The influence of air cleaners on indoor particulate matter components and oxidative potential in residential households in Beijing

In many developing regions with poor air quality, the use of air filtration devices to clean indoor air is growing rapidly. In this study, we collected indoor, outdoor and personal exposure filter-based samples of fine particulate matter (PM2.5) with both properly operating, and sham air cleaners in...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 626; pp. 507 - 518
Main Authors Zhan, Ying, Johnson, Karoline, Norris, Christina, Shafer, Martin M., Bergin, Mike H., Zhang, Yinping, Zhang, Junfeng, Schauer, James J.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In many developing regions with poor air quality, the use of air filtration devices to clean indoor air is growing rapidly. In this study, we collected indoor, outdoor and personal exposure filter-based samples of fine particulate matter (PM2.5) with both properly operating, and sham air cleaners in six Beijing residences from July 24th to August 17th, 2016. Mass concentrations of PM2.5 and several health relevant components of PM2.5 including organic carbon, elemental carbon, sulfate, nitrate, ammonium, and 21 selected metals, were analyzed to evaluate the effectiveness of air cleaners. The effect of air purification on PM2.5 reactive oxygen species (ROS) activity, a metric of the oxidative potential of the aerosol, was also evaluated. The average indoor PM2.5 concentration during true filtration was 8.47μg/m3, compared to 49.0μg/m3 during sham filtration; thus, air cleaners can significantly reduce the indoor PM2.5 concentration to well below WHO guideline levels and significantly lower all major components of PM2.5. However, the utility of air cleaners in reducing overall personal exposure to PM2.5 and its components was marginal in this study: the average personal exposure PM2.5 concentration was 67.8 and 51.1μg/m3 during true and sham filtration respectively, and it is likely due to the activity patterns of the subjects. Short-term exposure contributions from environments with high PM2.5 concentrations, including exposure to traffic related emissions as well as uncharacterized indoor microenvironments, likely add substantially to the total PM2.5 exposure burden. The toxicity assay indicates that the air cleaners can also significantly reduce ROS activity in the indoor environment; however, this decrease did not translate to a reduction in personal exposure. Elemental carbon, lead, and arsenic were well-correlated with the ROS activity, thus adding to the knowledge base of drivers for ROS activity. [Display omitted] •Air cleaner can reduce PM2.5 and its components concentration in the indoor environment.•No significant reduction on personal exposure to PM2.5 and its components which is likely from high PM2.5 microenvironments.•The indoor ROS activity of the particles reduces, but the personal exposure ROS activity does not show significant reductions.
AbstractList In many developing regions with poor air quality, the use of air filtration devices to clean indoor air is growing rapidly. In this study, we collected indoor, outdoor and personal exposure filter-based samples of fine particulate matter (PM2.5) with both properly operating, and sham air cleaners in six Beijing residences from July 24th to August 17th, 2016. Mass concentrations of PM2.5 and several health relevant components of PM2.5 including organic carbon, elemental carbon, sulfate, nitrate, ammonium, and 21 selected metals, were analyzed to evaluate the effectiveness of air cleaners. The effect of air purification on PM2.5 reactive oxygen species (ROS) activity, a metric of the oxidative potential of the aerosol, was also evaluated. The average indoor PM2.5 concentration during true filtration was 8.47μg/m3, compared to 49.0μg/m3 during sham filtration; thus, air cleaners can significantly reduce the indoor PM2.5 concentration to well below WHO guideline levels and significantly lower all major components of PM2.5. However, the utility of air cleaners in reducing overall personal exposure to PM2.5 and its components was marginal in this study: the average personal exposure PM2.5 concentration was 67.8 and 51.1μg/m3 during true and sham filtration respectively, and it is likely due to the activity patterns of the subjects. Short-term exposure contributions from environments with high PM2.5 concentrations, including exposure to traffic related emissions as well as uncharacterized indoor microenvironments, likely add substantially to the total PM2.5 exposure burden. The toxicity assay indicates that the air cleaners can also significantly reduce ROS activity in the indoor environment; however, this decrease did not translate to a reduction in personal exposure. Elemental carbon, lead, and arsenic were well-correlated with the ROS activity, thus adding to the knowledge base of drivers for ROS activity.
In many developing regions with poor air quality, the use of air filtration devices to clean indoor air is growing rapidly. In this study, we collected indoor, outdoor and personal exposure filter-based samples of fine particulate matter (PM2.5) with both properly operating, and sham air cleaners in six Beijing residences from July 24th to August 17th, 2016. Mass concentrations of PM2.5 and several health relevant components of PM2.5 including organic carbon, elemental carbon, sulfate, nitrate, ammonium, and 21 selected metals, were analyzed to evaluate the effectiveness of air cleaners. The effect of air purification on PM2.5 reactive oxygen species (ROS) activity, a metric of the oxidative potential of the aerosol, was also evaluated. The average indoor PM2.5 concentration during true filtration was 8.47μg/m3, compared to 49.0μg/m3 during sham filtration; thus, air cleaners can significantly reduce the indoor PM2.5 concentration to well below WHO guideline levels and significantly lower all major components of PM2.5. However, the utility of air cleaners in reducing overall personal exposure to PM2.5 and its components was marginal in this study: the average personal exposure PM2.5 concentration was 67.8 and 51.1μg/m3 during true and sham filtration respectively, and it is likely due to the activity patterns of the subjects. Short-term exposure contributions from environments with high PM2.5 concentrations, including exposure to traffic related emissions as well as uncharacterized indoor microenvironments, likely add substantially to the total PM2.5 exposure burden. The toxicity assay indicates that the air cleaners can also significantly reduce ROS activity in the indoor environment; however, this decrease did not translate to a reduction in personal exposure. Elemental carbon, lead, and arsenic were well-correlated with the ROS activity, thus adding to the knowledge base of drivers for ROS activity.In many developing regions with poor air quality, the use of air filtration devices to clean indoor air is growing rapidly. In this study, we collected indoor, outdoor and personal exposure filter-based samples of fine particulate matter (PM2.5) with both properly operating, and sham air cleaners in six Beijing residences from July 24th to August 17th, 2016. Mass concentrations of PM2.5 and several health relevant components of PM2.5 including organic carbon, elemental carbon, sulfate, nitrate, ammonium, and 21 selected metals, were analyzed to evaluate the effectiveness of air cleaners. The effect of air purification on PM2.5 reactive oxygen species (ROS) activity, a metric of the oxidative potential of the aerosol, was also evaluated. The average indoor PM2.5 concentration during true filtration was 8.47μg/m3, compared to 49.0μg/m3 during sham filtration; thus, air cleaners can significantly reduce the indoor PM2.5 concentration to well below WHO guideline levels and significantly lower all major components of PM2.5. However, the utility of air cleaners in reducing overall personal exposure to PM2.5 and its components was marginal in this study: the average personal exposure PM2.5 concentration was 67.8 and 51.1μg/m3 during true and sham filtration respectively, and it is likely due to the activity patterns of the subjects. Short-term exposure contributions from environments with high PM2.5 concentrations, including exposure to traffic related emissions as well as uncharacterized indoor microenvironments, likely add substantially to the total PM2.5 exposure burden. The toxicity assay indicates that the air cleaners can also significantly reduce ROS activity in the indoor environment; however, this decrease did not translate to a reduction in personal exposure. Elemental carbon, lead, and arsenic were well-correlated with the ROS activity, thus adding to the knowledge base of drivers for ROS activity.
In many developing regions with poor air quality, the use of air filtration devices to clean indoor air is growing rapidly. In this study, we collected indoor, outdoor and personal exposure filter-based samples of fine particulate matter (PM ) with both properly operating, and sham air cleaners in six Beijing residences from July 24th to August 17th, 2016. Mass concentrations of PM and several health relevant components of PM including organic carbon, elemental carbon, sulfate, nitrate, ammonium, and 21 selected metals, were analyzed to evaluate the effectiveness of air cleaners. The effect of air purification on PM reactive oxygen species (ROS) activity, a metric of the oxidative potential of the aerosol, was also evaluated. The average indoor PM concentration during true filtration was 8.47μg/m , compared to 49.0μg/m during sham filtration; thus, air cleaners can significantly reduce the indoor PM concentration to well below WHO guideline levels and significantly lower all major components of PM . However, the utility of air cleaners in reducing overall personal exposure to PM and its components was marginal in this study: the average personal exposure PM concentration was 67.8 and 51.1μg/m during true and sham filtration respectively, and it is likely due to the activity patterns of the subjects. Short-term exposure contributions from environments with high PM concentrations, including exposure to traffic related emissions as well as uncharacterized indoor microenvironments, likely add substantially to the total PM exposure burden. The toxicity assay indicates that the air cleaners can also significantly reduce ROS activity in the indoor environment; however, this decrease did not translate to a reduction in personal exposure. Elemental carbon, lead, and arsenic were well-correlated with the ROS activity, thus adding to the knowledge base of drivers for ROS activity.
In many developing regions with poor air quality, the use of air filtration devices to clean indoor air is growing rapidly. In this study, we collected indoor, outdoor and personal exposure filter-based samples of fine particulate matter (PM2.5) with both properly operating, and sham air cleaners in six Beijing residences from July 24th to August 17th, 2016. Mass concentrations of PM2.5 and several health relevant components of PM2.5 including organic carbon, elemental carbon, sulfate, nitrate, ammonium, and 21 selected metals, were analyzed to evaluate the effectiveness of air cleaners. The effect of air purification on PM2.5 reactive oxygen species (ROS) activity, a metric of the oxidative potential of the aerosol, was also evaluated. The average indoor PM2.5 concentration during true filtration was 8.47μg/m3, compared to 49.0μg/m3 during sham filtration; thus, air cleaners can significantly reduce the indoor PM2.5 concentration to well below WHO guideline levels and significantly lower all major components of PM2.5. However, the utility of air cleaners in reducing overall personal exposure to PM2.5 and its components was marginal in this study: the average personal exposure PM2.5 concentration was 67.8 and 51.1μg/m3 during true and sham filtration respectively, and it is likely due to the activity patterns of the subjects. Short-term exposure contributions from environments with high PM2.5 concentrations, including exposure to traffic related emissions as well as uncharacterized indoor microenvironments, likely add substantially to the total PM2.5 exposure burden. The toxicity assay indicates that the air cleaners can also significantly reduce ROS activity in the indoor environment; however, this decrease did not translate to a reduction in personal exposure. Elemental carbon, lead, and arsenic were well-correlated with the ROS activity, thus adding to the knowledge base of drivers for ROS activity. [Display omitted] •Air cleaner can reduce PM2.5 and its components concentration in the indoor environment.•No significant reduction on personal exposure to PM2.5 and its components which is likely from high PM2.5 microenvironments.•The indoor ROS activity of the particles reduces, but the personal exposure ROS activity does not show significant reductions.
Author Schauer, James J.
Shafer, Martin M.
Norris, Christina
Zhang, Junfeng
Zhang, Yinping
Zhan, Ying
Bergin, Mike H.
Johnson, Karoline
Author_xml – sequence: 1
  givenname: Ying
  surname: Zhan
  fullname: Zhan, Ying
  organization: University of Wisconsin-Madison, Department of Civil and Environmental Engineering, Madison, WI, United States
– sequence: 2
  givenname: Karoline
  surname: Johnson
  fullname: Johnson, Karoline
  organization: Duke University, Department of Civil and Environmental Engineering, Durham, NC, United States
– sequence: 3
  givenname: Christina
  surname: Norris
  fullname: Norris, Christina
  organization: Duke University, Department of Civil and Environmental Engineering, Durham, NC, United States
– sequence: 4
  givenname: Martin M.
  surname: Shafer
  fullname: Shafer, Martin M.
  organization: Wisconsin State Laboratory of Hygiene, Madison, WI, United States
– sequence: 5
  givenname: Mike H.
  surname: Bergin
  fullname: Bergin, Mike H.
  organization: Duke University, Department of Civil and Environmental Engineering, Durham, NC, United States
– sequence: 6
  givenname: Yinping
  surname: Zhang
  fullname: Zhang, Yinping
  organization: Tsinghua University, School of Architecture, Beijing, China
– sequence: 7
  givenname: Junfeng
  surname: Zhang
  fullname: Zhang, Junfeng
  organization: Duke University, Nicholas School, Environmental Science and Policy Division, Durham, NC, United States
– sequence: 8
  givenname: James J.
  surname: Schauer
  fullname: Schauer, James J.
  email: jjschauer@wisc.edu
  organization: University of Wisconsin-Madison, Department of Civil and Environmental Engineering, Madison, WI, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29396331$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv3CAQhVGUqtmk_Qstx17sgk1sOPSQRklbKVIv6RlhGLKsbHABr9prfnmwdtNDL8sFofnezPDeJTr3wQNCHympKaHd512dtMshg9_XDaG8JrQmDTtDG8p7UVHSdOdoQwjjlehEf4EuU9qRcnpO36KLRrSia1u6Qc-PW8DO23EBrwEHi5WLWI-gPMSEgy9FE0LEs4rZ6WVUGfCkcoZChWkua_mcsPIGhz_OqOz2gOd1sezUWMQ4QnLm-NyGJcE2jCatla_gds4_vUNvrBoTvD_eV-jX_d3j7ffq4ee3H7c3D5VmhOWKDT1wY9TQca4pbfqhY4wae82spcCVFdYM0A6DYVSDIqbnzApodWc5aejQXqFPh75zDL8XSFlOLmkYx_LVspdsCLvmTdsUY06hVBQDBaedKOiHI7oMExg5Rzep-Fe-WlyALwdAx5BSBCtLcsWn4HNUbpSUyDVSuZP_IpVrpJJQWSIt-v4__euI08qbgxKKq3sHceXWmI2LoLM0wZ3s8QJrY8TO
CitedBy_id crossref_primary_10_4028_www_scientific_net_KEM_838_143
crossref_primary_10_1016_j_jhazmat_2021_125920
crossref_primary_10_1111_ina_12843
crossref_primary_10_1039_C9EM00377K
crossref_primary_10_1007_s40572_020_00296_z
crossref_primary_10_1080_02786826_2024_2438811
crossref_primary_10_1016_j_envres_2021_112275
crossref_primary_10_1021_acs_est_0c04115
crossref_primary_10_1021_acs_est_0c06114
crossref_primary_10_1111_ina_12922
crossref_primary_10_1134_S1607672920030059
crossref_primary_10_1016_j_enbuild_2019_109464
crossref_primary_10_1016_j_apr_2022_101586
crossref_primary_10_1080_09613218_2021_2001303
crossref_primary_10_1016_j_enbuild_2023_113232
crossref_primary_10_1021_acs_est_9b03425
crossref_primary_10_1016_j_scitotenv_2021_145709
crossref_primary_10_1016_j_scitotenv_2020_142585
crossref_primary_10_1177_11786302241258587
crossref_primary_10_1021_acs_est_0c02558
crossref_primary_10_1136_bmjopen_2020_039394
crossref_primary_10_1016_j_atmosenv_2018_11_058
crossref_primary_10_3390_air3010008
crossref_primary_10_1021_acs_est_1c03146
crossref_primary_10_1016_j_chemosphere_2019_05_059
crossref_primary_10_3390_ijerph191811517
crossref_primary_10_3390_atmos11090917
crossref_primary_10_1016_j_scitotenv_2023_168786
crossref_primary_10_1016_j_jhazmat_2024_136573
crossref_primary_10_1016_j_envres_2021_111131
crossref_primary_10_4491_eer_2023_269
crossref_primary_10_1016_j_buildenv_2021_108260
crossref_primary_10_1038_s41370_020_00266_5
crossref_primary_10_1016_j_atmosenv_2022_119311
crossref_primary_10_1016_j_eti_2023_103294
crossref_primary_10_3390_ijerph17010018
crossref_primary_10_1016_j_jclepro_2022_131457
crossref_primary_10_1080_09603123_2024_2368724
crossref_primary_10_1016_j_envint_2020_105647
crossref_primary_10_1111_ina_12716
crossref_primary_10_1007_s11869_019_00782_w
crossref_primary_10_1016_j_atmosenv_2023_120318
crossref_primary_10_1016_j_buildenv_2023_110021
crossref_primary_10_1016_j_envpol_2021_117258
crossref_primary_10_2478_cdem_2021_0003
crossref_primary_10_1016_j_atmosenv_2021_118429
crossref_primary_10_1016_j_scitotenv_2019_02_207
crossref_primary_10_1007_s10661_022_10255_w
Cites_doi 10.1016/j.atmosenv.2013.01.061
10.1080/02786829608965393
10.1016/j.mrrev.2003.06.010
10.1046/j.1365-2222.2003.01678.x
10.1016/j.envint.2013.05.007
10.1021/tx010050x
10.1039/C5EM00364D
10.1016/j.atmosenv.2004.10.027
10.1007/s11882-011-0208-5
10.4209/aaqr.2012.03.0061
10.1007/s00216-015-8749-4
10.1136/oem.2004.016618
10.1016/j.atmosenv.2003.09.035
10.1016/S1352-2310(00)00209-0
10.1186/1743-8977-4-5
10.1161/01.CIR.0000110643.19575.79
10.1080/10473289.2000.10464169
10.1016/j.envres.2005.01.003
10.1016/j.buildenv.2009.06.010
10.1016/0091-6749(90)90050-E
10.1029/2003JD004239
10.1016/j.envres.2014.03.026
10.1016/j.amepre.2008.08.025
10.1016/S1352-2310(03)00527-2
10.1016/S1352-2310(99)00489-6
10.1038/sj.jea.7500378
10.1038/sj.jea.7500328
10.1080/02786820802363819
10.1016/j.scitotenv.2009.12.022
10.1039/b210460a
10.1080/027868200303894
10.1016/S1001-0742(11)60731-6
10.1016/j.clim.2003.08.006
10.1289/ehp.108-1637679
10.1186/1476-069X-12-43
10.1038/sj.jes.7500532
10.1007/s11356-014-3347-0
10.1080/10473289.2000.10463986
10.1371/journal.pone.0135749
10.1016/j.scitotenv.2014.12.003
10.1016/j.atmosenv.2012.08.014
10.1016/j.atmosenv.2010.09.048
10.1080/00039899909602242
10.1080/10473289.2007.10465339
10.1016/S0891-5849(01)00703-1
10.1007/978-3-642-46300-6
10.1007/s11434-014-0607-9
10.1186/1476-069X-7-43
10.1016/j.atmosenv.2007.09.003
10.1016/j.atmosenv.2009.07.066
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2018.01.024
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
EndPage 518
ExternalDocumentID 29396331
10_1016_j_scitotenv_2018_01_024
S004896971830024X
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c404t-4b7e8ddab688c1127b6441df54ff1e8af9fdbe3bbd41cea0d784f9e3c6f8021b3
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Tue Aug 05 10:40:10 EDT 2025
Thu Jul 10 23:52:31 EDT 2025
Wed Feb 19 02:42:32 EST 2025
Thu Apr 24 22:59:30 EDT 2025
Tue Jul 01 01:21:32 EDT 2025
Fri Feb 23 02:12:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Air cleaner
Reactive oxygen species
Removal efficiency
PM2.5
Indoor air quality
PM(2.5)
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-4b7e8ddab688c1127b6441df54ff1e8af9fdbe3bbd41cea0d784f9e3c6f8021b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29396331
PQID 1993998169
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2045823263
proquest_miscellaneous_1993998169
pubmed_primary_29396331
crossref_citationtrail_10_1016_j_scitotenv_2018_01_024
crossref_primary_10_1016_j_scitotenv_2018_01_024
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2018_01_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
2018-06-00
2018-Jun-01
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Patterson, Eatough (bb0220) 2000
World Health Organization (bb0295) 2014
Janssen, Lanki, Hoek, Vallius, De Hartog, Van Grieken, Brunekreef (bb0105) 2005; 62
Rohde, Muller (bb0235) 2015; 10
Donaldson, Stone, Seaton, MacNee (bb0065) 2001; 109
Johnson (bb0115) 2004; 109
Kinney (bb0135) 2008; 35
Liu, Hu, Wang, Wu, Gao, Wang (bb0165) 2015; 22
Von Schneidemesser, Stone, Quraishi, Shafer, Schauer (bb0275) 2010; 408
Chan, Yao (bb0045) 2008; 42
Meng, Spector, Colome, Turpin (bb0185) 2009; 43
Heo, Antkiewicz, Shafer, Perkins, Sioutas, Schauer (bb9000) 2015; 407
Reisman, Mauriello, Davis, Georgitis, DeMasi (bb0230) 1990; 85
Li, Li, Gao, Ding, Xu, Song (bb0160) 2015; 60
Lunden, Revzan, Fischer, Thatcher, Littlejohn, Hering, Brown (bb0170) 2003; 37
Khurshid, Siegel, Kinney (bb0125) 2014; 132
Byrne (bb0040) 1998
Gore, Bishop, Durrell, Curbishley, Woodcock, Custovic (bb0080) 2003; 33
Wedepohl, Correns (bb7000) 1969
Kim, Jahan, Kabir (bb0130) 2013; 59
Hoek, Krishnan, Beelen, Peters, Ostro, Brunekreef, Kaufman (bb0090) 2013; 12
Xu, Bergin, Greenwald, Schauer, Shafer, Jaffrezo, Aymoz (bb0300) 2004; 109
Duan, Tan, Wang, Hao, Chai (bb0070) 2012; 24
Zhang, Li, Ying, Yu, Wu, Cheng, Jiang (bb0320) 2012; 62
Dellinger, Pryor, Cueto, Squadrito, Hegde, Deutsch (bb0060) 2001; 14
Aris, Kelly, Barratt (bb0010) 2017
Li, Hao, Phalen, Hinds, Nel (bb0150) 2003; 109
Barbante, Boutron, Morel, Ferrari, Jaffrezo, Cozzi, Cescon (bb0015) 2003; 5
Vallejo, Lerma, Infante, Hermosillo, Riojas-Rodriguez, Cárdenas (bb0270) 2004; 14
Li, Chen (bb0145) 2003; 37
You, Cui, Chen, Zhao (bb0315) 2013; 13
Pope (bb8000) 2000; 108
Janssen, Hoek, Harssema, Brunekreef (bb0100) 1999; 54
Birch, Cary (bb0030) 1996; 25
Polidori, Arhami, Sioutas, Delfino, Allen (bb0225) 2007; 57
Chen, Zhao (bb0050) 2011; 45
Ozkaynak, Xue, Spengler, Wallace, Pellizzari, Jenkins (bb0215) 1995; 6
Morris, Helm, Schmid, Hacker (bb0195) 2006, January; 27
Hodan, Barnard (bb0085) 2004
Shirmohammadi, Hasheminassab, Wang, Saffari, Schauer, Shafer, Sioutas (bb0245) 2015; 17
Hueglin, Gehrig, Baltensperger, Gysel, Vonmont (bb0095) 2005
Abdullahi, Delgado-Saborit, Harrison (bb0005) 2013; 71
Myatt, Minegishi, Allen, MacIntosh (bb0200) 2008; 7
Xu, Raja, Ferro, Jaques, Hopke, Gressani, Wetzel (bb0305) 2010; 45
Seinfeld, Pandis, Noone (bb0240) 1998
Jones, Thornton, Mark, Harrison (bb0120) 2000; 34
Wallace (bb0280) 2000; 32
Williams, Creason, Zweidinger, Watts, Sheldon, Shy (bb0285) 2000; 34
Sublett (bb0265) 2011; 11
World Health Organization (bb0290) 2006
Ott, Wallace, Mage (bb0210) 2000; 50
Sørensen, Autrup, Møller, Hertel, Jensen, Vinzents, Loft (bb0250) 2003; 544
Cho, Sioutas, Miguel, Kumagai, Schmitz, Singh, Froines (bb0055) 2005; 99
Meng, Turpin, Korn, Weisel, Morandi, Colome, Zhang (bb0180) 2005
Baulig, Garlatti, Bonvallot, Marchand, Barouki, Marano, Baeza-Squiban (bb0020) 2003; 285
Ntziachristos, Froines, Cho, Sioutas (bb0205) 2007; 4
Ma, Zhu, Zhang, Lin (bb0175) 2015
Landreman, Shafer, Hemming, Hannigan, Schauer (bb0140) 2008; 42
Steinle, Reis, Sabel, Semple, Twigg, Braban, Wu (bb0260) 2015; 508
Baxter, Clougherty, Laden, Levy (bb0025) 2007
Squadrito, Cueto, Dellinger, Pryor (bb0255) 2001; 31
Vallejo (10.1016/j.scitotenv.2018.01.024_bb0270) 2004; 14
Williams (10.1016/j.scitotenv.2018.01.024_bb0285) 2000; 34
Wedepohl (10.1016/j.scitotenv.2018.01.024_bb7000) 1969
Li (10.1016/j.scitotenv.2018.01.024_bb0145) 2003; 37
Ott (10.1016/j.scitotenv.2018.01.024_bb0210) 2000; 50
Steinle (10.1016/j.scitotenv.2018.01.024_bb0260) 2015; 508
Myatt (10.1016/j.scitotenv.2018.01.024_bb0200) 2008; 7
Patterson (10.1016/j.scitotenv.2018.01.024_bb0220) 2000
Rohde (10.1016/j.scitotenv.2018.01.024_bb0235) 2015; 10
Abdullahi (10.1016/j.scitotenv.2018.01.024_bb0005) 2013; 71
Hodan (10.1016/j.scitotenv.2018.01.024_bb0085) 2004
Gore (10.1016/j.scitotenv.2018.01.024_bb0080) 2003; 33
Lunden (10.1016/j.scitotenv.2018.01.024_bb0170) 2003; 37
Meng (10.1016/j.scitotenv.2018.01.024_bb0180) 2005
Hueglin (10.1016/j.scitotenv.2018.01.024_bb0095) 2005
Ma (10.1016/j.scitotenv.2018.01.024_bb0175) 2015
Dellinger (10.1016/j.scitotenv.2018.01.024_bb0060) 2001; 14
Pope (10.1016/j.scitotenv.2018.01.024_bb8000) 2000; 108
You (10.1016/j.scitotenv.2018.01.024_bb0315) 2013; 13
Kim (10.1016/j.scitotenv.2018.01.024_bb0130) 2013; 59
Seinfeld (10.1016/j.scitotenv.2018.01.024_bb0240) 1998
Sørensen (10.1016/j.scitotenv.2018.01.024_bb0250) 2003; 544
World Health Organization (10.1016/j.scitotenv.2018.01.024_bb0295) 2014
Hoek (10.1016/j.scitotenv.2018.01.024_bb0090) 2013; 12
Von Schneidemesser (10.1016/j.scitotenv.2018.01.024_bb0275) 2010; 408
Byrne (10.1016/j.scitotenv.2018.01.024_bb0040) 1998
Janssen (10.1016/j.scitotenv.2018.01.024_bb0100) 1999; 54
Kinney (10.1016/j.scitotenv.2018.01.024_bb0135) 2008; 35
Ozkaynak (10.1016/j.scitotenv.2018.01.024_bb0215) 1995; 6
Squadrito (10.1016/j.scitotenv.2018.01.024_bb0255) 2001; 31
Xu (10.1016/j.scitotenv.2018.01.024_bb0300) 2004; 109
Xu (10.1016/j.scitotenv.2018.01.024_bb0305) 2010; 45
Reisman (10.1016/j.scitotenv.2018.01.024_bb0230) 1990; 85
Donaldson (10.1016/j.scitotenv.2018.01.024_bb0065) 2001; 109
Baulig (10.1016/j.scitotenv.2018.01.024_bb0020) 2003; 285
Shirmohammadi (10.1016/j.scitotenv.2018.01.024_bb0245) 2015; 17
World Health Organization (10.1016/j.scitotenv.2018.01.024_bb0290) 2006
Li (10.1016/j.scitotenv.2018.01.024_bb0160) 2015; 60
Cho (10.1016/j.scitotenv.2018.01.024_bb0055) 2005; 99
Duan (10.1016/j.scitotenv.2018.01.024_bb0070) 2012; 24
Zhang (10.1016/j.scitotenv.2018.01.024_bb0320) 2012; 62
Meng (10.1016/j.scitotenv.2018.01.024_bb0185) 2009; 43
Khurshid (10.1016/j.scitotenv.2018.01.024_bb0125) 2014; 132
Wallace (10.1016/j.scitotenv.2018.01.024_bb0280) 2000; 32
Landreman (10.1016/j.scitotenv.2018.01.024_bb0140) 2008; 42
Sublett (10.1016/j.scitotenv.2018.01.024_bb0265) 2011; 11
Li (10.1016/j.scitotenv.2018.01.024_bb0150) 2003; 109
Morris (10.1016/j.scitotenv.2018.01.024_bb0195) 2006; 27
Chan (10.1016/j.scitotenv.2018.01.024_bb0045) 2008; 42
Chen (10.1016/j.scitotenv.2018.01.024_bb0050) 2011; 45
Baxter (10.1016/j.scitotenv.2018.01.024_bb0025) 2007
Ntziachristos (10.1016/j.scitotenv.2018.01.024_bb0205) 2007; 4
Aris (10.1016/j.scitotenv.2018.01.024_bb0010) 2017
Johnson (10.1016/j.scitotenv.2018.01.024_bb0115) 2004; 109
Birch (10.1016/j.scitotenv.2018.01.024_bb0030) 1996; 25
Polidori (10.1016/j.scitotenv.2018.01.024_bb0225) 2007; 57
Barbante (10.1016/j.scitotenv.2018.01.024_bb0015) 2003; 5
Jones (10.1016/j.scitotenv.2018.01.024_bb0120) 2000; 34
Heo (10.1016/j.scitotenv.2018.01.024_bb9000) 2015; 407
Liu (10.1016/j.scitotenv.2018.01.024_bb0165) 2015; 22
Janssen (10.1016/j.scitotenv.2018.01.024_bb0105) 2005; 62
References_xml – volume: 99
  start-page: 40
  year: 2005
  end-page: 47
  ident: bb0055
  article-title: Redox activity of airborne particulate matter at different sites in the Los Angeles Basin
  publication-title: Environ. Res.
– volume: 59
  start-page: 41
  year: 2013
  end-page: 52
  ident: bb0130
  article-title: A review on human health perspective of air pollution with respect to allergies and asthma
  publication-title: Environ. Int.
– volume: 508
  start-page: 383
  year: 2015
  end-page: 394
  ident: bb0260
  article-title: Personal exposure monitoring of PM
  publication-title: Sci. Total Environ.
– volume: 13
  start-page: 911
  year: 2013
  end-page: 921
  ident: bb0315
  article-title: Measuring the short-term emission rates of particles in the “personal cloud” with different clothes and activity intensities in a sealed chamber
  publication-title: Aerosol Air Qual. Res.
– volume: 25
  start-page: 221
  year: 1996
  end-page: 241
  ident: bb0030
  article-title: Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust
  publication-title: Aerosol Sci. Technol.
– year: 2004
  ident: bb0085
  article-title: Evaluating the Contribution of PM
– volume: 57
  start-page: 366
  year: 2007
  end-page: 379
  ident: bb0225
  article-title: Indoor/outdoor relationships, trends, and carbonaceous content of fine particulate matter in retirement homes of the Los Angeles basin
  publication-title: J. Air Waste Manage. Assoc.
– volume: 10
  year: 2015
  ident: bb0235
  article-title: Air pollution in China: mapping of concentrations and sources
  publication-title: PLoS One
– volume: 408
  start-page: 1640
  year: 2010
  end-page: 1648
  ident: bb0275
  article-title: Toxic metals in the atmosphere in Lahore, Pakistan
  publication-title: Sci. Total Environ.
– volume: 109
  start-page: 5
  year: 2004
  end-page: 7
  ident: bb0115
  article-title: Relative effects of air pollution on lungs and heart
  publication-title: Circulation
– start-page: 42
  year: 2017
  ident: bb0010
  article-title: An assessment of oxidative potential of indoor/outdoor airborne particulate matter at roadside and urban background sites in London
  publication-title: Environ. Conserv. Clean Water Air Soil
– volume: 11
  start-page: 395
  year: 2011
  end-page: 402
  ident: bb0265
  article-title: Effectiveness of air filters and air cleaners in allergic respiratory diseases: a review of the recent literature
  publication-title: Curr Allergy Asthma Rep
– volume: 34
  start-page: 2603
  year: 2000
  end-page: 2612
  ident: bb0120
  article-title: Indoor/outdoor relationships of particulate matter in domestic homes with roadside, urban and rural locations
  publication-title: Atmos. Environ.
– volume: 17
  start-page: 2110
  year: 2015
  end-page: 2121
  ident: bb0245
  article-title: Oxidative potential of coarse particulate matter (PM
  publication-title: Environ. Sci. Process. Impact
– year: 1969
  ident: bb7000
  article-title: Handbook of Geochemistry
– volume: 109
  start-page: 250
  year: 2003
  end-page: 265
  ident: bb0150
  article-title: Particulate air pollutants and asthma: a paradigm for the role of oxidative stress in PM-induced adverse health effects
  publication-title: Clin. Immunol.
– volume: 109
  start-page: 523
  year: 2001
  ident: bb0065
  article-title: Ambient particle inhalation and the cardiovascular system: potential mechanisms
  publication-title: Environ. Health Perspect.
– volume: 60
  start-page: 387
  year: 2015
  end-page: 395
  ident: bb0160
  article-title: Diurnal, seasonal, and spatial variation of PM
  publication-title: Sci. Bull.
– volume: 132
  start-page: 46
  year: 2014
  end-page: 53
  ident: bb0125
  article-title: Indoor particulate reactive oxygen species concentrations
  publication-title: Environ. Res.
– volume: 34
  start-page: 4193
  year: 2000
  end-page: 4204
  ident: bb0285
  article-title: Indoor, outdoor, and personal exposure monitoring of particulate air pollution: the Baltimore elderly epidemiology-exposure pilot study
  publication-title: Atmos. Environ.
– start-page: 103
  year: 2000
  end-page: 110
  ident: bb0220
  article-title: Indoor/outdoor relationships for ambient PM
  publication-title: J. Air Waste Manage. Assoc.
– start-page: 433
  year: 2007
  end-page: 444
  ident: bb0025
  article-title: Predictors of concentrations of nitrogen dioxide, fine particulate matter, and particle constituents inside of lower socioeconomic status urban homes
  publication-title: J. Expo. Sci. Environ. Epidemiol.
– volume: 14
  start-page: 1371
  year: 2001
  end-page: 1377
  ident: bb0060
  article-title: Role of free radicals in the toxicity of airborne fine particulate matter
  publication-title: Chem. Res. Toxicol.
– year: 2015
  ident: bb0175
  article-title: China Portable Air Cleaner National Standards
– volume: 37
  start-page: 4277
  year: 2003
  end-page: 4285
  ident: bb0145
  article-title: A balance-point method for assessing the effect of natural ventilation on indoor particle concentrations
  publication-title: Atmos. Environ.
– volume: 109
  year: 2004
  ident: bb0300
  article-title: Aerosol chemical, physical, and radiative characteristics near a desert source region of northwest China during ACE-Asia
  publication-title: J. Geophys. Res. Atmos.
– volume: 85
  start-page: 1050
  year: 1990
  end-page: 1057
  ident: bb0230
  article-title: A double-blind study of the effectiveness of a high-efficiency particulate air (HEPA) filter in the treatment of patients with perennial allergic rhinitis and asthma
  publication-title: J. Allergy Clin. Immunol.
– start-page: 637
  year: 2005
  end-page: 651
  ident: bb0095
  article-title: Chemical characterisation of PM
  publication-title: Atmos. Environ.
– volume: 62
  start-page: 228
  year: 2012
  end-page: 242
  ident: bb0320
  article-title: Source apportionment of PM
  publication-title: Atmos. Environ.
– volume: 42
  start-page: 1
  year: 2008
  end-page: 42
  ident: bb0045
  article-title: Air pollution in mega cities in China
  publication-title: Atmos. Environ.
– volume: 33
  start-page: 765
  year: 2003
  end-page: 769
  ident: bb0080
  article-title: Air filtration units in homes with cats: can they reduce personal exposure to cat allergen?
  publication-title: Clin. Exp. Allergy
– volume: 12
  start-page: 43
  year: 2013
  ident: bb0090
  article-title: Long-term air pollution exposure and cardio-respiratory mortality: a review
  publication-title: Environ. Health
– volume: 42
  start-page: 946
  year: 2008
  end-page: 957
  ident: bb0140
  article-title: A macrophage-based method for the assessment of the reactive oxygen species (ROS) activity of atmospheric particulate matter (PM) and application to routine (daily-24 h) aerosol monitoring studies
  publication-title: Aerosol Sci. Technol.
– volume: 32
  start-page: 15
  year: 2000
  end-page: 25
  ident: bb0280
  article-title: Correlations of personal exposure to particles with outdoor air measurements: a review of recent studies
  publication-title: Aerosol Sci. Technol.
– year: 1998
  ident: bb0040
  article-title: Aerosol exposed
  publication-title: Chemistry in Britain
– volume: 24
  start-page: 87
  year: 2012
  end-page: 94
  ident: bb0070
  article-title: Size distributions and sources of elements in particulate matter at curbside, urban and rural sites in Beijing
  publication-title: J. Environ. Sci.
– volume: 7
  start-page: 43
  year: 2008
  ident: bb0200
  article-title: Control of asthma triggers in indoor air with air cleaners: a modeling analysis
  publication-title: Environ. Health
– volume: 62
  start-page: 868
  year: 2005
  end-page: 877
  ident: bb0105
  article-title: Associations between ambient, personal, and indoor exposure to fine particulate matter constituents in Dutch and Finnish panels of cardiovascular patients
  publication-title: Occup. Environ. Med.
– year: 2014
  ident: bb0295
  article-title: WHO Methods and Data Sources for Country-level Causes of death 2000–2012. Global Health Estimates Technical Paper WHO/HIS/HSI/GHE/2014.7
– volume: 50
  start-page: 1390
  year: 2000
  end-page: 1406
  ident: bb0210
  article-title: Predicting particulate (PM
  publication-title: J. Air Waste Manage. Assoc.
– year: 1998
  ident: bb0240
  article-title: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change
– volume: 45
  start-page: 330
  year: 2010
  end-page: 337
  ident: bb0305
  article-title: Effectiveness of heating, ventilation and air conditioning system with HEPA filter unit on indoor air quality and asthmatic children's health
  publication-title: Build. Environ.
– volume: 14
  start-page: 323
  year: 2004
  end-page: 329
  ident: bb0270
  article-title: Personal exposure to particulate matter less than 2.5
  publication-title: J. Expo. Sci. Environ. Epidemiol.
– volume: 4
  start-page: 5
  year: 2007
  ident: bb0205
  article-title: Relationship between redox activity and chemical speciation of size-fractionated particulate matter
  publication-title: Part. Fibre Toxicol.
– volume: 285
  start-page: L671
  year: 2003
  end-page: L679
  ident: bb0020
  article-title: Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells
  publication-title: Am. J. Phys. Lung Cell. Mol. Phys.
– volume: 54
  start-page: 95
  year: 1999
  end-page: 101
  ident: bb0100
  article-title: Personal exposure to fine particles in children correlates closely with ambient fine particles
  publication-title: Arch. Environ. Health Int. J.
– volume: 22
  start-page: 627
  year: 2015
  end-page: 642
  ident: bb0165
  article-title: Seasonal and diurnal variation in particulate matter (PM
  publication-title: Environ. Sci. Pollut. Res.
– volume: 5
  start-page: 328
  year: 2003
  end-page: 335
  ident: bb0015
  article-title: Seasonal variations of heavy metals in central Greenland snow deposited from 1991 to 1995
  publication-title: J. Environ. Monit.
– volume: 45
  start-page: 275
  year: 2011
  end-page: 288
  ident: bb0050
  article-title: Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor
  publication-title: Atmos. Environ.
– start-page: 17
  year: 2005
  end-page: 28
  ident: bb0180
  article-title: Influence of ambient (outdoor) sources on residential indoor and personal PM
  publication-title: J. Expo. Sci. Environ. Epidemiol.
– volume: 31
  start-page: 1132
  year: 2001
  end-page: 1138
  ident: bb0255
  article-title: Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter
  publication-title: Free Radic. Biol. Med.
– volume: 37
  start-page: 5633
  year: 2003
  end-page: 5644
  ident: bb0170
  article-title: The transformation of outdoor ammonium nitrate aerosols in the indoor environment
  publication-title: Atmos. Environ.
– volume: 108
  start-page: 713
  year: 2000
  ident: bb8000
  article-title: Epidemiology of fine particulate airpollution and human health: biologic mechanisms and who's at risk?
  publication-title: Environ. Health Perspect.
– volume: 6
  start-page: 57
  year: 1995
  end-page: 78
  ident: bb0215
  article-title: Personal exposure to airborne particles and metals: results from the Particle TEAM study in Riverside, California
  publication-title: J. Expo. Anal. Environ. Epidemiol.
– volume: 407
  start-page: 5953
  year: 2015
  end-page: 5963
  ident: bb9000
  article-title: Assessing the role of chemical components in cellular responses to atmospheric particle matter (pm) through chemical fractionation of pm extracts
  publication-title: Anal. Bioanal. Chem.
– year: 2006
  ident: bb0290
  article-title: Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide
– volume: 43
  start-page: 5750
  year: 2009
  end-page: 5758
  ident: bb0185
  article-title: Determinants of indoor and personal exposure to PM
  publication-title: Atmos. Environ.
– volume: 544
  start-page: 255
  year: 2003
  end-page: 271
  ident: bb0250
  article-title: Linking exposure to environmental pollutants with biological effects
  publication-title: Mutat. Res./Rev. Mutat. Res.
– volume: 35
  start-page: 459
  year: 2008
  end-page: 467
  ident: bb0135
  article-title: Climate change, air quality, and human health
  publication-title: Am. J. Prev. Med.
– volume: 71
  start-page: 260
  year: 2013
  end-page: 294
  ident: bb0005
  article-title: Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: a review
  publication-title: Atmos. Environ.
– volume: 27
  start-page: 63
  year: 2006, January
  end-page: 67
  ident: bb0195
  article-title: A novel air filtration delivery system improves seasonal allergic rhinitis
  publication-title: Allergy and asthma proceedings
– volume: 71
  start-page: 260
  year: 2013
  ident: 10.1016/j.scitotenv.2018.01.024_bb0005
  article-title: Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: a review
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.01.061
– year: 2014
  ident: 10.1016/j.scitotenv.2018.01.024_bb0295
– volume: 6
  start-page: 57
  issue: 1
  year: 1995
  ident: 10.1016/j.scitotenv.2018.01.024_bb0215
  article-title: Personal exposure to airborne particles and metals: results from the Particle TEAM study in Riverside, California
  publication-title: J. Expo. Anal. Environ. Epidemiol.
– volume: 25
  start-page: 221
  issue: 3
  year: 1996
  ident: 10.1016/j.scitotenv.2018.01.024_bb0030
  article-title: Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786829608965393
– volume: 544
  start-page: 255
  issue: 2
  year: 2003
  ident: 10.1016/j.scitotenv.2018.01.024_bb0250
  article-title: Linking exposure to environmental pollutants with biological effects
  publication-title: Mutat. Res./Rev. Mutat. Res.
  doi: 10.1016/j.mrrev.2003.06.010
– volume: 33
  start-page: 765
  issue: 6
  year: 2003
  ident: 10.1016/j.scitotenv.2018.01.024_bb0080
  article-title: Air filtration units in homes with cats: can they reduce personal exposure to cat allergen?
  publication-title: Clin. Exp. Allergy
  doi: 10.1046/j.1365-2222.2003.01678.x
– volume: 59
  start-page: 41
  year: 2013
  ident: 10.1016/j.scitotenv.2018.01.024_bb0130
  article-title: A review on human health perspective of air pollution with respect to allergies and asthma
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2013.05.007
– volume: 14
  start-page: 1371
  issue: 10
  year: 2001
  ident: 10.1016/j.scitotenv.2018.01.024_bb0060
  article-title: Role of free radicals in the toxicity of airborne fine particulate matter
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx010050x
– volume: 17
  start-page: 2110
  issue: 12
  year: 2015
  ident: 10.1016/j.scitotenv.2018.01.024_bb0245
  article-title: Oxidative potential of coarse particulate matter (PM10–2.5) and its relation to water solubility and sources of trace elements and metals in the Los Angeles Basin
  publication-title: Environ. Sci. Process. Impact
  doi: 10.1039/C5EM00364D
– start-page: 637
  year: 2005
  ident: 10.1016/j.scitotenv.2018.01.024_bb0095
  article-title: Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2004.10.027
– volume: 11
  start-page: 395
  issue: 5
  year: 2011
  ident: 10.1016/j.scitotenv.2018.01.024_bb0265
  article-title: Effectiveness of air filters and air cleaners in allergic respiratory diseases: a review of the recent literature
  publication-title: Curr Allergy Asthma Rep
  doi: 10.1007/s11882-011-0208-5
– volume: 13
  start-page: 911
  issue: 3
  year: 2013
  ident: 10.1016/j.scitotenv.2018.01.024_bb0315
  article-title: Measuring the short-term emission rates of particles in the “personal cloud” with different clothes and activity intensities in a sealed chamber
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2012.03.0061
– volume: 407
  start-page: 5953
  issue: 20
  year: 2015
  ident: 10.1016/j.scitotenv.2018.01.024_bb9000
  article-title: Assessing the role of chemical components in cellular responses to atmospheric particle matter (pm) through chemical fractionation of pm extracts
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-015-8749-4
– volume: 62
  start-page: 868
  issue: 12
  year: 2005
  ident: 10.1016/j.scitotenv.2018.01.024_bb0105
  article-title: Associations between ambient, personal, and indoor exposure to fine particulate matter constituents in Dutch and Finnish panels of cardiovascular patients
  publication-title: Occup. Environ. Med.
  doi: 10.1136/oem.2004.016618
– volume: 37
  start-page: 5633
  issue: 39
  year: 2003
  ident: 10.1016/j.scitotenv.2018.01.024_bb0170
  article-title: The transformation of outdoor ammonium nitrate aerosols in the indoor environment
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2003.09.035
– volume: 34
  start-page: 4193
  issue: 24
  year: 2000
  ident: 10.1016/j.scitotenv.2018.01.024_bb0285
  article-title: Indoor, outdoor, and personal exposure monitoring of particulate air pollution: the Baltimore elderly epidemiology-exposure pilot study
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(00)00209-0
– volume: 27
  start-page: 63
  year: 2006
  ident: 10.1016/j.scitotenv.2018.01.024_bb0195
  article-title: A novel air filtration delivery system improves seasonal allergic rhinitis
– volume: 4
  start-page: 5
  issue: 1
  year: 2007
  ident: 10.1016/j.scitotenv.2018.01.024_bb0205
  article-title: Relationship between redox activity and chemical speciation of size-fractionated particulate matter
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/1743-8977-4-5
– volume: 109
  start-page: 5
  issue: 1
  year: 2004
  ident: 10.1016/j.scitotenv.2018.01.024_bb0115
  article-title: Relative effects of air pollution on lungs and heart
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000110643.19575.79
– volume: 50
  start-page: 1390
  issue: 8
  year: 2000
  ident: 10.1016/j.scitotenv.2018.01.024_bb0210
  article-title: Predicting particulate (PM10) personal exposure distributions using a random component superposition statistical model
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.1080/10473289.2000.10464169
– volume: 99
  start-page: 40
  issue: 1
  year: 2005
  ident: 10.1016/j.scitotenv.2018.01.024_bb0055
  article-title: Redox activity of airborne particulate matter at different sites in the Los Angeles Basin
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2005.01.003
– volume: 45
  start-page: 330
  issue: 2
  year: 2010
  ident: 10.1016/j.scitotenv.2018.01.024_bb0305
  article-title: Effectiveness of heating, ventilation and air conditioning system with HEPA filter unit on indoor air quality and asthmatic children's health
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2009.06.010
– volume: 85
  start-page: 1050
  issue: 6
  year: 1990
  ident: 10.1016/j.scitotenv.2018.01.024_bb0230
  article-title: A double-blind study of the effectiveness of a high-efficiency particulate air (HEPA) filter in the treatment of patients with perennial allergic rhinitis and asthma
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/0091-6749(90)90050-E
– volume: 109
  start-page: 523
  issue: Suppl. 4
  year: 2001
  ident: 10.1016/j.scitotenv.2018.01.024_bb0065
  article-title: Ambient particle inhalation and the cardiovascular system: potential mechanisms
  publication-title: Environ. Health Perspect.
– volume: 109
  issue: D19
  year: 2004
  ident: 10.1016/j.scitotenv.2018.01.024_bb0300
  article-title: Aerosol chemical, physical, and radiative characteristics near a desert source region of northwest China during ACE-Asia
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2003JD004239
– volume: 132
  start-page: 46
  year: 2014
  ident: 10.1016/j.scitotenv.2018.01.024_bb0125
  article-title: Indoor particulate reactive oxygen species concentrations
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2014.03.026
– start-page: 42
  year: 2017
  ident: 10.1016/j.scitotenv.2018.01.024_bb0010
  article-title: An assessment of oxidative potential of indoor/outdoor airborne particulate matter at roadside and urban background sites in London
  publication-title: Environ. Conserv. Clean Water Air Soil
– year: 1998
  ident: 10.1016/j.scitotenv.2018.01.024_bb0240
– volume: 35
  start-page: 459
  issue: 5
  year: 2008
  ident: 10.1016/j.scitotenv.2018.01.024_bb0135
  article-title: Climate change, air quality, and human health
  publication-title: Am. J. Prev. Med.
  doi: 10.1016/j.amepre.2008.08.025
– volume: 37
  start-page: 4277
  issue: 30
  year: 2003
  ident: 10.1016/j.scitotenv.2018.01.024_bb0145
  article-title: A balance-point method for assessing the effect of natural ventilation on indoor particle concentrations
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(03)00527-2
– volume: 34
  start-page: 2603
  issue: 16
  year: 2000
  ident: 10.1016/j.scitotenv.2018.01.024_bb0120
  article-title: Indoor/outdoor relationships of particulate matter in domestic homes with roadside, urban and rural locations
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(99)00489-6
– start-page: 17
  year: 2005
  ident: 10.1016/j.scitotenv.2018.01.024_bb0180
  article-title: Influence of ambient (outdoor) sources on residential indoor and personal PM2.5 concentrations: analyses of RIOPA data
  publication-title: J. Expo. Sci. Environ. Epidemiol.
  doi: 10.1038/sj.jea.7500378
– volume: 14
  start-page: 323
  issue: 4
  year: 2004
  ident: 10.1016/j.scitotenv.2018.01.024_bb0270
  article-title: Personal exposure to particulate matter less than 2.5μm in Mexico City: a pilot study
  publication-title: J. Expo. Sci. Environ. Epidemiol.
  doi: 10.1038/sj.jea.7500328
– volume: 42
  start-page: 946
  issue: 11
  year: 2008
  ident: 10.1016/j.scitotenv.2018.01.024_bb0140
  article-title: A macrophage-based method for the assessment of the reactive oxygen species (ROS) activity of atmospheric particulate matter (PM) and application to routine (daily-24 h) aerosol monitoring studies
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786820802363819
– volume: 408
  start-page: 1640
  issue: 7
  year: 2010
  ident: 10.1016/j.scitotenv.2018.01.024_bb0275
  article-title: Toxic metals in the atmosphere in Lahore, Pakistan
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2009.12.022
– volume: 5
  start-page: 328
  issue: 2
  year: 2003
  ident: 10.1016/j.scitotenv.2018.01.024_bb0015
  article-title: Seasonal variations of heavy metals in central Greenland snow deposited from 1991 to 1995
  publication-title: J. Environ. Monit.
  doi: 10.1039/b210460a
– volume: 32
  start-page: 15
  issue: 1
  year: 2000
  ident: 10.1016/j.scitotenv.2018.01.024_bb0280
  article-title: Correlations of personal exposure to particles with outdoor air measurements: a review of recent studies
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/027868200303894
– volume: 24
  start-page: 87
  issue: 1
  year: 2012
  ident: 10.1016/j.scitotenv.2018.01.024_bb0070
  article-title: Size distributions and sources of elements in particulate matter at curbside, urban and rural sites in Beijing
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(11)60731-6
– volume: 109
  start-page: 250
  issue: 3
  year: 2003
  ident: 10.1016/j.scitotenv.2018.01.024_bb0150
  article-title: Particulate air pollutants and asthma: a paradigm for the role of oxidative stress in PM-induced adverse health effects
  publication-title: Clin. Immunol.
  doi: 10.1016/j.clim.2003.08.006
– volume: 108
  start-page: 713
  issue: Suppl 4
  year: 2000
  ident: 10.1016/j.scitotenv.2018.01.024_bb8000
  article-title: Epidemiology of fine particulate airpollution and human health: biologic mechanisms and who's at risk?
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.108-1637679
– year: 1998
  ident: 10.1016/j.scitotenv.2018.01.024_bb0040
  article-title: Aerosol exposed
– volume: 12
  start-page: 43
  issue: 1
  year: 2013
  ident: 10.1016/j.scitotenv.2018.01.024_bb0090
  article-title: Long-term air pollution exposure and cardio-respiratory mortality: a review
  publication-title: Environ. Health
  doi: 10.1186/1476-069X-12-43
– year: 2015
  ident: 10.1016/j.scitotenv.2018.01.024_bb0175
– start-page: 433
  year: 2007
  ident: 10.1016/j.scitotenv.2018.01.024_bb0025
  article-title: Predictors of concentrations of nitrogen dioxide, fine particulate matter, and particle constituents inside of lower socioeconomic status urban homes
  publication-title: J. Expo. Sci. Environ. Epidemiol.
  doi: 10.1038/sj.jes.7500532
– volume: 22
  start-page: 627
  issue: 1
  year: 2015
  ident: 10.1016/j.scitotenv.2018.01.024_bb0165
  article-title: Seasonal and diurnal variation in particulate matter (PM10 and PM2.5) at an urban site of Beijing: analyses from a 9-year study
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3347-0
– year: 2006
  ident: 10.1016/j.scitotenv.2018.01.024_bb0290
– volume: 285
  start-page: L671
  issue: 3
  year: 2003
  ident: 10.1016/j.scitotenv.2018.01.024_bb0020
  article-title: Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells
  publication-title: Am. J. Phys. Lung Cell. Mol. Phys.
– start-page: 103
  year: 2000
  ident: 10.1016/j.scitotenv.2018.01.024_bb0220
  article-title: Indoor/outdoor relationships for ambient PM2.5 and associated pollutants: epidemiological implications in Lindon, Utah
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.1080/10473289.2000.10463986
– volume: 10
  issue: 8
  year: 2015
  ident: 10.1016/j.scitotenv.2018.01.024_bb0235
  article-title: Air pollution in China: mapping of concentrations and sources
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0135749
– volume: 508
  start-page: 383
  year: 2015
  ident: 10.1016/j.scitotenv.2018.01.024_bb0260
  article-title: Personal exposure monitoring of PM2.5 in indoor and outdoor microenvironments
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.12.003
– volume: 62
  start-page: 228
  year: 2012
  ident: 10.1016/j.scitotenv.2018.01.024_bb0320
  article-title: Source apportionment of PM2.5 nitrate and sulfate in China using a source-oriented chemical transport model
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2012.08.014
– volume: 45
  start-page: 275
  issue: 2
  year: 2011
  ident: 10.1016/j.scitotenv.2018.01.024_bb0050
  article-title: Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2010.09.048
– volume: 54
  start-page: 95
  issue: 2
  year: 1999
  ident: 10.1016/j.scitotenv.2018.01.024_bb0100
  article-title: Personal exposure to fine particles in children correlates closely with ambient fine particles
  publication-title: Arch. Environ. Health Int. J.
  doi: 10.1080/00039899909602242
– year: 2004
  ident: 10.1016/j.scitotenv.2018.01.024_bb0085
– volume: 57
  start-page: 366
  issue: 3
  year: 2007
  ident: 10.1016/j.scitotenv.2018.01.024_bb0225
  article-title: Indoor/outdoor relationships, trends, and carbonaceous content of fine particulate matter in retirement homes of the Los Angeles basin
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.1080/10473289.2007.10465339
– volume: 31
  start-page: 1132
  issue: 9
  year: 2001
  ident: 10.1016/j.scitotenv.2018.01.024_bb0255
  article-title: Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(01)00703-1
– year: 1969
  ident: 10.1016/j.scitotenv.2018.01.024_bb7000
  doi: 10.1007/978-3-642-46300-6
– volume: 60
  start-page: 387
  issue: 3
  year: 2015
  ident: 10.1016/j.scitotenv.2018.01.024_bb0160
  article-title: Diurnal, seasonal, and spatial variation of PM2.5 in Beijing
  publication-title: Sci. Bull.
  doi: 10.1007/s11434-014-0607-9
– volume: 7
  start-page: 43
  issue: 1
  year: 2008
  ident: 10.1016/j.scitotenv.2018.01.024_bb0200
  article-title: Control of asthma triggers in indoor air with air cleaners: a modeling analysis
  publication-title: Environ. Health
  doi: 10.1186/1476-069X-7-43
– volume: 42
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.scitotenv.2018.01.024_bb0045
  article-title: Air pollution in mega cities in China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2007.09.003
– volume: 43
  start-page: 5750
  issue: 36
  year: 2009
  ident: 10.1016/j.scitotenv.2018.01.024_bb0185
  article-title: Determinants of indoor and personal exposure to PM2.5 of indoor and outdoor origin during the RIOPA study
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2009.07.066
SSID ssj0000781
Score 2.4808438
Snippet In many developing regions with poor air quality, the use of air filtration devices to clean indoor air is growing rapidly. In this study, we collected indoor,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 507
SubjectTerms acute exposure
aerosols
air
Air cleaner
air cleaners
Air Pollutants - analysis
Air Pollution, Indoor - analysis
air quality
ammonium
arsenic
Beijing
China
emissions
Environmental Monitoring
Filtration
guidelines
households
Housing
Indoor air quality
lead
nitrates
organic carbon
Oxidative Stress
Particle Size
Particulate Matter - analysis
particulates
PM2.5
Reactive oxygen species
Reactive Oxygen Species - metabolism
Removal efficiency
sulfates
toxicity
traffic
World Health Organization
Title The influence of air cleaners on indoor particulate matter components and oxidative potential in residential households in Beijing
URI https://dx.doi.org/10.1016/j.scitotenv.2018.01.024
https://www.ncbi.nlm.nih.gov/pubmed/29396331
https://www.proquest.com/docview/1993998169
https://www.proquest.com/docview/2045823263
Volume 626
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5VRUhICEGgkALVInE19WOzXnMrVatARA-IitxW-xSuWjtK0gouHPjlzHjtVD1EPXCKHO9Ym53Zmc_Zb2YA3ucUhizRKnjQCeeFTUxOCgmSapdwnU8owfnrmZie8y_zyXwHjodcGKJV9r4_-vTOW_ffHParebioa8rx5bISFTrXgiLNnDLYeUlW_uHPLc2DitnEU2bc2Dj6DscLn7tuEZveEMdLxvqdfFuE2oZAu0h0-hSe9BCSHcVZPoMd34zgYWwq-XsEeye3uWs4rN-8qxE8jn_RsZh59Bz-oomwemhSwtrAdL1k-EjdICZkbYM3Xdsu2aJbEOrz5dlVV4-TERO9bYiEwXTjWPurdl0FcbagH4pe4xKFGb7K166__Nlerzydda3ozidfX2DQfAHnpyffj6dJ35IhsTzl64Sb0kvntBFSWoRqpSE85cKEh5B5qUMVnPGFMY5n1uvUlZKHyhdWBIlowhR7sNvg9F4Bs15k3uYkJLhOvSxdVgjnvbHZxOVuDGJQg7J9vXJqm3GpBmLahdroT5H-VJop1N8Y0o3gIpbsuF_k46Bndcf6FAaW-4XfDZahcG_SgQvqCRdVETkSX2czUW0fQ-0AJMJaUYzhZTSrzawRiqF_LLL9_5nea3hEV5He9gZ218tr_xaB1NocdDvlAB4cfZ5Nz-hz9u3H7B-E5SSj
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrRBICMFCYXkaiWvUPBzH4VaqVlva7qmV9mbFLzVVSVa7WwRXfjkzcbJVD6seOCbOWI7HnvkSfzMD8DUlN2SIVsF9FXGemUinpBAvKXcJr9KcApzPZ2J6yX_M8_kOHA6xMESr7G1_sOmdte7v7Pezub-oa4rx5bIUJRrXjDzN_BHsUnaqfAS7Byen09mdQS5kKJzHcW-jwD2aF3a9bhGe_iKalwwpPPk2J7UNhHbO6PgFPO9RJDsIA30JO64Zw-NQV_LPGPaO7sLX8LF-_67G8Cz8pWMh-OgV_MVVwuqhTglrPavqJcMuqwZhIWsbbLRtu2SLbk6o1JdjP7uUnIzI6G1DPAxWNZa1v2vbJRFnC3pRNBw3KMzwa762_eVVe7tydNy1opbvrr5Gv_kaLo-PLg6nUV-VITI85uuI68JJaystpDSI1gpNkMr6nHufOFn50lvtMq0tT4yrYltI7kuXGeElAgqd7cGoweG9BWacSJxJSUjwKnaysEkmrHPaJLlN7QTEoAZl-pTlVDnjRg3ctGu10Z8i_ak4Uai_CcQbwUXI2vGwyLdBz-reAlToWx4W_jKsDIXbk85cUE84qYr4kfhFm4hy-zNUEUAishXZBN6EZbUZNaIxNJFZ8u5_hvcZnkwvzs_U2cns9D08pZbAdvsAo_Xy1n1EXLXWn_p98w87LyWx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+air+cleaners+on+indoor+particulate+matter+components+and+oxidative+potential+in+residential+households+in+Beijing&rft.jtitle=The+Science+of+the+total+environment&rft.au=Zhan%2C+Ying&rft.au=Johnson%2C+Karoline&rft.au=Norris%2C+Christina&rft.au=Shafer%2C+Martin+M&rft.date=2018-06-01&rft.issn=1879-1026&rft.eissn=1879-1026&rft.volume=626&rft.spage=507&rft_id=info:doi/10.1016%2Fj.scitotenv.2018.01.024&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon