4C
10.1111/rssb.12026
10.1007/b13794
10.1016/0197-2456(89)90005-6
10.2106/JBJS.16.00855
10.2165/00019053-199915020-00003
10.1097/00005650-199905000-00006
10.1016/j.cct.2015.08.018
10.1016/j.jclinepi.2017.06.009
10.1093/biomet/71.2.353
10.1214/22-AOS2188
10.3390/informatics7020017
10.1109/CISS.2008.4558487
10.1080/01621459.1992.10475196
10.1016/0304-4076(75)90032-9
10.1007/BF01205233
10.1016/s0895-4356(99)00071-2
10.1016/j.jclinepi.2016.11.016
10.1002/sim.6290
10.1080/02331888.2016.1265969
10.1214/14-AOS1221
10.1080/07350015.2016.1166116
10.1111/rssb.12224
10.1214/aos/1034713641
10.2307/2951582
10.1093/ptj/77.10.1079
ContentType Journal Article
Copyright 2023 American Statistical Association 2023
2023 American Statistical Association
Copyright_xml – notice: 2023 American Statistical Association 2023
– notice: 2023 American Statistical Association
DBID AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
DOI 10.1080/01621459.2023.2195977
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 1408
ExternalDocumentID 10_1080_01621459_2023_2195977
2195977
Genre Research Article
GrantInformation_xml – fundername: Division of Mathematical Sciences
– fundername: National Science Foundation (NSF) CAREER
  grantid: DMS-1941945; DMS-1854637
– fundername: NSF Grant
  grantid: DMS-2122074
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
ADLSF
ADMHG
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HZ~
H~9
H~P
IPNFZ
J.P
JAS
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
~S~
AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
ID FETCH-LOGICAL-c404t-62b12c754c6988826948909816604f69fd93fd4c5f52665996f12eb0e7d8bb453
ISSN 0162-1459
1537-274X
IngestDate Fri Aug 22 20:37:57 EDT 2025
Wed Aug 13 06:50:13 EDT 2025
Thu Apr 24 23:10:05 EDT 2025
Thu Jul 31 00:41:34 EDT 2025
Wed Jul 30 04:10:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 546
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c404t-62b12c754c6988826948909816604f69fd93fd4c5f52665996f12eb0e7d8bb453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 3073447357
PQPubID 41715
PageCount 13
ParticipantIDs crossref_citationtrail_10_1080_01621459_2023_2195977
crossref_primary_10_1080_01621459_2023_2195977
proquest_journals_3073447357
informaworld_taylorfrancis_310_1080_01621459_2023_2195977
proquest_miscellaneous_3153653216
PublicationCentury 2000
PublicationDate 2024-04-02
PublicationDateYYYYMMDD 2024-04-02
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-02
  day: 02
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Lassere M. (e_1_3_3_26_1) 2001; 28
Feng H. (e_1_3_3_15_1) 2019
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_39_1
e_1_3_3_19_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_36_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_34_1
Wells G. (e_1_3_3_41_1) 2001; 28
e_1_3_3_12_1
Mukherjee D. (e_1_3_3_30_1) 2019
e_1_3_3_31_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_40_1
Bellamy N. (e_1_3_3_4_1) 2001; 28
Javanmard A. (e_1_3_3_22_1) 2014; 15
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_29_1
e_1_3_3_28_1
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_43_1
References_xml – ident: e_1_3_3_29_1
  doi: 10.1001/jama.2014.13128
– ident: e_1_3_3_13_1
  doi: 10.1214/19-AOS1900
– ident: e_1_3_3_33_1
  doi: 10.1214/16-AOS1448
– ident: e_1_3_3_25_1
  doi: 10.1214/aos/1176347498
– ident: e_1_3_3_5_1
  doi: 10.1093/biomet/asu056
– volume: 28
  start-page: 406
  year: 2001
  ident: e_1_3_3_41_1
  article-title: “Minimal Clinically Important Differences: Review of Methods,”
  publication-title: The Journal of Rheumatology
– ident: e_1_3_3_32_1
  doi: 10.1214/18-STS661
– ident: e_1_3_3_28_1
  doi: 10.1016/0304-4076(85)90009-0
– start-page: 654
  volume-title: The 22nd International Conference on Artificial Intelligence and Statistics
  year: 2019
  ident: e_1_3_3_15_1
– volume: 28
  start-page: 890
  year: 2001
  ident: e_1_3_3_26_1
  article-title: “Foundations of the Minimal Clinically Important Difference for Imaging,”
  publication-title: The Journal of Rheumatology
– ident: e_1_3_3_12_1
  doi: 10.3899/jrheum.141150
– ident: e_1_3_3_24_1
  doi: 10.1080/01621459.1996.10476701
– ident: e_1_3_3_36_1
  doi: 10.1111/j.2517-6161.1991.tb01857.x
– ident: e_1_3_3_37_1
  doi: 10.1007/978-1-4899-3324-9
– ident: e_1_3_3_40_1
  doi: 10.1080/01621459.2017.1330204
– year: 2019
  ident: e_1_3_3_30_1
  article-title: Non-Standard Asymptotics in High Dimensions: Manski’s Maximum Score Estimator Revisited
  publication-title: arXiv preprint arXiv:1903.10063
– ident: e_1_3_3_34_1
  doi: 10.1097/01.MLR.0000062554.74615.4C
– ident: e_1_3_3_45_1
  doi: 10.1111/rssb.12026
– ident: e_1_3_3_38_1
  doi: 10.1007/b13794
– ident: e_1_3_3_21_1
  doi: 10.1016/0197-2456(89)90005-6
– ident: e_1_3_3_8_1
  doi: 10.2106/JBJS.16.00855
– volume: 28
  start-page: 427
  year: 2001
  ident: e_1_3_3_4_1
  article-title: “Towards a Definition of “difference” in Osteoarthritis,”
  publication-title: The Journal of Rheumatology
– ident: e_1_3_3_35_1
  doi: 10.2165/00019053-199915020-00003
– ident: e_1_3_3_42_1
  doi: 10.1097/00005650-199905000-00006
– ident: e_1_3_3_7_1
  doi: 10.1016/j.cct.2015.08.018
– ident: e_1_3_3_23_1
  doi: 10.1016/j.jclinepi.2017.06.009
– ident: e_1_3_3_10_1
  doi: 10.1093/biomet/71.2.353
– ident: e_1_3_3_16_1
  doi: 10.1214/22-AOS2188
– ident: e_1_3_3_2_1
  doi: 10.3390/informatics7020017
– ident: e_1_3_3_9_1
  doi: 10.1109/CISS.2008.4558487
– ident: e_1_3_3_18_1
  doi: 10.1080/01621459.1992.10475196
– ident: e_1_3_3_27_1
  doi: 10.1016/0304-4076(75)90032-9
– ident: e_1_3_3_17_1
  doi: 10.1007/BF01205233
– volume: 15
  start-page: 2869
  year: 2014
  ident: e_1_3_3_22_1
  article-title: “Confidence Intervals and Hypothesis Testing for High-Dimensional Regression,”
  publication-title: The Journal of Machine Learning Research
– ident: e_1_3_3_43_1
  doi: 10.1016/s0895-4356(99)00071-2
– ident: e_1_3_3_3_1
  doi: 10.1016/j.jclinepi.2016.11.016
– ident: e_1_3_3_44_1
  doi: 10.1002/sim.6290
– ident: e_1_3_3_11_1
  doi: 10.1080/02331888.2016.1265969
– ident: e_1_3_3_39_1
  doi: 10.1214/14-AOS1221
– ident: e_1_3_3_6_1
  doi: 10.1080/07350015.2016.1166116
– ident: e_1_3_3_14_1
  doi: 10.1111/rssb.12224
– ident: e_1_3_3_31_1
  doi: 10.1214/aos/1034713641
– ident: e_1_3_3_20_1
  doi: 10.2307/2951582
– ident: e_1_3_3_19_1
  doi: 10.1093/ptj/77.10.1079
SSID ssj0000788
Score 2.4504845
Snippet This work is motivated by learning the individualized minimal clinically important difference, a vital concept to assess clinical importance in various...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1396
SubjectTerms Bandwidth selection
Clinical research
Clinical significance
Clinical trials
High-dimensional statistical inference
Hypotheses
Hypothesis testing
Kernel method
Nonstandard asymptotics
Parameters
Simulation
Statistical analysis
Statistics
Surgery
Test procedures
threshold models
Thresholds
Title Test of Significance for High-Dimensional Thresholds with Application to Individualized Minimal Clinically Important Difference
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2023.2195977
https://www.proquest.com/docview/3073447357
https://www.proquest.com/docview/3153653216
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcukF8RSFgozEDXmV2I6THCsKWiq1p620nKKNY6OgkkU0EWov_YH9U8zEzqsslHKJVknsZPf7dmY8ngchb7kVUgTrkBkeayYBZZZrrZnmusgTUOkixmzk4xO1OJVHq2g1m12PopaaOp_ry615Jf-DKpwDXDFL9g7I9pPCCfgM-MIREIbjv2EMIr3NOim_VBjy04b_Y9wgRm-wQyzc74puvFsCZOe40-Sz2Q6GfWu0Pj_1aVnlJVigx2VVfkOvgk-bPLvAKsJoqFc1CEnrcwT_YNiOklXa9sB1Wwt6CxVaC9TJmkVTfi17jh02zi17BHr1ohy2Tty9n9de2zp_t9s6Kn-acuzB4C7wZeLUVJyF0lcGN50gjhmsmFcTSe2lq6NkJMeSFyxZNdLisG5MtmoIH1IJj8QnzrF7_JxjhR3fTWZSkfuGpuzjF8OusKqfJsNpMj_NPXKfw5oF22mI4GQwC-K2CWr_Zbt0Miz0vu1tJobSpIzub2ZDawstH5IHHmt64Bj5iMxM9Zjs9lCfPyFXSE26sXRMTQqT05vUpAM1KVKTjqhJ6w2dUpN6atKBmrSnJh2o-ZScfvywfL9gvtcH0zKQNVM8D7mOI6lVmsCqT6UySYMUd7UDaVVqi1TYQurIRmBSYk0hG3KTByYukjwHGfOM7FSbyjwntLDciETp0Bgri9CkoRXcarhTrkVUJHtEdj9spn0hfOzHcpb9FdY9Mu-HfXeVYG4bkI5Ry-rWBWddv5xM3DJ2v4M48wIHhoA6ltgqHC6_6S-DOsA9vnVlNg1OGwkVCR6qF3d935dkd_h37pOd-kdjXoHFXeevWyb_Akrwz1c
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4UD3LxbURRa-K1uNt2X0ciElDhIiTeNmy3NURYjC4HvfjXndkHvmI4eO5Ot4_pdNrOfB8h59wIKayRzTT3FJMwyyxSSjHFVRz5sKULD7ORe323M5TX9879l1wYDKvEM7TJgSIyW42LGy-jy5C4C3BTEGAb80y4aHDER_G8VbLmBK6HLAbC6n9aYy_jnkQRhjJlFs9f1Xzbn76hl_6y1tkW1N4kqmx8Hnny2JinUUO9_cB1_F_vtshG4aHSZq5S22RFJzukik5pjum8S94H0Dg6M_Ru_JBgqBFqDoUuUIwaYS0kDMjBPugAVOUFX7heKN740ubnezlNZ7S7SAcbv-mY9sbJeApSBVjpZPJKu9PsgJCktFVQuSi9R4btq8FlhxVEDkxJS6bM5ZHNledI5QZw4sbkWT-wAnyytKRxAxMHwsRSOcYBfwEBY4zNdWRpL_ajCBRon1SSWaIPCI0N18J3la21kbGtA9sIbhR8KUfCif0akeX0hapAOUeyjUlol2CoxfCGOLxhMbw10liIPeUwH8sEgq-6EabZ_YrJyVBCsUS2XipSWFgMEAFbK5EHGorPFsWw1vEBZ5To2RyrdYTrCG67h__4_SlZ7wx6t-Ftt39zRKpQlIci8TqppM9zfQxeVhqdZMvoA0W1GVY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYKlSoulEIR0NAaiavTXdv7OiJCRFoSIRGk3lbxC0WEDSKbA1z61zuz600IqOLA2Tteezwejz0z3xByzJ2QIhiFzPJEMwmrzJTWmmmujUrhSBcJZiP3B_H5tfz1J2qiCWc-rBLv0K4Giqh0NW7ue-OaiLifYKUgvjammXDR5giPkiRr5GOM4OGYxREMlso4qUpPIglDmiaJ53_drBxPK-Clr5R1dQJ1PxPVjL0OPLltz0vV1k8vYB3fNbktsuntU3pSC9QX8sEW22QDTdIa0XmH_B3C2OjU0avxTYGBRig3FGZAMWaEdbBcQA31QYcgKDP0b80ovvfSk6W3nJZT2lskg42frKH9cTG-AyoPVTqZPNLeXXU9KEra8YVctP1Krrtnw9Nz5ss4MC0DWbKYq5DrJJI6zuC-jamzaRZk6LAMpIszZzLhjNSRi8BaQLgYF3KrApuYVCkQn12yXkwLu0eocdyKNNahtU6a0GahE9xp-FKORGTSfSKb1cu1xzjHUhuTPGygUD17c2Rv7tm7T9oLsvsa5OMtguy5aORl9bri6lIouXiDttXIUe71BZCAppVYBRqajxbNsNPRfTMq7HSO3UYijgQP44N3_P4H-XTZ6eYXvcHvb2QDWuo4JN4i6-XD3B6CiVWq79Um-gexRxf6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Test+of+Significance+for+High-Dimensional+Thresholds+with+Application+to+Individualized+Minimal+Clinically+Important+Difference&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Feng%2C+Huijie&rft.au=Duan%2C+Jingyi&rft.au=Ning%2C+Yang&rft.au=Zhao%2C+Jiwei&rft.date=2024-04-02&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=119&rft.issue=546&rft.spage=1396&rft.epage=1408&rft_id=info:doi/10.1080%2F01621459.2023.2195977&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01621459_2023_2195977
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon