A fast chemical oxidation method for predicting the long-term mineralization of biochar in soils

Biochar stability determines the effectiveness of biochar's functions such as carbon sequestration, soil structure improvement, soil fertility enhancement and soil pollution remediation. However, a fast method for accurately predicting biochar long-term stability in soil remains elusive. Here,...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 718; p. 137390
Main Authors Liu, Benjuan, Liu, Qi, Wang, Xiaojie, Bei, Qicheng, Zhang, Yanhui, Lin, Zhibin, Liu, Gang, Zhu, Jianguo, Hu, Tianlong, Jin, Haiyang, Wang, Hui, Sun, Xiaoli, Lin, Xingwu, Xie, Zubin
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 20.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biochar stability determines the effectiveness of biochar's functions such as carbon sequestration, soil structure improvement, soil fertility enhancement and soil pollution remediation. However, a fast method for accurately predicting biochar long-term stability in soil remains elusive. Here, firstly, an incubation experiment was conducted on mineralization dynamics of different 13C-labelled biochars over 368 days to explore their actual mineralization in soils and establish their mineralization model. Thereafter, ten treatments of fast chemical oxidation methods using K2Cr2O7 (0.1 M) with different H+ concentrations and oxidation times were applied to the biochars to reveal which method best matches the mineralization of biochar in soils. Results showed that the percentage of biochar‑carbon oxidized by the solution containing 0.1 M K2Cr2O7 and 0.2 M H+ at 100 °C for 2 h was in accordance with the one that potentially would be mineralized in soils at a 100-year scale (R2 > 0.99; REMS = 2.53; RD = 15.3). The results provided a chemical oxidation method that was robust, effective, low cost and highly available for measuring the long-term stability of biochar in soils. [Display omitted] •The fraction of biochar-carbon oxidized by a solution with 0.1 M K2Cr2O7 and 0.2 M H+ at 100 °C for 2 hours, was very closely correlated (R2> 0.99) with the one that potentially would be mineralized in soils at a 100-year scale.•H/C and O/C were not accurate for predicting stability of biochar in soil.•Mineralization rate of biochar was more sensitive to inherent stability of biochar than to soil type, especially for biochars produced at above 300 °C.
AbstractList Biochar stability determines the effectiveness of biochar's functions such as carbon sequestration, soil structure improvement, soil fertility enhancement and soil pollution remediation. However, a fast method for accurately predicting biochar long-term stability in soil remains elusive. Here, firstly, an incubation experiment was conducted on mineralization dynamics of different C-labelled biochars over 368 days to explore their actual mineralization in soils and establish their mineralization model. Thereafter, ten treatments of fast chemical oxidation methods using K Cr O (0.1 M) with different H concentrations and oxidation times were applied to the biochars to reveal which method best matches the mineralization of biochar in soils. Results showed that the percentage of biochar‑carbon oxidized by the solution containing 0.1 M K Cr O and 0.2 M H at 100 °C for 2 h was in accordance with the one that potentially would be mineralized in soils at a 100-year scale (R  > 0.99; REMS = 2.53; RD = 15.3). The results provided a chemical oxidation method that was robust, effective, low cost and highly available for measuring the long-term stability of biochar in soils.
Biochar stability determines the effectiveness of biochar's functions such as carbon sequestration, soil structure improvement, soil fertility enhancement and soil pollution remediation. However, a fast method for accurately predicting biochar long-term stability in soil remains elusive. Here, firstly, an incubation experiment was conducted on mineralization dynamics of different 13C-labelled biochars over 368 days to explore their actual mineralization in soils and establish their mineralization model. Thereafter, ten treatments of fast chemical oxidation methods using K2Cr2O7 (0.1 M) with different H+ concentrations and oxidation times were applied to the biochars to reveal which method best matches the mineralization of biochar in soils. Results showed that the percentage of biochar‑carbon oxidized by the solution containing 0.1 M K2Cr2O7 and 0.2 M H+ at 100 °C for 2 h was in accordance with the one that potentially would be mineralized in soils at a 100-year scale (R2 > 0.99; REMS = 2.53; RD = 15.3). The results provided a chemical oxidation method that was robust, effective, low cost and highly available for measuring the long-term stability of biochar in soils. [Display omitted] •The fraction of biochar-carbon oxidized by a solution with 0.1 M K2Cr2O7 and 0.2 M H+ at 100 °C for 2 hours, was very closely correlated (R2> 0.99) with the one that potentially would be mineralized in soils at a 100-year scale.•H/C and O/C were not accurate for predicting stability of biochar in soil.•Mineralization rate of biochar was more sensitive to inherent stability of biochar than to soil type, especially for biochars produced at above 300 °C.
Biochar stability determines the effectiveness of biochar's functions such as carbon sequestration, soil structure improvement, soil fertility enhancement and soil pollution remediation. However, a fast method for accurately predicting biochar long-term stability in soil remains elusive. Here, firstly, an incubation experiment was conducted on mineralization dynamics of different 13C-labelled biochars over 368 days to explore their actual mineralization in soils and establish their mineralization model. Thereafter, ten treatments of fast chemical oxidation methods using K2Cr2O7 (0.1 M) with different H+ concentrations and oxidation times were applied to the biochars to reveal which method best matches the mineralization of biochar in soils. Results showed that the percentage of biochar‑carbon oxidized by the solution containing 0.1 M K2Cr2O7 and 0.2 M H+ at 100 °C for 2 h was in accordance with the one that potentially would be mineralized in soils at a 100-year scale (R2 > 0.99; REMS = 2.53; RD = 15.3). The results provided a chemical oxidation method that was robust, effective, low cost and highly available for measuring the long-term stability of biochar in soils.Biochar stability determines the effectiveness of biochar's functions such as carbon sequestration, soil structure improvement, soil fertility enhancement and soil pollution remediation. However, a fast method for accurately predicting biochar long-term stability in soil remains elusive. Here, firstly, an incubation experiment was conducted on mineralization dynamics of different 13C-labelled biochars over 368 days to explore their actual mineralization in soils and establish their mineralization model. Thereafter, ten treatments of fast chemical oxidation methods using K2Cr2O7 (0.1 M) with different H+ concentrations and oxidation times were applied to the biochars to reveal which method best matches the mineralization of biochar in soils. Results showed that the percentage of biochar‑carbon oxidized by the solution containing 0.1 M K2Cr2O7 and 0.2 M H+ at 100 °C for 2 h was in accordance with the one that potentially would be mineralized in soils at a 100-year scale (R2 > 0.99; REMS = 2.53; RD = 15.3). The results provided a chemical oxidation method that was robust, effective, low cost and highly available for measuring the long-term stability of biochar in soils.
Biochar stability determines the effectiveness of biochar's functions such as carbon sequestration, soil structure improvement, soil fertility enhancement and soil pollution remediation. However, a fast method for accurately predicting biochar long-term stability in soil remains elusive. Here, firstly, an incubation experiment was conducted on mineralization dynamics of different ¹³C-labelled biochars over 368 days to explore their actual mineralization in soils and establish their mineralization model. Thereafter, ten treatments of fast chemical oxidation methods using K₂Cr₂O₇ (0.1 M) with different H⁺ concentrations and oxidation times were applied to the biochars to reveal which method best matches the mineralization of biochar in soils. Results showed that the percentage of biochar‑carbon oxidized by the solution containing 0.1 M K₂Cr₂O₇ and 0.2 M H⁺ at 100 °C for 2 h was in accordance with the one that potentially would be mineralized in soils at a 100-year scale (R² > 0.99; REMS = 2.53; RD = 15.3). The results provided a chemical oxidation method that was robust, effective, low cost and highly available for measuring the long-term stability of biochar in soils.
ArticleNumber 137390
Author Liu, Gang
Zhu, Jianguo
Lin, Xingwu
Wang, Hui
Sun, Xiaoli
Zhang, Yanhui
Jin, Haiyang
Liu, Benjuan
Liu, Qi
Lin, Zhibin
Xie, Zubin
Wang, Xiaojie
Hu, Tianlong
Bei, Qicheng
Author_xml – sequence: 1
  givenname: Benjuan
  surname: Liu
  fullname: Liu, Benjuan
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China
– sequence: 2
  givenname: Qi
  surname: Liu
  fullname: Liu, Qi
  organization: Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, No.159, Longpan Road, Nanjing 210037, China
– sequence: 3
  givenname: Xiaojie
  surname: Wang
  fullname: Wang, Xiaojie
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China
– sequence: 4
  givenname: Qicheng
  orcidid: 0000-0002-5712-5440
  surname: Bei
  fullname: Bei, Qicheng
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China
– sequence: 5
  givenname: Yanhui
  surname: Zhang
  fullname: Zhang, Yanhui
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China
– sequence: 6
  givenname: Zhibin
  surname: Lin
  fullname: Lin, Zhibin
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China
– sequence: 7
  givenname: Gang
  surname: Liu
  fullname: Liu, Gang
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China
– sequence: 8
  givenname: Jianguo
  surname: Zhu
  fullname: Zhu, Jianguo
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China
– sequence: 9
  givenname: Tianlong
  surname: Hu
  fullname: Hu, Tianlong
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China
– sequence: 10
  givenname: Haiyang
  surname: Jin
  fullname: Jin, Haiyang
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China
– sequence: 11
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China
– sequence: 12
  givenname: Xiaoli
  surname: Sun
  fullname: Sun, Xiaoli
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China
– sequence: 13
  givenname: Xingwu
  surname: Lin
  fullname: Lin, Xingwu
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China
– sequence: 14
  givenname: Zubin
  surname: Xie
  fullname: Xie, Zubin
  email: zbxie@issas.ac.cn
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71, East Beijing Road, Nanjing 210008, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32325612$$D View this record in MEDLINE/PubMed
BookMark eNqNkb1uHCEURpHlKF7_vIJN6WY2wLAMFC5WVuJEspQmqQnDXLysZmANrJXk6cN67BRpHJorXZ3vIn3nFB2HGAChK0qWlFDxYbvM1pdYIDwtGWF123atIkdoQWWnGkqYOEYLQrhslFDdCTrNeUvq6yR9j05a1rKVoGyBfqyxM7lgu4HJWzPi-NMPpvgY8ARlEwfsYsK7BIO3xYcHXDaAxxgemgJpwpMPkMzof8-R6HDvo92YhH3AOfoxn6N3zowZLl7mGfr-6eO328_N_de7L7fr-8ZywkuzUtJKxhgw2zEBUlEzAPQraqlzjDrBRc-d5FJIyW0LjLseREvr0lBFoT1D1_PdXYqPe8hFTz5bGEcTIO6zZq3iigjRsf9ApewEWTFV0csXdN9PMOhd8pNJv_RrgRW4mQGbYs4JnK5enssoyfhRU6IPwvRW_xWmD8L0LKzmu3_yr1-8nVzPSaitPnlIBw6CraYS2KKH6N-88QeQULWd
CitedBy_id crossref_primary_10_1016_j_geoderma_2023_116761
crossref_primary_10_1016_j_chemosphere_2023_138141
crossref_primary_10_3390_agriculture11080800
crossref_primary_10_1007_s10661_023_11052_9
crossref_primary_10_1016_j_envpol_2022_119491
crossref_primary_10_1016_j_still_2021_105193
crossref_primary_10_1038_s41561_021_00852_8
crossref_primary_10_1016_j_geoderma_2024_117093
crossref_primary_10_1007_s42729_024_01749_2
crossref_primary_10_1002_cssc_202301227
crossref_primary_10_1016_j_scitotenv_2020_138672
crossref_primary_10_1007_s10311_021_01210_1
crossref_primary_10_1007_s44246_022_00017_1
crossref_primary_10_3390_su15107745
crossref_primary_10_1002_cjce_24426
crossref_primary_10_1111_gcbb_13170
crossref_primary_10_1021_acs_est_2c04751
crossref_primary_10_1016_j_scitotenv_2021_150789
Cites_doi 10.1111/ejss.12094
10.1111/gcbb.12035
10.1007/s11104-013-1806-x
10.1021/ef990236s
10.1016/j.orggeochem.2013.04.011
10.1016/j.geoderma.2007.08.010
10.1111/gcbb.12219
10.1016/j.ecoenv.2018.08.024
10.1016/j.orggeochem.2011.08.008
10.1016/j.soilbio.2011.07.020
10.1071/SR10004
10.1016/j.orggeochem.2006.06.022
10.1007/s11104-013-1636-x
10.2134/jeq2011.0100
10.1007/BF00521875
10.1016/j.orggeochem.2011.09.002
10.1016/j.soilbio.2013.01.008
10.2134/jeq2011.0118
10.2136/sssaj1975.03615995003900010018x
10.1029/2007JG000642
10.1111/gcbb.12248
10.1007/s00374-018-1329-y
10.1021/es8002684
10.1007/s00374-002-0466-4
10.1016/S0016-7037(01)00831-6
10.1016/j.soilbio.2008.10.016
10.1021/es903016y
10.1021/es903140c
10.1038/447143a
10.2134/jeq2011.0133
10.1111/gcbb.12030
10.1007/s11027-005-9006-5
10.1021/es9031419
10.1016/j.scitotenv.2019.01.298
10.1038/ncomms1053
10.1016/j.soilbio.2015.07.014
10.1021/es302545b
10.1016/S0146-6380(02)00062-1
10.1016/j.orggeochem.2010.10.005
10.1016/j.gca.2008.01.010
10.1007/s004420000578
10.1016/j.geoderma.2005.01.007
10.1016/j.soilbio.2012.04.005
10.1016/j.orggeochem.2009.09.006
10.1016/j.biortech.2018.09.030
10.1016/j.soilbio.2013.12.021
10.1021/es501885n
10.1016/j.soilbio.2010.04.009
10.1021/acs.est.7b02528
10.1111/ejss.12302
10.1007/s11104-018-3619-4
10.4155/cmt.10.32
10.15376/biores.14.2.4653-4669
10.1016/j.biortech.2010.02.052
10.1111/gcbb.12266
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
DOI 10.1016/j.scitotenv.2020.137390
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 32325612
10_1016_j_scitotenv_2020_137390
S0048969720309001
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7S9
EFKBS
L.6
7X8
ID FETCH-LOGICAL-c404t-598c8222e2c726e891adeeb51c1ff21f646b4f8486884c3e24fbe631b4fa191e3
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Wed Jul 30 11:27:56 EDT 2025
Tue Aug 05 10:13:35 EDT 2025
Wed Feb 19 02:30:42 EST 2025
Tue Jul 01 03:35:32 EDT 2025
Thu Apr 24 22:58:44 EDT 2025
Fri Feb 23 02:40:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords SOM
RD
Stable isotope
Stability
Mineralization
SOC
RMSE
Biochar
Chemical oxidation
MRT
Ec
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-598c8222e2c726e891adeeb51c1ff21f646b4f8486884c3e24fbe631b4fa191e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5712-5440
PMID 32325612
PQID 2388760529
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2394906672
proquest_miscellaneous_2388760529
pubmed_primary_32325612
crossref_citationtrail_10_1016_j_scitotenv_2020_137390
crossref_primary_10_1016_j_scitotenv_2020_137390
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2020_137390
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-20
PublicationDateYYYYMMDD 2020-05-20
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-20
  day: 20
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Luo, Durenkamp, De Nobili, Lin, Brookes (bb0190) 2011; 43
Keiluweit, Nico, Johnson, Kleber (bb0105) 2010; 44
Murray, Keith, Singh (bb0210) 2015; 89
Cross, Sohi (bb0075) 2013; 5
Nishimiya, Hata, Imamura, Ishihara (bb0225) 1998; 44
Alyward, Finlay (bb0005) 1974
Chen, Zhou, Zhu (bb0045) 2008; 42
Baldock, Smernik (bb0010) 2002; 33
Lu (bb0180) 2000
Schomberg, Gaskin, Harris, Das, Novak, Busscher, Watts, Woodroof, Lima, Ahmedna, Rehrah, Xing (bb0260) 2012; 41
Lehmann, Czimczic, Laird, Sohi (bb0140) 2009
Liu, Zhang, Liu, Amonette, Lin, Liu, Ambus, Xie (bb0175) 2018; 426
International Biochar Initiative (bb0095) 2015; 22
Nguyen, Lehmann, Hockaday, Joseph, Masiello (bb0220) 2010; 44
Lehmann, Gaunt, Rondon (bb0135) 2006; 11
Lian, Xing (bb0160) 2017; 51
Chen, Wang, Xin, Sun, Wu (bb0050) 2018; 164
Lu, Sahajwalla, Harris (bb0185) 2000; 14
Pereira, Kaal, Arbestain, Lorenzo, Aitkenhead, Hedley, Macias, Hindmarsh, Macia-Agullo (bb0235) 2011; 42
Bei, Liu, Tang, Cadisch, Rasche, Xie (bb0020) 2013; 59
Rondon, Ramirez, Lehmann (bb0245) 2005
Cheng, Lehmann, Engelhard (bb0060) 2008; 72
Spokas (bb0270) 2010; 1
Fang, Singh, Singh, Krull (bb0080) 2014; 65
Cheng, Lehmann, Thies, Burton (bb0065) 2008; 113
Santos, Torn, Bird (bb0255) 2012; 51
Naisse, Alexis, Plante, Wiedner, Glaser, Pozzi, Carcaillet, Criscuoli, Rumpel (bb0215) 2013; 60
McBeath, Smernik, Schneider, Schmidt, Plant (bb0205) 2011; 42
Pal, Broadbent (bb0230) 1975; 39
Rumpel, Alexis, Chabbi, Chaplot, Rasse, Valentin, Mariotti (bb0250) 2006; 130
Xu, Zhou, Zhang, Cheng, Yang, Xian, Yang (bb0310) 2019; 14
Cao, Harris (bb0035) 2010; 101
Brewer, Hu, Schmidt-Rohr, Loynachan, Laird, Brown (bb0025) 2012; 41
Zimmerman (bb0315) 2010; 44
Liu, Zhang, Ji, Joseph, Bian, Li, Pan, Paz-Ferreiro (bb0165) 2013; 373
Kuzyakov, Bogomolova, Glaser (bb0125) 2014; 70
Phillips, Gregg (bb0240) 2001; 127
Balesdent, Mariotti (bb0015) 1996
Crombie, Mašek, Sohi, Brownsort, Cross (bb0070) 2013; 5
Liu, Liu, Ambus, Zhang, Hansen, Lin, Shen, Liu, Bei, Zhu, Wang, Ma, Lin, Yu, Zhu, Xie (bb0170) 2016; 8
Krull, Baldock, Skjemstad, Smernik (bb0115) 2009
Leng, Huang (bb0145) 2018; 270
Li, Cao, Zhao, Wang, Ding (bb0155) 2014; 48
Wang, Xiong, Kuzyakov (bb0290) 2016; 8
Ventura, Alberti, Viger, Jenkins, Girardin, Baronti, Zaldei, Taylor, Rumpel, Miglietta, Tonon (bb0280) 2015; 7
Cao, Song, Wang (bb0040) 1994
Kuzyakov, Subbotina, Chen, Bogomolova, Xu (bb0120) 2009; 41
Glaser, Lehmann, Zech (bb0085) 2002; 35
Budai, Zimmerman, Cowie, Webber, Singh, Glaser, Masiello, Andersson, Shields, Lehmann, Camps Arbestain, Williams, Sohi, Joseph (bb0030) 2013
Cheng, Lehmann, Thies, Burton, Engelhard (bb0055) 2006; 37
Xie, Xu, Liu, Liu, Zhu, Tu, Amonette, Cadisch, Yong, Hu (bb0305) 2013; 370
Ventura, Alberti, Panzacchi, Vedove, Miglietta, Tonon (bb0285) 2018; 55
Lehmann (bb0130) 2007; 447
McBeath, Smernik (bb0200) 2009; 40
Subedi, Kammann, Pelissetti, Taupe, Bertora, Monaco, Grignani (bb0275) 2015; 66
Werth, Kuzyakov (bb0295) 2010; 42
Knicker, Müller, Hilscher (bb0110) 2007; 142
Masiello, Druffel, Currie (bb0195) 2002; 66
Hilscher, Knicker (bb0090) 2011; 42
Singh, Cowie, Smernik (bb0265) 2012; 46
van Zwieten, Kimber, Morris, Downie, Berger, Rust, Scheer (bb0320) 2010; 48
Woolf, Amonette, Street-Perrott, Lehmann, Joseph (bb0300) 2010; 1
Ippolito, Novak, Busscher, Ahmedna, Rehrah, Watts (bb0100) 2012; 41
Leng, Xu, Wei, Fan, Huang, Li, Lu, Li, Zhou (bb0150) 2019; 664
Xie (10.1016/j.scitotenv.2020.137390_bb0305) 2013; 370
Crombie (10.1016/j.scitotenv.2020.137390_bb0070) 2013; 5
Woolf (10.1016/j.scitotenv.2020.137390_bb0300) 2010; 1
Cao (10.1016/j.scitotenv.2020.137390_bb0040) 1994
McBeath (10.1016/j.scitotenv.2020.137390_bb0205) 2011; 42
Li (10.1016/j.scitotenv.2020.137390_bb0155) 2014; 48
Subedi (10.1016/j.scitotenv.2020.137390_bb0275) 2015; 66
Wang (10.1016/j.scitotenv.2020.137390_bb0290) 2016; 8
Spokas (10.1016/j.scitotenv.2020.137390_bb0270) 2010; 1
Singh (10.1016/j.scitotenv.2020.137390_bb0265) 2012; 46
Nguyen (10.1016/j.scitotenv.2020.137390_bb0220) 2010; 44
Pal (10.1016/j.scitotenv.2020.137390_bb0230) 1975; 39
Nishimiya (10.1016/j.scitotenv.2020.137390_bb0225) 1998; 44
Cheng (10.1016/j.scitotenv.2020.137390_bb0065) 2008; 113
Lu (10.1016/j.scitotenv.2020.137390_bb0185) 2000; 14
Rumpel (10.1016/j.scitotenv.2020.137390_bb0250) 2006; 130
Fang (10.1016/j.scitotenv.2020.137390_bb0080) 2014; 65
Brewer (10.1016/j.scitotenv.2020.137390_bb0025) 2012; 41
Schomberg (10.1016/j.scitotenv.2020.137390_bb0260) 2012; 41
McBeath (10.1016/j.scitotenv.2020.137390_bb0200) 2009; 40
Lehmann (10.1016/j.scitotenv.2020.137390_bb0130) 2007; 447
Alyward (10.1016/j.scitotenv.2020.137390_bb0005) 1974
Kuzyakov (10.1016/j.scitotenv.2020.137390_bb0120) 2009; 41
Lu (10.1016/j.scitotenv.2020.137390_bb0180) 2000
Hilscher (10.1016/j.scitotenv.2020.137390_bb0090) 2011; 42
Liu (10.1016/j.scitotenv.2020.137390_bb0175) 2018; 426
Chen (10.1016/j.scitotenv.2020.137390_bb0050) 2018; 164
Bei (10.1016/j.scitotenv.2020.137390_bb0020) 2013; 59
Masiello (10.1016/j.scitotenv.2020.137390_bb0195) 2002; 66
Phillips (10.1016/j.scitotenv.2020.137390_bb0240) 2001; 127
Lehmann (10.1016/j.scitotenv.2020.137390_bb0140) 2009
Kuzyakov (10.1016/j.scitotenv.2020.137390_bb0125) 2014; 70
Werth (10.1016/j.scitotenv.2020.137390_bb0295) 2010; 42
Cross (10.1016/j.scitotenv.2020.137390_bb0075) 2013; 5
Ippolito (10.1016/j.scitotenv.2020.137390_bb0100) 2012; 41
Lehmann (10.1016/j.scitotenv.2020.137390_bb0135) 2006; 11
International Biochar Initiative (10.1016/j.scitotenv.2020.137390_bb0095) 2015; 22
Ventura (10.1016/j.scitotenv.2020.137390_bb0285) 2018; 55
Lian (10.1016/j.scitotenv.2020.137390_bb0160) 2017; 51
Chen (10.1016/j.scitotenv.2020.137390_bb0045) 2008; 42
Pereira (10.1016/j.scitotenv.2020.137390_bb0235) 2011; 42
Rondon (10.1016/j.scitotenv.2020.137390_bb0245) 2005
Naisse (10.1016/j.scitotenv.2020.137390_bb0215) 2013; 60
Cheng (10.1016/j.scitotenv.2020.137390_bb0055) 2006; 37
Balesdent (10.1016/j.scitotenv.2020.137390_bb0015) 1996
Xu (10.1016/j.scitotenv.2020.137390_bb0310) 2019; 14
Cao (10.1016/j.scitotenv.2020.137390_bb0035) 2010; 101
Glaser (10.1016/j.scitotenv.2020.137390_bb0085) 2002; 35
Liu (10.1016/j.scitotenv.2020.137390_bb0170) 2016; 8
Luo (10.1016/j.scitotenv.2020.137390_bb0190) 2011; 43
Ventura (10.1016/j.scitotenv.2020.137390_bb0280) 2015; 7
Cheng (10.1016/j.scitotenv.2020.137390_bb0060) 2008; 72
Santos (10.1016/j.scitotenv.2020.137390_bb0255) 2012; 51
Leng (10.1016/j.scitotenv.2020.137390_bb0150) 2019; 664
van Zwieten (10.1016/j.scitotenv.2020.137390_bb0320) 2010; 48
Knicker (10.1016/j.scitotenv.2020.137390_bb0110) 2007; 142
Krull (10.1016/j.scitotenv.2020.137390_bb0115) 2009
Baldock (10.1016/j.scitotenv.2020.137390_bb0010) 2002; 33
Murray (10.1016/j.scitotenv.2020.137390_bb0210) 2015; 89
Budai (10.1016/j.scitotenv.2020.137390_bb0030) 2013
Leng (10.1016/j.scitotenv.2020.137390_bb0145) 2018; 270
Keiluweit (10.1016/j.scitotenv.2020.137390_bb0105) 2010; 44
Liu (10.1016/j.scitotenv.2020.137390_bb0165) 2013; 373
Zimmerman (10.1016/j.scitotenv.2020.137390_bb0315) 2010; 44
References_xml – volume: 37
  start-page: 1477
  year: 2006
  end-page: 1488
  ident: bb0055
  article-title: Oxidation of black carbon by biotic and abiotic processes
  publication-title: Org. Geochem.
– volume: 39
  start-page: 59
  year: 1975
  end-page: 63
  ident: bb0230
  article-title: Influence of moisture one rice straw decomposition in soil
  publication-title: Soil Sci. Soc. Am. Proc.
– volume: 14
  start-page: 869
  year: 2000
  end-page: 876
  ident: bb0185
  article-title: Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube furnace
  publication-title: Energ. Fuel
– volume: 51
  start-page: 115
  year: 2012
  end-page: 124
  ident: bb0255
  article-title: Biological degradation of pyrogenic organic matter in temperate forest soils
  publication-title: Soil Biol. Biochem.
– volume: 41
  start-page: 1115
  year: 2012
  end-page: 1122
  ident: bb0025
  article-title: Extent of pyrolysis impacts on fast pyrolysis biochar properties
  publication-title: J. Environ. Qual.
– volume: 44
  start-page: 1247
  year: 2010
  end-page: 1253
  ident: bb0105
  article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
– volume: 11
  start-page: 403
  year: 2006
  end-page: 427
  ident: bb0135
  article-title: Bio-char sequestration in terrestrial ecosystems – a review
  publication-title: Mitig. Adapt. Strateg. Glob. Change
– volume: 42
  start-page: 1372
  year: 2010
  end-page: 1384
  ident: bb0295
  article-title: C-13 fractionation at the root-microorganisms-soil interface: a review and outlook for partitioning studies
  publication-title: Soil Biol. Biochem.
– volume: 41
  start-page: 1123
  year: 2012
  end-page: 1130
  ident: bb0100
  article-title: Switchgrass biochar affects two aridisols
  publication-title: J. Environ. Qual.
– volume: 42
  start-page: 5137
  year: 2008
  end-page: 5143
  ident: bb0045
  article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures
  publication-title: Environ. Sci. Technol.
– volume: 48
  start-page: 11211
  year: 2014
  end-page: 11217
  ident: bb0155
  article-title: Effects of mineral additives on biochar formation: carbon retention, stability, and properties
  publication-title: Environ. Sci. Technol.
– volume: 48
  start-page: 555
  year: 2010
  end-page: 568
  ident: bb0320
  article-title: Influence of biochars on flux of N
  publication-title: Aust. J. Soil Res.
– volume: 40
  start-page: 1161
  year: 2009
  end-page: 1168
  ident: bb0200
  article-title: Variation in the degree of aromatic condensation of chars
  publication-title: Org. Geochem.
– year: 1974
  ident: bb0005
  article-title: SI Chemical Data
– year: 1996
  ident: bb0015
  article-title: Measurement of soil organic matter turnover using
  publication-title: Mass Spectrometry of Soils
– start-page: 433
  year: 1994
  end-page: 434
  ident: bb0040
  article-title: Inorganic Chemistry
– volume: 373
  start-page: 583
  year: 2013
  end-page: 594
  ident: bb0165
  article-title: Biochar's effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data
  publication-title: Plant Soil
– volume: 8
  start-page: 512
  year: 2016
  end-page: 523
  ident: bb0290
  article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects
  publication-title: GCB Bioenergy
– volume: 664
  start-page: 11
  year: 2019
  end-page: 23
  ident: bb0150
  article-title: Biochar stability assessment by incubation and modelling: methods, drawbacks and recommendations
  publication-title: The Sci. Total Environ.
– volume: 55
  start-page: 67
  year: 2018
  end-page: 78
  ident: bb0285
  article-title: Biochar mineralization and priming effect in a poplar short rotation coppice from a 3-year field experiment
  publication-title: Biol. Fert. Soils
– volume: 60
  start-page: 40
  year: 2013
  end-page: 44
  ident: bb0215
  article-title: Can biochar and hydrochar stability be assessed with chemical methods?
  publication-title: Org. Geochem.
– volume: 130
  start-page: 35
  year: 2006
  end-page: 46
  ident: bb0250
  article-title: Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture
  publication-title: Geoderma
– volume: 14
  start-page: 4653
  year: 2019
  end-page: 4669
  ident: bb0310
  article-title: Adsorption of Cr
  publication-title: BioRes
– volume: 270
  start-page: 627
  year: 2018
  end-page: 642
  ident: bb0145
  article-title: An overview of the effect of pyrolysis process parameters on biochar stability
  publication-title: Bioresour. Technol.
– start-page: 183
  year: 2009
  end-page: 205
  ident: bb0140
  article-title: Stability of biochar in soil
  publication-title: Biochar for Environmental Management
– volume: 41
  start-page: 210
  year: 2009
  end-page: 219
  ident: bb0120
  article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by
  publication-title: Soil Biol. Biochem.
– volume: 66
  start-page: 1044
  year: 2015
  end-page: 1053
  ident: bb0275
  article-title: Does soil amended with biochar and hydrochar reduce ammonia emissions following the application of pig slurry?
  publication-title: Eur. J. Soil Sci.
– volume: 42
  start-page: 1331
  year: 2011
  end-page: 1342
  ident: bb0235
  article-title: Contribution to characterisation of biochar to estimate the labile fraction of carbon
  publication-title: Org. Geochem.
– volume: 7
  start-page: 1150
  year: 2015
  end-page: 1160
  ident: bb0280
  article-title: Biochar mineralization and priming effect on SOM decomposition in two European short rotation coppices
  publication-title: GCB Bioenergy
– start-page: 108
  year: 2000
  end-page: 109
  ident: bb0180
  article-title: Methods of Soil and Agro-Chemical Analysis
– volume: 370
  start-page: 527
  year: 2013
  end-page: 540
  ident: bb0305
  article-title: Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China
  publication-title: Plant Soil
– volume: 164
  start-page: 440
  year: 2018
  end-page: 447
  ident: bb0050
  article-title: Adsorption behavior and mechanism of Cr(VI) by modified biochar derived from Enteromorpha prolifera
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 22
  year: 2015
  ident: bb0095
  article-title: Standardized product definition and product testing guidelines for biochar that is used in soil
  publication-title: Int. Biochar Initiat.
– volume: 142
  start-page: 178
  year: 2007
  end-page: 196
  ident: bb0110
  article-title: How useful is chemical oxidation with dichromate for the determination of “black carbon” in fire-affected soils?
  publication-title: Geoderma
– volume: 8
  start-page: 148
  year: 2016
  end-page: 159
  ident: bb0170
  article-title: Carbon footprint of rice production under biochar amendment - a case study in a Chinese rice cropping system
  publication-title: GCB Bioenergy
– volume: 127
  start-page: 171
  year: 2001
  end-page: 179
  ident: bb0240
  article-title: Uncertainty in source partitioning using stable isotopes
  publication-title: Oecologia
– volume: 33
  start-page: 1093
  year: 2002
  end-page: 1109
  ident: bb0010
  article-title: Chemical composition and bioavailability of thermally, altered Pinus resinosa (red pine) wood
  publication-title: Org. Geochem.
– volume: 5
  start-page: 215
  year: 2013
  end-page: 220
  ident: bb0075
  article-title: A method for screening the relative long-term stability of biochar
  publication-title: GCB Bioenergy
– volume: 59
  start-page: 25
  year: 2013
  end-page: 31
  ident: bb0020
  article-title: Heterotrophic and phototrophic N-15(2) fixation and distribution of fixed N-15 in a flooded rice-soil system
  publication-title: Soil Biol. Biochem.
– volume: 42
  start-page: 1194
  year: 2011
  end-page: 1202
  ident: bb0205
  article-title: Determination of the aromaticity and the degree of aromatic condensation of a thermosequence of wood charcoal using NMR
  publication-title: Org. Geochem.
– year: 2009
  ident: bb0115
  article-title: Characteristics of biochar: Organo-chemical properties
  publication-title: Biochar for Environmental Management: Science and Technology
– volume: 46
  start-page: 11770
  year: 2012
  end-page: 11778
  ident: bb0265
  article-title: Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature
  publication-title: Environ. Sci. Technol.
– volume: 1
  start-page: 289
  year: 2010
  end-page: 303
  ident: bb0270
  article-title: Review of the stability of biochar in soils: predictability of O:C molar ratios
  publication-title: Carbon Manage
– volume: 447
  start-page: 143
  year: 2007
  end-page: 144
  ident: bb0130
  article-title: A handful of carbon
  publication-title: Nature
– volume: 41
  start-page: 1087
  year: 2012
  end-page: 1095
  ident: bb0260
  article-title: Influence of biochar on nitrogen fractions in a coastal plain soil
  publication-title: J. Environ. Qual.
– volume: 1
  start-page: 56
  year: 2010
  ident: bb0300
  article-title: Sustainable biochar to mitigate global climate change
  publication-title: Nat. Commun.
– volume: 70
  start-page: 229
  year: 2014
  end-page: 236
  ident: bb0125
  article-title: Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific
  publication-title: Soil Biol. Biochem.
– volume: 44
  start-page: 3324
  year: 2010
  end-page: 3331
  ident: bb0220
  article-title: Temperature sensitivity of black carbon decomposition and oxidation
  publication-title: Environ. Sci. Technol.
– volume: 44
  start-page: 1295
  year: 2010
  end-page: 1301
  ident: bb0315
  article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar)
  publication-title: Environ. Sci. Technol.
– volume: 66
  start-page: 1025
  year: 2002
  end-page: 1036
  ident: bb0195
  article-title: Radiocarbon measurements of black carbon in aerosols and ocean sediments
  publication-title: Geochim. Cosmochim. Ac
– volume: 5
  start-page: 122
  year: 2013
  end-page: 131
  ident: bb0070
  article-title: The effect of pyrolysis conditions on biochar stability as determined by three methods
  publication-title: GCB Bioenergy
– volume: 42
  start-page: 42
  year: 2011
  end-page: 54
  ident: bb0090
  article-title: Degradation of grass-derived pyrogenic organic material, transport of the residues within a soil column and distribution in soil organic matter fractions during a 28 month microcosm experiment
  publication-title: Org. Geochem.
– volume: 65
  start-page: 60
  year: 2014
  end-page: 71
  ident: bb0080
  article-title: Biochar carbon stability in four contrasting soils
  publication-title: Eur. J. Soil Sci.
– volume: 35
  start-page: 219
  year: 2002
  end-page: 230
  ident: bb0085
  article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review
  publication-title: Biol. Fert. Soils
– volume: 44
  start-page: 56
  year: 1998
  end-page: 61
  ident: bb0225
  article-title: Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy
  publication-title: J. Wood Sci.
– volume: 72
  start-page: 1598
  year: 2008
  end-page: 1610
  ident: bb0060
  article-title: Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence
  publication-title: Geochim. Cosmochim. Acta
– volume: 101
  start-page: 5222
  year: 2010
  end-page: 5228
  ident: bb0035
  article-title: Properties of dairy-manure-derived biochar pertinent to its potential use in remediation
  publication-title: Bioresour. Technol.
– start-page: 208
  year: 2005
  ident: bb0245
  article-title: Charcoal additions reduce net emissions of greenhouse gases to the atmosphere
  publication-title: Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration, Baltimore, USA
– year: 2013
  ident: bb0030
  article-title: Biochar carbon stability test method: an assessment of methods to determine biochar carbon stability [www document]
  publication-title: IBI Doc. Carbon Methodol. Int. Biochar Initiat.
– volume: 51
  start-page: 13517
  year: 2017
  end-page: 13532
  ident: bb0160
  article-title: Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk
  publication-title: Environ. Sci. Technol.
– volume: 89
  start-page: 217
  year: 2015
  end-page: 225
  ident: bb0210
  article-title: The stability of low- and high-ash biochars in acidic soils of contrasting mineralogy
  publication-title: Soil Biol. Biochem.
– volume: 426
  start-page: 211
  year: 2018
  end-page: 225
  ident: bb0175
  article-title: How does biochar influence soil N cycle? A meta-analysis
  publication-title: Plant Soil
– volume: 43
  start-page: 2304
  year: 2011
  end-page: 2314
  ident: bb0190
  article-title: Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH
  publication-title: Soil Biol. Biochem.
– volume: 113
  start-page: G02027
  year: 2008
  ident: bb0065
  article-title: Stability of black carbon in soils across a climatic gradient
  publication-title: J. Geophys. Res.
– year: 1996
  ident: 10.1016/j.scitotenv.2020.137390_bb0015
  article-title: Measurement of soil organic matter turnover using 13C natural abundance
– volume: 65
  start-page: 60
  year: 2014
  ident: 10.1016/j.scitotenv.2020.137390_bb0080
  article-title: Biochar carbon stability in four contrasting soils
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12094
– volume: 5
  start-page: 215
  year: 2013
  ident: 10.1016/j.scitotenv.2020.137390_bb0075
  article-title: A method for screening the relative long-term stability of biochar
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12035
– volume: 373
  start-page: 583
  year: 2013
  ident: 10.1016/j.scitotenv.2020.137390_bb0165
  article-title: Biochar's effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1806-x
– volume: 14
  start-page: 869
  year: 2000
  ident: 10.1016/j.scitotenv.2020.137390_bb0185
  article-title: Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube furnace
  publication-title: Energ. Fuel
  doi: 10.1021/ef990236s
– volume: 60
  start-page: 40
  year: 2013
  ident: 10.1016/j.scitotenv.2020.137390_bb0215
  article-title: Can biochar and hydrochar stability be assessed with chemical methods?
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2013.04.011
– volume: 142
  start-page: 178
  year: 2007
  ident: 10.1016/j.scitotenv.2020.137390_bb0110
  article-title: How useful is chemical oxidation with dichromate for the determination of “black carbon” in fire-affected soils?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2007.08.010
– volume: 7
  start-page: 1150
  year: 2015
  ident: 10.1016/j.scitotenv.2020.137390_bb0280
  article-title: Biochar mineralization and priming effect on SOM decomposition in two European short rotation coppices
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12219
– volume: 164
  start-page: 440
  year: 2018
  ident: 10.1016/j.scitotenv.2020.137390_bb0050
  article-title: Adsorption behavior and mechanism of Cr(VI) by modified biochar derived from Enteromorpha prolifera
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2018.08.024
– volume: 42
  start-page: 1194
  year: 2011
  ident: 10.1016/j.scitotenv.2020.137390_bb0205
  article-title: Determination of the aromaticity and the degree of aromatic condensation of a thermosequence of wood charcoal using NMR
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2011.08.008
– volume: 43
  start-page: 2304
  year: 2011
  ident: 10.1016/j.scitotenv.2020.137390_bb0190
  article-title: Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.07.020
– volume: 48
  start-page: 555
  year: 2010
  ident: 10.1016/j.scitotenv.2020.137390_bb0320
  article-title: Influence of biochars on flux of N2O and CO2 from Ferrosol
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR10004
– volume: 37
  start-page: 1477
  year: 2006
  ident: 10.1016/j.scitotenv.2020.137390_bb0055
  article-title: Oxidation of black carbon by biotic and abiotic processes
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2006.06.022
– volume: 370
  start-page: 527
  year: 2013
  ident: 10.1016/j.scitotenv.2020.137390_bb0305
  article-title: Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1636-x
– volume: 41
  start-page: 1123
  year: 2012
  ident: 10.1016/j.scitotenv.2020.137390_bb0100
  article-title: Switchgrass biochar affects two aridisols
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0100
– volume: 44
  start-page: 56
  year: 1998
  ident: 10.1016/j.scitotenv.2020.137390_bb0225
  article-title: Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy
  publication-title: J. Wood Sci.
  doi: 10.1007/BF00521875
– volume: 42
  start-page: 1331
  year: 2011
  ident: 10.1016/j.scitotenv.2020.137390_bb0235
  article-title: Contribution to characterisation of biochar to estimate the labile fraction of carbon
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2011.09.002
– volume: 59
  start-page: 25
  year: 2013
  ident: 10.1016/j.scitotenv.2020.137390_bb0020
  article-title: Heterotrophic and phototrophic N-15(2) fixation and distribution of fixed N-15 in a flooded rice-soil system
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.01.008
– volume: 41
  start-page: 1115
  year: 2012
  ident: 10.1016/j.scitotenv.2020.137390_bb0025
  article-title: Extent of pyrolysis impacts on fast pyrolysis biochar properties
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0118
– volume: 39
  start-page: 59
  year: 1975
  ident: 10.1016/j.scitotenv.2020.137390_bb0230
  article-title: Influence of moisture one rice straw decomposition in soil
  publication-title: Soil Sci. Soc. Am. Proc.
  doi: 10.2136/sssaj1975.03615995003900010018x
– volume: 113
  start-page: G02027
  issue: G2
  year: 2008
  ident: 10.1016/j.scitotenv.2020.137390_bb0065
  article-title: Stability of black carbon in soils across a climatic gradient
  publication-title: J. Geophys. Res.
  doi: 10.1029/2007JG000642
– volume: 8
  start-page: 148
  year: 2016
  ident: 10.1016/j.scitotenv.2020.137390_bb0170
  article-title: Carbon footprint of rice production under biochar amendment - a case study in a Chinese rice cropping system
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12248
– volume: 55
  start-page: 67
  year: 2018
  ident: 10.1016/j.scitotenv.2020.137390_bb0285
  article-title: Biochar mineralization and priming effect in a poplar short rotation coppice from a 3-year field experiment
  publication-title: Biol. Fert. Soils
  doi: 10.1007/s00374-018-1329-y
– volume: 42
  start-page: 5137
  year: 2008
  ident: 10.1016/j.scitotenv.2020.137390_bb0045
  article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8002684
– volume: 35
  start-page: 219
  year: 2002
  ident: 10.1016/j.scitotenv.2020.137390_bb0085
  article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review
  publication-title: Biol. Fert. Soils
  doi: 10.1007/s00374-002-0466-4
– volume: 66
  start-page: 1025
  year: 2002
  ident: 10.1016/j.scitotenv.2020.137390_bb0195
  article-title: Radiocarbon measurements of black carbon in aerosols and ocean sediments
  publication-title: Geochim. Cosmochim. Ac
  doi: 10.1016/S0016-7037(01)00831-6
– volume: 41
  start-page: 210
  year: 2009
  ident: 10.1016/j.scitotenv.2020.137390_bb0120
  article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.10.016
– start-page: 183
  year: 2009
  ident: 10.1016/j.scitotenv.2020.137390_bb0140
  article-title: Stability of biochar in soil
– start-page: 208
  year: 2005
  ident: 10.1016/j.scitotenv.2020.137390_bb0245
  article-title: Charcoal additions reduce net emissions of greenhouse gases to the atmosphere
– volume: 44
  start-page: 3324
  year: 2010
  ident: 10.1016/j.scitotenv.2020.137390_bb0220
  article-title: Temperature sensitivity of black carbon decomposition and oxidation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903016y
– volume: 44
  start-page: 1295
  year: 2010
  ident: 10.1016/j.scitotenv.2020.137390_bb0315
  article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903140c
– volume: 447
  start-page: 143
  year: 2007
  ident: 10.1016/j.scitotenv.2020.137390_bb0130
  article-title: A handful of carbon
  publication-title: Nature
  doi: 10.1038/447143a
– volume: 41
  start-page: 1087
  year: 2012
  ident: 10.1016/j.scitotenv.2020.137390_bb0260
  article-title: Influence of biochar on nitrogen fractions in a coastal plain soil
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0133
– volume: 5
  start-page: 122
  year: 2013
  ident: 10.1016/j.scitotenv.2020.137390_bb0070
  article-title: The effect of pyrolysis conditions on biochar stability as determined by three methods
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12030
– start-page: 433
  year: 1994
  ident: 10.1016/j.scitotenv.2020.137390_bb0040
– volume: 11
  start-page: 403
  year: 2006
  ident: 10.1016/j.scitotenv.2020.137390_bb0135
  article-title: Bio-char sequestration in terrestrial ecosystems – a review
  publication-title: Mitig. Adapt. Strateg. Glob. Change
  doi: 10.1007/s11027-005-9006-5
– volume: 44
  start-page: 1247
  year: 2010
  ident: 10.1016/j.scitotenv.2020.137390_bb0105
  article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9031419
– volume: 664
  start-page: 11
  year: 2019
  ident: 10.1016/j.scitotenv.2020.137390_bb0150
  article-title: Biochar stability assessment by incubation and modelling: methods, drawbacks and recommendations
  publication-title: The Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.298
– volume: 1
  start-page: 56
  year: 2010
  ident: 10.1016/j.scitotenv.2020.137390_bb0300
  article-title: Sustainable biochar to mitigate global climate change
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1053
– volume: 89
  start-page: 217
  year: 2015
  ident: 10.1016/j.scitotenv.2020.137390_bb0210
  article-title: The stability of low- and high-ash biochars in acidic soils of contrasting mineralogy
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.07.014
– volume: 46
  start-page: 11770
  year: 2012
  ident: 10.1016/j.scitotenv.2020.137390_bb0265
  article-title: Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302545b
– volume: 33
  start-page: 1093
  year: 2002
  ident: 10.1016/j.scitotenv.2020.137390_bb0010
  article-title: Chemical composition and bioavailability of thermally, altered Pinus resinosa (red pine) wood
  publication-title: Org. Geochem.
  doi: 10.1016/S0146-6380(02)00062-1
– volume: 42
  start-page: 42
  year: 2011
  ident: 10.1016/j.scitotenv.2020.137390_bb0090
  article-title: Degradation of grass-derived pyrogenic organic material, transport of the residues within a soil column and distribution in soil organic matter fractions during a 28 month microcosm experiment
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2010.10.005
– volume: 72
  start-page: 1598
  year: 2008
  ident: 10.1016/j.scitotenv.2020.137390_bb0060
  article-title: Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2008.01.010
– volume: 127
  start-page: 171
  year: 2001
  ident: 10.1016/j.scitotenv.2020.137390_bb0240
  article-title: Uncertainty in source partitioning using stable isotopes
  publication-title: Oecologia
  doi: 10.1007/s004420000578
– volume: 130
  start-page: 35
  year: 2006
  ident: 10.1016/j.scitotenv.2020.137390_bb0250
  article-title: Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.01.007
– start-page: 108
  year: 2000
  ident: 10.1016/j.scitotenv.2020.137390_bb0180
– volume: 22
  year: 2015
  ident: 10.1016/j.scitotenv.2020.137390_bb0095
  article-title: Standardized product definition and product testing guidelines for biochar that is used in soil
  publication-title: Int. Biochar Initiat.
– volume: 51
  start-page: 115
  year: 2012
  ident: 10.1016/j.scitotenv.2020.137390_bb0255
  article-title: Biological degradation of pyrogenic organic matter in temperate forest soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.04.005
– volume: 40
  start-page: 1161
  year: 2009
  ident: 10.1016/j.scitotenv.2020.137390_bb0200
  article-title: Variation in the degree of aromatic condensation of chars
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2009.09.006
– volume: 270
  start-page: 627
  year: 2018
  ident: 10.1016/j.scitotenv.2020.137390_bb0145
  article-title: An overview of the effect of pyrolysis process parameters on biochar stability
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.09.030
– year: 1974
  ident: 10.1016/j.scitotenv.2020.137390_bb0005
– volume: 70
  start-page: 229
  year: 2014
  ident: 10.1016/j.scitotenv.2020.137390_bb0125
  article-title: Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.12.021
– year: 2009
  ident: 10.1016/j.scitotenv.2020.137390_bb0115
  article-title: Characteristics of biochar: Organo-chemical properties
– volume: 48
  start-page: 11211
  year: 2014
  ident: 10.1016/j.scitotenv.2020.137390_bb0155
  article-title: Effects of mineral additives on biochar formation: carbon retention, stability, and properties
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es501885n
– volume: 42
  start-page: 1372
  year: 2010
  ident: 10.1016/j.scitotenv.2020.137390_bb0295
  article-title: C-13 fractionation at the root-microorganisms-soil interface: a review and outlook for partitioning studies
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.04.009
– volume: 51
  start-page: 13517
  year: 2017
  ident: 10.1016/j.scitotenv.2020.137390_bb0160
  article-title: Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b02528
– volume: 66
  start-page: 1044
  year: 2015
  ident: 10.1016/j.scitotenv.2020.137390_bb0275
  article-title: Does soil amended with biochar and hydrochar reduce ammonia emissions following the application of pig slurry?
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12302
– volume: 426
  start-page: 211
  year: 2018
  ident: 10.1016/j.scitotenv.2020.137390_bb0175
  article-title: How does biochar influence soil N cycle? A meta-analysis
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3619-4
– volume: 1
  start-page: 289
  year: 2010
  ident: 10.1016/j.scitotenv.2020.137390_bb0270
  article-title: Review of the stability of biochar in soils: predictability of O:C molar ratios
  publication-title: Carbon Manage
  doi: 10.4155/cmt.10.32
– volume: 14
  start-page: 4653
  issue: 2
  year: 2019
  ident: 10.1016/j.scitotenv.2020.137390_bb0310
  article-title: Adsorption of Cr6+ and Pb2+ on soy sauce residue biochar from aqueous solution
  publication-title: BioRes
  doi: 10.15376/biores.14.2.4653-4669
– volume: 101
  start-page: 5222
  year: 2010
  ident: 10.1016/j.scitotenv.2020.137390_bb0035
  article-title: Properties of dairy-manure-derived biochar pertinent to its potential use in remediation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.02.052
– year: 2013
  ident: 10.1016/j.scitotenv.2020.137390_bb0030
  article-title: Biochar carbon stability test method: an assessment of methods to determine biochar carbon stability [www document]
  publication-title: IBI Doc. Carbon Methodol. Int. Biochar Initiat.
– volume: 8
  start-page: 512
  year: 2016
  ident: 10.1016/j.scitotenv.2020.137390_bb0290
  article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12266
SSID ssj0000781
Score 2.4373298
Snippet Biochar stability determines the effectiveness of biochar's functions such as carbon sequestration, soil structure improvement, soil fertility enhancement and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 137390
SubjectTerms Biochar
Carbon
Carbon Sequestration
Charcoal
Chemical oxidation
isotope labeling
Mineralization
oxidation
Oxidation-Reduction
prediction
protons
remediation
Soil
soil fertility
soil pollution
soil structure
Stability
Stable isotope
stable isotopes
Time Factors
Title A fast chemical oxidation method for predicting the long-term mineralization of biochar in soils
URI https://dx.doi.org/10.1016/j.scitotenv.2020.137390
https://www.ncbi.nlm.nih.gov/pubmed/32325612
https://www.proquest.com/docview/2388760529
https://www.proquest.com/docview/2394906672
Volume 718
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1VRUhICMFCYfmojMQ1NHEcx-a2qlotrOgBUdGbiR0HBS3JqklRe-G3MxMnW1UCeuAUxbIjy-MZP2fmzQC8ibUteFoUeC3hPhLcJZEVOo9yV2aZdE6llvjOH0_k8lR8OMvOduBw4sJQWOVo-4NNH6z12HIwrubBpq6J4yuUlpr8iLGOBw6XEDnt8re_rsM8KJlN8DKjYmPvGzFe-N2-RWz6Ey-KnGpA5CkZ5z-fUH9DoMNJdPwQHowQki3CLB_Bjm9mcDcUlbyawd7RNXcNu43K283gfvhFxwLz6DF8XbCq6HrmxpwBrL2sQ4UlFupKMwS0bHNOrhwKjmaIFdm6bb5FZM7Zj3pIWD3yOFlbMVu3ROJidcO6tl53T-D0-Ojz4TIaCy5ETsSijzKtHAEGz13OpVc6KUrvbZa4pKp4UkkhraiUUFIp4VLPRWW9TBNsLPDe59M92G3axj8D5jMlpZVZ5UUpROk1GniEA3lGdXGUKOcgp0U2bsxGTkUx1mYKO_tuttIxJB0TpDOHeDtwExJy3D7k3SRFc2NvGTw2bh_8epK7Qc0jd0rR-PaiMwh28CghT-m_-mihKY6Yz-Fp2DTbWacIZqk26fP_md4LuEdvFM_A45ew259f-FcIk3q7P-jBPtxZvF8tT-i5-vRl9RvvHhUE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VWyGQEIKFwvI0EteoieM4NrdV1WpL2z21Um8mcRyUaklWTYrg3zOzdraqBPTANfFElscz_px5fACfYl0WPC0KvJZwFwluk6gUOo9yW2WZtFalJdU7ny3l4kJ8ucwud-BgrIWhtMrg-71P33jr8GQ_rOb-ummoxlcoLTXFEWMdUw3XLnWnyiawOz8-WSxvHXKuPHGeQNtGgTtpXvjpoUN4-gPvipxoIPKU_POfD6m_gdDNYXT0FJ4EFMnmfqLPYMe1U3jgeSV_TWHv8LZ8DYcF--2n8Nj_pWO--Og5fJ2zuugHZkPbANb9bDzJEvPU0gwxLVtfUzSH8qMZwkW26tpvEXl09r3Z9KwOpZysq1nZdFTHxZqW9V2z6l_AxdHh-cEiCpwLkRWxGKJMK0uYwXGbc-mUTorKuTJLbFLXPKmlkKWolVBSKWFTx0VdOpkm-LDAq59L92DSdq17BcxlSspSZrUTlRCV0-jjERHkGVHjKFHNQI6LbGxoSE68GCszZp5dma12DGnHeO3MIN4Krn1PjvtFPo9aNHe2l8GT437hj6PeDRofRVSK1nU3vUG8g6cJBUv_NUYLTanEfAYv_abZzjpFPEv0pK__Z3of4OHi_OzUnB4vT97AI3pD6Q08fguT4frGvUPUNJTvg1X8BqzyFhI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+chemical+oxidation+method+for+predicting+the+long-term+mineralization+of+biochar+in+soils&rft.jtitle=The+Science+of+the+total+environment&rft.au=Liu%2C+Benjuan&rft.au=Liu%2C+Qi&rft.au=Wang%2C+Xiaojie&rft.au=Bei%2C+Qicheng&rft.date=2020-05-20&rft.issn=0048-9697&rft.volume=718&rft.spage=137390&rft_id=info:doi/10.1016%2Fj.scitotenv.2020.137390&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2020_137390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon