Reprint of ‘A Comprehensive review of group level model performance in the presence of heteroscedasticity: Can a single model control Type I errors in the presence of outliers?’

Even after thorough preprocessing and a careful time series analysis of functional magnetic resonance imaging (fMRI) data, artifact and other issues can lead to violations of the assumption that the variance is constant across subjects in the group level model. This is especially concerning when mod...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 154; pp. 219 - 229
Main Author Mumford, Jeanette A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2017
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2017.05.032

Cover

Abstract Even after thorough preprocessing and a careful time series analysis of functional magnetic resonance imaging (fMRI) data, artifact and other issues can lead to violations of the assumption that the variance is constant across subjects in the group level model. This is especially concerning when modeling a continuous covariate at the group level, as the slope is easily biased by outliers. Various models have been proposed to deal with outliers including models that use the first level variance or that use the group level residual magnitude to differentially weight subjects. The most typically used robust regression, implementing a robust estimator of the regression slope, has been previously studied in the context of fMRI studies and was found to perform well in some scenarios, but a loss of Type I error control can occur for some outlier settings. A second type of robust regression using a heteroscedastic autocorrelation consistent (HAC) estimator, which produces robust slope and variance estimates has been shown to perform well, with better Type I error control, but with large sample sizes (500–1000 subjects). The Type I error control with smaller sample sizes has not been studied in this model and has not been compared to other modeling approaches that handle outliers such as FSL's Flame 1 and FSL's outlier de-weighting. Focusing on group level inference with a continuous covariate over a range of sample sizes and degree of heteroscedasticity, which can be driven either by the within- or between-subject variability, both styles of robust regression are compared to ordinary least squares (OLS), FSL's Flame 1, Flame 1 with outlier de-weighting algorithm and Kendall's Tau. Additionally, subject omission using the Cook's Distance measure with OLS and nonparametric inference with the OLS statistic are studied. Pros and cons of these models as well as general strategies for detecting outliers in data and taking precaution to avoid inflated Type I error rates are discussed. •In fMRI data analysis, outliers can inflate false positive rates and reduce power.•We study a wide array of analysis approaches and heteroscedasticity settings.•No model designed to deal with outliers performs perfectly.•Visual inspection of data can help avoid the scenarios found to have invalid results.
AbstractList Even after thorough preprocessing and a careful time series analysis of functional magnetic resonance imaging (fMRI) data, artifact and other issues can lead to violations of the assumption that the variance is constant across subjects in the group level model. This is especially concerning when modeling a continuous covariate at the group level, as the slope is easily biased by outliers. Various models have been proposed to deal with outliers including models that use the first level variance or that use the group level residual magnitude to differentially weight subjects. The most typically used robust regression, implementing a robust estimator of the regression slope, has been previously studied in the context of fMRI studies and was found to perform well in some scenarios, but a loss of Type I error control can occur for some outlier settings. A second type of robust regression using a heteroscedastic autocorrelation consistent (HAC) estimator, which produces robust slope and variance estimates has been shown to perform well, with better Type I error control, but with large sample sizes (500–1000 subjects). The Type I error control with smaller sample sizes has not been studied in this model and has not been compared to other modeling approaches that handle outliers such as FSL's Flame 1 and FSL's outlier de-weighting. Focusing on group level inference with a continuous covariate over a range of sample sizes and degree of heteroscedasticity, which can be driven either by the within- or between-subject variability, both styles of robust regression are compared to ordinary least squares (OLS), FSL's Flame 1, Flame 1 with outlier de-weighting algorithm and Kendall's Tau. Additionally, subject omission using the Cook's Distance measure with OLS and nonparametric inference with the OLS statistic are studied. Pros and cons of these models as well as general strategies for detecting outliers in data and taking precaution to avoid inflated Type I error rates are discussed. •In fMRI data analysis, outliers can inflate false positive rates and reduce power.•We study a wide array of analysis approaches and heteroscedasticity settings.•No model designed to deal with outliers performs perfectly.•Visual inspection of data can help avoid the scenarios found to have invalid results.
Even after thorough preprocessing and a careful time series analysis of functional magnetic resonance imaging (fMRI) data, artifact and other issues can lead to violations of the assumption that the variance is constant across subjects in the group level model. This is especially concerning when modeling a continuous covariate at the group level, as the slope is easily biased by outliers. Various models have been proposed to deal with outliers including models that use the first level variance or that use the group level residual magnitude to differentially weight subjects. The most typically used robust regression, implementing a robust estimator of the regression slope, has been previously studied in the context of fMRI studies and was found to perform well in some scenarios, but a loss of Type I error control can occur for some outlier settings. A second type of robust regression using a heteroscedastic autocorrelation consistent (HAC) estimator, which produces robust slope and variance estimates has been shown to perform well, with better Type I error control, but with large sample sizes (500-1000 subjects). The Type I error control with smaller sample sizes has not been studied in this model and has not been compared to other modeling approaches that handle outliers such as FSL's Flame 1 and FSL's outlier de-weighting. Focusing on group level inference with a continuous covariate over a range of sample sizes and degree of heteroscedasticity, which can be driven either by the within- or between-subject variability, both styles of robust regression are compared to ordinary least squares (OLS), FSL's Flame 1, Flame 1 with outlier de-weighting algorithm and Kendall's Tau. Additionally, subject omission using the Cook's Distance measure with OLS and nonparametric inference with the OLS statistic are studied. Pros and cons of these models as well as general strategies for detecting outliers in data and taking precaution to avoid inflated Type I error rates are discussed.
Even after thorough preprocessing and a careful time series analysis of functional magnetic resonance imaging (fMRI) data, artifact and other issues can lead to violations of the assumption that the variance is constant across subjects in the group level model. This is especially concerning when modeling a continuous covariate at the group level, as the slope is easily biased by outliers. Various models have been proposed to deal with outliers including models that use the first level variance or that use the group level residual magnitude to differentially weight subjects. The most typically used robust regression, implementing a robust estimator of the regression slope, has been previously studied in the context of fMRI studies and was found to perform well in some scenarios, but a loss of Type I error control can occur for some outlier settings. A second type of robust regression using a heteroscedastic autocorrelation consistent (HAC) estimator, which produces robust slope and variance estimates has been shown to perform well, with better Type I error control, but with large sample sizes (500-1000 subjects). The Type I error control with smaller sample sizes has not been studied in this model and has not been compared to other modeling approaches that handle outliers such as FSL's Flame 1 and FSL's outlier de-weighting. Focusing on group level inference with a continuous covariate over a range of sample sizes and degree of heteroscedasticity, which can be driven either by the within- or between-subject variability, both styles of robust regression are compared to ordinary least squares (OLS), FSL's Flame 1, Flame 1 with outlier de-weighting algorithm and Kendall's Tau. Additionally, subject omission using the Cook's Distance measure with OLS and nonparametric inference with the OLS statistic are studied. Pros and cons of these models as well as general strategies for detecting outliers in data and taking precaution to avoid inflated Type I error rates are discussed.Even after thorough preprocessing and a careful time series analysis of functional magnetic resonance imaging (fMRI) data, artifact and other issues can lead to violations of the assumption that the variance is constant across subjects in the group level model. This is especially concerning when modeling a continuous covariate at the group level, as the slope is easily biased by outliers. Various models have been proposed to deal with outliers including models that use the first level variance or that use the group level residual magnitude to differentially weight subjects. The most typically used robust regression, implementing a robust estimator of the regression slope, has been previously studied in the context of fMRI studies and was found to perform well in some scenarios, but a loss of Type I error control can occur for some outlier settings. A second type of robust regression using a heteroscedastic autocorrelation consistent (HAC) estimator, which produces robust slope and variance estimates has been shown to perform well, with better Type I error control, but with large sample sizes (500-1000 subjects). The Type I error control with smaller sample sizes has not been studied in this model and has not been compared to other modeling approaches that handle outliers such as FSL's Flame 1 and FSL's outlier de-weighting. Focusing on group level inference with a continuous covariate over a range of sample sizes and degree of heteroscedasticity, which can be driven either by the within- or between-subject variability, both styles of robust regression are compared to ordinary least squares (OLS), FSL's Flame 1, Flame 1 with outlier de-weighting algorithm and Kendall's Tau. Additionally, subject omission using the Cook's Distance measure with OLS and nonparametric inference with the OLS statistic are studied. Pros and cons of these models as well as general strategies for detecting outliers in data and taking precaution to avoid inflated Type I error rates are discussed.
Author Mumford, Jeanette A.
Author_xml – sequence: 1
  givenname: Jeanette A.
  surname: Mumford
  fullname: Mumford, Jeanette A.
  email: jeanette.mumford@gmail.com
  organization: Center for Healthy Minds, University of Wisconsin, Madison, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28647020$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu1DAYhS1URC_wCsgSGzYZbMe5sYF2xKVSpUqorC3H-TPjwbGD7QyaXR8DHoQX6pPgaAYqVSy68UX-ztHvc07RkXUWEMKULCih5ZvNwsLknR7kChaM0GpBigXJ2RN0QklTZE1RsaP5XORZTWlzjE5D2BBCGsrrZ-iY1SWvCCMn6PcXGL22Ebse393-PMdLN4we1mCD3gL2sNXwY35ceTeN2MAWDB5cl9YRfO_8IK0CrC2Oa8BJGWC-J8EaIngXFHQyRK103L3FS2mxxEHblYGDi3I2emfwzW4EfInBe-fD__zcFI0GH97d3f56jp720gR4cdjP0NePH26Wn7Or60-Xy_OrTHHCY8brjnMGBaWyVSUjfcMrzkmVV5SDpKxvCelVr7o2L1uW01zWTdvRpuwZLQrW5Gfo9d539O77BCGKQacfGSMtuCkI2tC8ziktyoS-eoBu3ORtmm6mWFmRumGJenmgpnaATqTsB-l34m8hCaj3gErZBQ_9P4QSMXcvNuK-ezF3L0ghUvdJerGXQkok1eZFUHpOr9MeVBSd048xef_ARBlttZLmG-weZ_EHJV3WDQ
Cites_doi 10.1016/j.neuroimage.2011.12.060
10.1016/j.neuroimage.2015.02.048
10.1016/S1053-8119(03)00435-X
10.1016/j.neuroimage.2006.09.019
10.1016/j.neuroimage.2003.12.023
10.1109/MEMB.2006.1607668
10.1111/j.2044-8317.1989.tb01118.x
10.1016/j.neuroimage.2009.05.034
10.1002/hbm.10062
10.1016/j.neuroimage.2005.01.011
10.1006/nimg.2002.1132
10.1037/1076-898X.8.2.75
10.1016/j.neuroimage.2013.11.012
10.1037/1082-989X.1.2.184
10.1016/S1361-8415(01)00036-6
10.1016/j.neuroimage.2008.02.042
10.1006/nimg.2001.0931
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jul 1, 2017
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright © 2017 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jul 1, 2017
DBID AAYXX
CITATION
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOI 10.1016/j.neuroimage.2017.05.032
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database (ProQuest)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest One Psychology
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 229
ExternalDocumentID 28647020
10_1016_j_neuroimage_2017_05_032
S105381191730424X
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
0SF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c404t-48d442e511abc620f94744073714ea12fb00fcfcdb36b2313a89bd196f2155293
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Thu Sep 04 18:16:14 EDT 2025
Wed Aug 13 09:22:05 EDT 2025
Wed Feb 19 02:42:02 EST 2025
Tue Jul 01 03:01:52 EDT 2025
Fri Feb 23 02:25:06 EST 2024
Tue Aug 26 20:08:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Outliers
Robust regression
Ordinary least squares
Heteroscedasticity
Language English
License Copyright © 2017 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-48d442e511abc620f94744073714ea12fb00fcfcdb36b2313a89bd196f2155293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28647020
PQID 1912670892
PQPubID 2031077
PageCount 11
ParticipantIDs proquest_miscellaneous_1913831156
proquest_journals_1912670892
pubmed_primary_28647020
crossref_primary_10_1016_j_neuroimage_2017_05_032
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2017_05_032
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2017_05_032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
2017-07-00
20170701
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2017
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Beckmann, Jenkinson, Smith (bib1) 2003; 20
Rasmussen (bib15) 1989; 42
Smith (bib17) 2002; 17
Jenkinson, Smith (bib11) 2001; 5
Eklund, A., Nichols, T., Knutsson, H., 2015. Can parametric statistical methods be trusted for fMRI based group studies?
Hahn, S., Konietschke, F., Salmaso, L., 2013. A comparison of efficient permutation tests for unbalanced ANOVA in two by two designs–and their behavior under heteroscedasticity.
Woolrich (bib19) 2008; 41
Fritsch, Da Mota, Loth, Varoquaux, Banaschewski, Barker, Bokde, Bruhl, Butzek, Conrod, Flor, Garavan, Lemaitre, Mann, Nees, Paus, Schad, Schumann, Frouin, Poline, Thirion (bib6) 2015; 111
Mumford, Nichols (bib14) 2009; 47
Da Mota, Fritsch, Varoquaux, Banaschewski, Barker, Bokde, Bromberg, Conrod, Gallinat, Garavan, Martinot, Nees, Paus, Pausova, Rietschel, Smolka, Strohle, Frouin, Poline, Thirion (bib4) 2014; 89

Hayes (bib8) 1996; 1
Smith, Jenkinson, Beckmann, Miller, Woolrich (bib16) 2007; 34
Woolrich, Ripley, Brady, Smith (bib21) 2001; 14
Lejuez, Read, Kahler, Richards, Ramsey, Stuart, Strong, Brown (bib12) 2002; 8
Woolrich, Behrens, Beckmann, Jenkinson, Smith (bib20) 2004; 21
.
Huber (bib9) 1981
Croux, C., Dhaene, G., Hoorelbeke, S., 2003. Robust standard errors for robust estimators. Discussion Paper Series 03.16, Center for Economic Studies, Catholic University of Leuven.
Wager, Keller, Lacey, Jonides (bib18) 2005; 26
Chen, Saad, Nath, Beauchamp, Cox (bib2) 2012; 60
Jenkinson, Bannister, Brady, Smith (bib10) 2002; 17
Mumford, Nichols (bib13) 2006; 25
1–20. URL
Fritsch (10.1016/j.neuroimage.2017.05.032_bib6) 2015; 111
Wager (10.1016/j.neuroimage.2017.05.032_bib18) 2005; 26
Hayes (10.1016/j.neuroimage.2017.05.032_bib8) 1996; 1
Lejuez (10.1016/j.neuroimage.2017.05.032_bib12) 2002; 8
Woolrich (10.1016/j.neuroimage.2017.05.032_bib20) 2004; 21
Jenkinson (10.1016/j.neuroimage.2017.05.032_bib10) 2002; 17
Woolrich (10.1016/j.neuroimage.2017.05.032_bib19) 2008; 41
Woolrich (10.1016/j.neuroimage.2017.05.032_bib21) 2001; 14
Mumford (10.1016/j.neuroimage.2017.05.032_bib14) 2009; 47
Smith (10.1016/j.neuroimage.2017.05.032_bib17) 2002; 17
Huber (10.1016/j.neuroimage.2017.05.032_bib9) 1981
Smith (10.1016/j.neuroimage.2017.05.032_bib16) 2007; 34
10.1016/j.neuroimage.2017.05.032_bib5
Beckmann (10.1016/j.neuroimage.2017.05.032_bib1) 2003; 20
10.1016/j.neuroimage.2017.05.032_bib3
Jenkinson (10.1016/j.neuroimage.2017.05.032_bib11) 2001; 5
10.1016/j.neuroimage.2017.05.032_bib7
Mumford (10.1016/j.neuroimage.2017.05.032_bib13) 2006; 25
Chen (10.1016/j.neuroimage.2017.05.032_bib2) 2012; 60
Da Mota (10.1016/j.neuroimage.2017.05.032_bib4) 2014; 89
Rasmussen (10.1016/j.neuroimage.2017.05.032_bib15) 1989; 42
28030782 - Neuroimage. 2017 Feb 15;147:658-668
References_xml – volume: 41
  start-page: 286
  year: 2008
  end-page: 301
  ident: bib19
  article-title: Robust group analysis using outlier inference
  publication-title: Neuroimage
– volume: 111
  start-page: 431
  year: 2015
  end-page: 441
  ident: bib6
  article-title: Robust regression for large-scale neuroimaging studies
  publication-title: Neuroimage
– volume: 14
  start-page: 1370
  year: 2001
  end-page: 1386
  ident: bib21
  article-title: Temporal autocorrelation in univariate linear modeling of FMRI data
  publication-title: Neuroimage
– volume: 1
  start-page: 184
  year: 1996
  end-page: 198
  ident: bib8
  article-title: Permutation test is not distribution free
  publication-title: Psychol. Methods
– reference:
– reference: Eklund, A., Nichols, T., Knutsson, H., 2015. Can parametric statistical methods be trusted for fMRI based group studies?
– reference: .
– volume: 5
  start-page: 143
  year: 2001
  end-page: 156
  ident: bib11
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Anal.
– volume: 21
  start-page: 1732
  year: 2004
  end-page: 1747
  ident: bib20
  article-title: Multilevel linear modelling for FMRI group analysis using Bayesian inference
  publication-title: Neuroimage
– volume: 20
  start-page: 1052
  year: 2003
  end-page: 1063
  ident: bib1
  article-title: General multilevel linear modeling for group analysis in FMRI
  publication-title: Neuroimage
– reference: Hahn, S., Konietschke, F., Salmaso, L., 2013. A comparison of efficient permutation tests for unbalanced ANOVA in two by two designs–and their behavior under heteroscedasticity.
– reference: , 1–20. URL 〈
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: bib10
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
– volume: 60
  start-page: 747
  year: 2012
  end-page: 765
  ident: bib2
  article-title: FMRI group analysis combining effect estimates and their variances
  publication-title: Neuroimage
– volume: 42
  start-page: 103
  year: 1989
  end-page: 111
  ident: bib15
  article-title: Computer-intensive correlational analysis
  publication-title: Br. J. Math. Stat. Psychol.
– volume: 89
  start-page: 203
  year: 2014
  end-page: 215
  ident: bib4
  article-title: Randomized parcellation based inference
  publication-title: Neuroimage
– volume: 34
  start-page: 127
  year: 2007
  end-page: 136
  ident: bib16
  article-title: Meaningful design and contrast estimability in FMRI
  publication-title: Neuroimage
– year: 1981
  ident: bib9
  article-title: Robust Statistics
– volume: 8
  start-page: 75
  year: 2002
  end-page: 84
  ident: bib12
  article-title: Evaluation of a behavioral measure of risk taking
  publication-title: J. Exp. Psychol. Appl.
– volume: 47
  start-page: 1469
  year: 2009
  end-page: 1475
  ident: bib14
  article-title: Simple group fMRI modeling and inference
  publication-title: Neuroimage
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: bib17
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
– reference: Croux, C., Dhaene, G., Hoorelbeke, S., 2003. Robust standard errors for robust estimators. Discussion Paper Series 03.16, Center for Economic Studies, Catholic University of Leuven.
– volume: 25
  start-page: 42
  year: 2006
  end-page: 51
  ident: bib13
  article-title: Modeling and inference of multisubject fMRI data
  publication-title: IEEE Eng. Med. Biol. Mag.
– volume: 26
  start-page: 99
  year: 2005
  end-page: 113
  ident: bib18
  article-title: Increased sensitivity in neuroimaging analyses using robust regression
  publication-title: Neuroimage
– volume: 60
  start-page: 747
  issue: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2017.05.032_bib2
  article-title: FMRI group analysis combining effect estimates and their variances
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.060
– ident: 10.1016/j.neuroimage.2017.05.032_bib3
– volume: 111
  start-page: 431
  year: 2015
  ident: 10.1016/j.neuroimage.2017.05.032_bib6
  article-title: Robust regression for large-scale neuroimaging studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.02.048
– year: 1981
  ident: 10.1016/j.neuroimage.2017.05.032_bib9
– volume: 20
  start-page: 1052
  issue: 2
  year: 2003
  ident: 10.1016/j.neuroimage.2017.05.032_bib1
  article-title: General multilevel linear modeling for group analysis in FMRI
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00435-X
– volume: 34
  start-page: 127
  issue: 1
  year: 2007
  ident: 10.1016/j.neuroimage.2017.05.032_bib16
  article-title: Meaningful design and contrast estimability in FMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.09.019
– volume: 21
  start-page: 1732
  issue: 4
  year: 2004
  ident: 10.1016/j.neuroimage.2017.05.032_bib20
  article-title: Multilevel linear modelling for FMRI group analysis using Bayesian inference
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.12.023
– volume: 25
  start-page: 42
  issue: 2
  year: 2006
  ident: 10.1016/j.neuroimage.2017.05.032_bib13
  article-title: Modeling and inference of multisubject fMRI data
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/MEMB.2006.1607668
– volume: 42
  start-page: 103
  year: 1989
  ident: 10.1016/j.neuroimage.2017.05.032_bib15
  article-title: Computer-intensive correlational analysis
  publication-title: Br. J. Math. Stat. Psychol.
  doi: 10.1111/j.2044-8317.1989.tb01118.x
– volume: 47
  start-page: 1469
  issue: 4
  year: 2009
  ident: 10.1016/j.neuroimage.2017.05.032_bib14
  article-title: Simple group fMRI modeling and inference
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.034
– volume: 17
  start-page: 143
  issue: 3
  year: 2002
  ident: 10.1016/j.neuroimage.2017.05.032_bib17
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10062
– volume: 26
  start-page: 99
  issue: 1
  year: 2005
  ident: 10.1016/j.neuroimage.2017.05.032_bib18
  article-title: Increased sensitivity in neuroimaging analyses using robust regression
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.01.011
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  ident: 10.1016/j.neuroimage.2017.05.032_bib10
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– volume: 8
  start-page: 75
  issue: 2
  year: 2002
  ident: 10.1016/j.neuroimage.2017.05.032_bib12
  article-title: Evaluation of a behavioral measure of risk taking
  publication-title: J. Exp. Psychol. Appl.
  doi: 10.1037/1076-898X.8.2.75
– volume: 89
  start-page: 203
  year: 2014
  ident: 10.1016/j.neuroimage.2017.05.032_bib4
  article-title: Randomized parcellation based inference
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.012
– volume: 1
  start-page: 184
  year: 1996
  ident: 10.1016/j.neuroimage.2017.05.032_bib8
  article-title: Permutation test is not distribution free
  publication-title: Psychol. Methods
  doi: 10.1037/1082-989X.1.2.184
– volume: 5
  start-page: 143
  issue: 2
  year: 2001
  ident: 10.1016/j.neuroimage.2017.05.032_bib11
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(01)00036-6
– ident: 10.1016/j.neuroimage.2017.05.032_bib7
– ident: 10.1016/j.neuroimage.2017.05.032_bib5
– volume: 41
  start-page: 286
  issue: 2
  year: 2008
  ident: 10.1016/j.neuroimage.2017.05.032_bib19
  article-title: Robust group analysis using outlier inference
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.02.042
– volume: 14
  start-page: 1370
  issue: 6
  year: 2001
  ident: 10.1016/j.neuroimage.2017.05.032_bib21
  article-title: Temporal autocorrelation in univariate linear modeling of FMRI data
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0931
– reference: 28030782 - Neuroimage. 2017 Feb 15;147:658-668
SSID ssj0009148
Score 2.2311046
Snippet Even after thorough preprocessing and a careful time series analysis of functional magnetic resonance imaging (fMRI) data, artifact and other issues can lead...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 219
SubjectTerms Data processing
Economic models
Estimates
Functional magnetic resonance imaging
Heteroscedasticity
Medical imaging
NMR
Nuclear magnetic resonance
Ordinary least squares
Outliers
Regression analysis
Robust regression
Statistical analysis
Studies
Styles
Time series
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3datswFBZdCmM3o_vP2o0z2K2JLcmKvV6UEFbSjfVmK-ROyLJMPTo7OOl9H2N7kL1Qn2TnWHLCYIXCLh3lCMfnR5_i73xi7H1cCiuE4JEzrohkmqqokEUeJVaJpIrLzJpe7fNcLS7kp2W63GPzoReGaJWh9vua3lfr8MkkPM3Jqq4nXxEZ4HJD-w3aksvlA7bPRa7SEdufnX1enO-0dxPpO-JSEZFBIPR4mlcvG1n_wOQlnpeX8RT8rlXqLhTar0anB-xxgJEw83f6hO255il7-CW8KH_GfiOw7upmA20Ftzc_Z0B537lLT1cH37BCg31XB1wRdQj6U3FgtWslgLoBBIiw6nuU8BoNLok_067xwRmSeEYQ_wHmpgED9K_DlQuzBAo80D4XzsB1Xdut_zUfMZLoOO6T25tfz9nF6cdv80UUTmiIrIzlJpJZKSV3CNpMYRWPq1yS4OCUZACdSXiFSV3ZypaFUAUiSWGyvCgx6StO0m-5eMFGTdu4VwzsNMNgSlKjZIVzK5M43D8naSltZjNjxywZPKJXXohDDwy173rnRU1e1HGq0Ytjlg-u00OjKZZGjavFPWyPt7Z_BeQ9rY-GSNGhKKw1hipX0zjLcfjddhjTmd7RmMa11_13REYKSGrMXvoI2_5cnik5RXj_-r9u7ZA9oitPOT5io0137d4gsNoUb0Pi_AFowybh
  priority: 102
  providerName: Elsevier
Title Reprint of ‘A Comprehensive review of group level model performance in the presence of heteroscedasticity: Can a single model control Type I errors in the presence of outliers?’
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381191730424X
https://dx.doi.org/10.1016/j.neuroimage.2017.05.032
https://www.ncbi.nlm.nih.gov/pubmed/28647020
https://www.proquest.com/docview/1912670892
https://www.proquest.com/docview/1913831156
Volume 154
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NatwwEBZNAqWX0v9smi4q9OrWtmRZbg9huyRs-rOE0MDehCzLZEtqb72ba8hjtA_SF8qTdEaSdy9NyckYW8JmZqRP0jffEPImrphhjKWR1baMeJaJqORlESVGsKSOK2m0U_uciskZ_zTLZmHDbRlolf2Y6AbqqjW4R_4O1hWpyGNZpAeLnxFWjcLT1VBCY4vsOOky8Od8lm9EdxPuU-EyFkl4ITB5PL_L6UXOf0DUIsHL63ey9Lbp6Tb46aaho0fkYcCPdOQN_pjcs80Tcv9rOCF_Sv4Aou7mzYq2Nb25_jWiGPCdPfc8deozVfChS-egF8gZoq4cDl1scgjovKGADOnCJSfBPTQ4R-JMuzS20qjtDOj9PR3rhmqK2w0XNvQSuO8UF7j0mNqua7vlv_pDKhLW4T64uf79jJwdHX4bT6JQmiEyPOariMuK89QCWtOlEWlcFxyVBnPU_7M6SWuI5trUpiqZKAFCMi2LsoJor1PUfCvYc7LdtI3dJdTkErwoybTgNfQtdGJh4ZxkFTfSSG0GJOktohZegUP11LTvamNFhVZUcabAigNS9KZTfYYpjIkKpok7tP2wbhtQiEcXd2y933uKCqPBUm18d0Berx9DHOPhjG5se-neYRKlj8SAvPAetv7dVAqeA67f-3_nL8kD_BJPJt4n26vu0r4CyLQqh2Tr7VUydNExJDuj8emXE7wef55M4frxcHpy-heEDh_I
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqrQRcEP9sKWAkOEbEP_E6IFSV0mqXtiuEWqk34ziOuqgk2-xWiFsfA16CGy_UJ2EmTnYvFPXSY5TYSjTj8TfxN98Q8jLOhRNC8Mhbn0UySVSUySyNmFOCFXGunW3UPsdqeCg_HiVHK-R3VwuDtMouJjaBOq8c_iN_DXkFV4NYp3xjehph1yg8Xe1aaAS32PU_vkPKNns3-gD2fcX5zvbB1jBquwpETsZyHkmdS8k9AA2bOcXjIpUokjdA6TpvGS_AEQtXuDwTKgP0I6xOsxwcteAoV4biSxDyVyVWtPbI6vvt8afPS5lfJkPxXSIizVjacocCo6xRqJx8gziBlLKgGCr4ZRviZYC32fh27pDbLWKlm8HF7pIVX94jN_bbM_n75A9g-HpSzmlV0Ivzn5sUQ0ztjwMznobaGLzZFJDQE2Qp0aYBD50uqxbopKSARem0KYeCaxhwjFSdauZ8blFNGvKFN3TLltRS_MFx4ttZWrY9xZSajqiv66qe_Ws-JD9h5--Ni_NfD8jhtZjtIemVVekfE-oGGvyWJVbJAuZWlnlI1VmSS6edtq5PWGcRMw2aH6Yjw301SysatKKJEwNW7JO0M53palohChvYmK4w9u1ibIt7Ap654uj1zlNMG39mZrla-uTF4jZEDjwOsqWvzppnhEaxJdUnj4KHLT6XayUHkEms_X_y5-Tm8GB_z-yNxrtPyC18q0BlXie9eX3mnwJgm2fP2lVCyZfrXph_AUZRVs4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqrVRxQfyztICR4Bg1sR2vA0JVabvqUlhViEq9Gcdx1EUl2Wa3Qtz6GPAgXHicPgkzsbN7oaiXHqPEVqIZj7-Jv_mGkJdxwS3nnEXOuDwSaSqjXORZlFjJkzIulDWt2udY7h-J98fp8Qr509XCIK2yi4ltoC5qi__INyGvYHIQq4xtloEWcbg73JqeRdhBCk9au3Ya3kUO3I_vkL7N3o52wdavGBvufd7Zj0KHgciKWMwjoQohmAPQYXIrWVxmAgXzBihj50zCSnDK0pa2yLnMAQlxo7K8AKctGUqXoRAThP_VAeyKokdW3-2NDz8tJX8T4QvxUh6pJMkCj8izy1q1ysk3iBlIL_PqoZxdtTleBX7bTXB4h9wO6JVue3e7S1ZcdY-sfQzn8_fJb8DzzaSa07qklxc_tymGm8adeJY89XUyeLMtJqGnyFiibTMeOl1WMNBJRQGX0mlbGgXXMOAEaTv1zLrCoLI05A6v6Y6pqKH4s-PUhVkC855iek1H1DVN3cz-NR8SobAL-Nblxa8H5OhGzPaQ9Kq6co8JtQMFPpykRooS5pYmcZC2J2khrLLK2D5JOovoqdf_0B0x7qteWlGjFXWcarBin2Sd6XRX3woRWcMmdY2xbxZjAwby2Oaaozc6T9EhFs30cuX0yYvFbYgieDRkKleft89whcJLsk8eeQ9bfC5TUgwgq3jy_8mfkzVYkPrDaHywTm7hS3lW8wbpzZtz9xSw2zx_FhYJJV9uel3-Be1NWvo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reprint+of+%E2%80%98A+Comprehensive+review+of+group+level+model+performance+in+the+presence+of+heteroscedasticity%3A+Can+a+single+model+control+Type+I+errors+in+the+presence+of+outliers%3F%E2%80%99&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Mumford%2C+Jeanette+A&rft.date=2017-07-01&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=154&rft.spage=219&rft_id=info:doi/10.1016%2Fj.neuroimage.2017.05.032&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon