Material properties of bovine intervertebral discs across strain rates
The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent vertebrae and allowing the vertebral column to bend and twist. To study the mechanical behaviour of individual components of the IVD, it is common for specimens to be dissected away from...
Saved in:
Published in | Journal of the mechanical behavior of biomedical materials Vol. 65; pp. 824 - 830 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent vertebrae and allowing the vertebral column to bend and twist. To study the mechanical behaviour of individual components of the IVD, it is common for specimens to be dissected away from their surrounding tissues for mechanical testing. However, disrupting the continuity of the IVD to obtain material properties of each component separately may result in erroneous values. In this study, an inverse finite element (FE) modelling optimisation algorithm has been used to obtain material properties of the IVD across strain rates, therefore bypassing the need to harvest individual samples of each component. Uniaxial compression was applied to ten fresh-frozen bovine intervertebral discs at strain rates of 10-3–1/s. The experimental data were fed into the inverse FE optimisation algorithm and each experiment was simulated using the subject specific FE model of the respective specimen. A sensitivity analysis revealed that the IVD's response was most dependent upon the Young's modulus (YM) of the fibre bundles and therefore this was chosen to be the parameter to optimise. Based on the obtained YM values for each test corresponding to a different strain rate (ε̇), the following relationship was derived:YM=35.5lnε̇+527.5. These properties can be used in finite element models of the IVD that aim to simulate spinal biomechanics across loading rates. |
---|---|
AbstractList | The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent vertebrae and allowing the vertebral column to bend and twist. To study the mechanical behaviour of individual components of the IVD, it is common for specimens to be dissected away from their surrounding tissues for mechanical testing. However, disrupting the continuity of the IVD to obtain material properties of each component separately may result in erroneous values. In this study, an inverse finite element (FE) modelling optimisation algorithm has been used to obtain material properties of the IVD across strain rates, therefore bypassing the need to harvest individual samples of each component. Uniaxial compression was applied to ten fresh-frozen bovine intervertebral discs at strain rates of 10-3–1/s. The experimental data were fed into the inverse FE optimisation algorithm and each experiment was simulated using the subject specific FE model of the respective specimen. A sensitivity analysis revealed that the IVD's response was most dependent upon the Young's modulus (YM) of the fibre bundles and therefore this was chosen to be the parameter to optimise. Based on the obtained YM values for each test corresponding to a different strain rate (ε̇), the following relationship was derived:YM=35.5lnε̇+527.5. These properties can be used in finite element models of the IVD that aim to simulate spinal biomechanics across loading rates. The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent vertebrae and allowing the vertebral column to bend and twist. To study the mechanical behaviour of individual components of the IVD, it is common for specimens to be dissected away from their surrounding tissues for mechanical testing. However, disrupting the continuity of the IVD to obtain material properties of each component separately may result in erroneous values. In this study, an inverse finite element (FE) modelling optimisation algorithm has been used to obtain material properties of the IVD across strain rates, therefore bypassing the need to harvest individual samples of each component. Uniaxial compression was applied to ten fresh-frozen bovine intervertebral discs at strain rates of 10-3-1/s. The experimental data were fed into the inverse FE optimisation algorithm and each experiment was simulated using the subject specific FE model of the respective specimen. A sensitivity analysis revealed that the IVD's response was most dependent upon the Young's modulus (YM) of the fibre bundles and therefore this was chosen to be the parameter to optimise. Based on the obtained YM values for each test corresponding to a different strain rate (ε̇), the following relationship was derived:YM=35.5lnε̇+527.5. These properties can be used in finite element models of the IVD that aim to simulate spinal biomechanics across loading rates.The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent vertebrae and allowing the vertebral column to bend and twist. To study the mechanical behaviour of individual components of the IVD, it is common for specimens to be dissected away from their surrounding tissues for mechanical testing. However, disrupting the continuity of the IVD to obtain material properties of each component separately may result in erroneous values. In this study, an inverse finite element (FE) modelling optimisation algorithm has been used to obtain material properties of the IVD across strain rates, therefore bypassing the need to harvest individual samples of each component. Uniaxial compression was applied to ten fresh-frozen bovine intervertebral discs at strain rates of 10-3-1/s. The experimental data were fed into the inverse FE optimisation algorithm and each experiment was simulated using the subject specific FE model of the respective specimen. A sensitivity analysis revealed that the IVD's response was most dependent upon the Young's modulus (YM) of the fibre bundles and therefore this was chosen to be the parameter to optimise. Based on the obtained YM values for each test corresponding to a different strain rate (ε̇), the following relationship was derived:YM=35.5lnε̇+527.5. These properties can be used in finite element models of the IVD that aim to simulate spinal biomechanics across loading rates. The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent vertebrae and allowing the vertebral column to bend and twist. To study the mechanical behaviour of individual components of the IVD, it is common for specimens to be dissected away from their surrounding tissues for mechanical testing. However, disrupting the continuity of the IVD to obtain material properties of each component separately may result in erroneous values. In this study, an inverse finite element (FE) modelling optimisation algorithm has been used to obtain material properties of the IVD across strain rates, therefore bypassing the need to harvest individual samples of each component. Uniaxial compression was applied to ten fresh-frozen bovine intervertebral discs at strain rates of 10 -1/s. The experimental data were fed into the inverse FE optimisation algorithm and each experiment was simulated using the subject specific FE model of the respective specimen. A sensitivity analysis revealed that the IVD's response was most dependent upon the Young's modulus (YM) of the fibre bundles and therefore this was chosen to be the parameter to optimise. Based on the obtained YM values for each test corresponding to a different strain rate (ε̇), the following relationship was derived:YM=35.5lnε̇+527.5. These properties can be used in finite element models of the IVD that aim to simulate spinal biomechanics across loading rates. |
Author | Carpanen, Diagarajen Christou, Alexandros Masouros, Spyros D. Newell, Nicolas Grigoriadis, Grigorios |
Author_xml | – sequence: 1 givenname: Nicolas surname: Newell fullname: Newell, Nicolas email: n.newell09@imperial.ac.uk – sequence: 2 givenname: Grigorios surname: Grigoriadis fullname: Grigoriadis, Grigorios – sequence: 3 givenname: Alexandros surname: Christou fullname: Christou, Alexandros – sequence: 4 givenname: Diagarajen surname: Carpanen fullname: Carpanen, Diagarajen – sequence: 5 givenname: Spyros D. surname: Masouros fullname: Masouros, Spyros D. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27810728$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UD1PwzAUtFAR_YBfgIQysiTYceI4AwOqKCAVsXS3bOdZcpU4xU4r8e9xWrowdHp-57vTu5ujiesdIHRPcEYwYU_bbNsp1WV5XCKSYZJfoRnhFU8x4XgS31VJUkYYmaJ5CFuMGcac36BpXnGCq5zP0OpTDuCtbJOd73fgBwsh6U2i-oN1kFgXfw8RBuUjp7FBh0Rq34eQhMFL6xIfDcItujayDXD3Nxdos3rdLN_T9dfbx_JlneoCF0NaMgPUGMlK4CWtK04lkSUrSllxxRupDeFS0oYXpDaamKZUtDIFbmpa01zRBXo82cZjv_cQBtHFi6BtpYN-HwThlFWUckYj9eGPulcdNGLnbSf9jzhHj4T6RDim8WCEtoMcbO_GXK0gWIw1i6041izGmkcw1hy19J_2bH9Z9XxSQWzoYMGLoC04DY31oAfR9Pai_heGS5fR |
CitedBy_id | crossref_primary_10_1115_1_4042600 crossref_primary_10_1186_s13018_023_04424_x crossref_primary_10_3389_fbioe_2021_660013 crossref_primary_10_1016_j_clinbiomech_2020_105020 crossref_primary_10_1016_j_spinee_2019_07_012 crossref_primary_10_1016_j_actbio_2020_12_062 crossref_primary_10_3390_ma13194262 crossref_primary_10_1177_0954411920936047 crossref_primary_10_1002_jsp2_1214 crossref_primary_10_1007_s42558_019_0016_y crossref_primary_10_1016_j_jmbbm_2023_106147 crossref_primary_10_1007_s10856_019_6243_9 crossref_primary_10_1007_s10237_019_01176_8 crossref_primary_10_1039_D1BM01589C crossref_primary_10_1016_j_medengphy_2024_104158 crossref_primary_10_1098_rsos_170807 crossref_primary_10_1115_1_4049332 crossref_primary_10_1177_09544119241272915 crossref_primary_10_1002_jsp2_1110 crossref_primary_10_1177_0954411919827983 crossref_primary_10_1111_os_12847 crossref_primary_10_1016_j_jmbbm_2023_105808 crossref_primary_10_1242_jeb_229971 crossref_primary_10_1007_s10439_024_03576_z |
Cites_doi | 10.1007/s10237-004-0053-8 10.1007/s10237-010-0237-3 10.1093/ptj/60.6.765 10.1371/journal.pone.0145711 10.1097/00007632-200003150-00003 10.1097/00007632-199611150-00006 10.1016/j.bpj.2011.04.052 10.1016/j.jbiomech.2007.01.007 10.1097/00007632-199406000-00002 10.1016/0021-9290(74)90019-0 10.1002/mabi.200600063 10.1097/01.brs.0000253961.40910.c1 10.1111/j.1469-7580.2005.00467.x 10.1109/TBME.2011.2160637 10.1063/1.1712836 10.1007/BF00299447 10.1002/ar.1092200402 10.1080/10255840701552143 10.1097/BRS.0b013e3182463775 10.1016/j.bpj.2010.07.021 10.1093/comjnl/7.4.308 10.1016/j.jbiomech.2015.10.041 10.1016/j.jbiomech.2005.03.007 10.1016/j.jmbbm.2009.09.002 10.1097/BRS.0b013e318166e001 10.1115/1.2891196 10.1016/j.jmbbm.2016.09.003 10.1097/00007632-199005000-00011 10.1115/1.3138670 |
ContentType | Journal Article |
Copyright | 2016 The Authors Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2016 The Authors – notice: Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jmbbm.2016.10.012 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-0180 |
EndPage | 830 |
ExternalDocumentID | 27810728 10_1016_j_jmbbm_2016_10_012 S1751616116303654 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MR/K500793/1 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSM SST SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c404t-56fe3ffa65e8539783a1a5645a78b8dacf18aa3d8419fc1fd5b37f40d93932b3 |
IEDL.DBID | .~1 |
ISSN | 1751-6161 1878-0180 |
IngestDate | Fri Jul 11 13:34:44 EDT 2025 Wed Feb 19 02:42:08 EST 2025 Tue Jul 01 02:19:03 EDT 2025 Thu Apr 24 22:59:23 EDT 2025 Fri Feb 23 02:34:08 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Finite element modelling spine material properties Intervertebral disc Collagen fibre inverse methods |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c404t-56fe3ffa65e8539783a1a5645a78b8dacf18aa3d8419fc1fd5b37f40d93932b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1751616116303654 |
PMID | 27810728 |
PQID | 1836733863 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1836733863 pubmed_primary_27810728 crossref_citationtrail_10_1016_j_jmbbm_2016_10_012 crossref_primary_10_1016_j_jmbbm_2016_10_012 elsevier_sciencedirect_doi_10_1016_j_jmbbm_2016_10_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2017 2017-01-00 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of the mechanical behavior of biomedical materials |
PublicationTitleAlternate | J Mech Behav Biomed Mater |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ueno, Liu (bib30) 1987; 109 van der Rijt, van der Werf, Bennink, Dijkstra, Feijen (bib31) 2006; 6 Little, Adam, Evans, Pettet, Pearcy (bib14) 2007; 40 Bogduk (bib5) 2005 O’Connell, Vresilovic, Elliott (bib23) 2007; 32 Belytschko, Kulak, Schultz, Galante (bib4) 1974; 7 Little, Pearcy, Tevelen, Evans, Pettet, Adam (bib16) 2010; 3 Lu, Hutton, Gharpuray (bib17) 1996; 21 Skaggs, Weidenbaum, Iatridis, Ratcliffe, Mow (bib29) 1994; 19 Grigoriadis, Newell, Carpanen, Christou, Bull, Masouros (bib8) 2017; 65 Dutov, Antipova, Varma, Orgel, Schieber (bib6) 2016; 11 Humzah, Soames (bib10) 1988; 220 Natali, Meroi (bib20) 1990; 112 Nelder, Mead (bib21) 1965; 7 Pezowicz, Robertson, Broom (bib24) 2005; 207 Shen, Dodge, Kahn, Ballarini, Eppell (bib27) 2010; 99 Holzapfel, Schulze-Bauer, Feigl, Regitnig (bib9) 2005 Kemper, McNally, Duma (bib12) 2007; 43 Adams, Green (bib2) 1993; 2 Nguyen, Boyce (bib22) 2011; 10 Kiapour, Ambati, Hoy, Goel (bib13) 2012; 37 Erdemir, Viveiros (bib7) 2006; 39 Mooney (bib19) 1940; 11 Sadeghi Naini, Patel, Samani (bib26) 2011; 58 Yamada (bib32) 1970 Marchand, Ahmed (bib18) 1990; 15 Shen, Kahn, Ballarini, Eppell (bib28) 2011; 100 Adam, Rouch, Skalli (bib1) 2015; 48 Jensen (bib11) 1980; 60 Little, De Visser, Pearcy, Adam (bib15) 2008; 11 Beckstein, Sen, Schaer, Vresilovic, Elliott (bib3) 2008; 33 Race, Broom, Robertson (bib25) 2000; 25 Ueno (10.1016/j.jmbbm.2016.10.012_bib30) 1987; 109 Shen (10.1016/j.jmbbm.2016.10.012_bib28) 2011; 100 Adams (10.1016/j.jmbbm.2016.10.012_bib2) 1993; 2 Jensen (10.1016/j.jmbbm.2016.10.012_bib11) 1980; 60 Nguyen (10.1016/j.jmbbm.2016.10.012_bib22) 2011; 10 Skaggs (10.1016/j.jmbbm.2016.10.012_bib29) 1994; 19 Nelder (10.1016/j.jmbbm.2016.10.012_bib21) 1965; 7 Shen (10.1016/j.jmbbm.2016.10.012_bib27) 2010; 99 Sadeghi Naini (10.1016/j.jmbbm.2016.10.012_bib26) 2011; 58 Beckstein (10.1016/j.jmbbm.2016.10.012_bib3) 2008; 33 Adam (10.1016/j.jmbbm.2016.10.012_bib1) 2015; 48 Pezowicz (10.1016/j.jmbbm.2016.10.012_bib24) 2005; 207 Little (10.1016/j.jmbbm.2016.10.012_bib14) 2007; 40 Erdemir (10.1016/j.jmbbm.2016.10.012_bib7) 2006; 39 Little (10.1016/j.jmbbm.2016.10.012_bib15) 2008; 11 van der Rijt (10.1016/j.jmbbm.2016.10.012_bib31) 2006; 6 Race (10.1016/j.jmbbm.2016.10.012_bib25) 2000; 25 Yamada (10.1016/j.jmbbm.2016.10.012_bib32) 1970 Bogduk (10.1016/j.jmbbm.2016.10.012_bib5) 2005 Lu (10.1016/j.jmbbm.2016.10.012_bib17) 1996; 21 Marchand (10.1016/j.jmbbm.2016.10.012_bib18) 1990; 15 Dutov (10.1016/j.jmbbm.2016.10.012_bib6) 2016; 11 Kiapour (10.1016/j.jmbbm.2016.10.012_bib13) 2012; 37 O’Connell (10.1016/j.jmbbm.2016.10.012_bib23) 2007; 32 Belytschko (10.1016/j.jmbbm.2016.10.012_bib4) 1974; 7 Humzah (10.1016/j.jmbbm.2016.10.012_bib10) 1988; 220 Little (10.1016/j.jmbbm.2016.10.012_bib16) 2010; 3 Natali (10.1016/j.jmbbm.2016.10.012_bib20) 1990; 112 Mooney (10.1016/j.jmbbm.2016.10.012_bib19) 1940; 11 Grigoriadis (10.1016/j.jmbbm.2016.10.012_bib8) 2017; 65 Holzapfel (10.1016/j.jmbbm.2016.10.012_bib9) 2005 Kemper (10.1016/j.jmbbm.2016.10.012_bib12) 2007; 43 |
References_xml | – volume: 109 start-page: 200 year: 1987 end-page: 209 ident: bib30 article-title: A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion publication-title: J. Biomech. Eng. – volume: 207 start-page: 299 year: 2005 end-page: 312 ident: bib24 article-title: Intralamellar relationships within the collagenous architecture of the annulus fibrosus imaged in its fully hydrated state publication-title: J. Anat. – volume: 3 start-page: 146 year: 2010 end-page: 157 ident: bib16 article-title: The mechanical response of the ovine lumbar anulus fibrosus to uniaxial, biaxial and shear loads publication-title: J. Mech. Behav. Biomed. Mater. – volume: 6 start-page: 697 year: 2006 end-page: 702 ident: bib31 article-title: Micromechanical testing of individual collagen fibrils publication-title: Macromol. Biosci. – volume: 100 start-page: 3008 year: 2011 end-page: 3015 ident: bib28 article-title: Viscoelastic properties of isolated collagen fibrils publication-title: Biophys. J. – volume: 25 start-page: 662 year: 2000 end-page: 669 ident: bib25 article-title: Effect of loading rate and hydration on the mechanical properties of the disc publication-title: Spine – volume: 7 start-page: 277 year: 1974 end-page: 285 ident: bib4 article-title: Finite element stress analysis of an intervertebral disc publication-title: J. Biomech. – volume: 112 start-page: 358 year: 1990 end-page: 363 ident: bib20 article-title: Nonlinear analysis of intervertebral disk under dynamic load publication-title: J. Biomech. Eng. – volume: 48 start-page: 4303 year: 2015 end-page: 4308 ident: bib1 article-title: Inter-lamellar shear resistance confers compressive stiffness in the intervertebral disc: an image-based modelling study on the bovine caudal disc publication-title: J. Biomech. – volume: 33 start-page: E166 year: 2008 end-page: E173 ident: bib3 article-title: Comparison of animal discs used in disc research to human lumbar disc: axial compression mechanics and glycosaminoglycan content publication-title: Spine – volume: 99 start-page: 1986 year: 2010 end-page: 1995 ident: bib27 article-title: In vitro fracture testing of submicron diameter collagen fibril specimens publication-title: Biophys. J. – volume: 19 start-page: 1310 year: 1994 end-page: 1319 ident: bib29 article-title: Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus publication-title: Spine – volume: 39 start-page: 1279 year: 2006 end-page: 1289 ident: bib7 article-title: An inverse finite-element model of heel-pad indentation publication-title: J. Biomech. – volume: 60 start-page: 765 year: 1980 end-page: 773 ident: bib11 article-title: Biomechanics of the lumbar intervertebral disk: a review publication-title: Phys. Ther. – volume: 43 start-page: 176 year: 2007 end-page: 181 ident: bib12 article-title: The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs publication-title: Biomed. Sci. Instrum. – volume: 21 start-page: 2570 year: 1996 end-page: 2579 ident: bib17 article-title: Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model publication-title: Spine – volume: 11 start-page: 582 year: 1940 end-page: 592 ident: bib19 article-title: A theory of large elastic deformation publication-title: J. Appl. Phys. – volume: 11 start-page: 95 year: 2008 end-page: 103 ident: bib15 article-title: Are coupled rotations in the lumbar spine largely due to the osseo-ligamentous anatomy?—A modeling study publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 37 start-page: E581 year: 2012 end-page: E589 ident: bib13 article-title: Effect of graded facetectomy on biomechanics of dynesys dynamic stabilization system publication-title: Spine – year: 2005 ident: bib5 article-title: Clinical Anatomy of the Lumbar Spine and Sacrum – volume: 15 start-page: 402 year: 1990 end-page: 410 ident: bib18 article-title: Investigation of the laminate structure of lumbar disc anulus fibrosus publication-title: Spine – volume: 2 start-page: 203 year: 1993 end-page: 208 ident: bib2 article-title: Tensile properties of the annulus fibrosus. I. The contribution of fibre-matrix interactions to tensile stiffness and strength publication-title: Eur. Spine J. – volume: 40 start-page: 2744 year: 2007 end-page: 2751 ident: bib14 article-title: Nonlinear finite element analysis of anular lesions in the L4/5 intervertebral disc publication-title: J. Biomech. – volume: 11 start-page: e0145711 year: 2016 ident: bib6 article-title: Measurement of elastic modulus of collagen type I single fiber publication-title: PLoS One – start-page: 125 year: 2005 end-page: 140 ident: bib9 article-title: Single lamellar mechanics of the human lumbar anulus fibrosus publication-title: Biomech. Model. Mechanobiol. – volume: 220 start-page: 337 year: 1988 end-page: 356 ident: bib10 article-title: Human intervertebral disc: structure and function publication-title: Anat. Rec. – volume: 65 start-page: 398 year: 2017 end-page: 407 ident: bib8 article-title: Material properties of the heel fat pad across strain rates publication-title: J. Mech. Behav. Biomed. Mater. – volume: 7 start-page: 308 year: 1965 end-page: 313 ident: bib21 article-title: A simplex method for function minimization publication-title: Comput. J. – volume: 32 start-page: 328 year: 2007 end-page: 333 ident: bib23 article-title: Comparison of animals used in disc research to human lumbar disc geometry publication-title: Spine – volume: 58 start-page: 2852 year: 2011 end-page: 2859 ident: bib26 article-title: Measurement of lung hyperelastic properties using inverse finite element approach publication-title: IEEE Trans. Biomed. Eng. – volume: 10 start-page: 323 year: 2011 end-page: 337 ident: bib22 article-title: An inverse finite element method for determining the anisotropic properties of the cornea publication-title: Biomech. Model. Mechanobiol. – year: 1970 ident: bib32 article-title: Strength of Biological Materials – start-page: 125 issue: 3 year: 2005 ident: 10.1016/j.jmbbm.2016.10.012_bib9 article-title: Single lamellar mechanics of the human lumbar anulus fibrosus publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-004-0053-8 – volume: 10 start-page: 323 year: 2011 ident: 10.1016/j.jmbbm.2016.10.012_bib22 article-title: An inverse finite element method for determining the anisotropic properties of the cornea publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-010-0237-3 – volume: 60 start-page: 765 year: 1980 ident: 10.1016/j.jmbbm.2016.10.012_bib11 article-title: Biomechanics of the lumbar intervertebral disk: a review publication-title: Phys. Ther. doi: 10.1093/ptj/60.6.765 – volume: 11 start-page: e0145711 year: 2016 ident: 10.1016/j.jmbbm.2016.10.012_bib6 article-title: Measurement of elastic modulus of collagen type I single fiber publication-title: PLoS One doi: 10.1371/journal.pone.0145711 – volume: 25 start-page: 662 year: 2000 ident: 10.1016/j.jmbbm.2016.10.012_bib25 article-title: Effect of loading rate and hydration on the mechanical properties of the disc publication-title: Spine doi: 10.1097/00007632-200003150-00003 – volume: 21 start-page: 2570 year: 1996 ident: 10.1016/j.jmbbm.2016.10.012_bib17 article-title: Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model publication-title: Spine doi: 10.1097/00007632-199611150-00006 – volume: 43 start-page: 176 year: 2007 ident: 10.1016/j.jmbbm.2016.10.012_bib12 article-title: The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs publication-title: Biomed. Sci. Instrum. – volume: 100 start-page: 3008 year: 2011 ident: 10.1016/j.jmbbm.2016.10.012_bib28 article-title: Viscoelastic properties of isolated collagen fibrils publication-title: Biophys. J. doi: 10.1016/j.bpj.2011.04.052 – volume: 40 start-page: 2744 year: 2007 ident: 10.1016/j.jmbbm.2016.10.012_bib14 article-title: Nonlinear finite element analysis of anular lesions in the L4/5 intervertebral disc publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2007.01.007 – volume: 19 start-page: 1310 year: 1994 ident: 10.1016/j.jmbbm.2016.10.012_bib29 article-title: Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus publication-title: Spine doi: 10.1097/00007632-199406000-00002 – volume: 7 start-page: 277 year: 1974 ident: 10.1016/j.jmbbm.2016.10.012_bib4 article-title: Finite element stress analysis of an intervertebral disc publication-title: J. Biomech. doi: 10.1016/0021-9290(74)90019-0 – year: 2005 ident: 10.1016/j.jmbbm.2016.10.012_bib5 – volume: 6 start-page: 697 year: 2006 ident: 10.1016/j.jmbbm.2016.10.012_bib31 article-title: Micromechanical testing of individual collagen fibrils publication-title: Macromol. Biosci. doi: 10.1002/mabi.200600063 – volume: 32 start-page: 328 year: 2007 ident: 10.1016/j.jmbbm.2016.10.012_bib23 article-title: Comparison of animals used in disc research to human lumbar disc geometry publication-title: Spine doi: 10.1097/01.brs.0000253961.40910.c1 – volume: 207 start-page: 299 year: 2005 ident: 10.1016/j.jmbbm.2016.10.012_bib24 article-title: Intralamellar relationships within the collagenous architecture of the annulus fibrosus imaged in its fully hydrated state publication-title: J. Anat. doi: 10.1111/j.1469-7580.2005.00467.x – volume: 58 start-page: 2852 year: 2011 ident: 10.1016/j.jmbbm.2016.10.012_bib26 article-title: Measurement of lung hyperelastic properties using inverse finite element approach publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2160637 – volume: 11 start-page: 582 year: 1940 ident: 10.1016/j.jmbbm.2016.10.012_bib19 article-title: A theory of large elastic deformation publication-title: J. Appl. Phys. doi: 10.1063/1.1712836 – volume: 2 start-page: 203 year: 1993 ident: 10.1016/j.jmbbm.2016.10.012_bib2 article-title: Tensile properties of the annulus fibrosus. I. The contribution of fibre-matrix interactions to tensile stiffness and strength publication-title: Eur. Spine J. doi: 10.1007/BF00299447 – volume: 220 start-page: 337 year: 1988 ident: 10.1016/j.jmbbm.2016.10.012_bib10 article-title: Human intervertebral disc: structure and function publication-title: Anat. Rec. doi: 10.1002/ar.1092200402 – volume: 11 start-page: 95 year: 2008 ident: 10.1016/j.jmbbm.2016.10.012_bib15 article-title: Are coupled rotations in the lumbar spine largely due to the osseo-ligamentous anatomy?—A modeling study publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255840701552143 – volume: 37 start-page: E581 year: 2012 ident: 10.1016/j.jmbbm.2016.10.012_bib13 article-title: Effect of graded facetectomy on biomechanics of dynesys dynamic stabilization system publication-title: Spine doi: 10.1097/BRS.0b013e3182463775 – volume: 99 start-page: 1986 year: 2010 ident: 10.1016/j.jmbbm.2016.10.012_bib27 article-title: In vitro fracture testing of submicron diameter collagen fibril specimens publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.07.021 – volume: 7 start-page: 308 year: 1965 ident: 10.1016/j.jmbbm.2016.10.012_bib21 article-title: A simplex method for function minimization publication-title: Comput. J. doi: 10.1093/comjnl/7.4.308 – volume: 48 start-page: 4303 year: 2015 ident: 10.1016/j.jmbbm.2016.10.012_bib1 article-title: Inter-lamellar shear resistance confers compressive stiffness in the intervertebral disc: an image-based modelling study on the bovine caudal disc publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.10.041 – volume: 39 start-page: 1279 year: 2006 ident: 10.1016/j.jmbbm.2016.10.012_bib7 article-title: An inverse finite-element model of heel-pad indentation publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.03.007 – volume: 3 start-page: 146 year: 2010 ident: 10.1016/j.jmbbm.2016.10.012_bib16 article-title: The mechanical response of the ovine lumbar anulus fibrosus to uniaxial, biaxial and shear loads publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2009.09.002 – year: 1970 ident: 10.1016/j.jmbbm.2016.10.012_bib32 – volume: 33 start-page: E166 year: 2008 ident: 10.1016/j.jmbbm.2016.10.012_bib3 article-title: Comparison of animal discs used in disc research to human lumbar disc: axial compression mechanics and glycosaminoglycan content publication-title: Spine doi: 10.1097/BRS.0b013e318166e001 – volume: 112 start-page: 358 year: 1990 ident: 10.1016/j.jmbbm.2016.10.012_bib20 article-title: Nonlinear analysis of intervertebral disk under dynamic load publication-title: J. Biomech. Eng. doi: 10.1115/1.2891196 – volume: 65 start-page: 398 year: 2017 ident: 10.1016/j.jmbbm.2016.10.012_bib8 article-title: Material properties of the heel fat pad across strain rates publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2016.09.003 – volume: 15 start-page: 402 year: 1990 ident: 10.1016/j.jmbbm.2016.10.012_bib18 article-title: Investigation of the laminate structure of lumbar disc anulus fibrosus publication-title: Spine doi: 10.1097/00007632-199005000-00011 – volume: 109 start-page: 200 year: 1987 ident: 10.1016/j.jmbbm.2016.10.012_bib30 article-title: A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion publication-title: J. Biomech. Eng. doi: 10.1115/1.3138670 |
SSID | ssj0060088 |
Score | 2.2517493 |
Snippet | The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent vertebrae and allowing the vertebral column... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 824 |
SubjectTerms | Algorithms Animals Biomechanical Phenomena Cattle Collagen fibre Elastic Modulus Finite Element Analysis Finite element modelling Intervertebral disc Intervertebral Disc - physiology inverse methods Lumbar Vertebrae - physiology material properties spine Stress, Mechanical |
Title | Material properties of bovine intervertebral discs across strain rates |
URI | https://dx.doi.org/10.1016/j.jmbbm.2016.10.012 https://www.ncbi.nlm.nih.gov/pubmed/27810728 https://www.proquest.com/docview/1836733863 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG-IXvRg_BY_SE08OmBr140jIRLUwEVMuC3t2iYQBMLG1b_d97qN6AEObremTV9eX99XX38l5EljbAyfZ3WQejzU0pMpbDzThl-wtlYuoT8cicEnf5uEkxrpVXdhsKyy1P2FTnfaumxpldxsrabT1gcYPnBXYCaBajhETFDOI5Ty5ve2zAPsuXt7Ejt72LtCHnI1XrMvpfA6ui-aWOLlB7us0y7v01mh_ik5Kd1H2i0oPCM1szgnx79ABS9IfyhzJ1Z0hYn2NSKm0qWlCnMHhk6LIsd1jifGc4q3cjMqHTk0cw9GUESPyC7JuP8y7g288rUEL-VtnnuhsIZZK0VowARjRkf6ErFiZBSrWMvU-rGUTMfc79jUtzpULLK8rTsMfDjFrsjBYrkwN4RypblhDLgKwZI1AQxLERdL-4H1ZSTqJKiYlKQlkjjSN0-qkrFZ4jibIGexEThbJ8_bQasCSGN_d1FxP_kjDwmo-v0DH6u1SmCn4PGHXJjlJktAeYkIInLB6uS6WMQtJUEUQxwcxLf_nfaOHAVo8F1y5p4c5OuNeQB3JVcNJ48Ncth9fR-MfgANFOkC |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5Be1g4IJblUdhdvNIeCW1ixwlHhKjKlvayXYmbZce21Kq0VZv-f2acBMEBDpvcLI88Gtvz8vgzwG9LsTF-kbdJEYnU6kgXuPFcD3_Je9aEhP5oLAf_xJ-n9GkH7pq7MFRWWev-SqcHbV23dGtpdlfTafcvGj50V3AkSWo4FbvQJnSqtAXt24fhYNwoZDTp4flJ6h8RQQM-FMq8Zs_G0I30WF5TlVecfGSgPnJAgyHqH8JB7UGy24rJr7DjFkew_wZX8Bv0R7oMK4utKNe-JtBUtvTMUPrAsWlV57gu6dB4zuhi7obpwA7bhDcjGAFIbI5h0r-f3A2i-sGEqBA9UUap9I57r2Xq0ApTUkfHmuBidJab3OrCx7nW3OYivvFF7G1qeOZFz95wdOMMP4HWYrlwZ8CEscJxjoLFeMm7BMkKgsayceJjnckOJI2QVFGDiRN_c9VUjc1UkKwiyVIjSrYDV69EqwpL4_PuspG-erckFGr7zwl_NXOlcLPQCYheuOV2o1B_yQyDcsk7cFpN4isnSZZjKJzk5_877CV8GUxGj-rxYTy8gL2E7H_I1XyHVrneuh_ovZTmZ706XwAQq-uz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Material+properties+of+bovine+intervertebral+discs+across+strain+rates&rft.jtitle=Journal+of+the+mechanical+behavior+of+biomedical+materials&rft.au=Newell%2C+Nicolas&rft.au=Grigoriadis%2C+Grigorios&rft.au=Christou%2C+Alexandros&rft.au=Carpanen%2C+Diagarajen&rft.date=2017-01-01&rft.pub=Elsevier+Ltd&rft.issn=1751-6161&rft.eissn=1878-0180&rft.volume=65&rft.spage=824&rft.epage=830&rft_id=info:doi/10.1016%2Fj.jmbbm.2016.10.012&rft.externalDocID=S1751616116303654 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-6161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-6161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-6161&client=summon |