Test of Significance for High-Dimensional Thresholds with Application to Individualized Minimal Clinically Important Difference
This work is motivated by learning the individualized minimal clinically important difference, a vital concept to assess clinical importance in various biomedical studies. We formulate the scientific question into a high-dimensional statistical problem where the parameter of interest lies in an indi...
Saved in:
Published in | Journal of the American Statistical Association Vol. 119; no. 546; pp. 1396 - 1408 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Alexandria
Taylor & Francis
02.04.2024
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work is motivated by learning the individualized minimal clinically important difference, a vital concept to assess clinical importance in various biomedical studies. We formulate the scientific question into a high-dimensional statistical problem where the parameter of interest lies in an individualized linear threshold. The goal is to develop a hypothesis testing procedure for the significance of a single element in this parameter as well as of a linear combination of this parameter. The difficulty dues to the high-dimensional nuisance in developing such a testing procedure, and also stems from the fact that this high-dimensional threshold model is nonregular and the limiting distribution of the corresponding estimator is nonstandard. To deal with these challenges, we construct a test statistic via a new bias-corrected smoothed decorrelated score approach, and establish its asymptotic distributions under both null and local alternative hypotheses. We propose a double-smoothing approach to select the optimal bandwidth in our test statistic and provide theoretical guarantees for the selected bandwidth. We conduct simulation studies to demonstrate how our proposed procedure can be applied in empirical studies. We apply the proposed method to a clinical trial where the scientific goal is to assess the clinical importance of a surgery procedure.
Supplementary materials
for this article are available online. |
---|---|
AbstractList | This work is motivated by learning the individualized minimal clinically important difference, a vital concept to assess clinical importance in various biomedical studies. We formulate the scientific question into a high-dimensional statistical problem where the parameter of interest lies in an individualized linear threshold. The goal is to develop a hypothesis testing procedure for the significance of a single element in this parameter as well as of a linear combination of this parameter. The difficulty dues to the high-dimensional nuisance in developing such a testing procedure, and also stems from the fact that this high-dimensional threshold model is nonregular and the limiting distribution of the corresponding estimator is nonstandard. To deal with these challenges, we construct a test statistic via a new bias-corrected smoothed decorrelated score approach, and establish its asymptotic distributions under both null and local alternative hypotheses. We propose a double-smoothing approach to select the optimal bandwidth in our test statistic and provide theoretical guarantees for the selected bandwidth. We conduct simulation studies to demonstrate how our proposed procedure can be applied in empirical studies. We apply the proposed method to a clinical trial where the scientific goal is to assess the clinical importance of a surgery procedure. Supplementary materials for this article are available online. This work is motivated by learning the individualized minimal clinically important difference, a vital concept to assess clinical importance in various biomedical studies. We formulate the scientific question into a high-dimensional statistical problem where the parameter of interest lies in an individualized linear threshold. The goal is to develop a hypothesis testing procedure for the significance of a single element in this parameter as well as of a linear combination of this parameter. The difficulty dues to the high-dimensional nuisance in developing such a testing procedure, and also stems from the fact that this high-dimensional threshold model is nonregular and the limiting distribution of the corresponding estimator is nonstandard. To deal with these challenges, we construct a test statistic via a new bias-corrected smoothed decorrelated score approach, and establish its asymptotic distributions under both null and local alternative hypotheses. We propose a double-smoothing approach to select the optimal bandwidth in our test statistic and provide theoretical guarantees for the selected bandwidth. We conduct simulation studies to demonstrate how our proposed procedure can be applied in empirical studies. We apply the proposed method to a clinical trial where the scientific goal is to assess the clinical importance of a surgery procedure. Supplementary materials for this article are available online. |
Author | Feng, Huijie Zhao, Jiwei Duan, Jingyi Ning, Yang |
Author_xml | – sequence: 1 givenname: Huijie surname: Feng fullname: Feng, Huijie organization: Department of Statistics and Data Science, Cornell University – sequence: 2 givenname: Jingyi surname: Duan fullname: Duan, Jingyi organization: Department of Statistics and Data Science, Cornell University – sequence: 3 givenname: Yang surname: Ning fullname: Ning, Yang organization: Department of Statistics and Data Science, Cornell University – sequence: 4 givenname: Jiwei surname: Zhao fullname: Zhao, Jiwei organization: Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison |
BookMark | eNqFkU9vFCEchompidvqRzAh8eJlVmD4M8SLzdbaTWp66Jp4m7AMdGkYGIG12V786jJuvfSgXCDheSG_9zkFJyEGA8BbjJYYdegDwpxgyuSSINIuCZZMCvECLDBrRUME_X4CFjPTzNArcJrzPapLdN0C_NqYXGC08NbdBWedVkEbaGOCV-5u11y40YTsYlAebnbJ5F30Q4YPruzg-TT5ypd6C0uE6zC4n27YK-8ezQC_uuDGmlr5etDK-wNcj1NMRYUCL5y1Jpn61Wvw0iqfzZun_Qx8u_y8WV011zdf1qvz60ZTREvDyRYTLRjVXHZdR7iknUSyw5wjarm0g2ztQDWzjHDOpOQWE7NFRgzddktZewbeH9-dUvyxrzP3o8vaeK-Cifvct7UszlqCeUXfPUPv4z7VBiqFREupaJmo1McjpVPMORnba1f-lFGScr7HqJ_l9H_l9LOc_klOTbNn6SnVutLhv7lPx5wL1dGoHmLyQ1_UwcdkU3Xn5lH--cRv-iWoUg |
CitedBy_id | crossref_primary_10_1007_s11222_024_10556_9 crossref_primary_10_1080_01621459_2024_2428467 |
Cites_doi | 10.1001/jama.2014.13128 10.1214/19-AOS1900 10.1214/16-AOS1448 10.1214/aos/1176347498 10.1093/biomet/asu056 10.1214/18-STS661 10.1016/0304-4076(85)90009-0 10.3899/jrheum.141150 10.1080/01621459.1996.10476701 10.1111/j.2517-6161.1991.tb01857.x 10.1007/978-1-4899-3324-9 10.1080/01621459.2017.1330204 10.1097/01.MLR.0000062554.74615.4C 10.1111/rssb.12026 10.1007/b13794 10.1016/0197-2456(89)90005-6 10.2106/JBJS.16.00855 10.2165/00019053-199915020-00003 10.1097/00005650-199905000-00006 10.1016/j.cct.2015.08.018 10.1016/j.jclinepi.2017.06.009 10.1093/biomet/71.2.353 10.1214/22-AOS2188 10.3390/informatics7020017 10.1109/CISS.2008.4558487 10.1080/01621459.1992.10475196 10.1016/0304-4076(75)90032-9 10.1007/BF01205233 10.1016/s0895-4356(99)00071-2 10.1016/j.jclinepi.2016.11.016 10.1002/sim.6290 10.1080/02331888.2016.1265969 10.1214/14-AOS1221 10.1080/07350015.2016.1166116 10.1111/rssb.12224 10.1214/aos/1034713641 10.2307/2951582 10.1093/ptj/77.10.1079 |
ContentType | Journal Article |
Copyright | 2023 American Statistical Association 2023 2023 American Statistical Association |
Copyright_xml | – notice: 2023 American Statistical Association 2023 – notice: 2023 American Statistical Association |
DBID | AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 |
DOI | 10.1080/01621459.2023.2195977 |
DatabaseName | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 1537-274X |
EndPage | 1408 |
ExternalDocumentID | 10_1080_01621459_2023_2195977 2195977 |
Genre | Research Article |
GrantInformation_xml | – fundername: Division of Mathematical Sciences – fundername: National Science Foundation (NSF) CAREER grantid: DMS-1941945; DMS-1854637 – fundername: NSF Grant grantid: DMS-2122074 |
GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABTAI ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ADCVX ADGTB ADLSF ADMHG AEISY AENEX AEOZL AEPSL AEYOC AFFNX AFRVT AFVYC AFXHP AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DU5 EBS E~A E~B F5P FJW GTTXZ H13 HF~ HZ~ H~9 H~P IPNFZ J.P JAS K60 K6~ KYCEM LU7 M4Z MS~ MW2 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM ZGOLN ~S~ AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 |
ID | FETCH-LOGICAL-c404t-62b12c754c6988826948909816604f69fd93fd4c5f52665996f12eb0e7d8bb453 |
ISSN | 0162-1459 1537-274X |
IngestDate | Fri Aug 22 20:37:57 EDT 2025 Wed Aug 13 06:50:13 EDT 2025 Thu Apr 24 23:10:05 EDT 2025 Thu Jul 31 00:41:34 EDT 2025 Wed Jul 30 04:10:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 546 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c404t-62b12c754c6988826948909816604f69fd93fd4c5f52665996f12eb0e7d8bb453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 3073447357 |
PQPubID | 41715 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1080_01621459_2023_2195977 crossref_primary_10_1080_01621459_2023_2195977 proquest_journals_3073447357 informaworld_taylorfrancis_310_1080_01621459_2023_2195977 proquest_miscellaneous_3153653216 |
PublicationCentury | 2000 |
PublicationDate | 2024-04-02 |
PublicationDateYYYYMMDD | 2024-04-02 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Alexandria |
PublicationPlace_xml | – name: Alexandria |
PublicationTitle | Journal of the American Statistical Association |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Lassere M. (e_1_3_3_26_1) 2001; 28 Feng H. (e_1_3_3_15_1) 2019 e_1_3_3_18_1 e_1_3_3_17_1 e_1_3_3_39_1 e_1_3_3_19_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_36_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_34_1 Wells G. (e_1_3_3_41_1) 2001; 28 e_1_3_3_12_1 Mukherjee D. (e_1_3_3_30_1) 2019 e_1_3_3_31_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_40_1 Bellamy N. (e_1_3_3_4_1) 2001; 28 Javanmard A. (e_1_3_3_22_1) 2014; 15 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_9_1 e_1_3_3_8_1 e_1_3_3_29_1 e_1_3_3_28_1 e_1_3_3_25_1 e_1_3_3_24_1 e_1_3_3_27_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_44_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_45_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_42_1 e_1_3_3_43_1 |
References_xml | – ident: e_1_3_3_29_1 doi: 10.1001/jama.2014.13128 – ident: e_1_3_3_13_1 doi: 10.1214/19-AOS1900 – ident: e_1_3_3_33_1 doi: 10.1214/16-AOS1448 – ident: e_1_3_3_25_1 doi: 10.1214/aos/1176347498 – ident: e_1_3_3_5_1 doi: 10.1093/biomet/asu056 – volume: 28 start-page: 406 year: 2001 ident: e_1_3_3_41_1 article-title: “Minimal Clinically Important Differences: Review of Methods,” publication-title: The Journal of Rheumatology – ident: e_1_3_3_32_1 doi: 10.1214/18-STS661 – ident: e_1_3_3_28_1 doi: 10.1016/0304-4076(85)90009-0 – start-page: 654 volume-title: The 22nd International Conference on Artificial Intelligence and Statistics year: 2019 ident: e_1_3_3_15_1 – volume: 28 start-page: 890 year: 2001 ident: e_1_3_3_26_1 article-title: “Foundations of the Minimal Clinically Important Difference for Imaging,” publication-title: The Journal of Rheumatology – ident: e_1_3_3_12_1 doi: 10.3899/jrheum.141150 – ident: e_1_3_3_24_1 doi: 10.1080/01621459.1996.10476701 – ident: e_1_3_3_36_1 doi: 10.1111/j.2517-6161.1991.tb01857.x – ident: e_1_3_3_37_1 doi: 10.1007/978-1-4899-3324-9 – ident: e_1_3_3_40_1 doi: 10.1080/01621459.2017.1330204 – year: 2019 ident: e_1_3_3_30_1 article-title: Non-Standard Asymptotics in High Dimensions: Manski’s Maximum Score Estimator Revisited publication-title: arXiv preprint arXiv:1903.10063 – ident: e_1_3_3_34_1 doi: 10.1097/01.MLR.0000062554.74615.4C – ident: e_1_3_3_45_1 doi: 10.1111/rssb.12026 – ident: e_1_3_3_38_1 doi: 10.1007/b13794 – ident: e_1_3_3_21_1 doi: 10.1016/0197-2456(89)90005-6 – ident: e_1_3_3_8_1 doi: 10.2106/JBJS.16.00855 – volume: 28 start-page: 427 year: 2001 ident: e_1_3_3_4_1 article-title: “Towards a Definition of “difference” in Osteoarthritis,” publication-title: The Journal of Rheumatology – ident: e_1_3_3_35_1 doi: 10.2165/00019053-199915020-00003 – ident: e_1_3_3_42_1 doi: 10.1097/00005650-199905000-00006 – ident: e_1_3_3_7_1 doi: 10.1016/j.cct.2015.08.018 – ident: e_1_3_3_23_1 doi: 10.1016/j.jclinepi.2017.06.009 – ident: e_1_3_3_10_1 doi: 10.1093/biomet/71.2.353 – ident: e_1_3_3_16_1 doi: 10.1214/22-AOS2188 – ident: e_1_3_3_2_1 doi: 10.3390/informatics7020017 – ident: e_1_3_3_9_1 doi: 10.1109/CISS.2008.4558487 – ident: e_1_3_3_18_1 doi: 10.1080/01621459.1992.10475196 – ident: e_1_3_3_27_1 doi: 10.1016/0304-4076(75)90032-9 – ident: e_1_3_3_17_1 doi: 10.1007/BF01205233 – volume: 15 start-page: 2869 year: 2014 ident: e_1_3_3_22_1 article-title: “Confidence Intervals and Hypothesis Testing for High-Dimensional Regression,” publication-title: The Journal of Machine Learning Research – ident: e_1_3_3_43_1 doi: 10.1016/s0895-4356(99)00071-2 – ident: e_1_3_3_3_1 doi: 10.1016/j.jclinepi.2016.11.016 – ident: e_1_3_3_44_1 doi: 10.1002/sim.6290 – ident: e_1_3_3_11_1 doi: 10.1080/02331888.2016.1265969 – ident: e_1_3_3_39_1 doi: 10.1214/14-AOS1221 – ident: e_1_3_3_6_1 doi: 10.1080/07350015.2016.1166116 – ident: e_1_3_3_14_1 doi: 10.1111/rssb.12224 – ident: e_1_3_3_31_1 doi: 10.1214/aos/1034713641 – ident: e_1_3_3_20_1 doi: 10.2307/2951582 – ident: e_1_3_3_19_1 doi: 10.1093/ptj/77.10.1079 |
SSID | ssj0000788 |
Score | 2.4504845 |
Snippet | This work is motivated by learning the individualized minimal clinically important difference, a vital concept to assess clinical importance in various... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1396 |
SubjectTerms | Bandwidth selection Clinical research Clinical significance Clinical trials High-dimensional statistical inference Hypotheses Hypothesis testing Kernel method Nonstandard asymptotics Parameters Simulation Statistical analysis Statistics Surgery Test procedures threshold models Thresholds |
Title | Test of Significance for High-Dimensional Thresholds with Application to Individualized Minimal Clinically Important Difference |
URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2023.2195977 https://www.proquest.com/docview/3073447357 https://www.proquest.com/docview/3153653216 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcukF8RSFgozEDXmV2I6THCsKWiq1p620nKKNY6OgkkU0EWov_YH9U8zEzqsslHKJVknsZPf7dmY8ngchb7kVUgTrkBkeayYBZZZrrZnmusgTUOkixmzk4xO1OJVHq2g1m12PopaaOp_ry615Jf-DKpwDXDFL9g7I9pPCCfgM-MIREIbjv2EMIr3NOim_VBjy04b_Y9wgRm-wQyzc74puvFsCZOe40-Sz2Q6GfWu0Pj_1aVnlJVigx2VVfkOvgk-bPLvAKsJoqFc1CEnrcwT_YNiOklXa9sB1Wwt6CxVaC9TJmkVTfi17jh02zi17BHr1ohy2Tty9n9de2zp_t9s6Kn-acuzB4C7wZeLUVJyF0lcGN50gjhmsmFcTSe2lq6NkJMeSFyxZNdLisG5MtmoIH1IJj8QnzrF7_JxjhR3fTWZSkfuGpuzjF8OusKqfJsNpMj_NPXKfw5oF22mI4GQwC-K2CWr_Zbt0Miz0vu1tJobSpIzub2ZDawstH5IHHmt64Bj5iMxM9Zjs9lCfPyFXSE26sXRMTQqT05vUpAM1KVKTjqhJ6w2dUpN6atKBmrSnJh2o-ZScfvywfL9gvtcH0zKQNVM8D7mOI6lVmsCqT6UySYMUd7UDaVVqi1TYQurIRmBSYk0hG3KTByYukjwHGfOM7FSbyjwntLDciETp0Bgri9CkoRXcarhTrkVUJHtEdj9spn0hfOzHcpb9FdY9Mu-HfXeVYG4bkI5Ry-rWBWddv5xM3DJ2v4M48wIHhoA6ltgqHC6_6S-DOsA9vnVlNg1OGwkVCR6qF3d935dkd_h37pOd-kdjXoHFXeevWyb_Akrwz1c |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4UD3LxbURRa-K1uNt2X0ciElDhIiTeNmy3NURYjC4HvfjXndkHvmI4eO5Ot4_pdNrOfB8h59wIKayRzTT3FJMwyyxSSjHFVRz5sKULD7ORe323M5TX9879l1wYDKvEM7TJgSIyW42LGy-jy5C4C3BTEGAb80y4aHDER_G8VbLmBK6HLAbC6n9aYy_jnkQRhjJlFs9f1Xzbn76hl_6y1tkW1N4kqmx8Hnny2JinUUO9_cB1_F_vtshG4aHSZq5S22RFJzukik5pjum8S94H0Dg6M_Ru_JBgqBFqDoUuUIwaYS0kDMjBPugAVOUFX7heKN740ubnezlNZ7S7SAcbv-mY9sbJeApSBVjpZPJKu9PsgJCktFVQuSi9R4btq8FlhxVEDkxJS6bM5ZHNledI5QZw4sbkWT-wAnyytKRxAxMHwsRSOcYBfwEBY4zNdWRpL_ajCBRon1SSWaIPCI0N18J3la21kbGtA9sIbhR8KUfCif0akeX0hapAOUeyjUlol2CoxfCGOLxhMbw10liIPeUwH8sEgq-6EabZ_YrJyVBCsUS2XipSWFgMEAFbK5EHGorPFsWw1vEBZ5To2RyrdYTrCG67h__4_SlZ7wx6t-Ftt39zRKpQlIci8TqppM9zfQxeVhqdZMvoA0W1GVY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYKlSoulEIR0NAaiavTXdv7OiJCRFoSIRGk3lbxC0WEDSKbA1z61zuz600IqOLA2Tteezwejz0z3xByzJ2QIhiFzPJEMwmrzJTWmmmujUrhSBcJZiP3B_H5tfz1J2qiCWc-rBLv0K4Giqh0NW7ue-OaiLifYKUgvjammXDR5giPkiRr5GOM4OGYxREMlso4qUpPIglDmiaJ53_drBxPK-Clr5R1dQJ1PxPVjL0OPLltz0vV1k8vYB3fNbktsuntU3pSC9QX8sEW22QDTdIa0XmH_B3C2OjU0avxTYGBRig3FGZAMWaEdbBcQA31QYcgKDP0b80ovvfSk6W3nJZT2lskg42frKH9cTG-AyoPVTqZPNLeXXU9KEra8YVctP1Krrtnw9Nz5ss4MC0DWbKYq5DrJJI6zuC-jamzaRZk6LAMpIszZzLhjNSRi8BaQLgYF3KrApuYVCkQn12yXkwLu0eocdyKNNahtU6a0GahE9xp-FKORGTSfSKb1cu1xzjHUhuTPGygUD17c2Rv7tm7T9oLsvsa5OMtguy5aORl9bri6lIouXiDttXIUe71BZCAppVYBRqajxbNsNPRfTMq7HSO3UYijgQP44N3_P4H-XTZ6eYXvcHvb2QDWuo4JN4i6-XD3B6CiVWq79Um-gexRxf6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Test+of+Significance+for+High-Dimensional+Thresholds+with+Application+to+Individualized+Minimal+Clinically+Important+Difference&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Feng%2C+Huijie&rft.au=Duan%2C+Jingyi&rft.au=Ning%2C+Yang&rft.au=Zhao%2C+Jiwei&rft.date=2024-04-02&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=119&rft.issue=546&rft.spage=1396&rft.epage=1408&rft_id=info:doi/10.1080%2F01621459.2023.2195977&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01621459_2023_2195977 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |