Material properties of bovine intervertebral discs across strain rates

The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent vertebrae and allowing the vertebral column to bend and twist. To study the mechanical behaviour of individual components of the IVD, it is common for specimens to be dissected away from...

Full description

Saved in:
Bibliographic Details
Published inJournal of the mechanical behavior of biomedical materials Vol. 65; pp. 824 - 830
Main Authors Newell, Nicolas, Grigoriadis, Grigorios, Christou, Alexandros, Carpanen, Diagarajen, Masouros, Spyros D.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent vertebrae and allowing the vertebral column to bend and twist. To study the mechanical behaviour of individual components of the IVD, it is common for specimens to be dissected away from their surrounding tissues for mechanical testing. However, disrupting the continuity of the IVD to obtain material properties of each component separately may result in erroneous values. In this study, an inverse finite element (FE) modelling optimisation algorithm has been used to obtain material properties of the IVD across strain rates, therefore bypassing the need to harvest individual samples of each component. Uniaxial compression was applied to ten fresh-frozen bovine intervertebral discs at strain rates of 10-3–1/s. The experimental data were fed into the inverse FE optimisation algorithm and each experiment was simulated using the subject specific FE model of the respective specimen. A sensitivity analysis revealed that the IVD's response was most dependent upon the Young's modulus (YM) of the fibre bundles and therefore this was chosen to be the parameter to optimise. Based on the obtained YM values for each test corresponding to a different strain rate (ε̇), the following relationship was derived:YM=35.5lnε̇+527.5. These properties can be used in finite element models of the IVD that aim to simulate spinal biomechanics across loading rates.
AbstractList The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent vertebrae and allowing the vertebral column to bend and twist. To study the mechanical behaviour of individual components of the IVD, it is common for specimens to be dissected away from their surrounding tissues for mechanical testing. However, disrupting the continuity of the IVD to obtain material properties of each component separately may result in erroneous values. In this study, an inverse finite element (FE) modelling optimisation algorithm has been used to obtain material properties of the IVD across strain rates, therefore bypassing the need to harvest individual samples of each component. Uniaxial compression was applied to ten fresh-frozen bovine intervertebral discs at strain rates of 10-3–1/s. The experimental data were fed into the inverse FE optimisation algorithm and each experiment was simulated using the subject specific FE model of the respective specimen. A sensitivity analysis revealed that the IVD's response was most dependent upon the Young's modulus (YM) of the fibre bundles and therefore this was chosen to be the parameter to optimise. Based on the obtained YM values for each test corresponding to a different strain rate (ε̇), the following relationship was derived:YM=35.5lnε̇+527.5. These properties can be used in finite element models of the IVD that aim to simulate spinal biomechanics across loading rates.
The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent vertebrae and allowing the vertebral column to bend and twist. To study the mechanical behaviour of individual components of the IVD, it is common for specimens to be dissected away from their surrounding tissues for mechanical testing. However, disrupting the continuity of the IVD to obtain material properties of each component separately may result in erroneous values. In this study, an inverse finite element (FE) modelling optimisation algorithm has been used to obtain material properties of the IVD across strain rates, therefore bypassing the need to harvest individual samples of each component. Uniaxial compression was applied to ten fresh-frozen bovine intervertebral discs at strain rates of 10-3-1/s. The experimental data were fed into the inverse FE optimisation algorithm and each experiment was simulated using the subject specific FE model of the respective specimen. A sensitivity analysis revealed that the IVD's response was most dependent upon the Young's modulus (YM) of the fibre bundles and therefore this was chosen to be the parameter to optimise. Based on the obtained YM values for each test corresponding to a different strain rate (ε̇), the following relationship was derived:YM=35.5lnε̇+527.5. These properties can be used in finite element models of the IVD that aim to simulate spinal biomechanics across loading rates.The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent vertebrae and allowing the vertebral column to bend and twist. To study the mechanical behaviour of individual components of the IVD, it is common for specimens to be dissected away from their surrounding tissues for mechanical testing. However, disrupting the continuity of the IVD to obtain material properties of each component separately may result in erroneous values. In this study, an inverse finite element (FE) modelling optimisation algorithm has been used to obtain material properties of the IVD across strain rates, therefore bypassing the need to harvest individual samples of each component. Uniaxial compression was applied to ten fresh-frozen bovine intervertebral discs at strain rates of 10-3-1/s. The experimental data were fed into the inverse FE optimisation algorithm and each experiment was simulated using the subject specific FE model of the respective specimen. A sensitivity analysis revealed that the IVD's response was most dependent upon the Young's modulus (YM) of the fibre bundles and therefore this was chosen to be the parameter to optimise. Based on the obtained YM values for each test corresponding to a different strain rate (ε̇), the following relationship was derived:YM=35.5lnε̇+527.5. These properties can be used in finite element models of the IVD that aim to simulate spinal biomechanics across loading rates.
The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent vertebrae and allowing the vertebral column to bend and twist. To study the mechanical behaviour of individual components of the IVD, it is common for specimens to be dissected away from their surrounding tissues for mechanical testing. However, disrupting the continuity of the IVD to obtain material properties of each component separately may result in erroneous values. In this study, an inverse finite element (FE) modelling optimisation algorithm has been used to obtain material properties of the IVD across strain rates, therefore bypassing the need to harvest individual samples of each component. Uniaxial compression was applied to ten fresh-frozen bovine intervertebral discs at strain rates of 10 -1/s. The experimental data were fed into the inverse FE optimisation algorithm and each experiment was simulated using the subject specific FE model of the respective specimen. A sensitivity analysis revealed that the IVD's response was most dependent upon the Young's modulus (YM) of the fibre bundles and therefore this was chosen to be the parameter to optimise. Based on the obtained YM values for each test corresponding to a different strain rate (ε̇), the following relationship was derived:YM=35.5lnε̇+527.5. These properties can be used in finite element models of the IVD that aim to simulate spinal biomechanics across loading rates.
Author Carpanen, Diagarajen
Christou, Alexandros
Masouros, Spyros D.
Newell, Nicolas
Grigoriadis, Grigorios
Author_xml – sequence: 1
  givenname: Nicolas
  surname: Newell
  fullname: Newell, Nicolas
  email: n.newell09@imperial.ac.uk
– sequence: 2
  givenname: Grigorios
  surname: Grigoriadis
  fullname: Grigoriadis, Grigorios
– sequence: 3
  givenname: Alexandros
  surname: Christou
  fullname: Christou, Alexandros
– sequence: 4
  givenname: Diagarajen
  surname: Carpanen
  fullname: Carpanen, Diagarajen
– sequence: 5
  givenname: Spyros D.
  surname: Masouros
  fullname: Masouros, Spyros D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27810728$$D View this record in MEDLINE/PubMed
BookMark eNp9UD1PwzAUtFAR_YBfgIQysiTYceI4AwOqKCAVsXS3bOdZcpU4xU4r8e9xWrowdHp-57vTu5ujiesdIHRPcEYwYU_bbNsp1WV5XCKSYZJfoRnhFU8x4XgS31VJUkYYmaJ5CFuMGcac36BpXnGCq5zP0OpTDuCtbJOd73fgBwsh6U2i-oN1kFgXfw8RBuUjp7FBh0Rq34eQhMFL6xIfDcItujayDXD3Nxdos3rdLN_T9dfbx_JlneoCF0NaMgPUGMlK4CWtK04lkSUrSllxxRupDeFS0oYXpDaamKZUtDIFbmpa01zRBXo82cZjv_cQBtHFi6BtpYN-HwThlFWUckYj9eGPulcdNGLnbSf9jzhHj4T6RDim8WCEtoMcbO_GXK0gWIw1i6041izGmkcw1hy19J_2bH9Z9XxSQWzoYMGLoC04DY31oAfR9Pai_heGS5fR
CitedBy_id crossref_primary_10_1115_1_4042600
crossref_primary_10_1186_s13018_023_04424_x
crossref_primary_10_3389_fbioe_2021_660013
crossref_primary_10_1016_j_clinbiomech_2020_105020
crossref_primary_10_1016_j_spinee_2019_07_012
crossref_primary_10_1016_j_actbio_2020_12_062
crossref_primary_10_3390_ma13194262
crossref_primary_10_1177_0954411920936047
crossref_primary_10_1002_jsp2_1214
crossref_primary_10_1007_s42558_019_0016_y
crossref_primary_10_1016_j_jmbbm_2023_106147
crossref_primary_10_1007_s10856_019_6243_9
crossref_primary_10_1007_s10237_019_01176_8
crossref_primary_10_1039_D1BM01589C
crossref_primary_10_1016_j_medengphy_2024_104158
crossref_primary_10_1098_rsos_170807
crossref_primary_10_1115_1_4049332
crossref_primary_10_1177_09544119241272915
crossref_primary_10_1002_jsp2_1110
crossref_primary_10_1177_0954411919827983
crossref_primary_10_1111_os_12847
crossref_primary_10_1016_j_jmbbm_2023_105808
crossref_primary_10_1242_jeb_229971
crossref_primary_10_1007_s10439_024_03576_z
Cites_doi 10.1007/s10237-004-0053-8
10.1007/s10237-010-0237-3
10.1093/ptj/60.6.765
10.1371/journal.pone.0145711
10.1097/00007632-200003150-00003
10.1097/00007632-199611150-00006
10.1016/j.bpj.2011.04.052
10.1016/j.jbiomech.2007.01.007
10.1097/00007632-199406000-00002
10.1016/0021-9290(74)90019-0
10.1002/mabi.200600063
10.1097/01.brs.0000253961.40910.c1
10.1111/j.1469-7580.2005.00467.x
10.1109/TBME.2011.2160637
10.1063/1.1712836
10.1007/BF00299447
10.1002/ar.1092200402
10.1080/10255840701552143
10.1097/BRS.0b013e3182463775
10.1016/j.bpj.2010.07.021
10.1093/comjnl/7.4.308
10.1016/j.jbiomech.2015.10.041
10.1016/j.jbiomech.2005.03.007
10.1016/j.jmbbm.2009.09.002
10.1097/BRS.0b013e318166e001
10.1115/1.2891196
10.1016/j.jmbbm.2016.09.003
10.1097/00007632-199005000-00011
10.1115/1.3138670
ContentType Journal Article
Copyright 2016 The Authors
Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2016 The Authors
– notice: Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jmbbm.2016.10.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-0180
EndPage 830
ExternalDocumentID 27810728
10_1016_j_jmbbm_2016_10_012
S1751616116303654
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/K500793/1
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c404t-56fe3ffa65e8539783a1a5645a78b8dacf18aa3d8419fc1fd5b37f40d93932b3
IEDL.DBID .~1
ISSN 1751-6161
1878-0180
IngestDate Fri Jul 11 13:34:44 EDT 2025
Wed Feb 19 02:42:08 EST 2025
Tue Jul 01 02:19:03 EDT 2025
Thu Apr 24 22:59:23 EDT 2025
Fri Feb 23 02:34:08 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Finite element modelling
spine
material properties
Intervertebral disc
Collagen fibre
inverse methods
Language English
License This is an open access article under the CC BY license.
Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-56fe3ffa65e8539783a1a5645a78b8dacf18aa3d8419fc1fd5b37f40d93932b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1751616116303654
PMID 27810728
PQID 1836733863
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1836733863
pubmed_primary_27810728
crossref_citationtrail_10_1016_j_jmbbm_2016_10_012
crossref_primary_10_1016_j_jmbbm_2016_10_012
elsevier_sciencedirect_doi_10_1016_j_jmbbm_2016_10_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2017
2017-01-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of the mechanical behavior of biomedical materials
PublicationTitleAlternate J Mech Behav Biomed Mater
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ueno, Liu (bib30) 1987; 109
van der Rijt, van der Werf, Bennink, Dijkstra, Feijen (bib31) 2006; 6
Little, Adam, Evans, Pettet, Pearcy (bib14) 2007; 40
Bogduk (bib5) 2005
O’Connell, Vresilovic, Elliott (bib23) 2007; 32
Belytschko, Kulak, Schultz, Galante (bib4) 1974; 7
Little, Pearcy, Tevelen, Evans, Pettet, Adam (bib16) 2010; 3
Lu, Hutton, Gharpuray (bib17) 1996; 21
Skaggs, Weidenbaum, Iatridis, Ratcliffe, Mow (bib29) 1994; 19
Grigoriadis, Newell, Carpanen, Christou, Bull, Masouros (bib8) 2017; 65
Dutov, Antipova, Varma, Orgel, Schieber (bib6) 2016; 11
Humzah, Soames (bib10) 1988; 220
Natali, Meroi (bib20) 1990; 112
Nelder, Mead (bib21) 1965; 7
Pezowicz, Robertson, Broom (bib24) 2005; 207
Shen, Dodge, Kahn, Ballarini, Eppell (bib27) 2010; 99
Holzapfel, Schulze-Bauer, Feigl, Regitnig (bib9) 2005
Kemper, McNally, Duma (bib12) 2007; 43
Adams, Green (bib2) 1993; 2
Nguyen, Boyce (bib22) 2011; 10
Kiapour, Ambati, Hoy, Goel (bib13) 2012; 37
Erdemir, Viveiros (bib7) 2006; 39
Mooney (bib19) 1940; 11
Sadeghi Naini, Patel, Samani (bib26) 2011; 58
Yamada (bib32) 1970
Marchand, Ahmed (bib18) 1990; 15
Shen, Kahn, Ballarini, Eppell (bib28) 2011; 100
Adam, Rouch, Skalli (bib1) 2015; 48
Jensen (bib11) 1980; 60
Little, De Visser, Pearcy, Adam (bib15) 2008; 11
Beckstein, Sen, Schaer, Vresilovic, Elliott (bib3) 2008; 33
Race, Broom, Robertson (bib25) 2000; 25
Ueno (10.1016/j.jmbbm.2016.10.012_bib30) 1987; 109
Shen (10.1016/j.jmbbm.2016.10.012_bib28) 2011; 100
Adams (10.1016/j.jmbbm.2016.10.012_bib2) 1993; 2
Jensen (10.1016/j.jmbbm.2016.10.012_bib11) 1980; 60
Nguyen (10.1016/j.jmbbm.2016.10.012_bib22) 2011; 10
Skaggs (10.1016/j.jmbbm.2016.10.012_bib29) 1994; 19
Nelder (10.1016/j.jmbbm.2016.10.012_bib21) 1965; 7
Shen (10.1016/j.jmbbm.2016.10.012_bib27) 2010; 99
Sadeghi Naini (10.1016/j.jmbbm.2016.10.012_bib26) 2011; 58
Beckstein (10.1016/j.jmbbm.2016.10.012_bib3) 2008; 33
Adam (10.1016/j.jmbbm.2016.10.012_bib1) 2015; 48
Pezowicz (10.1016/j.jmbbm.2016.10.012_bib24) 2005; 207
Little (10.1016/j.jmbbm.2016.10.012_bib14) 2007; 40
Erdemir (10.1016/j.jmbbm.2016.10.012_bib7) 2006; 39
Little (10.1016/j.jmbbm.2016.10.012_bib15) 2008; 11
van der Rijt (10.1016/j.jmbbm.2016.10.012_bib31) 2006; 6
Race (10.1016/j.jmbbm.2016.10.012_bib25) 2000; 25
Yamada (10.1016/j.jmbbm.2016.10.012_bib32) 1970
Bogduk (10.1016/j.jmbbm.2016.10.012_bib5) 2005
Lu (10.1016/j.jmbbm.2016.10.012_bib17) 1996; 21
Marchand (10.1016/j.jmbbm.2016.10.012_bib18) 1990; 15
Dutov (10.1016/j.jmbbm.2016.10.012_bib6) 2016; 11
Kiapour (10.1016/j.jmbbm.2016.10.012_bib13) 2012; 37
O’Connell (10.1016/j.jmbbm.2016.10.012_bib23) 2007; 32
Belytschko (10.1016/j.jmbbm.2016.10.012_bib4) 1974; 7
Humzah (10.1016/j.jmbbm.2016.10.012_bib10) 1988; 220
Little (10.1016/j.jmbbm.2016.10.012_bib16) 2010; 3
Natali (10.1016/j.jmbbm.2016.10.012_bib20) 1990; 112
Mooney (10.1016/j.jmbbm.2016.10.012_bib19) 1940; 11
Grigoriadis (10.1016/j.jmbbm.2016.10.012_bib8) 2017; 65
Holzapfel (10.1016/j.jmbbm.2016.10.012_bib9) 2005
Kemper (10.1016/j.jmbbm.2016.10.012_bib12) 2007; 43
References_xml – volume: 109
  start-page: 200
  year: 1987
  end-page: 209
  ident: bib30
  article-title: A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion
  publication-title: J. Biomech. Eng.
– volume: 207
  start-page: 299
  year: 2005
  end-page: 312
  ident: bib24
  article-title: Intralamellar relationships within the collagenous architecture of the annulus fibrosus imaged in its fully hydrated state
  publication-title: J. Anat.
– volume: 3
  start-page: 146
  year: 2010
  end-page: 157
  ident: bib16
  article-title: The mechanical response of the ovine lumbar anulus fibrosus to uniaxial, biaxial and shear loads
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 6
  start-page: 697
  year: 2006
  end-page: 702
  ident: bib31
  article-title: Micromechanical testing of individual collagen fibrils
  publication-title: Macromol. Biosci.
– volume: 100
  start-page: 3008
  year: 2011
  end-page: 3015
  ident: bib28
  article-title: Viscoelastic properties of isolated collagen fibrils
  publication-title: Biophys. J.
– volume: 25
  start-page: 662
  year: 2000
  end-page: 669
  ident: bib25
  article-title: Effect of loading rate and hydration on the mechanical properties of the disc
  publication-title: Spine
– volume: 7
  start-page: 277
  year: 1974
  end-page: 285
  ident: bib4
  article-title: Finite element stress analysis of an intervertebral disc
  publication-title: J. Biomech.
– volume: 112
  start-page: 358
  year: 1990
  end-page: 363
  ident: bib20
  article-title: Nonlinear analysis of intervertebral disk under dynamic load
  publication-title: J. Biomech. Eng.
– volume: 48
  start-page: 4303
  year: 2015
  end-page: 4308
  ident: bib1
  article-title: Inter-lamellar shear resistance confers compressive stiffness in the intervertebral disc: an image-based modelling study on the bovine caudal disc
  publication-title: J. Biomech.
– volume: 33
  start-page: E166
  year: 2008
  end-page: E173
  ident: bib3
  article-title: Comparison of animal discs used in disc research to human lumbar disc: axial compression mechanics and glycosaminoglycan content
  publication-title: Spine
– volume: 99
  start-page: 1986
  year: 2010
  end-page: 1995
  ident: bib27
  article-title: In vitro fracture testing of submicron diameter collagen fibril specimens
  publication-title: Biophys. J.
– volume: 19
  start-page: 1310
  year: 1994
  end-page: 1319
  ident: bib29
  article-title: Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus
  publication-title: Spine
– volume: 39
  start-page: 1279
  year: 2006
  end-page: 1289
  ident: bib7
  article-title: An inverse finite-element model of heel-pad indentation
  publication-title: J. Biomech.
– volume: 60
  start-page: 765
  year: 1980
  end-page: 773
  ident: bib11
  article-title: Biomechanics of the lumbar intervertebral disk: a review
  publication-title: Phys. Ther.
– volume: 43
  start-page: 176
  year: 2007
  end-page: 181
  ident: bib12
  article-title: The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs
  publication-title: Biomed. Sci. Instrum.
– volume: 21
  start-page: 2570
  year: 1996
  end-page: 2579
  ident: bib17
  article-title: Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model
  publication-title: Spine
– volume: 11
  start-page: 582
  year: 1940
  end-page: 592
  ident: bib19
  article-title: A theory of large elastic deformation
  publication-title: J. Appl. Phys.
– volume: 11
  start-page: 95
  year: 2008
  end-page: 103
  ident: bib15
  article-title: Are coupled rotations in the lumbar spine largely due to the osseo-ligamentous anatomy?—A modeling study
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 37
  start-page: E581
  year: 2012
  end-page: E589
  ident: bib13
  article-title: Effect of graded facetectomy on biomechanics of dynesys dynamic stabilization system
  publication-title: Spine
– year: 2005
  ident: bib5
  article-title: Clinical Anatomy of the Lumbar Spine and Sacrum
– volume: 15
  start-page: 402
  year: 1990
  end-page: 410
  ident: bib18
  article-title: Investigation of the laminate structure of lumbar disc anulus fibrosus
  publication-title: Spine
– volume: 2
  start-page: 203
  year: 1993
  end-page: 208
  ident: bib2
  article-title: Tensile properties of the annulus fibrosus. I. The contribution of fibre-matrix interactions to tensile stiffness and strength
  publication-title: Eur. Spine J.
– volume: 40
  start-page: 2744
  year: 2007
  end-page: 2751
  ident: bib14
  article-title: Nonlinear finite element analysis of anular lesions in the L4/5 intervertebral disc
  publication-title: J. Biomech.
– volume: 11
  start-page: e0145711
  year: 2016
  ident: bib6
  article-title: Measurement of elastic modulus of collagen type I single fiber
  publication-title: PLoS One
– start-page: 125
  year: 2005
  end-page: 140
  ident: bib9
  article-title: Single lamellar mechanics of the human lumbar anulus fibrosus
  publication-title: Biomech. Model. Mechanobiol.
– volume: 220
  start-page: 337
  year: 1988
  end-page: 356
  ident: bib10
  article-title: Human intervertebral disc: structure and function
  publication-title: Anat. Rec.
– volume: 65
  start-page: 398
  year: 2017
  end-page: 407
  ident: bib8
  article-title: Material properties of the heel fat pad across strain rates
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 7
  start-page: 308
  year: 1965
  end-page: 313
  ident: bib21
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
– volume: 32
  start-page: 328
  year: 2007
  end-page: 333
  ident: bib23
  article-title: Comparison of animals used in disc research to human lumbar disc geometry
  publication-title: Spine
– volume: 58
  start-page: 2852
  year: 2011
  end-page: 2859
  ident: bib26
  article-title: Measurement of lung hyperelastic properties using inverse finite element approach
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 10
  start-page: 323
  year: 2011
  end-page: 337
  ident: bib22
  article-title: An inverse finite element method for determining the anisotropic properties of the cornea
  publication-title: Biomech. Model. Mechanobiol.
– year: 1970
  ident: bib32
  article-title: Strength of Biological Materials
– start-page: 125
  issue: 3
  year: 2005
  ident: 10.1016/j.jmbbm.2016.10.012_bib9
  article-title: Single lamellar mechanics of the human lumbar anulus fibrosus
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-004-0053-8
– volume: 10
  start-page: 323
  year: 2011
  ident: 10.1016/j.jmbbm.2016.10.012_bib22
  article-title: An inverse finite element method for determining the anisotropic properties of the cornea
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-010-0237-3
– volume: 60
  start-page: 765
  year: 1980
  ident: 10.1016/j.jmbbm.2016.10.012_bib11
  article-title: Biomechanics of the lumbar intervertebral disk: a review
  publication-title: Phys. Ther.
  doi: 10.1093/ptj/60.6.765
– volume: 11
  start-page: e0145711
  year: 2016
  ident: 10.1016/j.jmbbm.2016.10.012_bib6
  article-title: Measurement of elastic modulus of collagen type I single fiber
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0145711
– volume: 25
  start-page: 662
  year: 2000
  ident: 10.1016/j.jmbbm.2016.10.012_bib25
  article-title: Effect of loading rate and hydration on the mechanical properties of the disc
  publication-title: Spine
  doi: 10.1097/00007632-200003150-00003
– volume: 21
  start-page: 2570
  year: 1996
  ident: 10.1016/j.jmbbm.2016.10.012_bib17
  article-title: Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model
  publication-title: Spine
  doi: 10.1097/00007632-199611150-00006
– volume: 43
  start-page: 176
  year: 2007
  ident: 10.1016/j.jmbbm.2016.10.012_bib12
  article-title: The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs
  publication-title: Biomed. Sci. Instrum.
– volume: 100
  start-page: 3008
  year: 2011
  ident: 10.1016/j.jmbbm.2016.10.012_bib28
  article-title: Viscoelastic properties of isolated collagen fibrils
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2011.04.052
– volume: 40
  start-page: 2744
  year: 2007
  ident: 10.1016/j.jmbbm.2016.10.012_bib14
  article-title: Nonlinear finite element analysis of anular lesions in the L4/5 intervertebral disc
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2007.01.007
– volume: 19
  start-page: 1310
  year: 1994
  ident: 10.1016/j.jmbbm.2016.10.012_bib29
  article-title: Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus
  publication-title: Spine
  doi: 10.1097/00007632-199406000-00002
– volume: 7
  start-page: 277
  year: 1974
  ident: 10.1016/j.jmbbm.2016.10.012_bib4
  article-title: Finite element stress analysis of an intervertebral disc
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(74)90019-0
– year: 2005
  ident: 10.1016/j.jmbbm.2016.10.012_bib5
– volume: 6
  start-page: 697
  year: 2006
  ident: 10.1016/j.jmbbm.2016.10.012_bib31
  article-title: Micromechanical testing of individual collagen fibrils
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.200600063
– volume: 32
  start-page: 328
  year: 2007
  ident: 10.1016/j.jmbbm.2016.10.012_bib23
  article-title: Comparison of animals used in disc research to human lumbar disc geometry
  publication-title: Spine
  doi: 10.1097/01.brs.0000253961.40910.c1
– volume: 207
  start-page: 299
  year: 2005
  ident: 10.1016/j.jmbbm.2016.10.012_bib24
  article-title: Intralamellar relationships within the collagenous architecture of the annulus fibrosus imaged in its fully hydrated state
  publication-title: J. Anat.
  doi: 10.1111/j.1469-7580.2005.00467.x
– volume: 58
  start-page: 2852
  year: 2011
  ident: 10.1016/j.jmbbm.2016.10.012_bib26
  article-title: Measurement of lung hyperelastic properties using inverse finite element approach
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2160637
– volume: 11
  start-page: 582
  year: 1940
  ident: 10.1016/j.jmbbm.2016.10.012_bib19
  article-title: A theory of large elastic deformation
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1712836
– volume: 2
  start-page: 203
  year: 1993
  ident: 10.1016/j.jmbbm.2016.10.012_bib2
  article-title: Tensile properties of the annulus fibrosus. I. The contribution of fibre-matrix interactions to tensile stiffness and strength
  publication-title: Eur. Spine J.
  doi: 10.1007/BF00299447
– volume: 220
  start-page: 337
  year: 1988
  ident: 10.1016/j.jmbbm.2016.10.012_bib10
  article-title: Human intervertebral disc: structure and function
  publication-title: Anat. Rec.
  doi: 10.1002/ar.1092200402
– volume: 11
  start-page: 95
  year: 2008
  ident: 10.1016/j.jmbbm.2016.10.012_bib15
  article-title: Are coupled rotations in the lumbar spine largely due to the osseo-ligamentous anatomy?—A modeling study
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255840701552143
– volume: 37
  start-page: E581
  year: 2012
  ident: 10.1016/j.jmbbm.2016.10.012_bib13
  article-title: Effect of graded facetectomy on biomechanics of dynesys dynamic stabilization system
  publication-title: Spine
  doi: 10.1097/BRS.0b013e3182463775
– volume: 99
  start-page: 1986
  year: 2010
  ident: 10.1016/j.jmbbm.2016.10.012_bib27
  article-title: In vitro fracture testing of submicron diameter collagen fibril specimens
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2010.07.021
– volume: 7
  start-page: 308
  year: 1965
  ident: 10.1016/j.jmbbm.2016.10.012_bib21
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 48
  start-page: 4303
  year: 2015
  ident: 10.1016/j.jmbbm.2016.10.012_bib1
  article-title: Inter-lamellar shear resistance confers compressive stiffness in the intervertebral disc: an image-based modelling study on the bovine caudal disc
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.10.041
– volume: 39
  start-page: 1279
  year: 2006
  ident: 10.1016/j.jmbbm.2016.10.012_bib7
  article-title: An inverse finite-element model of heel-pad indentation
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.03.007
– volume: 3
  start-page: 146
  year: 2010
  ident: 10.1016/j.jmbbm.2016.10.012_bib16
  article-title: The mechanical response of the ovine lumbar anulus fibrosus to uniaxial, biaxial and shear loads
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2009.09.002
– year: 1970
  ident: 10.1016/j.jmbbm.2016.10.012_bib32
– volume: 33
  start-page: E166
  year: 2008
  ident: 10.1016/j.jmbbm.2016.10.012_bib3
  article-title: Comparison of animal discs used in disc research to human lumbar disc: axial compression mechanics and glycosaminoglycan content
  publication-title: Spine
  doi: 10.1097/BRS.0b013e318166e001
– volume: 112
  start-page: 358
  year: 1990
  ident: 10.1016/j.jmbbm.2016.10.012_bib20
  article-title: Nonlinear analysis of intervertebral disk under dynamic load
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2891196
– volume: 65
  start-page: 398
  year: 2017
  ident: 10.1016/j.jmbbm.2016.10.012_bib8
  article-title: Material properties of the heel fat pad across strain rates
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2016.09.003
– volume: 15
  start-page: 402
  year: 1990
  ident: 10.1016/j.jmbbm.2016.10.012_bib18
  article-title: Investigation of the laminate structure of lumbar disc anulus fibrosus
  publication-title: Spine
  doi: 10.1097/00007632-199005000-00011
– volume: 109
  start-page: 200
  year: 1987
  ident: 10.1016/j.jmbbm.2016.10.012_bib30
  article-title: A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3138670
SSID ssj0060088
Score 2.2517493
Snippet The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent vertebrae and allowing the vertebral column...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 824
SubjectTerms Algorithms
Animals
Biomechanical Phenomena
Cattle
Collagen fibre
Elastic Modulus
Finite Element Analysis
Finite element modelling
Intervertebral disc
Intervertebral Disc - physiology
inverse methods
Lumbar Vertebrae - physiology
material properties
spine
Stress, Mechanical
Title Material properties of bovine intervertebral discs across strain rates
URI https://dx.doi.org/10.1016/j.jmbbm.2016.10.012
https://www.ncbi.nlm.nih.gov/pubmed/27810728
https://www.proquest.com/docview/1836733863
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG-IXvRg_BY_SE08OmBr140jIRLUwEVMuC3t2iYQBMLG1b_d97qN6AEObremTV9eX99XX38l5EljbAyfZ3WQejzU0pMpbDzThl-wtlYuoT8cicEnf5uEkxrpVXdhsKyy1P2FTnfaumxpldxsrabT1gcYPnBXYCaBajhETFDOI5Ty5ve2zAPsuXt7Ejt72LtCHnI1XrMvpfA6ui-aWOLlB7us0y7v01mh_ik5Kd1H2i0oPCM1szgnx79ABS9IfyhzJ1Z0hYn2NSKm0qWlCnMHhk6LIsd1jifGc4q3cjMqHTk0cw9GUESPyC7JuP8y7g288rUEL-VtnnuhsIZZK0VowARjRkf6ErFiZBSrWMvU-rGUTMfc79jUtzpULLK8rTsMfDjFrsjBYrkwN4RypblhDLgKwZI1AQxLERdL-4H1ZSTqJKiYlKQlkjjSN0-qkrFZ4jibIGexEThbJ8_bQasCSGN_d1FxP_kjDwmo-v0DH6u1SmCn4PGHXJjlJktAeYkIInLB6uS6WMQtJUEUQxwcxLf_nfaOHAVo8F1y5p4c5OuNeQB3JVcNJ48Ncth9fR-MfgANFOkC
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5Be1g4IJblUdhdvNIeCW1ixwlHhKjKlvayXYmbZce21Kq0VZv-f2acBMEBDpvcLI88Gtvz8vgzwG9LsTF-kbdJEYnU6kgXuPFcD3_Je9aEhP5oLAf_xJ-n9GkH7pq7MFRWWev-SqcHbV23dGtpdlfTafcvGj50V3AkSWo4FbvQJnSqtAXt24fhYNwoZDTp4flJ6h8RQQM-FMq8Zs_G0I30WF5TlVecfGSgPnJAgyHqH8JB7UGy24rJr7DjFkew_wZX8Bv0R7oMK4utKNe-JtBUtvTMUPrAsWlV57gu6dB4zuhi7obpwA7bhDcjGAFIbI5h0r-f3A2i-sGEqBA9UUap9I57r2Xq0ApTUkfHmuBidJab3OrCx7nW3OYivvFF7G1qeOZFz95wdOMMP4HWYrlwZ8CEscJxjoLFeMm7BMkKgsayceJjnckOJI2QVFGDiRN_c9VUjc1UkKwiyVIjSrYDV69EqwpL4_PuspG-erckFGr7zwl_NXOlcLPQCYheuOV2o1B_yQyDcsk7cFpN4isnSZZjKJzk5_877CV8GUxGj-rxYTy8gL2E7H_I1XyHVrneuh_ovZTmZ706XwAQq-uz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Material+properties+of+bovine+intervertebral+discs+across+strain+rates&rft.jtitle=Journal+of+the+mechanical+behavior+of+biomedical+materials&rft.au=Newell%2C+Nicolas&rft.au=Grigoriadis%2C+Grigorios&rft.au=Christou%2C+Alexandros&rft.au=Carpanen%2C+Diagarajen&rft.date=2017-01-01&rft.pub=Elsevier+Ltd&rft.issn=1751-6161&rft.eissn=1878-0180&rft.volume=65&rft.spage=824&rft.epage=830&rft_id=info:doi/10.1016%2Fj.jmbbm.2016.10.012&rft.externalDocID=S1751616116303654
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-6161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-6161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-6161&client=summon