A fast chemical oxidation method for predicting the long-term mineralization of biochar in soils
Biochar stability determines the effectiveness of biochar's functions such as carbon sequestration, soil structure improvement, soil fertility enhancement and soil pollution remediation. However, a fast method for accurately predicting biochar long-term stability in soil remains elusive. Here,...
Saved in:
Published in | The Science of the total environment Vol. 718; p. 137390 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
20.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biochar stability determines the effectiveness of biochar's functions such as carbon sequestration, soil structure improvement, soil fertility enhancement and soil pollution remediation. However, a fast method for accurately predicting biochar long-term stability in soil remains elusive. Here, firstly, an incubation experiment was conducted on mineralization dynamics of different 13C-labelled biochars over 368 days to explore their actual mineralization in soils and establish their mineralization model. Thereafter, ten treatments of fast chemical oxidation methods using K2Cr2O7 (0.1 M) with different H+ concentrations and oxidation times were applied to the biochars to reveal which method best matches the mineralization of biochar in soils. Results showed that the percentage of biochar‑carbon oxidized by the solution containing 0.1 M K2Cr2O7 and 0.2 M H+ at 100 °C for 2 h was in accordance with the one that potentially would be mineralized in soils at a 100-year scale (R2 > 0.99; REMS = 2.53; RD = 15.3). The results provided a chemical oxidation method that was robust, effective, low cost and highly available for measuring the long-term stability of biochar in soils.
[Display omitted]
•The fraction of biochar-carbon oxidized by a solution with 0.1 M K2Cr2O7 and 0.2 M H+ at 100 °C for 2 hours, was very closely correlated (R2> 0.99) with the one that potentially would be mineralized in soils at a 100-year scale.•H/C and O/C were not accurate for predicting stability of biochar in soil.•Mineralization rate of biochar was more sensitive to inherent stability of biochar than to soil type, especially for biochars produced at above 300 °C. |
---|---|
AbstractList | Biochar stability determines the effectiveness of biochar's functions such as carbon sequestration, soil structure improvement, soil fertility enhancement and soil pollution remediation. However, a fast method for accurately predicting biochar long-term stability in soil remains elusive. Here, firstly, an incubation experiment was conducted on mineralization dynamics of different
C-labelled biochars over 368 days to explore their actual mineralization in soils and establish their mineralization model. Thereafter, ten treatments of fast chemical oxidation methods using K
Cr
O
(0.1 M) with different H
concentrations and oxidation times were applied to the biochars to reveal which method best matches the mineralization of biochar in soils. Results showed that the percentage of biochar‑carbon oxidized by the solution containing 0.1 M K
Cr
O
and 0.2 M H
at 100 °C for 2 h was in accordance with the one that potentially would be mineralized in soils at a 100-year scale (R
> 0.99; REMS = 2.53; RD = 15.3). The results provided a chemical oxidation method that was robust, effective, low cost and highly available for measuring the long-term stability of biochar in soils. Biochar stability determines the effectiveness of biochar's functions such as carbon sequestration, soil structure improvement, soil fertility enhancement and soil pollution remediation. However, a fast method for accurately predicting biochar long-term stability in soil remains elusive. Here, firstly, an incubation experiment was conducted on mineralization dynamics of different 13C-labelled biochars over 368 days to explore their actual mineralization in soils and establish their mineralization model. Thereafter, ten treatments of fast chemical oxidation methods using K2Cr2O7 (0.1 M) with different H+ concentrations and oxidation times were applied to the biochars to reveal which method best matches the mineralization of biochar in soils. Results showed that the percentage of biochar‑carbon oxidized by the solution containing 0.1 M K2Cr2O7 and 0.2 M H+ at 100 °C for 2 h was in accordance with the one that potentially would be mineralized in soils at a 100-year scale (R2 > 0.99; REMS = 2.53; RD = 15.3). The results provided a chemical oxidation method that was robust, effective, low cost and highly available for measuring the long-term stability of biochar in soils. [Display omitted] •The fraction of biochar-carbon oxidized by a solution with 0.1 M K2Cr2O7 and 0.2 M H+ at 100 °C for 2 hours, was very closely correlated (R2> 0.99) with the one that potentially would be mineralized in soils at a 100-year scale.•H/C and O/C were not accurate for predicting stability of biochar in soil.•Mineralization rate of biochar was more sensitive to inherent stability of biochar than to soil type, especially for biochars produced at above 300 °C. Biochar stability determines the effectiveness of biochar's functions such as carbon sequestration, soil structure improvement, soil fertility enhancement and soil pollution remediation. However, a fast method for accurately predicting biochar long-term stability in soil remains elusive. Here, firstly, an incubation experiment was conducted on mineralization dynamics of different 13C-labelled biochars over 368 days to explore their actual mineralization in soils and establish their mineralization model. Thereafter, ten treatments of fast chemical oxidation methods using K2Cr2O7 (0.1 M) with different H+ concentrations and oxidation times were applied to the biochars to reveal which method best matches the mineralization of biochar in soils. Results showed that the percentage of biochar‑carbon oxidized by the solution containing 0.1 M K2Cr2O7 and 0.2 M H+ at 100 °C for 2 h was in accordance with the one that potentially would be mineralized in soils at a 100-year scale (R2 > 0.99; REMS = 2.53; RD = 15.3). The results provided a chemical oxidation method that was robust, effective, low cost and highly available for measuring the long-term stability of biochar in soils.Biochar stability determines the effectiveness of biochar's functions such as carbon sequestration, soil structure improvement, soil fertility enhancement and soil pollution remediation. However, a fast method for accurately predicting biochar long-term stability in soil remains elusive. Here, firstly, an incubation experiment was conducted on mineralization dynamics of different 13C-labelled biochars over 368 days to explore their actual mineralization in soils and establish their mineralization model. Thereafter, ten treatments of fast chemical oxidation methods using K2Cr2O7 (0.1 M) with different H+ concentrations and oxidation times were applied to the biochars to reveal which method best matches the mineralization of biochar in soils. Results showed that the percentage of biochar‑carbon oxidized by the solution containing 0.1 M K2Cr2O7 and 0.2 M H+ at 100 °C for 2 h was in accordance with the one that potentially would be mineralized in soils at a 100-year scale (R2 > 0.99; REMS = 2.53; RD = 15.3). The results provided a chemical oxidation method that was robust, effective, low cost and highly available for measuring the long-term stability of biochar in soils. Biochar stability determines the effectiveness of biochar's functions such as carbon sequestration, soil structure improvement, soil fertility enhancement and soil pollution remediation. However, a fast method for accurately predicting biochar long-term stability in soil remains elusive. Here, firstly, an incubation experiment was conducted on mineralization dynamics of different ¹³C-labelled biochars over 368 days to explore their actual mineralization in soils and establish their mineralization model. Thereafter, ten treatments of fast chemical oxidation methods using K₂Cr₂O₇ (0.1 M) with different H⁺ concentrations and oxidation times were applied to the biochars to reveal which method best matches the mineralization of biochar in soils. Results showed that the percentage of biochar‑carbon oxidized by the solution containing 0.1 M K₂Cr₂O₇ and 0.2 M H⁺ at 100 °C for 2 h was in accordance with the one that potentially would be mineralized in soils at a 100-year scale (R² > 0.99; REMS = 2.53; RD = 15.3). The results provided a chemical oxidation method that was robust, effective, low cost and highly available for measuring the long-term stability of biochar in soils. |
ArticleNumber | 137390 |
Author | Liu, Gang Zhu, Jianguo Lin, Xingwu Wang, Hui Sun, Xiaoli Zhang, Yanhui Jin, Haiyang Liu, Benjuan Liu, Qi Lin, Zhibin Xie, Zubin Wang, Xiaojie Hu, Tianlong Bei, Qicheng |
Author_xml | – sequence: 1 givenname: Benjuan surname: Liu fullname: Liu, Benjuan organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China – sequence: 2 givenname: Qi surname: Liu fullname: Liu, Qi organization: Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, No.159, Longpan Road, Nanjing 210037, China – sequence: 3 givenname: Xiaojie surname: Wang fullname: Wang, Xiaojie organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China – sequence: 4 givenname: Qicheng orcidid: 0000-0002-5712-5440 surname: Bei fullname: Bei, Qicheng organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China – sequence: 5 givenname: Yanhui surname: Zhang fullname: Zhang, Yanhui organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China – sequence: 6 givenname: Zhibin surname: Lin fullname: Lin, Zhibin organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China – sequence: 7 givenname: Gang surname: Liu fullname: Liu, Gang organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China – sequence: 8 givenname: Jianguo surname: Zhu fullname: Zhu, Jianguo organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China – sequence: 9 givenname: Tianlong surname: Hu fullname: Hu, Tianlong organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China – sequence: 10 givenname: Haiyang surname: Jin fullname: Jin, Haiyang organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China – sequence: 11 givenname: Hui surname: Wang fullname: Wang, Hui organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China – sequence: 12 givenname: Xiaoli surname: Sun fullname: Sun, Xiaoli organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China – sequence: 13 givenname: Xingwu surname: Lin fullname: Lin, Xingwu organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China – sequence: 14 givenname: Zubin surname: Xie fullname: Xie, Zubin email: zbxie@issas.ac.cn organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32325612$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkb1uHCEURpHlKF7_vIJN6WY2wLAMFC5WVuJEspQmqQnDXLysZmANrJXk6cN67BRpHJorXZ3vIn3nFB2HGAChK0qWlFDxYbvM1pdYIDwtGWF123atIkdoQWWnGkqYOEYLQrhslFDdCTrNeUvq6yR9j05a1rKVoGyBfqyxM7lgu4HJWzPi-NMPpvgY8ARlEwfsYsK7BIO3xYcHXDaAxxgemgJpwpMPkMzof8-R6HDvo92YhH3AOfoxn6N3zowZLl7mGfr-6eO328_N_de7L7fr-8ZywkuzUtJKxhgw2zEBUlEzAPQraqlzjDrBRc-d5FJIyW0LjLseREvr0lBFoT1D1_PdXYqPe8hFTz5bGEcTIO6zZq3iigjRsf9ApewEWTFV0csXdN9PMOhd8pNJv_RrgRW4mQGbYs4JnK5enssoyfhRU6IPwvRW_xWmD8L0LKzmu3_yr1-8nVzPSaitPnlIBw6CraYS2KKH6N-88QeQULWd |
CitedBy_id | crossref_primary_10_1016_j_geoderma_2023_116761 crossref_primary_10_1016_j_chemosphere_2023_138141 crossref_primary_10_3390_agriculture11080800 crossref_primary_10_1007_s10661_023_11052_9 crossref_primary_10_1016_j_envpol_2022_119491 crossref_primary_10_1016_j_still_2021_105193 crossref_primary_10_1038_s41561_021_00852_8 crossref_primary_10_1016_j_geoderma_2024_117093 crossref_primary_10_1007_s42729_024_01749_2 crossref_primary_10_1002_cssc_202301227 crossref_primary_10_1016_j_scitotenv_2020_138672 crossref_primary_10_1007_s10311_021_01210_1 crossref_primary_10_1007_s44246_022_00017_1 crossref_primary_10_3390_su15107745 crossref_primary_10_1002_cjce_24426 crossref_primary_10_1111_gcbb_13170 crossref_primary_10_1021_acs_est_2c04751 crossref_primary_10_1016_j_scitotenv_2021_150789 |
Cites_doi | 10.1111/ejss.12094 10.1111/gcbb.12035 10.1007/s11104-013-1806-x 10.1021/ef990236s 10.1016/j.orggeochem.2013.04.011 10.1016/j.geoderma.2007.08.010 10.1111/gcbb.12219 10.1016/j.ecoenv.2018.08.024 10.1016/j.orggeochem.2011.08.008 10.1016/j.soilbio.2011.07.020 10.1071/SR10004 10.1016/j.orggeochem.2006.06.022 10.1007/s11104-013-1636-x 10.2134/jeq2011.0100 10.1007/BF00521875 10.1016/j.orggeochem.2011.09.002 10.1016/j.soilbio.2013.01.008 10.2134/jeq2011.0118 10.2136/sssaj1975.03615995003900010018x 10.1029/2007JG000642 10.1111/gcbb.12248 10.1007/s00374-018-1329-y 10.1021/es8002684 10.1007/s00374-002-0466-4 10.1016/S0016-7037(01)00831-6 10.1016/j.soilbio.2008.10.016 10.1021/es903016y 10.1021/es903140c 10.1038/447143a 10.2134/jeq2011.0133 10.1111/gcbb.12030 10.1007/s11027-005-9006-5 10.1021/es9031419 10.1016/j.scitotenv.2019.01.298 10.1038/ncomms1053 10.1016/j.soilbio.2015.07.014 10.1021/es302545b 10.1016/S0146-6380(02)00062-1 10.1016/j.orggeochem.2010.10.005 10.1016/j.gca.2008.01.010 10.1007/s004420000578 10.1016/j.geoderma.2005.01.007 10.1016/j.soilbio.2012.04.005 10.1016/j.orggeochem.2009.09.006 10.1016/j.biortech.2018.09.030 10.1016/j.soilbio.2013.12.021 10.1021/es501885n 10.1016/j.soilbio.2010.04.009 10.1021/acs.est.7b02528 10.1111/ejss.12302 10.1007/s11104-018-3619-4 10.4155/cmt.10.32 10.15376/biores.14.2.4653-4669 10.1016/j.biortech.2010.02.052 10.1111/gcbb.12266 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
DOI | 10.1016/j.scitotenv.2020.137390 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 32325612 10_1016_j_scitotenv_2020_137390 S0048969720309001 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ XPP ZXP ZY4 CGR CUY CVF ECM EIF NPM 7S9 EFKBS L.6 7X8 |
ID | FETCH-LOGICAL-c404t-598c8222e2c726e891adeeb51c1ff21f646b4f8486884c3e24fbe631b4fa191e3 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Wed Jul 30 11:27:56 EDT 2025 Tue Aug 05 10:13:35 EDT 2025 Wed Feb 19 02:30:42 EST 2025 Tue Jul 01 03:35:32 EDT 2025 Thu Apr 24 22:58:44 EDT 2025 Fri Feb 23 02:40:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | SOM RD Stable isotope Stability Mineralization SOC RMSE Biochar Chemical oxidation MRT Ec |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-598c8222e2c726e891adeeb51c1ff21f646b4f8486884c3e24fbe631b4fa191e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5712-5440 |
PMID | 32325612 |
PQID | 2388760529 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2394906672 proquest_miscellaneous_2388760529 pubmed_primary_32325612 crossref_citationtrail_10_1016_j_scitotenv_2020_137390 crossref_primary_10_1016_j_scitotenv_2020_137390 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2020_137390 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-20 |
PublicationDateYYYYMMDD | 2020-05-20 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Luo, Durenkamp, De Nobili, Lin, Brookes (bb0190) 2011; 43 Keiluweit, Nico, Johnson, Kleber (bb0105) 2010; 44 Murray, Keith, Singh (bb0210) 2015; 89 Cross, Sohi (bb0075) 2013; 5 Nishimiya, Hata, Imamura, Ishihara (bb0225) 1998; 44 Alyward, Finlay (bb0005) 1974 Chen, Zhou, Zhu (bb0045) 2008; 42 Baldock, Smernik (bb0010) 2002; 33 Lu (bb0180) 2000 Schomberg, Gaskin, Harris, Das, Novak, Busscher, Watts, Woodroof, Lima, Ahmedna, Rehrah, Xing (bb0260) 2012; 41 Lehmann, Czimczic, Laird, Sohi (bb0140) 2009 Liu, Zhang, Liu, Amonette, Lin, Liu, Ambus, Xie (bb0175) 2018; 426 International Biochar Initiative (bb0095) 2015; 22 Nguyen, Lehmann, Hockaday, Joseph, Masiello (bb0220) 2010; 44 Lehmann, Gaunt, Rondon (bb0135) 2006; 11 Lian, Xing (bb0160) 2017; 51 Chen, Wang, Xin, Sun, Wu (bb0050) 2018; 164 Lu, Sahajwalla, Harris (bb0185) 2000; 14 Pereira, Kaal, Arbestain, Lorenzo, Aitkenhead, Hedley, Macias, Hindmarsh, Macia-Agullo (bb0235) 2011; 42 Bei, Liu, Tang, Cadisch, Rasche, Xie (bb0020) 2013; 59 Rondon, Ramirez, Lehmann (bb0245) 2005 Cheng, Lehmann, Engelhard (bb0060) 2008; 72 Spokas (bb0270) 2010; 1 Fang, Singh, Singh, Krull (bb0080) 2014; 65 Cheng, Lehmann, Thies, Burton (bb0065) 2008; 113 Santos, Torn, Bird (bb0255) 2012; 51 Naisse, Alexis, Plante, Wiedner, Glaser, Pozzi, Carcaillet, Criscuoli, Rumpel (bb0215) 2013; 60 McBeath, Smernik, Schneider, Schmidt, Plant (bb0205) 2011; 42 Pal, Broadbent (bb0230) 1975; 39 Rumpel, Alexis, Chabbi, Chaplot, Rasse, Valentin, Mariotti (bb0250) 2006; 130 Xu, Zhou, Zhang, Cheng, Yang, Xian, Yang (bb0310) 2019; 14 Cao, Harris (bb0035) 2010; 101 Brewer, Hu, Schmidt-Rohr, Loynachan, Laird, Brown (bb0025) 2012; 41 Zimmerman (bb0315) 2010; 44 Liu, Zhang, Ji, Joseph, Bian, Li, Pan, Paz-Ferreiro (bb0165) 2013; 373 Kuzyakov, Bogomolova, Glaser (bb0125) 2014; 70 Phillips, Gregg (bb0240) 2001; 127 Balesdent, Mariotti (bb0015) 1996 Crombie, Mašek, Sohi, Brownsort, Cross (bb0070) 2013; 5 Liu, Liu, Ambus, Zhang, Hansen, Lin, Shen, Liu, Bei, Zhu, Wang, Ma, Lin, Yu, Zhu, Xie (bb0170) 2016; 8 Krull, Baldock, Skjemstad, Smernik (bb0115) 2009 Leng, Huang (bb0145) 2018; 270 Li, Cao, Zhao, Wang, Ding (bb0155) 2014; 48 Wang, Xiong, Kuzyakov (bb0290) 2016; 8 Ventura, Alberti, Viger, Jenkins, Girardin, Baronti, Zaldei, Taylor, Rumpel, Miglietta, Tonon (bb0280) 2015; 7 Cao, Song, Wang (bb0040) 1994 Kuzyakov, Subbotina, Chen, Bogomolova, Xu (bb0120) 2009; 41 Glaser, Lehmann, Zech (bb0085) 2002; 35 Budai, Zimmerman, Cowie, Webber, Singh, Glaser, Masiello, Andersson, Shields, Lehmann, Camps Arbestain, Williams, Sohi, Joseph (bb0030) 2013 Cheng, Lehmann, Thies, Burton, Engelhard (bb0055) 2006; 37 Xie, Xu, Liu, Liu, Zhu, Tu, Amonette, Cadisch, Yong, Hu (bb0305) 2013; 370 Ventura, Alberti, Panzacchi, Vedove, Miglietta, Tonon (bb0285) 2018; 55 Lehmann (bb0130) 2007; 447 McBeath, Smernik (bb0200) 2009; 40 Subedi, Kammann, Pelissetti, Taupe, Bertora, Monaco, Grignani (bb0275) 2015; 66 Werth, Kuzyakov (bb0295) 2010; 42 Knicker, Müller, Hilscher (bb0110) 2007; 142 Masiello, Druffel, Currie (bb0195) 2002; 66 Hilscher, Knicker (bb0090) 2011; 42 Singh, Cowie, Smernik (bb0265) 2012; 46 van Zwieten, Kimber, Morris, Downie, Berger, Rust, Scheer (bb0320) 2010; 48 Woolf, Amonette, Street-Perrott, Lehmann, Joseph (bb0300) 2010; 1 Ippolito, Novak, Busscher, Ahmedna, Rehrah, Watts (bb0100) 2012; 41 Leng, Xu, Wei, Fan, Huang, Li, Lu, Li, Zhou (bb0150) 2019; 664 Xie (10.1016/j.scitotenv.2020.137390_bb0305) 2013; 370 Crombie (10.1016/j.scitotenv.2020.137390_bb0070) 2013; 5 Woolf (10.1016/j.scitotenv.2020.137390_bb0300) 2010; 1 Cao (10.1016/j.scitotenv.2020.137390_bb0040) 1994 McBeath (10.1016/j.scitotenv.2020.137390_bb0205) 2011; 42 Li (10.1016/j.scitotenv.2020.137390_bb0155) 2014; 48 Subedi (10.1016/j.scitotenv.2020.137390_bb0275) 2015; 66 Wang (10.1016/j.scitotenv.2020.137390_bb0290) 2016; 8 Spokas (10.1016/j.scitotenv.2020.137390_bb0270) 2010; 1 Singh (10.1016/j.scitotenv.2020.137390_bb0265) 2012; 46 Nguyen (10.1016/j.scitotenv.2020.137390_bb0220) 2010; 44 Pal (10.1016/j.scitotenv.2020.137390_bb0230) 1975; 39 Nishimiya (10.1016/j.scitotenv.2020.137390_bb0225) 1998; 44 Cheng (10.1016/j.scitotenv.2020.137390_bb0065) 2008; 113 Lu (10.1016/j.scitotenv.2020.137390_bb0185) 2000; 14 Rumpel (10.1016/j.scitotenv.2020.137390_bb0250) 2006; 130 Fang (10.1016/j.scitotenv.2020.137390_bb0080) 2014; 65 Brewer (10.1016/j.scitotenv.2020.137390_bb0025) 2012; 41 Schomberg (10.1016/j.scitotenv.2020.137390_bb0260) 2012; 41 McBeath (10.1016/j.scitotenv.2020.137390_bb0200) 2009; 40 Lehmann (10.1016/j.scitotenv.2020.137390_bb0130) 2007; 447 Alyward (10.1016/j.scitotenv.2020.137390_bb0005) 1974 Kuzyakov (10.1016/j.scitotenv.2020.137390_bb0120) 2009; 41 Lu (10.1016/j.scitotenv.2020.137390_bb0180) 2000 Hilscher (10.1016/j.scitotenv.2020.137390_bb0090) 2011; 42 Liu (10.1016/j.scitotenv.2020.137390_bb0175) 2018; 426 Chen (10.1016/j.scitotenv.2020.137390_bb0050) 2018; 164 Bei (10.1016/j.scitotenv.2020.137390_bb0020) 2013; 59 Masiello (10.1016/j.scitotenv.2020.137390_bb0195) 2002; 66 Phillips (10.1016/j.scitotenv.2020.137390_bb0240) 2001; 127 Lehmann (10.1016/j.scitotenv.2020.137390_bb0140) 2009 Kuzyakov (10.1016/j.scitotenv.2020.137390_bb0125) 2014; 70 Werth (10.1016/j.scitotenv.2020.137390_bb0295) 2010; 42 Cross (10.1016/j.scitotenv.2020.137390_bb0075) 2013; 5 Ippolito (10.1016/j.scitotenv.2020.137390_bb0100) 2012; 41 Lehmann (10.1016/j.scitotenv.2020.137390_bb0135) 2006; 11 International Biochar Initiative (10.1016/j.scitotenv.2020.137390_bb0095) 2015; 22 Ventura (10.1016/j.scitotenv.2020.137390_bb0285) 2018; 55 Lian (10.1016/j.scitotenv.2020.137390_bb0160) 2017; 51 Chen (10.1016/j.scitotenv.2020.137390_bb0045) 2008; 42 Pereira (10.1016/j.scitotenv.2020.137390_bb0235) 2011; 42 Rondon (10.1016/j.scitotenv.2020.137390_bb0245) 2005 Naisse (10.1016/j.scitotenv.2020.137390_bb0215) 2013; 60 Cheng (10.1016/j.scitotenv.2020.137390_bb0055) 2006; 37 Balesdent (10.1016/j.scitotenv.2020.137390_bb0015) 1996 Xu (10.1016/j.scitotenv.2020.137390_bb0310) 2019; 14 Cao (10.1016/j.scitotenv.2020.137390_bb0035) 2010; 101 Glaser (10.1016/j.scitotenv.2020.137390_bb0085) 2002; 35 Liu (10.1016/j.scitotenv.2020.137390_bb0170) 2016; 8 Luo (10.1016/j.scitotenv.2020.137390_bb0190) 2011; 43 Ventura (10.1016/j.scitotenv.2020.137390_bb0280) 2015; 7 Cheng (10.1016/j.scitotenv.2020.137390_bb0060) 2008; 72 Santos (10.1016/j.scitotenv.2020.137390_bb0255) 2012; 51 Leng (10.1016/j.scitotenv.2020.137390_bb0150) 2019; 664 van Zwieten (10.1016/j.scitotenv.2020.137390_bb0320) 2010; 48 Knicker (10.1016/j.scitotenv.2020.137390_bb0110) 2007; 142 Krull (10.1016/j.scitotenv.2020.137390_bb0115) 2009 Baldock (10.1016/j.scitotenv.2020.137390_bb0010) 2002; 33 Murray (10.1016/j.scitotenv.2020.137390_bb0210) 2015; 89 Budai (10.1016/j.scitotenv.2020.137390_bb0030) 2013 Leng (10.1016/j.scitotenv.2020.137390_bb0145) 2018; 270 Keiluweit (10.1016/j.scitotenv.2020.137390_bb0105) 2010; 44 Liu (10.1016/j.scitotenv.2020.137390_bb0165) 2013; 373 Zimmerman (10.1016/j.scitotenv.2020.137390_bb0315) 2010; 44 |
References_xml | – volume: 37 start-page: 1477 year: 2006 end-page: 1488 ident: bb0055 article-title: Oxidation of black carbon by biotic and abiotic processes publication-title: Org. Geochem. – volume: 39 start-page: 59 year: 1975 end-page: 63 ident: bb0230 article-title: Influence of moisture one rice straw decomposition in soil publication-title: Soil Sci. Soc. Am. Proc. – volume: 14 start-page: 869 year: 2000 end-page: 876 ident: bb0185 article-title: Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube furnace publication-title: Energ. Fuel – volume: 51 start-page: 115 year: 2012 end-page: 124 ident: bb0255 article-title: Biological degradation of pyrogenic organic matter in temperate forest soils publication-title: Soil Biol. Biochem. – volume: 41 start-page: 1115 year: 2012 end-page: 1122 ident: bb0025 article-title: Extent of pyrolysis impacts on fast pyrolysis biochar properties publication-title: J. Environ. Qual. – volume: 44 start-page: 1247 year: 2010 end-page: 1253 ident: bb0105 article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. – volume: 11 start-page: 403 year: 2006 end-page: 427 ident: bb0135 article-title: Bio-char sequestration in terrestrial ecosystems – a review publication-title: Mitig. Adapt. Strateg. Glob. Change – volume: 42 start-page: 1372 year: 2010 end-page: 1384 ident: bb0295 article-title: C-13 fractionation at the root-microorganisms-soil interface: a review and outlook for partitioning studies publication-title: Soil Biol. Biochem. – volume: 41 start-page: 1123 year: 2012 end-page: 1130 ident: bb0100 article-title: Switchgrass biochar affects two aridisols publication-title: J. Environ. Qual. – volume: 42 start-page: 5137 year: 2008 end-page: 5143 ident: bb0045 article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures publication-title: Environ. Sci. Technol. – volume: 48 start-page: 11211 year: 2014 end-page: 11217 ident: bb0155 article-title: Effects of mineral additives on biochar formation: carbon retention, stability, and properties publication-title: Environ. Sci. Technol. – volume: 48 start-page: 555 year: 2010 end-page: 568 ident: bb0320 article-title: Influence of biochars on flux of N publication-title: Aust. J. Soil Res. – volume: 40 start-page: 1161 year: 2009 end-page: 1168 ident: bb0200 article-title: Variation in the degree of aromatic condensation of chars publication-title: Org. Geochem. – year: 1974 ident: bb0005 article-title: SI Chemical Data – year: 1996 ident: bb0015 article-title: Measurement of soil organic matter turnover using publication-title: Mass Spectrometry of Soils – start-page: 433 year: 1994 end-page: 434 ident: bb0040 article-title: Inorganic Chemistry – volume: 373 start-page: 583 year: 2013 end-page: 594 ident: bb0165 article-title: Biochar's effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data publication-title: Plant Soil – volume: 8 start-page: 512 year: 2016 end-page: 523 ident: bb0290 article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects publication-title: GCB Bioenergy – volume: 664 start-page: 11 year: 2019 end-page: 23 ident: bb0150 article-title: Biochar stability assessment by incubation and modelling: methods, drawbacks and recommendations publication-title: The Sci. Total Environ. – volume: 55 start-page: 67 year: 2018 end-page: 78 ident: bb0285 article-title: Biochar mineralization and priming effect in a poplar short rotation coppice from a 3-year field experiment publication-title: Biol. Fert. Soils – volume: 60 start-page: 40 year: 2013 end-page: 44 ident: bb0215 article-title: Can biochar and hydrochar stability be assessed with chemical methods? publication-title: Org. Geochem. – volume: 130 start-page: 35 year: 2006 end-page: 46 ident: bb0250 article-title: Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture publication-title: Geoderma – volume: 14 start-page: 4653 year: 2019 end-page: 4669 ident: bb0310 article-title: Adsorption of Cr publication-title: BioRes – volume: 270 start-page: 627 year: 2018 end-page: 642 ident: bb0145 article-title: An overview of the effect of pyrolysis process parameters on biochar stability publication-title: Bioresour. Technol. – start-page: 183 year: 2009 end-page: 205 ident: bb0140 article-title: Stability of biochar in soil publication-title: Biochar for Environmental Management – volume: 41 start-page: 210 year: 2009 end-page: 219 ident: bb0120 article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by publication-title: Soil Biol. Biochem. – volume: 66 start-page: 1044 year: 2015 end-page: 1053 ident: bb0275 article-title: Does soil amended with biochar and hydrochar reduce ammonia emissions following the application of pig slurry? publication-title: Eur. J. Soil Sci. – volume: 42 start-page: 1331 year: 2011 end-page: 1342 ident: bb0235 article-title: Contribution to characterisation of biochar to estimate the labile fraction of carbon publication-title: Org. Geochem. – volume: 7 start-page: 1150 year: 2015 end-page: 1160 ident: bb0280 article-title: Biochar mineralization and priming effect on SOM decomposition in two European short rotation coppices publication-title: GCB Bioenergy – start-page: 108 year: 2000 end-page: 109 ident: bb0180 article-title: Methods of Soil and Agro-Chemical Analysis – volume: 370 start-page: 527 year: 2013 end-page: 540 ident: bb0305 article-title: Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China publication-title: Plant Soil – volume: 164 start-page: 440 year: 2018 end-page: 447 ident: bb0050 article-title: Adsorption behavior and mechanism of Cr(VI) by modified biochar derived from Enteromorpha prolifera publication-title: Ecotoxicol. Environ. Saf. – volume: 22 year: 2015 ident: bb0095 article-title: Standardized product definition and product testing guidelines for biochar that is used in soil publication-title: Int. Biochar Initiat. – volume: 142 start-page: 178 year: 2007 end-page: 196 ident: bb0110 article-title: How useful is chemical oxidation with dichromate for the determination of “black carbon” in fire-affected soils? publication-title: Geoderma – volume: 8 start-page: 148 year: 2016 end-page: 159 ident: bb0170 article-title: Carbon footprint of rice production under biochar amendment - a case study in a Chinese rice cropping system publication-title: GCB Bioenergy – volume: 127 start-page: 171 year: 2001 end-page: 179 ident: bb0240 article-title: Uncertainty in source partitioning using stable isotopes publication-title: Oecologia – volume: 33 start-page: 1093 year: 2002 end-page: 1109 ident: bb0010 article-title: Chemical composition and bioavailability of thermally, altered Pinus resinosa (red pine) wood publication-title: Org. Geochem. – volume: 5 start-page: 215 year: 2013 end-page: 220 ident: bb0075 article-title: A method for screening the relative long-term stability of biochar publication-title: GCB Bioenergy – volume: 59 start-page: 25 year: 2013 end-page: 31 ident: bb0020 article-title: Heterotrophic and phototrophic N-15(2) fixation and distribution of fixed N-15 in a flooded rice-soil system publication-title: Soil Biol. Biochem. – volume: 42 start-page: 1194 year: 2011 end-page: 1202 ident: bb0205 article-title: Determination of the aromaticity and the degree of aromatic condensation of a thermosequence of wood charcoal using NMR publication-title: Org. Geochem. – year: 2009 ident: bb0115 article-title: Characteristics of biochar: Organo-chemical properties publication-title: Biochar for Environmental Management: Science and Technology – volume: 46 start-page: 11770 year: 2012 end-page: 11778 ident: bb0265 article-title: Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature publication-title: Environ. Sci. Technol. – volume: 1 start-page: 289 year: 2010 end-page: 303 ident: bb0270 article-title: Review of the stability of biochar in soils: predictability of O:C molar ratios publication-title: Carbon Manage – volume: 447 start-page: 143 year: 2007 end-page: 144 ident: bb0130 article-title: A handful of carbon publication-title: Nature – volume: 41 start-page: 1087 year: 2012 end-page: 1095 ident: bb0260 article-title: Influence of biochar on nitrogen fractions in a coastal plain soil publication-title: J. Environ. Qual. – volume: 1 start-page: 56 year: 2010 ident: bb0300 article-title: Sustainable biochar to mitigate global climate change publication-title: Nat. Commun. – volume: 70 start-page: 229 year: 2014 end-page: 236 ident: bb0125 article-title: Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific publication-title: Soil Biol. Biochem. – volume: 44 start-page: 3324 year: 2010 end-page: 3331 ident: bb0220 article-title: Temperature sensitivity of black carbon decomposition and oxidation publication-title: Environ. Sci. Technol. – volume: 44 start-page: 1295 year: 2010 end-page: 1301 ident: bb0315 article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) publication-title: Environ. Sci. Technol. – volume: 66 start-page: 1025 year: 2002 end-page: 1036 ident: bb0195 article-title: Radiocarbon measurements of black carbon in aerosols and ocean sediments publication-title: Geochim. Cosmochim. Ac – volume: 5 start-page: 122 year: 2013 end-page: 131 ident: bb0070 article-title: The effect of pyrolysis conditions on biochar stability as determined by three methods publication-title: GCB Bioenergy – volume: 42 start-page: 42 year: 2011 end-page: 54 ident: bb0090 article-title: Degradation of grass-derived pyrogenic organic material, transport of the residues within a soil column and distribution in soil organic matter fractions during a 28 month microcosm experiment publication-title: Org. Geochem. – volume: 65 start-page: 60 year: 2014 end-page: 71 ident: bb0080 article-title: Biochar carbon stability in four contrasting soils publication-title: Eur. J. Soil Sci. – volume: 35 start-page: 219 year: 2002 end-page: 230 ident: bb0085 article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review publication-title: Biol. Fert. Soils – volume: 44 start-page: 56 year: 1998 end-page: 61 ident: bb0225 article-title: Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy publication-title: J. Wood Sci. – volume: 72 start-page: 1598 year: 2008 end-page: 1610 ident: bb0060 article-title: Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence publication-title: Geochim. Cosmochim. Acta – volume: 101 start-page: 5222 year: 2010 end-page: 5228 ident: bb0035 article-title: Properties of dairy-manure-derived biochar pertinent to its potential use in remediation publication-title: Bioresour. Technol. – start-page: 208 year: 2005 ident: bb0245 article-title: Charcoal additions reduce net emissions of greenhouse gases to the atmosphere publication-title: Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration, Baltimore, USA – year: 2013 ident: bb0030 article-title: Biochar carbon stability test method: an assessment of methods to determine biochar carbon stability [www document] publication-title: IBI Doc. Carbon Methodol. Int. Biochar Initiat. – volume: 51 start-page: 13517 year: 2017 end-page: 13532 ident: bb0160 article-title: Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk publication-title: Environ. Sci. Technol. – volume: 89 start-page: 217 year: 2015 end-page: 225 ident: bb0210 article-title: The stability of low- and high-ash biochars in acidic soils of contrasting mineralogy publication-title: Soil Biol. Biochem. – volume: 426 start-page: 211 year: 2018 end-page: 225 ident: bb0175 article-title: How does biochar influence soil N cycle? A meta-analysis publication-title: Plant Soil – volume: 43 start-page: 2304 year: 2011 end-page: 2314 ident: bb0190 article-title: Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH publication-title: Soil Biol. Biochem. – volume: 113 start-page: G02027 year: 2008 ident: bb0065 article-title: Stability of black carbon in soils across a climatic gradient publication-title: J. Geophys. Res. – year: 1996 ident: 10.1016/j.scitotenv.2020.137390_bb0015 article-title: Measurement of soil organic matter turnover using 13C natural abundance – volume: 65 start-page: 60 year: 2014 ident: 10.1016/j.scitotenv.2020.137390_bb0080 article-title: Biochar carbon stability in four contrasting soils publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12094 – volume: 5 start-page: 215 year: 2013 ident: 10.1016/j.scitotenv.2020.137390_bb0075 article-title: A method for screening the relative long-term stability of biochar publication-title: GCB Bioenergy doi: 10.1111/gcbb.12035 – volume: 373 start-page: 583 year: 2013 ident: 10.1016/j.scitotenv.2020.137390_bb0165 article-title: Biochar's effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data publication-title: Plant Soil doi: 10.1007/s11104-013-1806-x – volume: 14 start-page: 869 year: 2000 ident: 10.1016/j.scitotenv.2020.137390_bb0185 article-title: Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube furnace publication-title: Energ. Fuel doi: 10.1021/ef990236s – volume: 60 start-page: 40 year: 2013 ident: 10.1016/j.scitotenv.2020.137390_bb0215 article-title: Can biochar and hydrochar stability be assessed with chemical methods? publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2013.04.011 – volume: 142 start-page: 178 year: 2007 ident: 10.1016/j.scitotenv.2020.137390_bb0110 article-title: How useful is chemical oxidation with dichromate for the determination of “black carbon” in fire-affected soils? publication-title: Geoderma doi: 10.1016/j.geoderma.2007.08.010 – volume: 7 start-page: 1150 year: 2015 ident: 10.1016/j.scitotenv.2020.137390_bb0280 article-title: Biochar mineralization and priming effect on SOM decomposition in two European short rotation coppices publication-title: GCB Bioenergy doi: 10.1111/gcbb.12219 – volume: 164 start-page: 440 year: 2018 ident: 10.1016/j.scitotenv.2020.137390_bb0050 article-title: Adsorption behavior and mechanism of Cr(VI) by modified biochar derived from Enteromorpha prolifera publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.08.024 – volume: 42 start-page: 1194 year: 2011 ident: 10.1016/j.scitotenv.2020.137390_bb0205 article-title: Determination of the aromaticity and the degree of aromatic condensation of a thermosequence of wood charcoal using NMR publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2011.08.008 – volume: 43 start-page: 2304 year: 2011 ident: 10.1016/j.scitotenv.2020.137390_bb0190 article-title: Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.07.020 – volume: 48 start-page: 555 year: 2010 ident: 10.1016/j.scitotenv.2020.137390_bb0320 article-title: Influence of biochars on flux of N2O and CO2 from Ferrosol publication-title: Aust. J. Soil Res. doi: 10.1071/SR10004 – volume: 37 start-page: 1477 year: 2006 ident: 10.1016/j.scitotenv.2020.137390_bb0055 article-title: Oxidation of black carbon by biotic and abiotic processes publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2006.06.022 – volume: 370 start-page: 527 year: 2013 ident: 10.1016/j.scitotenv.2020.137390_bb0305 article-title: Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China publication-title: Plant Soil doi: 10.1007/s11104-013-1636-x – volume: 41 start-page: 1123 year: 2012 ident: 10.1016/j.scitotenv.2020.137390_bb0100 article-title: Switchgrass biochar affects two aridisols publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0100 – volume: 44 start-page: 56 year: 1998 ident: 10.1016/j.scitotenv.2020.137390_bb0225 article-title: Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy publication-title: J. Wood Sci. doi: 10.1007/BF00521875 – volume: 42 start-page: 1331 year: 2011 ident: 10.1016/j.scitotenv.2020.137390_bb0235 article-title: Contribution to characterisation of biochar to estimate the labile fraction of carbon publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2011.09.002 – volume: 59 start-page: 25 year: 2013 ident: 10.1016/j.scitotenv.2020.137390_bb0020 article-title: Heterotrophic and phototrophic N-15(2) fixation and distribution of fixed N-15 in a flooded rice-soil system publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.01.008 – volume: 41 start-page: 1115 year: 2012 ident: 10.1016/j.scitotenv.2020.137390_bb0025 article-title: Extent of pyrolysis impacts on fast pyrolysis biochar properties publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0118 – volume: 39 start-page: 59 year: 1975 ident: 10.1016/j.scitotenv.2020.137390_bb0230 article-title: Influence of moisture one rice straw decomposition in soil publication-title: Soil Sci. Soc. Am. Proc. doi: 10.2136/sssaj1975.03615995003900010018x – volume: 113 start-page: G02027 issue: G2 year: 2008 ident: 10.1016/j.scitotenv.2020.137390_bb0065 article-title: Stability of black carbon in soils across a climatic gradient publication-title: J. Geophys. Res. doi: 10.1029/2007JG000642 – volume: 8 start-page: 148 year: 2016 ident: 10.1016/j.scitotenv.2020.137390_bb0170 article-title: Carbon footprint of rice production under biochar amendment - a case study in a Chinese rice cropping system publication-title: GCB Bioenergy doi: 10.1111/gcbb.12248 – volume: 55 start-page: 67 year: 2018 ident: 10.1016/j.scitotenv.2020.137390_bb0285 article-title: Biochar mineralization and priming effect in a poplar short rotation coppice from a 3-year field experiment publication-title: Biol. Fert. Soils doi: 10.1007/s00374-018-1329-y – volume: 42 start-page: 5137 year: 2008 ident: 10.1016/j.scitotenv.2020.137390_bb0045 article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures publication-title: Environ. Sci. Technol. doi: 10.1021/es8002684 – volume: 35 start-page: 219 year: 2002 ident: 10.1016/j.scitotenv.2020.137390_bb0085 article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review publication-title: Biol. Fert. Soils doi: 10.1007/s00374-002-0466-4 – volume: 66 start-page: 1025 year: 2002 ident: 10.1016/j.scitotenv.2020.137390_bb0195 article-title: Radiocarbon measurements of black carbon in aerosols and ocean sediments publication-title: Geochim. Cosmochim. Ac doi: 10.1016/S0016-7037(01)00831-6 – volume: 41 start-page: 210 year: 2009 ident: 10.1016/j.scitotenv.2020.137390_bb0120 article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.10.016 – start-page: 183 year: 2009 ident: 10.1016/j.scitotenv.2020.137390_bb0140 article-title: Stability of biochar in soil – start-page: 208 year: 2005 ident: 10.1016/j.scitotenv.2020.137390_bb0245 article-title: Charcoal additions reduce net emissions of greenhouse gases to the atmosphere – volume: 44 start-page: 3324 year: 2010 ident: 10.1016/j.scitotenv.2020.137390_bb0220 article-title: Temperature sensitivity of black carbon decomposition and oxidation publication-title: Environ. Sci. Technol. doi: 10.1021/es903016y – volume: 44 start-page: 1295 year: 2010 ident: 10.1016/j.scitotenv.2020.137390_bb0315 article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es903140c – volume: 447 start-page: 143 year: 2007 ident: 10.1016/j.scitotenv.2020.137390_bb0130 article-title: A handful of carbon publication-title: Nature doi: 10.1038/447143a – volume: 41 start-page: 1087 year: 2012 ident: 10.1016/j.scitotenv.2020.137390_bb0260 article-title: Influence of biochar on nitrogen fractions in a coastal plain soil publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0133 – volume: 5 start-page: 122 year: 2013 ident: 10.1016/j.scitotenv.2020.137390_bb0070 article-title: The effect of pyrolysis conditions on biochar stability as determined by three methods publication-title: GCB Bioenergy doi: 10.1111/gcbb.12030 – start-page: 433 year: 1994 ident: 10.1016/j.scitotenv.2020.137390_bb0040 – volume: 11 start-page: 403 year: 2006 ident: 10.1016/j.scitotenv.2020.137390_bb0135 article-title: Bio-char sequestration in terrestrial ecosystems – a review publication-title: Mitig. Adapt. Strateg. Glob. Change doi: 10.1007/s11027-005-9006-5 – volume: 44 start-page: 1247 year: 2010 ident: 10.1016/j.scitotenv.2020.137390_bb0105 article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es9031419 – volume: 664 start-page: 11 year: 2019 ident: 10.1016/j.scitotenv.2020.137390_bb0150 article-title: Biochar stability assessment by incubation and modelling: methods, drawbacks and recommendations publication-title: The Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.298 – volume: 1 start-page: 56 year: 2010 ident: 10.1016/j.scitotenv.2020.137390_bb0300 article-title: Sustainable biochar to mitigate global climate change publication-title: Nat. Commun. doi: 10.1038/ncomms1053 – volume: 89 start-page: 217 year: 2015 ident: 10.1016/j.scitotenv.2020.137390_bb0210 article-title: The stability of low- and high-ash biochars in acidic soils of contrasting mineralogy publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.07.014 – volume: 46 start-page: 11770 year: 2012 ident: 10.1016/j.scitotenv.2020.137390_bb0265 article-title: Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature publication-title: Environ. Sci. Technol. doi: 10.1021/es302545b – volume: 33 start-page: 1093 year: 2002 ident: 10.1016/j.scitotenv.2020.137390_bb0010 article-title: Chemical composition and bioavailability of thermally, altered Pinus resinosa (red pine) wood publication-title: Org. Geochem. doi: 10.1016/S0146-6380(02)00062-1 – volume: 42 start-page: 42 year: 2011 ident: 10.1016/j.scitotenv.2020.137390_bb0090 article-title: Degradation of grass-derived pyrogenic organic material, transport of the residues within a soil column and distribution in soil organic matter fractions during a 28 month microcosm experiment publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2010.10.005 – volume: 72 start-page: 1598 year: 2008 ident: 10.1016/j.scitotenv.2020.137390_bb0060 article-title: Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2008.01.010 – volume: 127 start-page: 171 year: 2001 ident: 10.1016/j.scitotenv.2020.137390_bb0240 article-title: Uncertainty in source partitioning using stable isotopes publication-title: Oecologia doi: 10.1007/s004420000578 – volume: 130 start-page: 35 year: 2006 ident: 10.1016/j.scitotenv.2020.137390_bb0250 article-title: Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture publication-title: Geoderma doi: 10.1016/j.geoderma.2005.01.007 – start-page: 108 year: 2000 ident: 10.1016/j.scitotenv.2020.137390_bb0180 – volume: 22 year: 2015 ident: 10.1016/j.scitotenv.2020.137390_bb0095 article-title: Standardized product definition and product testing guidelines for biochar that is used in soil publication-title: Int. Biochar Initiat. – volume: 51 start-page: 115 year: 2012 ident: 10.1016/j.scitotenv.2020.137390_bb0255 article-title: Biological degradation of pyrogenic organic matter in temperate forest soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.04.005 – volume: 40 start-page: 1161 year: 2009 ident: 10.1016/j.scitotenv.2020.137390_bb0200 article-title: Variation in the degree of aromatic condensation of chars publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2009.09.006 – volume: 270 start-page: 627 year: 2018 ident: 10.1016/j.scitotenv.2020.137390_bb0145 article-title: An overview of the effect of pyrolysis process parameters on biochar stability publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.09.030 – year: 1974 ident: 10.1016/j.scitotenv.2020.137390_bb0005 – volume: 70 start-page: 229 year: 2014 ident: 10.1016/j.scitotenv.2020.137390_bb0125 article-title: Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.12.021 – year: 2009 ident: 10.1016/j.scitotenv.2020.137390_bb0115 article-title: Characteristics of biochar: Organo-chemical properties – volume: 48 start-page: 11211 year: 2014 ident: 10.1016/j.scitotenv.2020.137390_bb0155 article-title: Effects of mineral additives on biochar formation: carbon retention, stability, and properties publication-title: Environ. Sci. Technol. doi: 10.1021/es501885n – volume: 42 start-page: 1372 year: 2010 ident: 10.1016/j.scitotenv.2020.137390_bb0295 article-title: C-13 fractionation at the root-microorganisms-soil interface: a review and outlook for partitioning studies publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.04.009 – volume: 51 start-page: 13517 year: 2017 ident: 10.1016/j.scitotenv.2020.137390_bb0160 article-title: Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b02528 – volume: 66 start-page: 1044 year: 2015 ident: 10.1016/j.scitotenv.2020.137390_bb0275 article-title: Does soil amended with biochar and hydrochar reduce ammonia emissions following the application of pig slurry? publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12302 – volume: 426 start-page: 211 year: 2018 ident: 10.1016/j.scitotenv.2020.137390_bb0175 article-title: How does biochar influence soil N cycle? A meta-analysis publication-title: Plant Soil doi: 10.1007/s11104-018-3619-4 – volume: 1 start-page: 289 year: 2010 ident: 10.1016/j.scitotenv.2020.137390_bb0270 article-title: Review of the stability of biochar in soils: predictability of O:C molar ratios publication-title: Carbon Manage doi: 10.4155/cmt.10.32 – volume: 14 start-page: 4653 issue: 2 year: 2019 ident: 10.1016/j.scitotenv.2020.137390_bb0310 article-title: Adsorption of Cr6+ and Pb2+ on soy sauce residue biochar from aqueous solution publication-title: BioRes doi: 10.15376/biores.14.2.4653-4669 – volume: 101 start-page: 5222 year: 2010 ident: 10.1016/j.scitotenv.2020.137390_bb0035 article-title: Properties of dairy-manure-derived biochar pertinent to its potential use in remediation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.02.052 – year: 2013 ident: 10.1016/j.scitotenv.2020.137390_bb0030 article-title: Biochar carbon stability test method: an assessment of methods to determine biochar carbon stability [www document] publication-title: IBI Doc. Carbon Methodol. Int. Biochar Initiat. – volume: 8 start-page: 512 year: 2016 ident: 10.1016/j.scitotenv.2020.137390_bb0290 article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects publication-title: GCB Bioenergy doi: 10.1111/gcbb.12266 |
SSID | ssj0000781 |
Score | 2.4373298 |
Snippet | Biochar stability determines the effectiveness of biochar's functions such as carbon sequestration, soil structure improvement, soil fertility enhancement and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 137390 |
SubjectTerms | Biochar Carbon Carbon Sequestration Charcoal Chemical oxidation isotope labeling Mineralization oxidation Oxidation-Reduction prediction protons remediation Soil soil fertility soil pollution soil structure Stability Stable isotope stable isotopes Time Factors |
Title | A fast chemical oxidation method for predicting the long-term mineralization of biochar in soils |
URI | https://dx.doi.org/10.1016/j.scitotenv.2020.137390 https://www.ncbi.nlm.nih.gov/pubmed/32325612 https://www.proquest.com/docview/2388760529 https://www.proquest.com/docview/2394906672 |
Volume | 718 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1VRUhICMFCYfmojMQ1NHEcx-a2qlotrOgBUdGbiR0HBS3JqklRe-G3MxMnW1UCeuAUxbIjy-MZP2fmzQC8ibUteFoUeC3hPhLcJZEVOo9yV2aZdE6llvjOH0_k8lR8OMvOduBw4sJQWOVo-4NNH6z12HIwrubBpq6J4yuUlpr8iLGOBw6XEDnt8re_rsM8KJlN8DKjYmPvGzFe-N2-RWz6Ey-KnGpA5CkZ5z-fUH9DoMNJdPwQHowQki3CLB_Bjm9mcDcUlbyawd7RNXcNu43K283gfvhFxwLz6DF8XbCq6HrmxpwBrL2sQ4UlFupKMwS0bHNOrhwKjmaIFdm6bb5FZM7Zj3pIWD3yOFlbMVu3ROJidcO6tl53T-D0-Ojz4TIaCy5ETsSijzKtHAEGz13OpVc6KUrvbZa4pKp4UkkhraiUUFIp4VLPRWW9TBNsLPDe59M92G3axj8D5jMlpZVZ5UUpROk1GniEA3lGdXGUKOcgp0U2bsxGTkUx1mYKO_tuttIxJB0TpDOHeDtwExJy3D7k3SRFc2NvGTw2bh_8epK7Qc0jd0rR-PaiMwh28CghT-m_-mihKY6Yz-Fp2DTbWacIZqk26fP_md4LuEdvFM_A45ew259f-FcIk3q7P-jBPtxZvF8tT-i5-vRl9RvvHhUE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VWyGQEIKFwvI0EteoieM4NrdV1WpL2z21Um8mcRyUaklWTYrg3zOzdraqBPTANfFElscz_px5fACfYl0WPC0KvJZwFwluk6gUOo9yW2WZtFalJdU7ny3l4kJ8ucwud-BgrIWhtMrg-71P33jr8GQ_rOb-ummoxlcoLTXFEWMdUw3XLnWnyiawOz8-WSxvHXKuPHGeQNtGgTtpXvjpoUN4-gPvipxoIPKU_POfD6m_gdDNYXT0FJ4EFMnmfqLPYMe1U3jgeSV_TWHv8LZ8DYcF--2n8Nj_pWO--Og5fJ2zuugHZkPbANb9bDzJEvPU0gwxLVtfUzSH8qMZwkW26tpvEXl09r3Z9KwOpZysq1nZdFTHxZqW9V2z6l_AxdHh-cEiCpwLkRWxGKJMK0uYwXGbc-mUTorKuTJLbFLXPKmlkKWolVBSKWFTx0VdOpkm-LDAq59L92DSdq17BcxlSspSZrUTlRCV0-jjERHkGVHjKFHNQI6LbGxoSE68GCszZp5dma12DGnHeO3MIN4Krn1PjvtFPo9aNHe2l8GT437hj6PeDRofRVSK1nU3vUG8g6cJBUv_NUYLTanEfAYv_abZzjpFPEv0pK__Z3of4OHi_OzUnB4vT97AI3pD6Q08fguT4frGvUPUNJTvg1X8BqzyFhI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+chemical+oxidation+method+for+predicting+the+long-term+mineralization+of+biochar+in+soils&rft.jtitle=The+Science+of+the+total+environment&rft.au=Liu%2C+Benjuan&rft.au=Liu%2C+Qi&rft.au=Wang%2C+Xiaojie&rft.au=Bei%2C+Qicheng&rft.date=2020-05-20&rft.issn=0048-9697&rft.volume=718&rft.spage=137390&rft_id=info:doi/10.1016%2Fj.scitotenv.2020.137390&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2020_137390 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |